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Gene-environment interaction explains a part of
missing heritability in human body mass index
Hae-Un Jung1, Dong Jun Kim1, Eun Ju Baek1, Ju Yeon Chung1, Tae Woong Ha2, Han-Kyul. Kim2, Ji-One Kang2,

Ji Eun Lim 2✉ & Bermseok Oh 1,2✉

Gene-environment (G×E) interaction could partially explain missing heritability in traits;

however, the magnitudes of G×E interaction effects remain unclear. Here, we estimate the

heritability of G×E interaction for body mass index (BMI) by subjecting genome-wide

interaction study data of 331,282 participants in the UK Biobank to linkage disequilibrium

score regression (LDSC) and linkage disequilibrium adjusted kinships–software for estimating

SNP heritability from summary statistics (LDAK-SumHer) analyses. Among 14 obesity-

related lifestyle factors, MET score, pack years of smoking, and alcohol intake frequency

significantly interact with genetic factors in both analyses, accounting for the partial variance

of BMI. The G×E interaction heritability (%) and standard error of these factors by LDSC and

LDAK-SumHer are as follows: MET score, 0.45% (0.12) and 0.65% (0.24); pack years of

smoking, 0.52% (0.13) and 0.93% (0.26); and alcohol intake frequency, 0.32% (0.10) and

0.80% (0.17), respectively. Moreover, these three factors are partially validated for their

interactions with genetic factors in other obesity-related traits, including waist circumference,

hip circumference, waist-to-hip ratio adjusted with BMI, and body fat percentage. Our results

suggest that G×E interaction may partly explain the missing heritability in BMI, and two G×E

interaction loci identified could help in understanding the genetic architecture of obesity.
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Genome-wide association studies (GWASs) have uncovered
several genetic variants that affect complex traits1–3,
enhanced our understanding of the development of dis-

eases, and provided genetic targets for the treatment of
diseases2,4. However, the effect sizes of individual variants dis-
covered by GWAS are relatively small—in the range of
1.01–1.20—such that the polygenic risk score (PRS), summing up
all effects of GWAS single nucleotide polymorphisms (SNPs),
explains less than 10% of the phenotypic variance in most
traits4–7. Therefore, heritability (the estimated genetic effects on
traits) based on SNPs was far lower than that estimated by tra-
ditional analyses based on twin and family studies7, even though
they may be inflated due to confounding with shared environ-
mental effects with in families or twins8. Recent studies, including
those using the Genome-wide complex trait analysis, a method
calculating the SNP heritability from all possible common var-
iants, suggested that common genetic variants can explain up to
70% of the variation in height and 40% of the variation in body
mass index (BMI)9–12. Despite these progresses, substantial
missing heritability remains in most complex traits7,13–16.

Complex traits are also affected by environmental factors, and the
environmental effect can modify genetic risk factors, known as gene-
environment (G × E) interaction17–21. Genetic variants within the
FTO gene that exhibit the largest effect size on obesity were found to
interact with environmental factors, such as physical activity, diet,
alcohol consumption, and sleep duration22–27. The effect size of FTO
variants on BMI was reduced by increased physical activity and
enhanced by decreased physical activity22–25. These findings indicate
that genetic susceptibility to disease can be modulated by altering
environmental factors22,25,28,29, and also suggest that the G × E
interaction may contribute to missing heritability30.

Generally, it is difficult to accurately measure environmental
exposures, because many cases depend on self-reported ques-
tionnaires for past exposures29,31. In addition, the analysis of
G × E interaction generally requires a higher sample size than that
used in genetic association analysis20. Therefore, the identifica-
tion of genetic variants having true G × E interaction effects in
complex human traits has been challenging21,31–33. Nevertheless,
recent progress in the analysis of G × E interaction has shed light
on the importance of their effect on trait phenotype. Poveda et al.
investigated the G × E interaction in cardiometabolic traits in the
VIKING study, which involved a cohort of 16,430 Swedish adults
from 1682 extended pedigrees34. They found statistically sig-
nificant effects of gene-age and gene-alcohol intake interactions
on weight, as well as effects of gene-age interactions on systolic
blood pressure, using quantitative genetic analysis in extended
pedigrees. Further, Justice et al. performed a genome-wide ana-
lysis of gene-smoking interaction on obesity-related traits in
241,258 samples (51,080 current smokers and 190,178 non-
smokers) to understand the effects of smoking on genetic sus-
ceptibility to obesity35. They identified 31 genetic loci for gene-
smoking interaction, and gene set analysis using these genetic loci
revealed various pathways, including response to oxidative stress
and addictive behavior, where dysregulation may lead to
increased susceptibility to obesity. In addition, two studies
investigated the presence of G × E interaction in BMI and esti-
mated genetic risk using PRS calculated from GWAS
statistics28,29. They used the UK Biobank GWAS data, which
include 500,000 participants with lifestyle measurements, and
found significant G × E interactions of PRS with physical activity,
alcohol consumption, and socioeconomic status in BMI. These
studies demonstrate the statistical significance of the G × E
interaction in complex traits. However, it is still unclear how
much the G × E interaction can explain the effect of phenotypic
variance on the extent of heritability.

Recently, two studies estimated the extent by which the G × E
interaction explained the phenotypic variance of obesity. Robin-
son et al. estimated the difference in the heritability of G × E
interaction in eight self-reported lifestyle variables, including diet,
exercise, and smoking36. They found an evidence for the genetic
interaction effect with smoking behavior, which was estimated to
contribute 4.0% to the BMI variation. Sulc et al. investigated the
contribution of G × E interaction to obesity-related traits from the
UK Biobank using a maximum likelihood method37. Previously,
Wang et al. showed the presence of G × E interaction by esti-
mating the difference in phenotype variance in different genotype
groups of subjects31. Sulc et al. applied the assumption of Wang
et al. that the estimation of G × E interaction in a genome-wide
level is presumably affected by all environmental risk factors.
Using this approach, Sulc et al. found that G × E interaction
effects of genome-wide SNPs explained 1.9% of the variance in
BMI in addition to the 15% contributed by genetic risk factors.
However, Sulc et al. did not use the real measurements of
environmental factors; therefore, their findings for the effect size
of G × E interaction on BMI require validation.

In this study, we aimed to (1) provide evidence for the herit-
ability of G × E interaction for BMI using real environment
measurements, (2) estimate the effect size of the G × E interaction
heritability for BMI, and (3) identify novel genetic loci that
interact with environmental factors to affect BMI. We used the
UK Biobank data for this analysis, which included 331,282 par-
ticipants with 4,143,506 SNPs and 14 obesogenic lifestyles. To
calculate G × E interaction heritability, we used both linkage
disequilibrium score regression (LDSC) and linkage dis-
equilibrium adjusted kinships–software for estimating SNP her-
itability from summary statistics (LDAK-SumHer)38,39.

Results
Basic characteristics of participants related to BMI. We selected
unrelated 331,282 UK Biobank participants of “White-British”
European ancestry for this study, similar to those used in the
Neale lab (https://github.com/Nealelab/UK_Biobank_GWAS).
The lifestyle characteristics of the 331,282 participants are sum-
marized in Table 1. The participants were divided into quartiles
based on their BMI values: men and women were separately
divided into quartiles and then the men and women in the same
quartile group were combined into one responding quartile
group. The average BMI of all participants was 27.39 (SD= 4.75),
and the average BMIs were 22.32 (SD= 1.62) for the first, 25.40
(SD= 1.01) for the second, 28.10 (SD= 1.02) for the third, and
33.75 (SD= 3.85) for the fourth quartile groups.

Physical activity (category ID: 100054), metabolic equivalent
task (MET) scores (category ID: 54), mental health (category ID:
100060), smoking (category ID: 100058), alcohol (category ID:
100051), sleep (category ID: 100057), household (category
ID: 100066), and baseline characteristics (category ID: 100094)
have been repeatedly reported to be related to obesity24,29,40. We
selected 14 lifestyle factors among these categories for this study,
based on previous reports, while ensuring a sample size of at least
250,000 individuals with lifestyle measures29. The 14 lifestyle
variables are shown in Table 1, and the field IDs of these lifestyle
variables are described in the Materials and Methods. The average
values of lifestyle variables or the percentages in each BMI group
are also provided in Table 1. Moreover, the distributions of the 14
lifestyle variables in all 331,282 participants are depicted as
histograms, and both distributions of raw and processed variables
for normalization are shown in Supplementary Fig. 1. The
method for the processing of raw data is described in the
Materials and Methods.
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We performed association analysis between BMI as a continuous
trait and the 14 lifestyle factors using linear regression (Supple-
mentary Table 1). All 14 lifestyle factors showed a significant
association under multiple testing (P < 3.57 × 10−3) with BMI
adjusted for age and sex in both raw and processed variables. We
found positive correlations between BMI and pack years of
smoking, smoking status, time spent watching TV, fed-up feelings,
neuroticism score, townsend deprivation index at recruitment
(TDI), nap during day, alcohol intake frequency, and time spent
using computer. In contrast, negative correlations were seen
between BMI and MET score, sleep duration, moderate physical
activity, alcohol intake status, and average total household income
before tax (Supplementary Table 1). The analysis of lifestyle factors
in the physical activity and MET category, such as summed MET
minutes per week for all activity, moderate physical activity, time
spent using computer, and time spent watching television, clearly
demonstrated that participants with more active lifestyles tended to
have a lower BMI, and participants with sedentary lifestyles
exhibited a higher BMI. However, the relationships of other lifestyle
factors with BMI were not as clear (Table 1). Moreover, we assessed
the correlation coefficients between BMI and lifestyle factors as well

as between lifestyle factors using a correlogram (Supplementary
Fig. 2).

Effect of G × E interaction on BMI. We tested the effect of G × E
interactions between the 4,143,506 SNPs (minor allele frequency
[MAF] ≥ 0.05) and individual lifestyle factors on BMI as a con-
tinuous trait, using fixed effect models of linear regression
(PLINK v.1.90). To investigate genomic inflation, we estimated
the genomic control lambda and the intercept value of LD score
regression on each GWIS result (Supplementary Table 2). The
intercept value of LD score regression indicates statistical infla-
tion adjusted for LD structure and is considered as a tool for a
more powerful and accurate correction than the genomic control
lambda38. Since the intercept value of alcohol intake status (1.38),
alcohol intake frequency (1.17), and sleep duration (1.17) were
higher than 1.1, we applied the genomic control correction using
lambda values to these lifestyle factors. As a result, the intercept
values become decreased after the correction: alcohol intake sta-
tus, 0.99; alcohol intake frequency; 0.96; sleep duration 0.98
(Supplementary Table 2). The results of G × E interaction using

Table 1 Basic characteristics of UK Biobank participants included in this study.

Group Quartile 1 group Quartile 2 group Quartile 3 group Quartile 4 group

Female threshold BMI≤ 23.42 23.42 < BMI≤ 26.06 26.06 < BMI≤ 29.63 29.63 < BMI

Male threshold BMI≤ 24.99 24.99 < BMI≤ 27.30 27.30 < BMI≤ 30.04 30.04 < BMI

Number of participants 82,869 82,799 82,823 82,791
Males (%) 46.23 46.26 46.21 46.24
Age at assessment center (years) (mean, SD) 55.81 ± 8.18 56.89 ± 7.98 57.40 ± 7.86 57.16 ± 7.72
Body mass index (kg/m2) (mean, SD) 22.32 ± 1.62 25.40 ± 1.01 28.10 ± 1.02 33.75 ± 3.85
Met score

Met score mean (SD) 2895.06 ± 2771.15 2768.21 ±2699.87 2657.59 ± 2719.93 2323.56 ±2603.84
Moderate Physical activity

Frequency mean (SD) 3.87 ± 2.31 3.72 ± 2.29 3.58 ± 2.31 3.29 ± 2.36
Time spent watching television (TV)

Spent time mean (SD) 2.35 ± 1.55 2.66 ± 1.52 2.92 ± 1.58 3.29 ± 1.75
Time spent using computer

Spent time mean (SD) 0.98 ± 1.24 1.02 ± 1.26 1.06 ± 1.33 1.16 ± 1.47
Smoking status (%)

Never 59.35 56.11 52.72 50.76
Previous smoker 29.03 34.27 37.69 39.95
Current smoker 11.62 9.61 9.6 9.28

Pack years of smoking
Pack years of smoking mean (SD) 6.26 ± 13.49 7.09 ± 14.11 8.83 ± 15.84 11.12 ± 18.87

Alcohol intake status (%)
Never 2.93 2.48 2.88 3.93
Previous 3.25 2.69 3.19 4.46
Current 93.82 94.83 93.93 91.61

Alcohol intake frequency
Category mean (SD) 2.70 ± 1.47 2.69 ± 1.42 2.82 ± 1.46 3.16 ± 1.52

Neuroticism score
Neuroticism score mean (SD) 4.17 ± 3.26 3.99 ± 3.20 4.06 ± 3.25 4.23 ± 3.30

Fed-up feelings
Yes (%) 36.69 37.35 40.88 47.42

Sleep duration
Sleep duration mean (SD) 7.18 ± 1.01 7.19 ± 1.02 7.18 ± 1.09 7.13 ± 1.21

Nap during day (%)
Never/rarely 63.1 59.13 55.33 49.07
Sometimes 32.78 36.4 39.5 43.96
Usually 4.12 4.47 5.17 6.97

Average total household income before tax
Category mean (SD) 2.76 ± 1.20 2.71 ± 1.18 2.60 ± 1.18 2.44 ± 1.16

Townsend deprivation index (TDI)
Townsend deprivation index mean (SD) −1.68 ± 2.91 −1.83 ± 2.79 −1.67 ± 2.85 −1.14 ± 3.10

Data, mean ± standard deviation (SD).
BMI body mass index, MET score metabolic equivalent of task score.
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processed variables are depicted in Fig. 1 as Manhattan plots and
in Supplementary Fig. 3 as quantile–quantile (Q–Q) plots. We
found two genome-wide significant signals for multiple testing
(P < 3.57 × 10−9 calculated by 5.00 × 10−8/14) in the lifestyle
factors analyzed, as shown in Supplementary Table 3. The sug-
gestive associations of G × E interaction with P < 5.00 × 10−6 are
provided in Supplementary Table 4.

Further, we investigated functional annotation of these two
G × E interaction lead SNPs. First, we searched for functional
importance of these SNPs using RegulomeDB (Supplementary
Table 5). Second, we evaluated any association of genetic variants
existing within the 1Mb flanking region of the lead SNPs with
obesity or obesity-related traits (Supplementary Table 6). The
direct association of lead SNPs with any traits was also
determined using the GWAS catalog (Supplementary Table 7).
Third, we investigated the expression quantitative trait loci
(eQTL) information using Genotype-Tissue Expression (GTEx)
version 8 for lead SNPs shown genome-wide significance level
(Supplementary Table 8)41. All two lead SNPs had genetic
variants within the 1Mb flanking region associated with BMI.
The direct association of rs11642015 (interacting with alcohol
intake frequency) with the G × E interaction in BMI and that of
rs12438181 (interacting with smoking status) with pulmonary
function in smokers were reported, and two lead SNPs showed
eQTL genes as sentinel SNPs (r2= 1).

Heritability of G × E interaction. Based on the results of genome-
wide G × E interaction tests, we calculated the heritability of G × E
interaction for BMI using LDSC v1.0.1 (https://github.com/bulik/
ldsc) (Table 2)38. Among the 14 lifestyle factors, MET score
(P= 3.38 × 10−3), time spent watching television (P= 1.13 × 10−3),
pack years of smoking (P= 1.74 × 10−4), alcohol intake frequency
(P= 1.26 × 10−6), and fed-up feeling (P= 2.24 × 10−3) showed
statistical significance, based on the Bonferroni multiple correction
(P < 3.57 × 10−3) (Table 2). The heritability of G × E interaction for
alcohol intake frequency in BMI was hG×E2= 0.0080, which sug-
gests that 0.80% of the BMI phenotypic variance in the population
might be attributed to the genetic interaction with alcohol intake
frequency. Similarly, the heritability of G × E interaction for MET
score was hG×E2= 0.0065, that of time spent watching TV was
hG×E2= 0.0058, that of pack years of smoking was hG×E2= 0.0093,
and that of fed-up feelings was hG×E2= 0.0054.

To confirm these estimates of G × E heritability calculated by
LDSC, we used another approach, the LDAK-SumHer v.5.1 method
(http://dougspeed.com/ldak/), which is based on a different
algorithm from LDSC39,42. The heritabilities of G × E interaction
calculated using the LDAK-SumHer method are presented in
Table 3. Similar to the LDSC results, MET score (P= 1.28 × 10−4),
pack years of smoking (P= 3.04 × 10−5), and alcohol intake
frequency (P= 5.15 × 10−4) showed statistical significances, based
on the Bonferroni multiple correction (P < 3.57 × 10−3) (Table 3).
However, the effects of time spent watching TV (P= 1.29 × 10−2)
and fed-up feelings (P= 9.74 × 10−3) did not reach a significance
level based on the multiple correction in the LDAK-SumHer
analysis. The heritability of G × E interaction for alcohol intake
frequency was hG×E2= 0.0032, that for MET score was
hG×E2= 0.0045, and that for pack years of smoking was
hG×E2= 0.0052 in LDAK-SumHer analysis. The P-values for the
heritability of G × E interaction calculated by LDSC and LDAK-
SumHer methods are compared in Fig. 2, which show a similar
pattern between them across lifestyle factors.

G × E interaction of MET score, pack years of smoking, and
alcohol intake frequency in other obesity-related traits. To
investigate whether MET score, pack years of smoking, and

alcohol intake frequency also showed statistically significant
heritability of G × E interaction in other obesity-related traits, we
tested the G × E interaction in waist circumference (WC), hip
circumference (HC), waist-to-hip ratio adjusted with BMI
(WHRadjBMI), and body fat percentage (BFP). The lifestyle
characteristics of participants related to these obesity-related
traits are summarized in Supplementary Tables 9–12. Similar to
that done when determining BMI, the participants were divided
into quartiles based on their trait values, and as expected, the
average BMI increased in each successive group for all traits. The
mean value of MET score in each quartile group demonstrated
that participants with more active lifestyles generally exhibited
lower values of those obesity-related traits. Higher pack years of
smoking and alcohol intake frequency were generally related to
higher BMI values. The MET score, pack years of smoking, and
alcohol intake frequency showed a significant association under
multiple testing (P < 4.16 × 10−3) with all obesity-related traits
(Supplementary Table 13). Similar to the results for BMI, MET
score exhibited negative effect size (β) in all obesity-related traits,
whereas alcohol intake frequency and pack years of smoking
showed positive effect size (β) in all obesity-related traits. The
distributions of raw and processed variables for obesity-related
traits in the population are shown in Supplementary Fig. 4 as
histograms.

Further, we examined correlations among these obesity-related
traits in the study population (Supplementary Fig. 5). As
expected, all traits showed positive correlations with BMI, with
strongest correlation seen in HC (correlation coefficient value:
0.86), followed by that in WC (correlation coefficient value: 0.81),
BFP (correlation coefficient value: 0.57), and WHRadjBMI
(correlation coefficient value: 0.44).

Using the same method as that for BMI analysis, we tested
G × E interactions between the 4,143,506 SNPs and MET score,
pack years of smoking, and alcohol intake frequency in WC, HC,
WHRadjBMI, and BFP adjusted age, sex, genotyping array, and
PC1–PC10. To investigate genomic inflation, we estimated the
intercept of LD score regression from the each GWIS result in the
Supplementary Table 14. Since the intercept values of alcohol
intake frequency on WC (1.16), alcohol intake frequency on HC
(1.17), and alcohol intake frequency on WHRadjBMI (1.13) were
higher than 1.1, we applied the genomic control correction using
lambda value to these traits. As a result, the intercept values
become decreased after the correction: alcohol intake frequency
on WC (0.97), alcohol intake frequency on HC (0.98), and
alcohol intake frequency on WHRadjBMI (0.97) (Supplementary
Table 14). The GWIS results are shown in Supplementary
Figs. 6–8 as Manhattan plots in Supplementary Figs. 9–11 as Q–Q
plots. We could not find genome-wide significant signals after
multiple correction (P < 4.17 × 10−9 calculated by 5.00 × 10−8/12)
for G × E interaction in the MET score and pack years of
smoking, while two statistically significant signals (rs5729295 and
rs11642015 at the FTO locus) were identified in alcohol intake
frequency (Supplementary Table 15). Using RegulomeDB and the
similar method as that used with BMI, we investigated functional
annotation of these two statistical significant (P < 4.17 × 10−9)
SNPs (Supplementary Table 16). Further, we determined any
association of genetic variants existing within the 10Mb flanking
region of the lead SNPs with obesity or obesity-related traits
(Supplementary Table 17), a direct association of the lead SNPs
with any traits using the GWAS catalog (Supplementary
Table 18), and the eQTL information using GTEx version 8
(Supplementary Table 19)41. We found that two lead SNPs were
previously reported to be associated with BMI. These SNPs of the
FTO locus (rs57292959, and rs11642015) were associated with
diverse traits, including BMI, and showed eQTL genes as sentinel
SNPs (r2= 1).
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Fig. 1 Manhattan plots of gene-environment interaction study. Manhattan plots showing the –log10-transformed gene-environment interaction P-value of
each SNP on the y-axis and base-pair positions along the chromosomes on the x-axis. SNP P-values were computed in Plink 1.90. The blue line indicates the
suggestive threshold (P < 5.00 × 10−6). The red line indicates the genome-wide significance for multiple testing (P < 3.57 × 10−9). a Metabolic equivalent
task (MET) score, b Moderate physical activity, c Time spent wathcing television (TV), d Time spent using computer, e Smoking status, f Pack years of
smoking, g Alcohol intake status (the GWIS after genomic control), h Alcohol intake frequency (the GWIS after genomic control), i Neuroticism score,
j Fed-up feelings, k Sleep duration (the GWIS after genomic control), l Nap during day, m Average total household income before tax, n Townsen
deprivation index at recruitment.
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Additionally, we compared the results of suggestive G × E
interactions in BMI (P < 5.00 × 10−6) with the results in other
obesity-related traits (Supplementary Tables 20–23). Notably,
rs11642015 that yielded genome-wide significant interaction in
BMI (near FTO gene, β= 8.29E-04, SE= 1.31E-03,
P= 2.79 × 10−10) was also statistically significant for WC
(β= 1.11E-02, SE= 1.47E-03, P= 5.33 × 10−12) and BFP
(β= 9.41E-03, SE= 1.60E-03, P= 4.48 × 10−9).

Based on these results, we calculated the heritability of G × E
interaction for MET score, pack years of smoking, and alcohol
intake frequency using LDSC and LDAK-SumHer for each trait
(Fig. 3 and Tables 4–5). Using the Bonferroni multiple correction
(P < 4.17 × 10−3), the heritabilities of G × E interaction for pack
years of smoking in WC (hG×E2= 0.0065, P= 2.36 × 10−3),
alcohol intake frequency in WC (hG×E2= 0.0083,
P= 1.66 × 10−5), pack years of smoking in HC (hG×E2= 0.0102,
P= 2.25 × 10−5), and alcohol intake frequency in WHRadjBMI
(hG×E2= 0.0059, P= 3.66 × 10−3) were statistically significant
according to the LDSC analysis. In case of LDAK-SumHer
analysis, the heritabilities of G × E interaction for MET score in
WC (hG×E2= 0.0044, P= 1.84 × 10−4), pack years of smoking in
WC (hG×E2= 0.0034, P= 2.00 × 10−3), alcohol intake frequency
in WC (hG×E2= 0.0039, P= 4.34 × 10−4), pack years of smoking
in HC (hG×E2= 0.0043, P= 3.20 × 10−4), and MET score in BFP
(hG×E2= 0.0033, P= 2.88 × 10−3) were statistically significant.

Discussion
In this study, to estimate the proportion of missing heritability that
could be explained by G × E interaction, we determined the herit-
ability of G × E interaction for BMI and other obesity-related traits
in a large sample of 331,282 participants from the UK Biobank.
Three lifestyle factors—MET score, pack years of smoking, and
alcohol intake frequency—showed statistically significant interac-
tion with genetic factors for BMI in both LDSC and LDAK-
SumHer analyses. The G × E interaction heritability (%) and stan-
dard error of these factors by LDSC and LDAK-SumHer were as
follows: MET score, 0.45% (0.12) and 0.65% (0.24); pack years of
smoking, 0.52% (0.13) and 0.93% (0.26); and alcohol intake fre-
quency, 0.32% (0.10) and 0.80% (0.17), respectively. Moreover, we
identified the statistical significance of the G × E interaction herit-
ability of these three lifestyle factors in WC, HC, WHRadjBMI, and
BFP. Additionally, we identified two genome-wide significant loci
interacting with lifestyle factors in these obesity-related traits.

Recently, Rask-Andersen et al.29 and Tyrrell et al.28 calculated
the PRS for BMI in the European sample referring to SNPs dis-
covered by Locke et al.43. They investigated the interactions
between the PRS and lifestyle factors using the linear regression
model. Rask-Andersen et al. found physical activity, alcohol
intake frequency, and socioeconomic status to interact with PRS
in BMI. Tyrrell et al. found physical activity and socioeconomic
status to interact with PRS in BMI. Similarly, we also found a
statistical significance in the G × E interaction heritability of
physical activity (MET score) and alcohol intake frequency in
BMI. While smoking (pack years of smoking) was found to be
significant only in this study, Robinson et al. previously demon-
strated the significance of G × E interaction smoking interaction
heritability34.

Robinson et al. proposed the heritability of G × E interaction by
estimating the difference in heritabilities between subgroups clas-
sified by environmental exposure using mixed-effect models36.
They found evidence for the contribution of G × E interaction for
smoking behavior to BMI, which explains 4.0% of the phenotypic
variance. Our analysis estimated statistically significant heritability
of G × E interaction in the pack years of smoking in BMI with
somewhat less value (hG×E2= 0.93%, P= 1.74 × 10−4 calculated by
LDSC; hG×E2= 0.52%, P= 3.04 × 10−5 calculated by LDAK-Sum-
Her). Sulc et al. also provided evidence for G × E interaction effect
on BMI based on the calculation of phenotypic variance across the
different PRS groups and found PRS × E to contribute 1.9% to
BMI37. If we assume that there is no correlation between G × E
interaction of three lifestyle factors, the G × E interaction effect on
BMI may be calculation by the summation of the heritabilities of
three lifestyle factors. The summed values account to 1.3% for
LDAK-SumHer and 2.38% for LDSC in this study. Sulc et al.
reported TDI and alcohol intake frequency as lifestyle factors for
the PRS × E contribution of 1.9% to BMI. We also found margin-
ally significant heritability for G × E interaction in TDI
(hG×E2= 0.42%, P= 6.70 × 10−3 calculated by LDSC;
hG×E2= 0.23%, P= 1.16 × 10−2 calculated by LDAK-SumHer).
And Shin et al. estimated heritability of G × E interaction in BMI
using the GxEsum program, which was built on LDSC approach44.
The GxEsum is a method for estimating the phenotypic variance
explained by genome-wide G x E terms for large-scale biobank
dataset. They provided the heritability of G × E interaction for age
(hG×E2= 0.4%, P= 0.019), neuroticism score (hG×E2= 0.7%,
P= 1.61 × 10−5), physical activity (hG×E2= 0.3% P= 0.026) and
alcohol intake frequency (hG×E2= 0.3%, P= 0.060) in BMI.

Table 2 G × E interaction heritability in BMI calculated using the LDSC method.

Category Lifestyle factor N G × E interaction heritability % (SE) P-value Intercept

Physical activity MET scorea 268,536 0.65 (0.24) 3.38 × 10−3 1.084
Moderate physical activity 315,747 0.41 (0.16) 5.20 × 10−3 1.025

Physical activity Time spent watching television (TV)a 328,943 0.58 (0.19) 1.13 × 10−3 1.090
(Leisure life) Time spent using computer 328,824 1.22 × 10−3 (0.21) 5.00 × 10−1 1.087
Smoking Smoking Status 330,138 0.31 (0.18) 4.17 × 10−2 1.086

Pack years of smokinga 279,758 0.93 (0.26) 1.74 × 10−4 1.070
Alcohol Alcohol intake statusb 330,995 0.32 (0.17) 2.99 × 10−2 0.985

Alcohol intake frequencya,b 331,049 0.80 (0.17) 1.26 × 10−6 0.960
Mental health Neuroticism score 269,392 0.52 (0.22) 9.05 × 10−3 1.040

Fed-up feelingsa 324,753 0.54 (0.19) 2.24 × 10−3 1.023
Sleep Sleep durationb 329,523 0.09 (0.16) 2.87 × 10−1 0.981

Nap during day 331,141 0.18 (0.19) 1.70 × 10−1 1.060
Social economic status Average total household income before tax 285,544 0.28 (0.18) 5.99 × 10−2 0.996

Townsend deprivation index at recruitment 330,893 0.42 (0.17) 6.70 × 10−3 1.083

MET score metabolic equivalent of task score, SE standard error.
aIndicates the statistically significant G × E interaction heritability based on the Bonferroni corrected P-value threshold (P-value < 3.57 × 10−3).
bIndicates the GWIS after genomic control.
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Moreover, we also found marginally significant heritability for
G × E interaction using the LDSC method as follows: neuroticism
score (hG×E2= 0.52%, P= 9.05 × 10−3), MET score
(hG×E2= 0.65% P= 3.38 × 10−3) and alcohol intake frequency
(hG×E2= 0.80%, P= 1.26 × 10−6).

Our analysis for the G × E interaction found two genome-wide
significant loci for multiple testing (P < 3.57 × 10−9 on BMI,
P < 4.17 × 10−9 on obesity-related traits) (Supplementary Tables 3
and 15). All two loci have been reported to be associated with
BMI (Supplementary Tables 6 and 17). Notably, two loci were
previously reported for their interactions with lifestyle factors in
BMI, supporting the validity of our G × E interaction analysis.
First, the locus of the CHRNA (cholinergic receptor nicotinic
alpha subunit) gene cluster on chromosome 15 has been well-
reported to be associated with smoking addiction45–48. For
rs12438181, which showed significant effects on BMI by inter-
acting with smoking behaviors in this study, eQTL analysis of
GTEx (ver. 8) data revealed that this SNP is associated with both
CHRNA3 and CHRNA5 genes in the brain (Supplementary
Table 8)41. Further, two recent studies have provided evidence for
the interaction between CHRNA3-A5-B4 gene cluster variants
and smoking behavior in BMI35,49. Taylor et al. suggested that
CHRNAs modulate responses such as food appetite to rewarding
stimuli, including smoking49. The FTO (fat mass and obesity
associated-alpha-ketoglutarate dependent dioxygenase) gene is a
well-known, strong genetic factor for obesity, of which the

mechanism is mainly attributable to the role in energy
metabolism50. Previous studies demonstrated that the FTO gene
is not only associated with BMI, but also interacts with lifestyle
factors to influence BMI24,26,31. In this study, rs11642015, and
rs57292959 at the FTO locus interacted with alcohol intake fre-
quency to affect BMI, WC, and BFP, respectively (Supplementary
Tables 3 and 15). Moreover, GTEx (ver. 8) analysis of these SNPs
showed the FTO gene as an eQTL gene in the skeletal muscle and
pancreas (Supplementary Tables 8 and 19)41. Further, it was
reported that FTO [rs1421085 (r2= 0.95 from rs11642015)]
interacts with the frequency of alcohol consumption in BMI,
which supports our findings on the interaction of these lead SNPs
with alcohol intake frequency24.

There are several limitations to our study. First, some of the
GWIS results may be statistically inflated. This can be inferred
from the Q–Q plot and the intercept values calculated through
the LDSC (Supplementary Fig. 3 and Table 2)38. This statistical
inflation can occur because of trait polygenicity and large sample
size in the study51,52. Therefore, these findings await replication
and more careful testing with a larger GWAS data. Second, to
estimate the GxE interaction heritability, we used LDSC and
LDAK-SumHer methods. Both methods were optimized to cal-
culate genetic heritability using the summary statistics estimated
fixed effects of linear regression. However, although GWIS is
calculated as fixed effects of linear regression model, it is neces-
sary to validate that G × E interaction heritability is estimated

Table 3 G × E interaction heritability calculated using the LDAK-SumHer method.

Category Lifestyle factor N G × E interaction heritability % (SE) P-value

Physical activity MET scorea 268,536 0.45 (0.12) 1.28 × 10−4

Moderate physical activity 315,747 0.17 (0.10) 4.48 × 10−2

Physical activity Time spent watching television (TV) 328,943 0.23 (0.10) 1.29 × 10−2

(Leisure life) Time spent using computer 328,824 5.00 × 10−4 (0.097) 5.00 × 10−1

Smoking Smoking Status 330,138 0.22 (0.10) 1.79 × 10−2

Pack years of smokinga 279,758 0.52 (0.13) 3.04 × 10−5

Alcohol Alcohol intake statusb 330,995 0.14 (0.09) 5.71 × 10−2

Alcohol intake frequencya,b 331,049 0.32 (0.10) 5.15 × 10−4

Mental health Neuroticism score 269,392 0.14 (0.12) 1.14 × 10−1

Fed-up feelings 324,753 0.23 (0.098) 9.74 × 10−3

Sleep Sleep durationb 329,523 0.14 (0.09) 5.12 × 10−2

Nap during day 331,141 0.13 (0.099) 9.90 × 10−2

Social economic status Average total household income before tax 285,544 0.18 (0.11) 4.48 × 10−2

Townsend deprivation index at recruitment 330,893 0.23 (0.10) 1.16 × 10−2

MET score metabolic equivalent of task score, SE standard error.
aIndicates the statistically significant G × E interaction heritability based on the Bonferroni corrected P-value threshold (P-value < 3.57 × 10−3).
bIndicates the GWIS after genomic control.

Fig. 2 Bar plots of G × E interaction heritability in BMI. Comparison of results for G × E interaction heritability calculated by LDSC (a) and LDAK-SumHer
(b). The x-axis indicates the –log10 G × E interaction heritability P-value. MET: metabolic equivalent task; TDI: Townsend depriviation index at recruitment;
LDSC: linkage disequilibrium score regression; LDAK-SumHer: linkage disequilibrium adjusted kinships–software for estimating SNP heritability from
summary statistics.
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using GWIS simulated with various cases. Third, we simply
summed the heritabilities of G × E interaction for individual
lifestyle factors to estimate total G × E interaction heritability as
1.29–2.38% in BMI. If these heritabilities of different lifestyle
factors are dependent on each other, the summed heritability for
BMI may be lower than 1.35–2.55%. However, Sulc et al. reported
1.9% total heritability for the contribution of PRS × E interaction
to the phenotypic variance of BMI35. Moreover, the heritabilities

of G × E interaction for other obesity-related traits analyzed in
this study were not much different from these. The hG×E2 of WC
was 1.35% (LDSC) and 0.67% (LDAK-SumHer), and hG×E2 of HC
was 1.02% (LDSC) and 0.43% (LDAK-SumHer), indicating that if
our results are inflated, the inflation may be small.

In summary, we performed GWIS for BMI using 331,282
participants in the UK Biobank, and calculated the heritability of
G × E interaction for 14 lifestyle factors. Among the lifestyle

Fig. 3 Bar plots of G × E interaction heritability in obesity-related traits. Comparison of results for G × E interaction heritability calculated by LDSC
(a, c, e, g) and LDAK-SumHer (b, d, f, h) in waist circumference (a, b), hip circumference (c, d), WHRadjBMI (e, f), and body fat percentage (g, h). The
x-axis indicates the –log10 G × E interaction heritability P-value. MET metabolic equivalent task, WHRadjBMI waist-to-hip ratio adjusted with body mass
index, LDSC linkage disequilibrium score regression, LDAK-SumHer linkage disequilibrium adjusted kinships–software for estimating SNP heritability from
summary statistics.
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variables, MET score, pack years of smoking, and alcohol intake
frequency consistently showed statistically significant G × E
interaction heritability for BMI. Our results suggest that apart of
the missing heritability in BMI may be explained by the G × E
interaction, indicating that consideration of G × E interaction
could improve the accuracy of predicting obesity genetically.

Methods
UK Biobank resource. We used the UK Biobank database, which is a population‐
based database that recruited more than 487,409 individuals aged 40–69 years
during 2006–1053. For quality control of the sample, we used Neale lab filters
(https://github.com/Nealelab/UK_Biobank_GWAS). The sample filters are as fol-
lows: PCA calculation filter for selection of unrelated samples; sex chromosome
filter for aneuploidy removal; filter of principal components (PCs) for European
sample selection to determine British ancestry; and filters for selection of self-
reported “White-British”, “Irish”, and “White”. In addition, we selected samples
based on the filter for self-reported “White-British”, remaining the final sample as
331,282.

Ethics approval and consent to participate. All participants provided signed
consent to participate in the UK Biobank54. UK Biobank has been given ethical
approval to collect participant data by the North West Multicentre Research Ethics
Committee, the National Information Governance Board for Health & Social Care,
and the Community Health Index Advisory Group.

Genotype data. Baseline genetic imputation data of 93,095,623 SNPs were avail-
able in 487,409 participants. UK Biobank participants used the UK Biobank Axiom
Array and the UK BiLEVE Axiom Array from Affymetrix (Santa Clara, CA)55.
Genotyping imputation was performed using UK10K Project and 1000 Genome
Project Phase 3 reference panel. We performed quality control analysis using
PLINK v.1.9056, based on the following exclusion criteria: SNPs with missing
genotype call rates > 0.05, MAF < 0.05, and Hardy–Weinberg equilibrium P-
value < 1.00 × 10−6. We excluded SNPs with MAF smaller than 0.05 to avoid
potential false-positive results due to the coincidence of a low-frequency variant31.
Consequently, 4,143,506 SNPs were retained for further analysis.

Phenotype data. Participants’ weights were assessed using various methods during
the initial UK Biobank assessment center visit. Additionally, standing height was
measured on a SECA 240 Height Measure. For BMI, we used data-field 21001,
which is constructed from height and weight measured. For this study, BMI was
transformed using log transformation.

The lifestyle factors used in GWIS were selected based on previous studies on
obesity24,29,40. The 14 lifestyle factors were metabolic equivalent task score (MET
score; field ID: 22040), moderate physical activity (field ID: 884), time spent using
computer (field ID: 1080), time spent watching TV (field ID: 1070), neuroticism score
(field ID: 20127), fed-up feelings (field ID: 1960), smoking status (field ID: 20116),
pack years of smoking (field ID: 20161), alcohol intake frequency (field ID: 1558),
alcohol intake status (field ID: 20117), sleep duration (field ID: 1160), nap during day
(field ID: 1190), average total household income before tax (field ID: 738), and TDI
(field ID: 189) (Table 1). For the GWIS, lifestyle factors (MET score, time spent using
computer, time spent watching TV, pack years of smoking, neuroticism score, sleep
duration) were transformed to normal distribution using Gaussian function in
structured linear mixed model v.0.3.1 (Struct-LMM) (Supplementary Fig. 1)26. For
moderate physical activity analysis, participants were divided into four groups. For

Table 4 G × E interaction heritability calculated using the LDSC method.

G × E interaction heritability

Phenotype Lifestyle factor N G × E interaction heritability % (SE) P-value Intercept

Waist circumference MET score 268,484 0.51 (0.24) 1.68 × 10−2 1.06
Pack years of smokinga 279,704 0.65 (0.23) 2.36 × 10−3 1.03
Alcohol intake frequencya,b 330,986 0.70 (0.16) 6.07 × 10−6 0.97

Hip circumference MET score 268,487 0.23 (0.24) 1.69 × 10−1 1.07
Pack years of smokinga 279,707 1.02 (0.25) 2.25 × 10−5 1.05
Alcohol intake frequencya,b 330,994 0.51 (0.17) 1.35 × 10−3 0.98

WHRadjBMI MET score 268,465 0.29 (0.21) 8.36 × 10−2 1.07
Pack years of smoking 279,684 X - 1.02
Alcohol intake frequencyb 330,965 0.43 (0.19) 1.18 × 10−2 0.97

Body fat percentage MET score 264,667 0.53 (0.25) 1.70 × 10−2 1.03
Pack years of smoking 275,885 0.42 (0.21) 2.28 × 10−2 1.03
Alcohol intake frequency 326,077 0.40 (0.19) 1.76 × 10−2 1.09

MET score metabolic equivalent of task score, WHRadjBMI waist to hip ratio adjusted for body mass index, SE standard error.
aIndicates the statistically significant G × E interaction heritability based on the Bonferroni corrected P-value threshold (P-value < 4.17 × 10−3).
bIndicates the GWIS after genomic control.

Table 5 G × E interaction heritability calculated using the LDAK-Sum Her method.

G × E interaction heritability

Phenotype Lifestyle factor N G × E interaction heritability % (SE) P-value

Waist circumference MET scorea 268,484 0.44 (0.12) 1.84 × 10−4

Pack years of smokinga 279,704 0.34 (0.12) 2.00 × 10−3

Alcohol intake frequencya,b 330,986 0.33 (0.10) 3.88 × 10−4

Hip circumference MET score 268,487 0.13 (0.12) 1.50 × 10−1

Pack years of smokinga 279,707 0.43 (0.13) 3.20 × 10−4

Alcohol intake frequencyb 330,994 0.11 (0.10) 1.30 × 10−1

WHRadjBMI MET score 268,465 0.12 (0.12) 1.74 × 10−1

Pack years of smoking 279,684 0.03 (0.10) 3.85 × 10−1

Alcohol intake frequencyb 330,965 0.07 (0.09) 2.16 × 10−1

Body fat percentage MET scorea 264,667 0.33 (0.12) 2.88 × 10−3

Pack years of smoking 275,885 0.24 (0.12) 2.07 × 10−2

Alcohol intake frequency 326,077 0.19 (0.10) 3.34 × 10−2

MET score metabolic equivalent of task score, WHRadjBMI waist to hip ratio adjusted for body mass index, SE standard error.
aIndicates the statistically significant G × E interaction heritability based on the Bonferroni corrected P-value threshold (P-value < 4.17 × 10−3).
bIndicates the GWIS after genomic control.
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smoking analysis, participants were divided into two groups, one with or without
previous history of smoking and the other with current smoking40.

Statistics and reproducibility. The G × E interaction analysis for the 14 lifestyle
factors on BMI as a continuous trait was performed fixed effect model of linear
regression using the PLINK v.1.9056. Also, we analyzed each obesity-related trait as
a continuous trait in the same methods. The formula of the linear regression model
is such that:

Phenotype ¼ β0 þ β1Gþ β2G ´Eþ β3Eþ β4ageþ β5sexþ β6array þ β7PC1þ β8PC2

þβ9PC3þ β10PC4þ β11PC5þ β12PC6þ β13PC7þ β14PC8þ β15PC9þ β16PC10þ ε

ð1Þ
β1 denote the effect size of genotype β2 denote the effect size of G × E interaction β3
denote the effect size of lifestyle factor β4 denote the effect size of age β5 denote the
effect size of sex β6 denote the effect size of genotyping array β7 denote the effect
size of PC1 β8 denote the effect size of PC2 β9 denote the effect size of PC3 β10
denote the effect size of PC4 β11 denote the effect size of PC5 β12 denote the effect
size of PC6 β13 denote the effect size of PC7 β14 denote the effect size of PC8 β15
denote the effect size of PC9 β16 denote the effect size of PC10

To stabilize the genomic inflation, we applied the genomic control to GWIS
results showing an intercept value of LD score regression higher than 1.1
(Supplementary Tables 2 and14). For this purpose, firstly, we estimated the median
chi-square distribution of the GWIS result. Next, the lambda value was estimated
by the median of chi-square divided by 0.4565657 Finally, each chi-square of SNP is
divided by the lambda value58.

We used PLINK to identify independent SNPs. We used LD clumping to retain
the most strongly associated SNPs in each region (PLINK v.1.90 –clump-p1 5e-06
–clump-p2 5e-06 –clump-r2 0.01 –clump-kb 1000) in GWIS analysis.

We used LDSC38 and LDAK-SumHer39 to estimate the G × E interaction
heritability from the 14 GWIS summary statistics. The statistical evaluation method is
different between two methods. LDSC methods estimates genetic heritability using a
regression model, whereas LDAK-SumHer methods calculated genetic heritability
using a likelihood model. When using LDSC to estimate G × E interaction heritability,
it is necessary to LD score of SNP. Bulik-Sullivan et al. estimated the 1,217,312 SNPs
of LD score based on the European 1000 Genomes database and Hap-Map3 SNPs
(https://github.com/bulik/ldsc)38. We also used LD score to estimate G × E interaction
heritability. When using LDAK-SumHer, it is required for well-imputed common
SNPs panel. So, we remained SNP satisfied criteria as follows41: (1) 1000 Genomes
imputation database, (2) Non-ambiguous SNPs, (3) SNPs not in MHC region (http://
dougspeed.com/)39. Based on these SNPs, we used GCTA model of LDAK-SumHer
to estimate the G × E interaction heritability39.

We created Manhattan plots, histograms, Q–Q plots, bar plots, and correlograms
and performed association and correlation analysis in R version 4.0.3 (www.r-project.
org). We used qqman package for Manhattan plots and corrplot package for
calculating correlation coefficients and plotting the correlogram. The ggplot2 package
was used for plotting bar plots and lme4 package was used for association analysis.

Investigation of the biological function of significant loci. To investigate the
biological function and possible effects of significant variants on various traits, we
investigated this information on the GWAS catalog, RegulomeDB, and GTEx
version 8. For GWAS catalog, we determined any association of genetic variants
existing within the 10Mb flanking region of the lead SNPs with obesity or obesity-
related traits, a direct association of the lead SNPs with any traits using the GWAS
catalog59 (https://www.ebi.ac.uk/gwas/). We investigated the eQTL information for
lead SNPs shown statistical significance using GTEx version 8 database41 (https://
gtexportal.org/home/). We searched for functional importance of lead SNPs using
RegulomeDB60 (https://regulomedb.org/regulome-search/).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the paper and its
supplementary information files. The GWIS summary data are deposited in Zenodo
(https://doi.org/10.5281/zenodo.7647748) and displayed on Manhattan plots. Source data
underlying the bar plots presented in the main figure are available as Tables 2–5.
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