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Spectrotemporal content of human auditory
working memory represented in functional
connectivity patterns
Jyrki Ahveninen 1,2✉, Işıl Uluç1,2, Tommi Raij1,2, Aapo Nummenmaa1,2 & Fahimeh Mamashli1,2

Recent research suggests that working memory (WM), the mental sketchpad underlying

thinking and communication, is maintained by multiple regions throughout the brain. Whe-

ther parts of a stable WM representation could be distributed across these brain regions is,

however, an open question. We addressed this question by examining the content-specificity

of connectivity-pattern matrices between subparts of cortical regions-of-interest (ROI).

These connectivity patterns were calculated from functional MRI obtained during a ripple-

sound auditory WM task. Statistical significance was assessed by comparing the decoding

results to a null distribution derived from a permutation test considering all comparable two-

to four-ROI connectivity patterns. Maintained WM items could be decoded from connectivity

patterns across ROIs in frontal, parietal, and superior temporal cortices. All functional con-

nectivity patterns that were specific to maintained sound content extended from early

auditory to frontoparietal cortices. Our results demonstrate that WM maintenance is sup-

ported by content-specific patterns of functional connectivity across different levels of cor-

tical hierarchy.
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Neuronal processes that help maintain information in
working memory (WM), a function critical for our goal-
directed behavior, are a long-standing topic of debate.

Initially, WM content was thought to be maintained by a dedi-
cated, modular storage circuit. This approach led to a discrepancy
in the literature as to whether these modular storage circuits are
governed by higher association areas1–4 or sensory cortices5–8.
Those favoring higher areas including prefrontal (PFC) and/or
posterior parietal (PPC) cortices argue that representations in
sensory areas are too prone to distraction to support stable WM
maintenance9. The proponents of the “sensory recruitment model
of WM”, in turn, note that activations in, e.g., PFCs often cor-
relate more strongly with attentional rather than maintenance-
related task demands, per se8. Adding to this complexity, a
growing body of studies have found evidence for content specific
representations from both sensory and association areas during
WM maintenance10–18.

To address these discrepancies, a synthesis of the competing
modular theories is therefore emerging, which suggests that WM
maintenance can be distributed to different hierarchical levels
whose predominance depends on the complexity of the task and
memory items19–22. For example, auditory, visual, and tactile
memoranda could be represented in parallel in sensory and
association areas when the maintained item encompasses both
basic sensory and abstract features16,23. However, whether and
how these parallel distributed representations of maintained WM
items interact and are integrated with each other has so far
remained an open question22.

One theoretical possibility is that distributed representations of
WM are coordinated via long-range functional connectivity
within PFC, PPC, and sensory brain areas24. In line with this
suggestion, fMRI studies have provided evidence for correlations
between behavioral WM performance and the strength of func-
tional connectivity between frontal and posterior brain areas25.
Whole-brain resting-state fMRI functional connectivity patterns
have, in turn, been recently reported to predict individual dif-
ferences in WM capacity26. Accumulating neurophysiological
evidence from human27–29 and non-human primate studies30,31

also suggests that long-range synchronization of neuronal oscil-
lations between brain regions is, in itself, modulated by WM task
demands including memory load. While these earlier studies did
not probe distributed content representations, a recent human
fMRI multivariate pattern analysis (MVPA) demonstrated that
the categorical type of WM task demands (e.g., spatial, numeric,
or fractal) can be classified based on changes of functional
connectivity32. Long-range oscillatory synchronization patterns
that carry WM information were also found in our recent study
that used MEG, a method with a high spectrotemporal resolution
but with spatial limitations for mapping of how feature tuning
evolves between adjacent cortical areas33. Whether stable para-
metric WM representations could be coded to content-specific
connectivity patterns across different levels of cortical feature
topography (see, e.g., Fig. 1), thus, remains an open question.

Here, we examined connectivity-based coding of maintained
information in the domain of auditory WM, a function much less
intensively studied than its visual counterpart, despite its funda-
mental importance for our everyday communication and
behavior34. Everyday auditory objects such as vocalizations, pie-
ces of music, and environmental sounds are distributed broadly
across time and spectrum, lasting up to several seconds, which
could increase the brain’s need to orchestrate its function across
hierarchical processing levels35. While many auditory studies
have so far concentrated on verbal or other cognitively categor-
izable materials36–39, how basic sound attributes are represented
in WM has remained relatively little studied. Therefore, here,
auditory WM was investigated using parametrically varied

dynamic ripple sound stimuli, which are spectrotemporally
similar to speech but lack linguistic or categorical labels (Figs. 1,
2). Our hypothesis was that WM content is not only maintained
in multiple areas, but that different areas across the processing
hierarchy work together in WM retention. To test this hypothesis,
we used MVPA to decode the content of auditory WM from
fMRI functional connectivity patterns between sub-regions of
superior temporal, parietal, and frontal cortices.

Results
Our MVPA analyses suggest that spectrotemporal attributes of
auditory WM can be classified from fMRI functional connectivity
patterns between sub-regions of auditory, parietal, and frontal
cortices. Auditory cortical areas of superior temporal cortex
(STC) were involved in all networks where the decoding accuracy
reached a statistical significance according to our non-parametric
permutation test (Fig. 3). In addition to the connectivity-based
analysis, the content of auditory WM was also decodable from
bihemispheric STC and ventral precentral areas using activation-
based MVPA.

Auditory WM was examined using a “retro-cueing”
paradigm12,18,33,40–43, designed to dissociate the differing
accounts of recent stimulus history and actively maintained WM
content (Fig. 1). Behaviorally, the subjects were able to perform
the task according to the instruction, at 83 ± 10% response
accuracy (mean ± SEM).

Evidence for connectivity-based coding of auditory WM. Pre-
vious studies have shown that perceptual sensitivity to sound
stimuli with differing spectral and temporal modulation pattern
varies both across adjacent parts of auditory cortex, as well as
across different auditory processing stages and across the two
hemispheres44–46. We therefore hypothesized that maintaining
parametric attributes of auditory stimuli in WM is based on
functional connectivity across different parts of this distributed
network (Fig. 2a). To test this hypothesis, we trained support
vector machine (SVM) classifiers to decode ripple velocity that
was maintained in WM during our retro-cueing task from pat-
terns of functional connectivity between a set of regions of
interest (ROI). Our ROIs encompassed areas that have been

Fig. 1 Auditory WM stimuli and task. a Time-frequency representations of
a prototypical WM set of 6 different moving ripple sounds, modulated
across time (ripple velocity, ω cycles/s) and frequency (Ω cycles/octave).
b Trial design. After a visual preparatory cue, subjects heard two ripple
sound stimuli (i.e., potential WM items) in a row. A brief visual retrocue
then followed, to instruct which of the previous two items was to be
actively memorized for a period of 15 s (“Maintaenance”). After hearing the
probe, the subject was asked to press one button (“yes”) if the probe
matched the relevant item, and another (“no”) if it did not. The different
MVPA analyses were conducted during the Maintenance period (for
details, see Methods).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04675-8

2 COMMUNICATIONS BIOLOGY |           (2023) 6:294 | https://doi.org/10.1038/s42003-023-04675-8 | www.nature.com/commsbio

www.nature.com/commsbio


previously associated with auditory and auditory-verbal WM,
including STC, posterior parietal, and precentral/lateral frontal
areas12,13,16,47 (Fig. 2b), as well as occipital cortices that were
included as a control area presumed to have no major involve-
ment in auditory WM33. Each of these broader ROIs was divided
to smaller subunits or “subROIs”48,49: The input features to our
SVM classifiers consisted of combinations of connectivity
matrices across the subROIs between pairs of broader ROIs
(Fig. 2b). Using connectivity patterns between sets of subROIs
within larger ROIs, as opposed to analyzing all possible subROI-
combinations, was utilized to reduce the number of possible
combinations and, subsequently, to make it easier to interpret the
roles of functional connectivity patterns in maintaining WM
representations distributed across the processing hierarchy (see,
e.g.20).

Using our functional connectivity based MVPA approach, we
compared our six-class decoding accuracies to a null distribution
calculated by permuting the true labels of the classifier 500 times
across all possible 2,500 two, three, and four-ROI functional
connectivity patterns (Fig. 3a). According to this analysis, the
WM content could be classified significantly above chance level
(i.e., 1/6) from seven specific functional connectivity patterns.
These functional connectivity patterns were dominated by brain
areas known to be involved in perceptual processing of ripple
sounds, as well as other auditory spectrotemporal modulation
patterns including speech signals (Fig. 3b).

Consistent with theories suggesting that sensory areas play a
crucial role in WM, the left, right, or bilateral auditory STC areas
as well as the left SMG were involved in all functional
connectivity patterns that carried information about the main-
tained sound content (Fig. 3b). The bilateral STCs and the left
SMG also formed the three-area functional connectivity pattern
that yielding the highest and statistically most significant
decoding accuracy of all studied two- to four-ROI networks
(Mean ± standard error of mean, SEM, accuracy 0.26 ± 0.022 ;
p= 0.002, maximum-statistic permutation test). The numerical
details of the other 6 connectivity patterns are detailed in
Supplementary Table S1. Other areas occurring in more than one
functional connectivity pattern included the left inferior frontal
gyrus (IFG) and the left precentral cortex (PreC). Beyond STCs
and the left-hemispheric speech processing network, statistically
significant decoding accuracies were found also in functional
connectivity patterns involving the right superior parietal
lobule (SPL).

We also examined the decoding of the ripple velocities of the
irrelevant items that were to be forgotten after the presentation of
the retro cue. In the connectivity-based decoding analysis, all
decoding accuracies remained non-significant according to a
non-parametric permutation test that was calculated analogously
to the main analysis (Supplementary Results). The results of
irrelevant item decoding are compared to those for the retro-cued
WM item in Fig. 3e, which shows “violin plots” of distributions
across individual subjects in the seven connectivity patterns that
yielded significant results in the main analysis. The corresponding
numerical values are detailed in Supplementary Table S1. The
data in Fig. 3f compares the distributions of group-mean
decoding accuracies of the retro-cued VM item vs. irrelevant
item, calculated across all studied connectivity patterns with the
true (i.e., non-randomized) ripple-velocity class labels. Finally,
Supplementary Table S2 shows the results of a control analysis
conducted based on the subROI-to-subROI connectivity pattern
within each ROI (Fig. 2b). This control analysis yielded no
statistically significant results.

Decoding accuracy in functional connectivity patterns invol-
ving occipital visual areas. Although auditory and visual WM
systems are known to interact50, the direct functional involve-
ment of visual cortex regions of occipital cortex (OC) in auditory
WM of ripple sound parameters should be considerably weaker
than that of STCs33. Functional connectivity patterns including
OCs but excluding STCs were therefore used as control networks
in our decoding analyses. Among the 2500 functional con-
nectivity patterns in total studied here, one or both OCs were
included in 1044 patterns. Of these functional connectivity pat-
terns, 675 were such that they included one of the OCs but
neither the left nor right STCs. The decoding results of all these
675 functional connectivity patterns were clearly non-significant,
with the best decoding accuracy in functional connectivity pat-
terns involving OCs but no STCs equaling to the median of the
null distribution (permutation-based p= 0.5).

BOLD activation based MVPA. Our more conventional
decoding analysis used an SVM approach, which employed a
surface-based ROI decoding with robust non-parametric per-
mutation approach to determine statistical significance. Our
surface-based ROIs were determined using a hybrid of Free-
Surfer Desikan and Destrieux atlases, modified specifically for

Fig. 2 Functional connectivity-based perspective on WM. a A hypothesis of how spectrotemporal modulation features such as the “ripple velocity” or ω
are represented in auditory WM. Different subregions of auditory cortex located in STC, as well subregions of higher frontoparietal areas connected to
each subregion of auditory cortex44–46,61,77, could show best sensitivity to different ω values. The connectivity patterns between STC and frontoparietal
areas responsive to ripple sounds could, thus, be arranged according to the prefrred or “best” ω (gray dotted arrows). We specifically hypothesized that
functional connectivity between STC and frontoparietal areas could be modulated in content specific fashion during WM maintenance (red arrow)16,33.
b Regions of interest (ROI) for our connectivity-based MVPAs testing our main hypothesis. The eight major ROIs are shown on a semi-inflated standard
brain surface (left hemisphere, lateral and medial views). Each major ROI was further divided to subROIs (average area 157mm2). The ROI-to-ROI
connectivity patterns were defined as the connectivity matrices from across all their subROIs, analogously to our previous MEG studies33,48,49,91. Occipital
cortex (OC) was included as a control area. The details of ROI definitions and analysis procedures are provided in Methods. Abbreviations not specified
above: IFG inferior frontal gyrus, MFG middle frontal gyrus, PC precentral cortex, SPL superior temporal lobule, SMG supramarginal gyrus, AG
angular gyrus.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04675-8 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:294 | https://doi.org/10.1038/s42003-023-04675-8 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


comparing the decoding accuracies in auditory-related STC
areas to the rest of the cortex. To deal with multiple comparison
problems, we compared the activation-based SVM results in
each ROI to a null distribution calculated by permuting the true
labels of the analysis 500 times across all possible 86 left and
right-hemisphere ROIs included in the analysis (Fig. 4a). At the
group level, the decoding accuracies were statistically sig-
nificantly above chance in bilateral posterior non-primary
auditory cortices of STC and ventral precentral (PreC) regions
that overlap the motor and pre-motor regions controlling

articulatory-motor functions. The four ROIs with significant
results according to our non-parametric permutation test
included the left planum temporale (PT), the right PT, as well as
the left PreC and the right PreC (Fig. 4b, c). No statistically
significant results were found in an analogous SVM analysis for
the task-irrelevant item.

Control analyses of fMRI data using surface-based univariate
GLM are described in Supplementary Material (Supplementary
Results). Examples of the results are shown in Supplementary
Fig. S1.

Fig. 3 WM content decoded from functional connectivity patterns. a The null distribution of maximum statistics across all two- to four-ROI connectivity
patterns, generated using classifiers with randomized item labels. b Connectivity-based decoding accuracies. WM content was decoded significantly above
chance level from 7 out of the 2500 functional connectivity patterns, shown as the colored bars. The narrow gray bars reflect functional connectivity
patterns with statistically non-significant decoding accuracies. c Anatomical distribution functional connectivity patterns revealing WM content. Notably,
left and/or right hemispheric auditory areas of STC were present in all content-specific connectivity patterns. d Normalized confusion matrices
corresponding to the content-specific functional connectivity patterns, arranged according to their statistical significance level. e Distributions of individual
data (dots atop the “violin plots”) in the 7 connectivity patterns with significant results for the retro-cued (i.e., actively maintained) “WM item” and non-
cued “irrelevant item” (for task details, see Fig. 1). f Distributions of group-mean decoding accuracies for the WM item and irrelevant item. Abbreviations:
LIFG left inferior frontal gyrus, LPreC left precentral area, LSMG left supramarginal gyrus, LSTC left superior temporal cortex, RSPL right superior parietal
lobule, RSTC right superior temporal cortex.
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Discussion
Using machine-learning techniques, we demonstrate that para-
metric attributes of auditory working memory can be classified
from distributed patterns of fMRI functional connectivity. To
determine statistical significance of decoding accuracies at the
group level, we used non-parametric permutation testing where
the results were compared to a null distribution that considered
all possible two, three, or four-ROI connectivity patterns within a
bilateral frontoparietal-temporal network. This robust analysis
suggested that different levels of ripple velocity, a fundamental
parameter of speech and other natural sounds, are represented in

WM by combinations of functional connections across auditory,
premotor, and frontoparietal association areas. Despite the non-
verbal nature of our stimuli, these content-specific connectivity
patterns were concentrated in the left hemisphere, overlapping
with pathways believed to govern maintenance through subvocal
rehearsal within the “phonological loop” of human WM51. Net-
works involving occipital cortex, a control region presumed to
lack any fundamental roles in auditory functions, did not reveal
significant decoding results. The decoding results for the irrele-
vant item, which was to be forgotten after the retro-cue, were
statistically non-significant, supporting the interpretation that

Fig. 4 Activation-based MVPA of WM content. a The null distribution of maximum statistics for the retro-cued (i.e., actively maintained) WM item across
all left and right-hemisphere ROIs, created using classifiers with randomized item labels. b ROIs with decoding accuracies significantly above chance level
for the retro-cued WM item, mapped onto the “semi-inflated” standard brain representation. WM content could be predicted from bilateral posterior non-
primary auditory cortices (left and right PT), as well as from bilateral ventral precentral areas involved in articulatory motor control (left and right vPreC).
c Decoding accuracies in all 86 ROIs (retro-cued WM item). The ROIs where the decoding accuracy exceeded the critical value determined from the null
distribution are shown labeled with pink color. d Distributions of individual data (dots atop the “violin plots”) in ROIs with significant results for the retro-
cued WM item and non-cued “irrelevant item” (for task details, see Fig. 1; Anatomical abbreviations not defined here are spelled out in Fig. 6).
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the connectivity-based MVPA results reflect WM instead of a
passive sensory buffer. It has been long argued that WM infor-
mation can be distributed to different levels of the processing
hierarchy20. Based on the present findings, we propose that
memorized content is not only represented at multiple hier-
archical levels, but that different areas across the processing
hierarchy work together to maintain WM.

The present findings could have direct relevance for the
broader theoretical debate of how and where in the human brain
information is maintained during WM processing, beyond the
auditory domain alone. The classic theory, which is founded on
the idea that WM information is maintained in a dedicated sto-
rage circuit (for recent arguments, see52,53), is being increasingly
challenged by evidence that WM content is decodable from
multiple brain regions, ranging from early sensory to highest
association areas10–17,20,47,50,54,55. Distributed models of WM
consequently suggest that instead of a dedicated single region,
different attributes of the same WM item could be represented in
parallel in multiple areas, depending on their complexity, the
degree of abstraction, and the level of precision required to
support their maintenance20,22. Whether and how the different
hierarchical levels of the same WM representations interact and
are integrated has, however, remained uncertain22. The evidence
supporting distributed models has concentrated on studies, which
have shown that information of a given cognitive attribute may be
decodable from multiple, anatomically separated brain areas. This
has left room for an interpretation that MVPA findings at lower
levels, including sensory cortices, reflect epiphenomenal feedback
from a higher maintenance module in PPC or PFC9. It is thus
important to note that in the present study, all functional con-
nectivity patterns with significant decoding accuracies of WM
content spanned multiple hierarchical levels between sensory and
association areas. In the light of this finding, stable representa-
tions of maintained content can be distributed to multiple brain
regions at different processing levels to support maintenance of
WM. Our working hypothesis for future studies is that WM
maintenance is an emergent property of such a connectivity-
based coding scheme: No single area is necessarily in the sole
control of maintenance56.

Hierarchically distributed maintenance of ripple sounds, which
are dynamic multifeature patterns unfolding over the course of
hundreds of milliseconds, is consistent with evidence that neu-
rons sensitive to sensory attributes of complex sounds occur at
multiple processing levels35,57,58. For example, the non-human
primate (NHP) homolog of human IFG includes neurons that
support perceptual discrimination of purely acoustic morpholo-
gical patterns of auditory stimuli57,59. Distributed networks
spanning multiple processing levels could be elementary not only
to WM, but also to our ability to perceive the temporal structure
of auditory objects that may consist of multiple events that pro-
gress over time35. Consistent with these notions, previous studies
show that neuronal populations sensitive to different spectro-
temporal modulation rates exist at multiple levels of auditory
processing hierarchy44,45,60,61. At the same time, the preferred
amplitude and/or frequency modulation rates may vary between
subareas of auditory cortex, between the different hierarchical
levels, and also between pathways in each brain
hemisphere44,45,60,61. The content-specificity of functional con-
nectivity patterns during WM maintenance could, thus, reflect an
intrinsic connectivity topography across subareas, which are
located at different processing levels but maintain representations
of similar ripple velocities (Fig. 2a). Indices of such an arrange-
ment were found in our earlier study using MEG33, a method that
offers high spectral/temporal resolution but is less optimal for
detailed mapping of cortical feature topography than our current
fMRI approach.

In the visual domain, a key argument against distributed
models, which posit a role also for sensory cortices, has been that
areas that are activated strongly by the stimuli themselves are too
prone to distraction to support WM52. In the present study, such
low-level distraction was provided by the acoustical scanner
noise, which contains modulations somewhat similar to the to-
be-maintained ripple stimuli. Yet, auditory-cortical areas of STC
were included in all functional connectivity patterns informative
of WM content. Further, in the activation-based MVPA, the
content of auditory WM could be also decoded significantly
above the chance level from the bilateral posterior non-primary
auditory cortex areas, consistent with earlier studies using
amplitude modulated sounds16.

In our connectivity-based MVPA, the information-containing
patterns involved functional connectivity across heterotopic
interhemispheric areas, the most prevalent being the connection
across RSTC and LSMG. This might be suprising given that inter-
hemispheric transfer of information is, generally, dominated by
homotopic anatomical connectivity, being evident also in fMRI
functional connectivity studies62, including the present control
analyses (Suppl. Fig. S1). One possible explanation for the present
result is that the significant MVPA results involving heterotopic
connectivity patters reflect multi-synaptic connectivity that is
mediated via a third area (e.g., LSTC in the case of RSTC-LSMG
pattern) whose role was not detected due to limitations such as
noise or lack of sensitivity. However, recent human post-
mortem63 and multi-species mapping studies64 suggest that het-
erotopic connectivity may play a more significant role in cogni-
tion than previoiusly thought. For example, post-mortem studies
in humans suggest that LIFG, one of the areas involved in
information-containing heterotopic connectivity patterns with
RSTC in the present study, has direct monosynaptic connections
with sensory areas of the right hemisphere65. Furthermore, fiber
tracing studies in NHPs suggest heterotopic connections that
extend from non-primary auditory areas of STC to the opposite
frontal and parietal cortices66. For example, LSMG is thought to
be a nodal point of auditory WM networks67–69: spectrotemporal
information processed in the RSTC might need to be linked to
this hub via heterotopic connectivity to support auditory WM.
Further studies on the role of heterotopic inter-hemispheric
pathways in coding of complex spectrotemporal patterns in
human auditory WM are, thus, clearly warranted.

The activation-based MVPA showed significant WM decoding
results in bilateral posterior non-primary auditory areas, as well
as in the left ventral precentral cortex. These results are generally
consistent with results obtained with a slightly different mod-
ulation patterns using a three-dimensional fMRI searchlight
decoding analysis16, as well as with MVPA studies using pure-
tone material12. The sligth differences between the present and
previous results, such as the lack of significant results in the left
IFG12, could reflect methodological differences between the stu-
dies (e.g., different ROIs, search strategies strategies, and statis-
tical approaches). It is worth noting that many of the areas
involved in information containing ROI-to-ROI patterns of the
connectivity-based MVPA did not yield significant results in the
activation-based analysis. One potential explanation is that not
only auditory-cortical, but also precentral ROIs that are heavily
connected with STC to support auditory perception and pro-
duction of speech70, could contain larger proportions of neurons
receiving direct sensory input at the encoding stage. This could
have increased the sensitivity of activation-based MVPA in
auditory cortices and precentral ROIs than the other ROIs.

Another potential limitation of the present study is that the
screening of participants was based on self-reported history of
hearing difficulties and risk factors such as exposure to loud
noises at work, instead of audiometic assessment of pure-tone
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thresholds. However, this potential limitation is mitigated by the
fact that the stimulus materials were adapted to each volunteer’s
ripple-velocity discrimination thresholds. As for the theoretical
generalizability of our connectivity-based results, another lim-
itation is that the stimulus material consisted of auditory stimuli
alone. Given the temporally distributed nature of auditory objects,
the role of long-range connectivity in maintaining of comparable
visual stimuli, such as Gabor patches, might not follow similar
principles. An inherent limitation of using fMRI to examine
functional connectivity is that the lack of temporal resolution
provides limited means for examining the exact temporal order of
events or causal roles of different areas within the multi-regional
connectivity patterns containing auditory WM information in the
present study.

In conclusion, our results demonstrate that sensory informa-
tion maintained in auditory WM can be decoded from fMRI
functional connectivity patterns between subregions of early
sensory, posterior parietal, and frontal cortices. This result sug-
gests that auditory WM information is not only decodable from
multiple hierarchical levels, but that brain areas across the pro-
cessing hierarchy work in concert to support WM
representations.

Methods
Subjects. The study was based on data from 20 healthy right-handed participants
(12 females, ages 22–47 years) with self-reported normal hearing. The data of two
participants of an initial sample of 23 were excluded due to the difficulty in per-
forming the task (proportion correct 0.41 and 0.54), and one subject’s data were
excluded due to a triggering problem between the scanner and stimulus pre-
sentation computer. The protocol of the imaging experiment was approved by the
Partners Human Research Committee, the Institutional Review Board (IRB) of the
MGH. All participants gave a written informed consent before participating in
the study.

Stimuli and task. Many previous studies on auditory WM have used stimuli that
allow non-auditory maintenance strategies36–39. Here, we utilized moving ripple
sounds, which are broadband sound patterns modulated across time (ripple
velocity, ω cycles/s) and frequency (Ω cycles/octave) (Fig. 1). Moving ripple sounds
are spectrotemporally similar to speech71 but not contaminated by semantic
properties or perceptual categories72. This helps eliminate verbal and other non-
auditory rehearsal strategies. The WM items consisted of 1-s sounds with six ripple
velocities separated by 1.5 of each individual participant’s just noticeable difference
(JND). The JND was determined for each participant in a separate session to
control for differences in sound discrimination73. To obtain the stimuli, for each
participant, we first created an individualized set of 17 stimuli with different ripple
velocities, separated by intervals of Δω= 0.5 × JND. JND was approximated as the
minimally detectable base 2 logarithmic ripple-velocity interval within a range of
3–48 cycles/s based on an adaptive 1 down/ 2 up staircase algorithm. The moving
ripple sounds were generated by superimposing 20 random-phase sinusoids/octave
ranging from f0= 0.2 kHz to f= 1.6 kHz. Their intensity at any time and frequency
is defined by s(g,t)=D0+D·cos[2π(ωt + Ωg)+ ψ], where g is log(f/f0), D is the
modulation depth, and ψ is the phase of the ripple (sound duration= 1 s, Ω= 1
cycles/octave, the lowest possible ω= 4 cycles/s).

The sound stimuli were delivered via an MRI compatible Sensimetrics
S14 system (Sensimetrics, Gloucester, MA) and the visual stimuli via a video
projector and mirror system. The stimuli were presented and behavioral responses
collected using a Dell Precision 3000 M3510 laptop computer (Dell Technologies,
Round Rock, TX), which was equipped with an external Soundblaster XFI HD
soundcard (Creative Technology Ltd., Jurong East, Singapore). The paradigm was
run by Presentation software (Neurobehavioral Systems, Berkeley, CA)
synchronized with the fMRI volume acquisitions via its USB port.

Auditory WM was examined using a “retro-cueing” paradigm33, modified from
recent auditory12,16,18,40 and visual41–43 WM studies (Fig. 1). The benefit of this
design is that it helps control for the differing accounts of recent stimulus history
and actively maintained WM content. In this design, the subject was first presented
with two sound items in a row. A subsequent “retrocue” will indicate which of the
two items is to be maintained in memory. The subject will press one button if the
probe matches the relevant item and another if not. The simple matching task was
selected to minimize the usage of non-auditory strategies. In 50% of the trials the
probe matched the relevant item. Half of the remaining trials (25% of the total
count) were non-match trials where neither of the two items matched the target,
and in the rest of the trials (25% of the total count) the irrelevant item matched the
probe. The potential memory items consisted of only 6 possible classes, whereas the
probes were selected from the entire individualized pool of 17 possible stimuli.
Participants were naïve to the number of memory items presented to them to

prevent categorization. To increase the physical variability, there was a half-JND
offset between the possible relevant vs. irrelevant items. In total, the task consisted
of four runs, each with 24 trials (4 trials per each item class).

Data acquisitions. High-resolution T1-weighted anatomical images were obtained
using a multi-echo MPRAGE pulse sequence (TR= 2530 ms; 4 echoes with
TEs= 1.69, 3.55, 5.41, 7.27 ms; 176 sagittal slices with 1 × 1 × 1 mm3 voxels,
256 × 256 mm2 matrix; flip angle= 7°)74 in a 3 T Siemens Prisma whole-body MRI
scanner (Siemens Medical Systems, Erlangen, Germany) using a 64-channel head
and neck coil. fMRI data were obtained with a gradient-echo (GE) EPI sequence,
TR/TE= 1,470/30 ms, flip angle= 82°, iPAT 2, SMS 3, 2 × 2 × 2 mm3 voxels; 69
axial slices.

Basic data analyses. Behavioral performance was determined as the proportion of
correct responses.

MRI and fMRI preprocessing. Cortical surface reconstructions, anatomical nor-
malizations, and fMRI analyses were conducted using Freesurfer 6.075,76. For the
MVPA analyses, fMRI volumes were motion corrected to a session-based template,
realigned temporally to correct for slice timing differences, coregistered with
structural MRIs, and intensity normalized. Distortions from B0 field inhomo-
geneities were compensated by EPI unwarping. After preprocessing, the data were
entered into a general-linear model (GLM) with the task conditions as explanatory
variables. In all analyses, the design matrix also included physiological and motion
regressors of no interest, as well as polynomial regressors corresponding to a high-
pass filter with a cutoff frequency of 0.006 Hz to remove low-frequency drifts in the
BOLD signal. Further details are specified in the context of our different decoding
analyses below.

Connectivity-based MVPA
Theoretical rationale. Inspired by distributed models of WM maintenance, we
hypothesized that ripple-sound content is maintained broadly across areas sensitive
to auditory spectrotemporal modulation patterns, as demonstrated in previous
studies on auditory perception44–46 or auditory WM processing16,33 (Fig. 2a). The
sensitivity to particular parameters of spectrotemporal modulation patterns differs
between subregions of auditory cortex44,46, between hemispheres61, and along the
posterior-anterior object processing hierarchy that extends from STC to higher
areas including IFG77. Furthermore, medial aspects of STC that are closer to pri-
mary auditory cortex are sensitive to higher temporal modulation rates than lateral
STC46. The left hemisphere could be sensitive to finer temporal modulation rates
than the right, within and beyond auditory areas of STC45,61. Based on this
diversity of spectrotemporal tuning properties, we hypothesized that WM pro-
cessing of different ripple velocities could recruit a distributed network extending
from bilateral STCs to parietal and frontal areas.

Regions of interest (ROI). To test our connectivity-based hypothesis, we defined a
set of broader ROIs reported previously to play a role in auditory, verbal, or other
aspects of WM1,16,33,39,51,78–81 (Fig. 2b). The idea was that content-specific coding
of WM information would be revealed based on the pattern of functional con-
nectivity across the different subareas of these larger ROIs. Each of these broader
ROIs was thus divided to multiple smaller subROIs whose average surface area
across all subjects and areas was 157 mm2. It was our assumption that pooling
together the signals to slightly larger subROIs would not only increase the com-
putational efficiency and reduce the number of features in the decoding analysis,
but also increase the SNR of the features.

Each subROI of the larger ROIs referred to the icosahedral patches
corresponding to the vertices of the fsaverage3 standard brain (642 vertices /
hemisphere), resampled to each individual subject’s higher-resolution cortical
representation. The ROIs included superior temporal cortex (STC; superior
temporal gyrus and Heschl’s gyrus (HG) combined; nsubRois= 34 left/29 right),
middle frontal gyrus (MFG, rostral, caudal parts combined; nsubRois= 43 left/50
right), inferior frontal gyrus (IFG; nsubRois= 23 left/14 right), precentral cortex
(PreC), supramarginal gyrus (SMG; nsubRois= 34 left/32 right), angular gyrus (AG;
nsubRois= 33 left/37 right), and superior parietal lobule (SPL; nsubRois= 76 left/80
right) (Fig. 2b). STC, SMG, AG, PreC, and IFG were chosen as ROIs because of
their presumed (left-hemisphere dominant) role as the anatomical substrate of the
“phonological loop”51,78,82, which was proposed to support maintenance of
auditory-verbal items in the classic model83. On the other hand, areas overlapping
with bilateral STC, SMG/AG, and PC have also been implicated in WM
maintenance of non-verbal attributes such as auditory amplitude modulation (AM)
rates16. An earlier MVPA study, in turn, suggested that distributed activation
patterns of IFG and STC support WM maintenance of sound frequency12. MFG,
which is often referred to as dorsolateral prefrontal cortex (DLPFC), is where WM-
specific “maintenance units” were first reported1. MFG/DLPFC has been associated
with a multitude of different roles in human WM39,79–81 and in its clinical
dysfunctions84. SPL has, in turn, been associated with maintenance of auditory-
spatial location content in human WM18, and it has been also implicated in
activity-silent maintenance of visual WM41 as well as in cognitive control of WM
maintenance85. In addition to these frontoparietal and temporal ROIs, we also
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included the occipital cortex (OC; nsubRois= 62 left/51 right) to serve as a control
area, with the assumption that this area would not play a major role in
connectivity-based WM maintenance of auditory information33.

Functional connectivity. fMRI functional connectivity patterns between the ROIs
were based on the residuals of the task-related GLM calculated in each subjects
native functional space, from which the nuisance effects and inter-regional co-
activations related to task performance had been regressed out. The following
stimulus events were modeled as separate regressors in this GLM: the visual
alerting stimulus (“!”), the two successive memory items, and the memorization cue
(“Memorize 1” or “Memorize 2”), the probe stimulus, and the visual responding
cue (“?”). In addition to motion-related regressors, we regressed out the con-
tribution of signals originating in the cerebrospinal fluid (CSF) and white matter
from these residuals. No spatial smoothing was applied. To obtain the subROI-
specific residualized time series for the fMRI functional connectivity analysis, we
resampled each subject’s unsmootheed time series to the Freesurfer “fsaverage3”
standard-brain representation using nearest-neighbor interpolation. For each run,
class-specific Pearson correlation matrices were then calculated based on the
residualized fMRI time series during the maintenance periods, lagged by 4.41 s and
concatenated within classes in each run, across the subROIs of all possible pairs of
left and/or right hemisphere ROIs. The resulting connectivity matrices between any
two ROIs A and B consisted of NA ×NB sub-ROI pair connections, giving NA ×
NB= TAB features, which were reshaped to a vector for the MVPA analyses (Fig. 5).

Our research was guided by the assumption that functional connectivity
patterns specific to memorized sound attributes reflect modulations of networks
maintaining information in largely activity-silent or hidden processing states. To
resolve this challenge, we pursued an idea that the sensitivity of decoding would be
improved if we considered patterns of functional connectivity across not only pairs,
but also across slightly more complex inter-regional assemblies. In addition to pairs
of ROIs, we therefore considered ROI networks that included three or four nodes.
In these cases, the connectivity matrices representing all possible pairs of ROIs
within the network were reshaped and concatenated to one “functional
connectivity pattern” vector. In the case of a three-node functional connectivity
pattern across areas A, B, and C, the number of features in this vector was thus

T ¼ TAB þ TAC þ TBC . In the case of a four-node functional connectivity pattern
across areas A, B, C, and D, the number of features was
T ¼ TAB þ TAC þ TAD þ TBC þ TBD þ TCD .

Machine learning. MVPA analyses were conducted using support vector machine
(SVM) implemented in libsvm86 and provided in the COSMOMVPA package
(http://www.cosmomvpa.org/)87 in MATLAB. A SVM classifier with linear kernel
and cost equal to one (C= 1) was trained using 18 × T dataset (3 of the 4 runs) and
tested on a separate 6 × T dataset (the remaining run), employing a leave-one-out
four-fold cross validation.

Statistics and reproducibility. To control for multiple comparisons, statistical sig-
nificances of decoding accuracies were tested at the group level using a nonpara-
metric randomization approach. First, we created 500 random permutations where
the true labels of the classifier were shuffled within each exchangeability block, i.e.,
the fMRI runs. To determine the classification accuracies that emerge by chance
with 6-classes, a distribution of decoding accuracies using training data with
randomized item-content labels was generated across all subjects and connectivity
patterns. For the final null distribution, we selected the maximum group mean
across all possible connectivity patterns from each permutation. To assign a p-value
for each connection, the original group mean accuracy value, found from classifiers
with true labels, was compared with this null distribution.

Activation-based MVPA
ROI definition. The conventional MVPA analyses were conducted in the native
functional space with no spatial smoothing: To focus the analyses to the cortical
gray matter, and to minimize cross talk across sulci and gyri, a set of a priori
anatomical ROIs were defined based on modified Freesurfer surface-based anato-
mical segmentations, calculated individually using the “recon-all” function of
Freesurfer (Fig. 6). A total of 43 surface-based ROI labels per hemisphere were
projected to each subject’s unsmoothed native functional space. To define these
areas, the Desikan anatomical parcellation88 was modified such that the combi-
nation of labels encompassing the superior temporal cortex (areas STG and HG)

Fig. 5 Schematic illustration of the connectivity-based MVPA approach. a An example of a functional connectivity pattern across subROIs of left STC, left
supramarginal gyrus (LSMG), and right STC. In our analyses, we used all possible two, three, and four ROI functional connectivity patterns across our
broader cortical ROIs. Using connectivity patterns between sets subrois within larger ROIs (as opposed to analyzing all possible subROI-combinations) was
intended to help conceptualize the potential role of representations spanning different hierarchical stages of WM processing (see, e.g. ref. 20). b Functional
connectivity based decoding approach. The functional connectivity pattern matrices were converted to a vector consisting of 34 × 29+ 34 × 34+ 29 × 34
features, to classify the ripple velocities held in auditory WM.
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were divided to nine smaller parcels based on the more detailed Freesurfer Des-
trieux atlas89, with the STG further divided to its anterior and posterior portions
using mris_divide_parcellation. The STC areas of interest included Heschl’s gyrus
(HG), Heschl’s sulcus (HS), planum temporal (PT), posterior STG (pSTG), anterior
STG (aSTG), as well as the parts of Destrieux’s lateral fissure (LF), inferior circular
sulcus (iCS), and superior temporal sulcus (STS/STG) that overlap with Desikan’s
STC. The more detailed parcellation of STC was utilized to pinpoint areas with
sharpest auditory-parametric WM representations. In addition, we used mris_di-
vide_parcellation to define the dorsal and ventral subareas of precentral (vPreC,
dPreC) and postcentral areas (vPostC, dPostC) to search parametric WM repre-
sentations specifically in the ventral sensorimotor areas that are presumed to be
involved in the “phonological loop” of auditory WM51. As determined from the
group average sizes for each ROI, the median number of 2-mm isotropic voxels
within these ROIs was 805, with the smallest and largest ROIs being the right
Heschl’s Sulcus (HS, 86 voxels) and the left superior frontal gyrus (SFG, 4486
voxels), respectively.

Preparatory fMRI analysis. After preprocessing (see above), task-related GLM was
calculated in each subjects native functional space, with no spatial smoothing. The
following stimulus events were modeled as separate regressors: the visual alerting
stimulus (“!”), the two successive memory items, and the memorization cue
(“Memorize 1” or “Memorize 2”), the probe stimulus, and the visual responding
cue (“?”). In addition to these external stimuli, a set of content-specific regressors
modeled the effect of ripple-velocity content held in WM during the maintenance
period. The content-specific regressors, corresponding to each of the memorized
ripple velocities, encompassed the maintenance period starting 4 s after the

“memorize” cue onset until the onset of the probe. The GLM was calculated
separately for each of the four runs and the resulting contrast effect size estimates
(i.e., beta values multiplied by the contrast matrix) were used as features in
the MVPA.

Machine learning. Activation-based MVPA analyses were conducted using a
similar linear SVM classifier to the connectivity-based MVPA, with libsvm86

provided in the COSMOMVPA package (http://www.cosmomvpa.org/)87 in
MATLAB. An SVM model with linear kernel (C= 1) was trained using 18 × T
dataset (three runs) and tested on 6 × T dataset (1 run), where T refers to the
number of voxels in each ROI, employing four-fold cross validation.

Statistics and reproducibility. To control for multiple comparisons, statistical sig-
nificance of decoding accuracies was tested at the group level using a nonpara-
metric randomization approach. First, we created 500 random permutations where
the true labels of the classifier were shuffled within each run. To determine the
classification accuracies that emerge by chance with 6-classes, a distribution of
decoding accuracies using training data with randomized item-content labels was
generated across all subjects and ROIs using the same maximum-statistic per-
mutation test procedure as for Connectivity-Based MVPA: For the final null dis-
tribution, we selected the maximum group mean across all ROIs from each
permutation. To assign a p-value for each connection, the original group-mean
accuracy value, found from classifiers with true labels, was compared with this null
distribution.

Univariate GLM analyses are described in the Supplementary Information
(Supplementary Methods).

Fig. 6 Regions of interest (ROI) in activation-based MVPA analyses. ROIs were defined based a modification of the Freesurfer Desikan atlas, with the
auditory-related superior temporal cortex (STC) areas divided to 9 smaller areas based on the more detailed Freesurfer Destrieux atlas (Bottom panel). In
each subject, the surface-based atlases were resampled to the unsmoothed native functional space.
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Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data for reproducing the connectivity-based main findings of the paper are available
on Harvard Dataverse (https://doi.org/10.7910/DVN/51WR3A)90. All other data of this
study are available from the corresponding author upon reasonable request.

Code availability
The custom code for reproducing the connectivity-based main findings of the paper are
available on Harvard Dataverse (https://doi.org/10.7910/DVN/51WR3A)90.
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