
ARTICLE

Dissociation between phase and power
correlation networks in the human brain
is driven by co-occurrent bursts
Rikkert Hindriks 1✉ & Prejaas K. B. Tewarie 2,3

Well-known haemodynamic resting-state networks are better mirrored in power correlation

networks than phase coupling networks in electrophysiological data. However, what do these

power correlation networks reflect? We address this long-outstanding question in neu-

roscience using rigorous mathematical analysis, biophysical simulations with ground truth

and application of these mathematical concepts to empirical magnetoencephalography

(MEG) data. Our mathematical derivations show that for two non-Gaussian electro-

physiological signals, their power correlation depends on their coherence, cokurtosis and

conjugate-coherence. Only coherence and cokurtosis contribute to power correlation net-

works in MEG data, but cokurtosis is less affected by artefactual signal leakage and better

mirrors haemodynamic resting-state networks. Simulations and MEG data show that

cokurtosis may reflect co-occurrent bursting events. Our findings shed light on the origin of

the complementary nature of power correlation networks to phase coupling networks and

suggests that the origin of resting-state networks is partly reflected in co-occurent bursts in

neuronal activity.
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Cognitive, sensory and motor processing result from syn-
chronous activity between functionally specialised brain
regions. Measures for synchrony in electrophysiological

brain signals, or also called functional connectivity, can be divi-
ded into two broad classes: phase and amplitude coupling1. These
so-called intrinsic modes of coupling in electrophysiological data
are believed to contain common2,3, but also complementary and
distinct information of ongoing neuronal communication4. While
amplitude coupling captures coordination between slow fluctua-
tions in signal strength, phase coupling is sensitive to synchrony
on shorter time-scales5. Phase synchrony has historically been the
more widely applied class of metric, and its mechanism of action
in neuronal communication is fairly well-understood in terms of
the “communication through coherence” hypothesis6. Recent
years have seen a boost in the use of amplitude coupling measures
in electrophysiological data7. Amplitude coupling comes with
higher within-subject consistency between recording sessions and
shows clear complementary information during different types of
cognitive tasks8,9. However, to date, the mechanism of action of
amplitude coupling is still poorly understood.

Two brain regions can exhibit amplitude coupling and at the
same time have independent phase-dynamics4,10. This distinct
nature of phase and amplitude coupling becomes eminently
apparent in search for the neurophysiological correlate of
haemodynamic resting-state networks11,12. These resting-state
networks reflect spatially coordinated activity in slow haemody-
namic signals across distant brain regions, have strong functional
and clinical relevance and have become an indispensable element
in the field of functional neuroimaging13. While resting-state
networks can be robustly extracted from electrophysiological
recordings using amplitude coupling, these networks are
less apparent in the spatial structure of phase coupling
networks12,14–18, leading to the notion that the neurophysiolo-
gical correlate of resting-state networks should be found in the
neuronal mechanism that gives rise to amplitude coupling.

It is not completely understood how differences in phase and
amplitude coupling are related to other properties of the signals.
Such understanding, however, might be helpful in sorting out the
physiological mechanisms that underlie these two types of con-
nectivity and will also guide the development of analysis methods.
There are numerous implementations of phase coupling metrics,
the phase-locking value, the (weighted) phase-lag index19,20,
coherence and its imaginary part21, measures based on phase-
coupling functions22, and the lagged coherence23, among many
others24,25. Amplitude coupling is usually expressed in instanta-
neous correlations between (orthogonalized) amplitudes10,12,15.
In recent work, a relationship between the amplitude correlation
and coherence was derived for infinitely long Gaussian signals26.
A pair of time-domain signals is referred to as Gaussian if the
pairs of samples are drawn from a bivariate Gaussian distribution.
In EEG/MEG studies, signals are usually analysed in the
frequency-domain and hence are complex-valued. In this case, a
pair of signals is Gaussian if the four-vectors of the real and
imaginary parts of the samples are drawn from a four-
dimensional Gaussian distribution. Note that, whether or not a
pair of signals is Gaussian, does not imply anything about the
temporal structure of the signals and, in particular, is unrelated to
the signals’ auto- and cross-correlation functions.

Nolte and co-workers26 showed that the amplitude correlation
between two signals is equal to the squared magnitude of their
coherence. This shows that a proper comparison between
coherence and amplitude correlation networks involves the
squared magnitude of the coherence, rather than its magnitude,
as is sometimes done in practice. Furthermore, and perhaps more
importantly, it demonstrates that differences between coherence
and amplitude correlation networks can only exist for

non-Gaussian signals. For a pair of zero-mean Gaussian signals,
all statistical information is contained in their second-order
moments, namely the signals’ variances and their covariance
(time-domain) or cross-spectrum (frequency domain) and the
Gaussian distribution is the only distribution with this property.
Thus, the observed dissociation between coherence and ampli-
tude correlation networks in EEG and MEG data4,26 implies that
second-order moments do not contain all information about the
signals. This additional information, however, can only be
obtained by considering higher-order moments of EEG/MEG
signals.

There is strong evidence from electroencephalography (EEG)
and magnetoencephalography (MEG) recordings that ongoing
neuronal oscillations are non-Gaussian22,27,28, which ever since
has a strong impact on the study of neuronal oscillations in
electrophysiological data29. Non-Gaussianity in neuronal oscil-
lations is expressed as transitions between low- and high-
amplitude oscillations27,28,30. More specifically, there is a domi-
nant low amplitude mode during spontaneous oscillations,
interspersed with brief periods of high amplitude activity, so-
called bursts29,31. Spontaneous switching between low- and high
amplitude oscillations naturally occurs when the system is found
near a dynamic instability, more specifically near a subcritical
Hopf bifurcation27. However, the implications of this dynamical
instability for amplitude correlation remain unclear.

An exact mathematical description of amplitude coupling
should capture the non-Gaussianity of electrophysiological data.
In this study we generalize the relation on amplitude coupling
derived by Nolte and co-workers to arbitrary non-Gaussian sig-
nals of finite-length using higher-order statistics. We derive an
expression for amplitude coupling that is exact and holds for any
two non-Gaussian signals. This expression has three important
implications: (1) it explains the common and complementary
nature of phase and amplitude coupling; (2) it elucidates the
contribution of coincident bursting events to amplitude coupling;
(3) it hence provides insight into the electrophysiological signal
properties that result in amplitude coupling. We extend the
derived expression for orthogonalized signals that apply to arbi-
trary non-Gaussian signals of finite length. We first demonstrate
the relevance of our mathematical expression in simulations with
ground truth when the system operates on the edge of instability
(a so-called subcritical Hopf bifurcation), to probe the role of
intermittend bursting in amplitude coupling. We further
demonstrate the relevance of our derived expression in empirical
MEG data, and show the contribution of coincident bursting
events to amplitude coupling with and without leakage
correction.

Results
Theory: mathematical relationship between power correlation
and coherence. To allow for simplicity in our mathematical
derivations, we consider power envelope correlations, rather than
amplitude envelope correlations, with the former being defined as
the magnitude squared of the amplitude envelopes. We will use
coherence as a proxy for phase coupling. Let x and y be the
coefficients of frequency representations of two recorded brain
signals, for example as obtained by Fourier, wavelet, or Hilbert
transformation. In the ‘Methods’ section we derive the following
expression for the power correlation rx,y, which can be under-
stood in terms of a relation between the power correlation and
the coherence ρx,y between x and y:

rx;y ¼
jρx;yj2 þ Kx;y þ jρx;�yj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ Kx þ jρx;�xj2Þð1þ Ky þ jρy;�yj2Þ
q ; ð1Þ
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Here, �x denotes the complex conjugate of x, Kx and Ky are the
(excess) kurtosis of x and y, and Kx,y is the (excess) cokurtosis
between x and y. All quantities in Eq. (1) are estimates of the
respective theoretical quantities and can be computed directly
from experimental signals. For ongoing signals, they are obtained
by averaging over time and for task-based signals, they are
obtained by averaging over trials. No assumptions are made in
deriving Eq. (1), hence it holds for any two signals of arbitrary
length, be it random, non-stationary, chaotic, or otherwise. For
later use, we will refer to the coherence ρx;�y between x and �y as the
conjugate coherence between x and y32. The conjugate coherence
of a signal with itself measures the extent to which the distribu-
tion of its instantaneous phase argðxÞ deviates from being uni-
form. In particular, it vanishes if and only if the phase is
uniformly distributed or, equivalently, the real and imaginary
parts of the signal have the same variance and are uncorrelated.
In a similar way, the conjugate coherence between two signals
measures the extent to which the distribution of the sum argðxÞ þ
argðyÞ deviates from being uniform. Details are provided in the
‘Methods’ section.

The kurtosis of a signal can be thought of as measuring the
“fatness” of the signal’s probability distribution, relative to that of
a Gaussian reference signal with matched first- and second-order
moments (i.e. mean and variance). Thus, signals with positive
kurtosis exhibit large fluctuations from their mean with higher
probability than matched Gaussian signals do. Signals with
positive and negative kurtosis are referred to as super-Gaussian
and sub-Gaussian, respectively. Figure 1a provides an illustration.
The cokurtosis between two signals is a measure for the
probability of large fluctuations to occur simultaneously in both

signals, relative to that of Gaussian reference signals with the
same first- and second-order moments (i.e. mean, variance, and
coherence). The kurtosis and cokurtosis are fourth-order
quantities that vanish for Gaussian signals and, as such, can be
used to detect and characterize non-Gaussian signal properties.

For simplicity we now assume that the MEG signals are jointly
stationary. This assumption is in no way essential, but simplifies
our analysis of Eq. (1), because it implies that the conjugate
coherence terms vanish33. We will, however, also establish this for
the empirical MEG signals in our dataset. Vanishing of the
conjugate coherence term implies that the theoretical relation
between power correlation and coherence for such signals is

rx;y ¼
jρx;yj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ KxÞð1þ KyÞ
q þ Kx;yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ KxÞð1þ KyÞ
q : ð2Þ

Equation (2) shows that the power correlation between cortical
signals can be decomposed into two parts. The first part reflects
dependence on coherence and the synchronization of Gaussian
(i.e. non-bursty) background activity. The second part depends
on cokurtosis and vanishes for Gaussian signals. We will refer to
it as the non-Gaussian power correlation and denote it by rex;y (the
e stands for “excess”):

rex;y ¼
Kx;yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ KxÞð1þ KyÞ
q : ð3Þ

Equation (3) makes clear that rex;y is a natural measure for the
dissociation between power correlation and coherence and that
this dissociation is closely related to non-Gaussian properties of

Fig. 1 Illustration of co)kurtosis of cortical signals. a Shown are two simulated cortical signals (black traces), together with their amplitude envelopes (red
and orange traces) and distributions. The top and bottom signals have negative and positive kurtosis, respectively. Negative kurtosis (sub-Gaussiannity) is
reflected in the absence of large amplitude fluctuations and in “thin tails” of the distribution. Positive kurtosis (super-gaussiannity) is reflected in the
presence of large amplitude fluctuations and in “fat tails” of the distribution. b Top: Shown are two simulated super-Gaussian cortical signals (black and
grey traces), together with their amplitude envelopes (red and orange traces, resp.) and the distribution of the difference between their instantaneous
phases. The magnitude squared coherence is larger than the correlation between their power envelopes, corresponding to a negative cokurtosis. Bottom:
Same format, but the magnitude squared coherence is smaller than the power correlation, corresponding to a positive cokurtosis.
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the signals. For instance, it makes clear that a dissociation
between power correlation and coherence is only possible for
non-Gaussian signals, something that has not been recognized in
earlier work, but will play a crucial role in obtaining a
physiological explanation of this dissociation.

How should a positive non-Gaussian power correlation be
interpreted in terms of the dynamics of the neural populations
that generate the signals? We first note that cortical signals are
super-Gaussian22,27. For such signals, Eq. (3) implies that a
sufficient condition for the non-Gaussian power correlation to be
positive is that rx,y > ∣ρx,y∣2. A positive value of rx,y therefore
means that the signals are relatively incoherent as compared to
their power correlation. In particular, incoherent signals with
correlated power fluctuations have positive non-Gaussian power
correlation. Figure 1b provides an illustration. The non-Gaussian
power correlation captures the occurence of simultaneous large
amplitude fluctuations in two signals. Since these large amplitude
fluctuations correspond to the tails in the distribution, their
probability of occurence is low. Hence, a plausible neurophysio-
logical explanation for a positive non-Gaussian power correlation
is the coincidence of high amplitude bursts. We test this
hypothesis using biophysical modelling based simulations with
ground truth.

Corticothalamic mean-field simulations: non-Gaussian power
correlations reflect synchronized neuronal bursts. We
employed the same corticothalamic mean-field model as Freyer
and coworkers27,34. This model simulates electrophysiological
signals generated by an excitatory pyramidal neuronal population
in terms of its mean firing rate ϕe (Fig. 2a). The model produces
1/f activity superimposed by alpha oscillations, which emerge
from a thalamocortical loop, consisting of two thalamic (relay and
reticular) and two cortical (excitatory and inhibitory) popula-
tions. Working point of the model is near a dynamical instability,
a subcritical Hopf bifurcation. In the presence of noise, this
bifurcation separates a linear regime, characterised by noise
induced low amplitude fluctuations and a limit cycle regime,
characterised by high amplitude oscillations (Fig. 2b). Similar as
in the work of Freyer and coworkers27, switching between these
regimes is controlled by state-dependent noise parameter χ, which
results in alternating modes of low amplitude fluctuations and
brief high amplitude bursts. To model coincident bursting, we

couple the excitatory populations of two corticothalamic mean-
field models, controlled by the coupling strength.

Electrophysiological signals were generated using a range of
values for χ and coupling strength, starting both at zero
magnitude. For χ= 0 (no bursting events), we observe increasing
power correlation values when coupling strength is increased,
resulting from increasing values for coherence (Fig. 2c). Cokur-
tosis remains zero for this parameter range. For coupling > 0.06
and for increasing values of χ (or bursting events), distinct model
behaviour is observed. For these parameter values, there is a boost
in magnitude of the power correlation due to a jump in
cokurtosis, but vanishing coherence (Fig. 2c). Hence, coincident
bursting is well captured by cokurtosis, but not by coherence.
Figure 2c clearly shows two regimes responsible for non-zero
power correlation, a high coupling and non-bursting regime
characterised by non-zero coherence, and a high coupling and
bursting regime characterised by positive cokurtosis.

Empirical MEG data: dissociation between cortical coherence
and power correlation networks. After establishing an inter-
pretation for the derived mathematical expression of Eq. (1) using
simulations, we set out to analyse the role of non-Gaussian power
correlations and cokurtosis in empirical MEG data. Equation (1)
implies that for Gaussian signals, the theoretical power correla-
tion equals the squared magnitude coherence. To assess if cortical
signals are indeed non-Gaussian and how the extent of non-
Gaussianity varies with cortical location, we calculated the kur-
tosis for all cortical regions. The results are reported in Supple-
mentary Figs. 1 and 2 of Supplementary Note 1 and demonstrate
that cortical signals are super-Gaussian.

Given this observation, we expect to see a dissociation between
the squared magnitude coherence and the power correlation. We
estimated the power correlation and magnitude squared coher-
ence between the cortical signals for all pairs of regions and
averaged their differences over subjects. Figure 3a shows the
distributions of this difference in the alpha and beta bands, which
were obtained by pooling the values from all pairs of regions. To
assess statistical significance, we recomputed the differences for
randomized MEG signals. The obtained null-distributions are
shown in Fig. 3a (black and grey curves). Their 95% percentiles
are 0.007 (alpha band) and 0.006 (beta band), which shows that
the power correlation and coherence are dissociated for most
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Fig. 2 Coincident bursts in a corticothalamic mean-field model. We simulated activity of two coupled corticothalamic mean-field models. An example of
two generated electrophysiological signals is depicted in panel (a). Panel (b) shows the corresponding bifurcation diagram of the model, when the
thalamocortical connection strength νes is used as bifurcation parameter. The black line corresponds to the low amplitude mode (linear regime) and the red
lines to the high amplitude mode (limit cycle regime). State-dependent noise, controlled by parameter χ allows for switching between these two regimes.
Panel (c) shows the power correlation, coherence and cokurtosis as a function of χ and coupling strength.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04648-x

4 COMMUNICATIONS BIOLOGY |           (2023) 6:286 | https://doi.org/10.1038/s42003-023-04648-x | www.nature.com/commsbio

www.nature.com/commsbio


pairs of regions and, more specifically, that power correlations are
consistently higher than expected for Gaussian signals, corrobor-
ating recent findings using EEG sensor data26. Since the
difference is always positive, it also shows that coherent cortical
oscillations necessarily have correlated power fluctuations, in line
with recent observations4.

We next quantified the contributions of the coherence,
cokurtosis, and conjugate coherence to the power correlations.
This was done by first estimating their contributions,

corresponding to the three terms in Eq. (1), for all pairs of
regions, summing them over all pairs of regions, and dividing by
the total sum. The results are shown in Fig. 3b, c for the alpha and
beta bands, respectively. In both frequency bands, the contribu-
tions of the coherence and cokurtosis are roughly equal and the
contribution of the conjugate coherence is very small. The figures
also show the contributions obtained from randomized MEG
signals. The randomization caused the contribution of the
cokurtosis to decreased substantially. Since the randomized
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signals are Gaussian and hence have zero cokurtosis, the
contributions of the kurtosis to the power correlations of the
randomized signals is entirely due to sampling variability. This
demonstrates that the contribution of the kurtosis to the power
correlation is not spurious and is not caused by the processing
and inverse modelling of the MEG signals. Furthermore, since the
results are highly reproducible across recording sessions, the
sampling variability of the estimated contributions is very small.
These findings establish that the dissociation of power correlation
and coherence in cortical oscillations reflects extreme co-
fluctuations in the oscillations’ power envelopes, as measured
by the cokurtosis, and simulations suggest that this could be
mirrored by synchronised bursts.

By collecting the contributions of the coherence, cokurtosis,
and conjugate coherence into matrices, an additive decomposi-
tion of the observed power correlation matrix into three matrices
is obtained. Figure 3d shows the power correlation networks and
Fig. 3e, f shows the corresponding coherence and co-kurtosis
networks. Because the entries of the conjugate coherence matrix
are extremely small (at least an order of magnitude smaller than
those of the other matrices), the power correlation matrix is, to a
very good approximation, the sum of the coherence and the
cokurtosis matrices. Figure 3f shows that the cokurtosis is non-
negative for all pairs of regions and for most pairs is strictly
positive. This can also be observed in Fig. 3g, which show the
distributions of the matrix entries (black curves) and the
corresponding null-distributions (grey curves). We further
observe that the cokurtosis matrices contain more off-diagonal
elements and hence less connections between adjacent regions
than coherence matrices. There are a large number of region-
pairs that are incoherent, but have non-zero and positive
cokurtosis.

To see the dependence on cortical location, we calculated seed-
based maps by averaging over the rows of the cukurtosis,
coherence and power correlation matrices (Fig. 3h–j). In both
frequency bands, the seed-based power correlation and coherence
are relatively high in deep cortial regions, such as the Sylvian
fissures and along the cingular cortices and are most likely
artificial12. The seed-based cokurtosis is organized differently. In
the alpha band, it is high in parietal cortices, including the
precuneus, and the posterior cingular cortices and in the beta
band it is high in the regions of the well-known fronto-parietal
attention network. This spatial organization is highly similar to
that observed in ref. 12 using amplitude correlations of
orthogonalized MEG signals. Orthogonalization is a processing
step that is used to suppress spurious power correlations that are
caused by incomplete unmixing of the reconstructed cortical
signals. Our results suggest that this step is not necessary when

using only the non-Gaussian part of the power correlation (Eq.
(3)). This is confirmed in the section Effect of signal orthogona-
lization. All observations were highly reproducible in a separate
recording session (see Supplementary Fig. 3).

Empirical MEG data: resting-state networks are reflected in
non-Gaussian power correlations. To extract non-Gaussian
power correlation subnetworks, we clustered the columns of the
subject-averaged cokurtosis matrices using k-means clustering.
The number of clusters was determined by the elbow method
applied to the average sum of squared within-cluster distances to
the cluster centers. In selecting the optimal number of clusters,
the number of clusters was allowed to range from one to ten. For
each of the ten values, we selected the best cluster out of ten
replications with different initial conditions. Figure 4a shows the
subnetworks extracted in the alpha frequency band. The first
network coincides with the visual network and covers both dorsal
and ventral visual regions. The second network covers the pos-
terior cingular cortex and parietal areas, including the precuneus,
which is the posterior node of the default mode network (DMN).
The third network comprises the medial frontal, temporal, and
parietal areas of the DMN as well as the auditory network. When
the number of clusters is increased from three to four, the
auditory networks separates from the DMN. Figure 4b shows the
networks obtained in the beta frequency band. The first network
is the visual network, and the second an amalgam of the sen-
sorimotor network with more parietal regions. The third network
comprises areas in the dorsal and medial pre-frontal cortices and
shares similarities with the salience network. Applying the same
procedure to the MEG data from the second recording session
yielded identical networks (see Supplementary Fig. 4). These
results demonstrate that some of the resting-state networks, in
particular the DMN and the salience network, can be extracted
from MEG signals using non-Gaussian power correlations and
without the need for signal orthogonalization.

Empirical MEG data: effect of signal orthogonalization. When
using power correlations for the reconstruction of cortical net-
works, the signals need to be orthogonalized prior to estimating
the correlations12. This is to remove spurious correlations caused
by signal leakage, i.e. incomplete unmixing of the reconstructed
cortical signals. To assess the effects of signal orthogonalization
on the coherence and cokurtosis networks, we calculated the
respective network matrices obtained from the orthogonalized
signals. Figure 5a, b shows the relative contributions of coherence,
cokurtosis, and conjugate coherence to the power correlation.
Comparing the contributions to those obtained without

Fig. 3 Dissociation between cortical coherence and power correlation networks. a Distributions of the observed differences (power correlation minus
squared magnitude coherence) in the alpha (light orange curve) and beta (dark orange curve) frequency bands and the corresponding null-distributions in
black (alpha band) and grey (beta band). The distributions were obtained by averaging the differences over subjects and subsequently pooling the values
from all pairs of cortical regions. b Relative contributions of coherence (dark orange bars), cokurtosis (light orange bars), and conjugate coherence (green
bars) to cortical power correlations in the alpha frequency band. The contributions were averaged over pairs of cortical regions. The contributions obtained
from a randomized copy of the MEG sensor signals are also shown. c Same format as (b) but for the beta frequency band. The black dots in panels (b) and
(c) quantify the statistical uncertainty of the relative contributions and were obtained by bootstrapping over subjects (1000 bootstrap realizations). The
corresponding standard errors are also shown (green vertical bars). d Power correlation network in the alpha (top panel) and beta (bottom panel)
frequency band. e Coherence network in the alpha(top panel) and beta (bottom panel) frequency band. f Cokurtosis network in the alpha (top panel) and
beta (bottom panel)frequency band. The networks were obtained by averaging the respective subject-specific network matrices. g Distribution of the
cokurtosis values in the alpha (top panel) and beta (bottom panel) frequency band (black curve) and of those of a randomized copy of the MEG signals
(grey curve). h Colour-coded cortical map of the region-averaged power correlations (i.e. the row-averaged power correlation matrix) in the alpha (top
panel) and beta (bottom panel) frequency band. i Colour-coded cortical map of the region-averaged coherence (i.e. the row-averaged coherence matrix) in
the alpha (top panel) and beta (bottom panel) frequency band. j Colour-coded cortical map of the region-averaged cokurtosis (i.e. the row-averaged
cokurtosis matrix) in the alpha (top panel) and beta (bottom panel) frequency band. For better visibility, the cortical maps were thresholded at their
average values.
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orthogonalization (Fig. 3b, c) makes clear that the contribution of
the conjugate coherence remains small and that the contribution
of the coherence is reduced from about 50% to less than 10%.
This shows that the power correlation between orthogonalized
signals roughly measures their non-Gaussian power correlation.
It also explains why signal orthogonalization is not necessary
when using the cokurtosis to map cortical connectivity. Indeed,
the spatial correlation between the power correlation and
cokurtosis matrices of the orthogonalized signals are 0.99 and

0.98 for the alpha and beta bands, respectively. In the ‘Methods’
section we provide a mathematical analysis of these effects.

Figure 5c–e shows the seed-based power correlation, coher-
ence, and cokurtosis maps. The power correlation maps show
that the orthogonalization has removed a large part of the
spurious connectivity in both frequency bands (compare with the
maps in Fig. 3h–j). However, the coherence maps, which seem to
mostly represent spurious connectivity in deep cortical regions
such as the cingulate gyri and the insular cortex, still contribute to
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the power correlations. Power correlations between orthogona-
lized signals, therefore, are not completely free of spurious
connectivity caused by signal leakage. This is consistent with the
fact that orthogonalization completely suppresses signal leakage
only for Gaussian signals26. In contrast, the cokurtosis maps are
hardly affected by the orthogonalization. Indeed, the spatial
correlation between the cokurtosis matrices of the original and
orthogonalized signals is 0.93 and 0.91 for the alpha and beta
bands, respectively. From this we conclude that signal leakage
strongly affects Gaussian power correlations, but not non-
Gaussian ones, although the cokurtosis maps are slightly altered
by orthogonalization (see Supplementary Fig. 5). All of these
results were highly reproducible in a separate recording session
(see Supplementary Fig. 6).

Empirical MEG data: non-Gaussian power correlations reflect
co-occurrent bursts in cortical activity. To relate the cokurtosis
networks to more familiar properties of cortical signals, we cal-
culated the group-level burst co-occurrence matrices of ortho-
gonalized source-projected MEG signals in the alpha and beta
frequency bands. Like the cokurtosis, the burst co-occurrence
between two signals is a measure for the probability of the signals
to simultaneously exhibit large power fluctuations. The burst
occurrence, however, is more in line with analysis methods of
resting-state cortical activity that are based on point-processes
(see e.g. ref. 35). Because the analysis is carried out in the time-
domain, our analysis also serves to illustrate the application of
non-Gaussian power correlations in the time-domain.

The burst co-occurrence matrices are shown in Fig. 6a (alpha
band) and b (beta band). They resemble the cokurtosis matrices
extracted in the frequency domain: The spatial correlations
between cokurtosis and burst co-occurrence matrices are 0.58
(alpha band) and 0.48 (beta band). Figure 6c, d shows the burst

co-occurrence matrices averaged over regions-of-interest. The
maps clearly resemble the cokurtosis maps (Fig. 3f) in both
frequency bands. In particular, the fronto-parietal attention
network can be observed in the beta band. Lastly, we computed
the cokurtosis matrices from the time-domain sensor signals and
compared them with those obtained from the frequency-domain
sensor signals. The correlations between the respective matrices
were 0.96 in both frequency bands, showing that non-Gaussian
power correlations can be extracted in both the time- and
frequency domain and that the results agree.

Discussion
What do power correlation networks in the human brain reflect
and how do they relate to coherence networks? This has been a
long-outstanding question in the field of neuroscience and rele-
vant for several neuroscientific experiments using modalities such
as local field potentials, electrocorticography, EEG and MEG. We
provide an answer to this outstanding question by deriving an
analytical mathematical expression for the power correlation
between two non-Gaussian electrophysiological signals and dis-
secting this further using biophysical modelling and empirical
MEG data. Both coherence and cokurtosis contribute to a power
correlation between two non-Gaussian electrophysiological sig-
nals. While coherence is sensitive to phase synchrony, cokurtosis
or its normalised version, the non-Gaussian power correlation,
captures the probability of simultaneously occurring large fluc-
tuations in two electrophysiological signals. Simulations showed
that cokurtosis is especially sensitive to coincident bursts. This
has been confirmed in empirical MEG data, showing a strong
relation between cokurtosis and coincident bursts for both alpha
and beta networks. Empirical MEG data further showed a clear
dissociation between coherence and power correlation for alpha
and beta networks, which was explained by a positive cokurtosis.
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Positive cokurtosis was observed for several long-distance region-
pairs for which there was near zero coherence. Well-known
resting-state networks were clearly apparent in cokurtosis without
the need for correction for artefactual signal leakage. Correction
for artefactual signal leakage had profound effect on coherence,
but not on cokurtosis, indicating that cokurtosis is relatively
insensitive to signal leakage.

The origin of power correlations for orthogonalised electro-
physiological signals seems consistent with coincident bursting in
two separate brain regions. As (positive) kurtosis corresponds to
extreme values within the tails of the signal’s distribution. Their
probability of occurrence is low and duration of large fluctuations
is expected to be brief. Sustained oscillations with high amplitude
do not seem to agree with current findings as this would likely
result in negative kurtosis. Furthermore, there is increasing evi-
dence in that bursting events may even be the underlying features
of the alpha and beta rhythm36–40. Thus, other explanations for
the observed positive kurtosis and cokurtosis than bursting events
seem unlikely. We identified bursting events using a point process
analysis35,41, which indeed shows that coincident bursts were
highly correlated to cokurtosis. The strength of the current ana-
lysis is that this very simple method already demonstrates the
relationship between coincident bursting events and power cor-
relations. However, more sophisticated analysis tools exist to
capture bursting events, such as the Hidden Markov modelling
approach that is sensitive to distinct spectral features of bursts31

and the “better oscillation detection” (BOSC) method, which are
presumably less sensitive to noise and artefacts in the data42. The
role for coincident bursting may be supported by studies on time-
resolved functional connectivity that have demonstrated very
brief periods (~0–400 ms) at which dynamic amplitude con-
nectivity exceeds the level of stationary connectivity43–45.
Importantly, a previous paper on coincident bursting using
Hidden Markov Modelling indeed showed striking resemblance
of coincident bursting events to power correlations46, though this
was only analysed by assessing correlations without offering a
clear mathematical and explanatory framework that explains the
dissociation between coherence and power correlations. Recent
years have seen a boost in the interest of bursting activity in
neuronal activity29,31,47. Bursts can be dissected into burst
amplitude, duration and occurrence31. Future work will need to
examine how these bursting properties affect coincident bursting
and subsequently cokurtosis.

Using biophysical simulations, we demonstrated that a system
in the vicinity of a dynamical instability is not only in agreement
with switching between low amplitude fluctuations and high
amplitude bursts27, but also in agreement with occurrence of
coincident bursts. More specifically, previous work has demon-
strated that state-dependent noise in a system operating near a
subcritical Hopf bifurcation can cause erratic jumps between low
amplitude fluctuations and high amplitude bursts, agreeing with
empirical observations of the alpha rhythm27. When two coupled
neuronal populations both operate at the brink of this instability,
a brief burst in amplitude in one population can make the other
population jump from the low to high amplitude regime, thus
leading to coincident bursting. The agreement of a system char-
acterised by a Hopf bifurcation and empirical observations is not
novel. The relevance of a Hopf bifurcation has been described in
the context of several other empirical observations, such as
frequency-dependent electrophysiological activity48, temporal
evolution of the oscillatory amplitudes49, turbulent dynamics in
the human brain50, and transitions between brain states51,52. As
such, the potential role of a Hopf bifurcation in the context of
coincident bursting can now be added to this list. On a different
note, to be a realistic mimic for co-occurent bursting in empirical
electrophysiological data, (biophysical) simulations should exhibit

positive kurtosis and cokurtosis, which can be influenced by the
choice of the coupling function, e.g. diffusive or additive53. Dif-
fusive coupling may lead to a reduction in amplitude and hence
negative cokurtosis, which may not be appropriate to capture this
specific empirical phenomenon of co-occurent bursting.

An important observation is the eminent appearance of well-
known haemodynamic resting-state networks in cokurtosis in the
alpha and beta networks. Therefore, it is tempting to speculate
that these resting-state networks could be shaped by coincident
neuronal bursting events. This has also been stressed in animal
work aiming to explain spontaneous fMRI correlations54. Even
though it has been claimed that not more than 10% of the var-
iance of fMRI BOLD can be explained by underlying neuronal
events and the contribution of non-neuronal events is inhomo-
geneous accross the brain55,56, recent work in mice suggest that
kurtosis of calcium signals mirrors kurtosis in BOLD signals and
fMRI BOLD correlations are related to nonstationarity of the
calcium signals. Furthermore, there is increasing evidence that co-
occurence of high LFP events is one of the most important
contributors to BOLD correlations57–59. In our work, even
without the use of any clustering algorithms, the salience network
could clearly be observed in beta cokurtosis networks. Though
spectral power in the alpha band is more occipitally located,
cokurtosis for alpha networks showed predominantly parietal
regions, including the precuneus. This is in agreement with recent
work on the generation and propagation of the alpha rhythm60.
Spatially most dominant generators of alpha activity are located at
parietal regions and alpha activity propagates from parietal to
occipital regions60. It is tempting to speculate that spatially
dominant generators of the alpha rhythm could have large (co)
kurtosis and result from bursting events. Recent work on bursting
events also showed that bursting events propagate spatially across
the cortex in a medial to lateral and anterior-posterior direction61.
After application of k-means clustering, clear resting-state net-
works can be observed in both beta and alpha frequency bands,
including the sensorimotor, visual, and default mode network.
We note that, besides being very similar to the networks obtained
by orthogonalized power correlations, these networks are also
very similar to the networks obtained using a time-delay
embedded hidden Markov model in MEG data62. This can be
explained by our hypothesis, since the spatial organization of
coincident bursting will be imprinted on both the second- and
fourth-order statistical structure of the MEG signals. Whereas
orthogonalized power correlations and the hidden Markov model
capture the second-order (i.e. Gaussian) structure, the cokurtosis
captures the fourth-order (i.e. non-Gaussian) structure. The main
advantage of using the cokurtosis is that no correction for signal
leakage is needed. Furthermore, these resting-state networks were
not evident in coherence networks and unlike coherence,
cokurtosis networks contained less connections in the midline
reminscent of artefactual signal leakage.

Taken together, we propose to use the cokurtosis, or its nor-
malised version, the non-Gaussian power correlation, as a func-
tional connectivity metric. This metric is sensitive only to co-
occurring extreme fluctuations and, as such, is well-suited to
detect synchronized bursting. Furthermore, it is able to detect
well-known resting-state networks without the need for signal
orthogonalization. The non-Gaussian power correlation is to be
preferred over the cokurtosis, because it is appropriately nor-
malized. More specifically, in the ‘Methods’ section we derive that
the cokurtosis is equal to the “excess” covariance between the
power fluctuations in the signals, that is, where “excess” means
relative to the covariance between the power fluctuations of
matched Gaussian signals. This interpretation makes clear that a
properly normalized connectivity measure is obtained by dividing
the cokurtosis by the product of the standard deviations of the
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power fluctuations, in a similar way as the correlation between
two signals is obtained by dividing the covariance by the product
of the standard deviations of the signals. It turns out that nor-
malizing the cokurtosis in this way precisely yields the non-
Gaussian power correlation. Current findings also have implica-
tions for the analysis of time-varying connectivity in electro-
physiological data. Time-varying connectivity is only relevant if a
system exhibits non-stationarity. Stationary connectivity with
noise fluctuations around a steady state can be characterised by a
Gaussian distribution. Our method allows to study deviations
from this Gaussian distribution and is hence sensitive to non-
stationarity. Recently introduced methods on time-varying con-
nectivity making use of co-modulations in high amplitude
therefore seem justified given their sensitivity to this non-
Gaussianity63,64. Lastly, we derived an expression for power
correlations in terms of coherence and not directly in terms of
phase-locking as measured by the phase-locking value (PLV).
Such a relation only exists if assumptions about the signals are
made, because the power envelopes and instantaneous phases of a
general pair of signals can be specified independently from each
other. Nolte and coworkers demonstrated how the PLV can be
expressed in terms of coherence for bivariate Gaussian signals26.
This relationship, however, is quite complicated and involves
infinite power series in the coherence. Deriving similar relations
for more general (non-Gaussian) models is therefore a challen-
ging question for future studies.

Recent years has seen an increase in interest on local bursting
events with claims that neuronal oscillations may actually be a
reflection of bursting events29. Our work forms a strong link
between the field of local bursting events and brain networks. We
have provided understanding on the dissociation between power
correlation and coherence networks. Their dissociation is driven
by cokurtosis and consistent with co-occurent bursting events.
Co-occurrence of neuronal bursts revealed canonical haemody-
namic resting-state networks. We have presented a robust
method, the non-Gaussian power correlation, that can pave the
way for analysis of coincident bursts in the context of neu-
roscientific experiments. Importantly, current results may guide
the further search for neuronal underpinnings of haemodynamic
resting-state networks.

Methods
Data and pre-processing. We used MEG data from the Human Connectome
project65 (MEG2 Data Release). It comprised three six-minute resting-state scan-
ning sessions from 89 young healthy participants using the whole-head MAGNUS
3600 (4D Neuroimaging, San Diego, CA) system, housed in a magnetically shielded
room. The participants were instructed to remain still (supine position), to relax
with eyes open, and to fixate on a projected cross-hair on a dark background. The
recorded data were segmented into two-second epochs and pre-processed using a
dedicated pipeline that included detection of bad channels and segments and ICA-
based artefact rejection (see ref. 66 for details). For the spectral domain analyses, the
signals of all k MEG sensors were transformed to the time-frequency domain using
the short-time Fourier transform with windows of length one second and fifty
percent overlap. Subsequently, the time-frequency coefficients at the group-level
alpha (≈10 Hz) and beta (≈16 Hz) peak-frequencies were selected. For the time-
domain analyses, the signals were filtered ±2 Hz about the alpha and beta peak-
frequencies using a zero-phase fourth-order Butterworth bandpass filter. Analytic
signals of the filtered signals were computed using the Hilbert transformation,
followed by down-sampling with a factor of five. Both methods yielded a complex
MEG sensor matrix X that contained the complex signal representations (either
Fourier- of Hilbert-based) in its rows.

Source modelling. MEG leadfield matrices were computed in Fieldtrip67 using
realistic single-shell headmodels provided by the HCP. As source spaces we used
co-registered individual cortical meshes provided by the HCP. A detailed
description of the anatomical processing pipeline can be found in ref. 68. This
yielded subject- and run-specific leadfield matrices G of dimension k × 3p, where k
is the number of MEG channels and p= 8004 is the number of cortical vertices.
Columns 3j− 2, 3j− 1, and 3j of G contain the vertex-wise leadfield vectors at the
cortical vertex j for the three Euclidean orientations. We denote this 3 × k matrix by
Lj. The sensor-level Fourier coefficients were projected to source space by an

adaptive spatial filter12,69. The source signals Yj at vertex j are obtained through

Yj ¼ WjX;

where Wj is the 3 × k matrix of filter weights, X is the MEG sensor matrix, and Yj is
the 3 × p matrix containing the source signals for the three Euclidean orientations.
The weight matrix is obtained by solving the following optimization problem:

min
W

WjΣW
y subject to WyLj ¼ I;

where Σ= XX† is the sensor covariance and I is the 3 × 3 identity matrix. This
minimizes the source power under the constraint that the power at vertex j is
passed with unit gain. It has the effect that interfering signals from other locations
are suppressed. The solution to this optimization problem is

Wj ¼ LTj Σ
�1Lj

� ��1
LTΣ�1;

where the inverse sensor covariance matrix is estimated through

Σ�1 ¼ Σþ λIð Þ�1;

where λ is a regularization parameter, which was set to 10−7. Univariate source
time-series were subsequently obtained by projecting Yj onto the first eigenvector
of WjΣW

y
j
12. The above procedure was repeated for each region-of-interest from

the cortical parcellation70.

Coherence and power correlation. Let x 2 C and y 2 C denote the time-
frequency coefficients of two signals at a given frequency and let 〈x〉 and 〈y〉 be
their temporal averages over some observation interval. More generally, we use the
notation 〈 f(x, y)〉 to denote the temporal average of the expression inside the
brackets. To simplify the formulas, we assume throughout that the signal means 〈x〉
and 〈y〉 have been subtracted. The coherence and power correlation between x and
y are defined as

ρx;y ¼
hx�yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjxj2ihjyj2i
p ; ð4Þ

and

rx;y ¼
hðjxj2 � hjxj2iÞðjyj2 � hjyj2iÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðjxj2 � hjxj2iÞ2ihðjyj2 � hjyj2iÞ2i

q ; ð5Þ

respectively, where the vertical bars denote taking the absolute value. The coher-
ence is complex and ∣ρx,y∣ ≤ 1 and the power correlation is real and confined to the
interval [−1, 1].

Kurtosis and cokurtosis. Let x1, x2, x3, x4 be zero-mean complex random vari-
ables. Their fourth-order joint moment is defined as their average of their product:

μðx1; ¼ ; xdÞ ¼ hx1 ¼ xdi: ð6Þ
Note that μ linear in each of its arguments and is symmetric, i.e. invariant under
permutations of its arguments. The fourth-order joint cumulant of x1, x2, x3, x4 is
defined as

κðx1; x2; x3; x4Þ ¼ μðx1; x2; x3; x4Þ � μðx1; x2Þμðx3; x4Þ
� μðx1; x3Þμðx2; x4Þ � μðx1; x4Þμðx2; x3Þ;

ð7Þ

where μ(x1, x2) denotes the second-order joint moment of x1 and x2, and similarly
for the other terms. The joint cumulant is also symmetric and linear in each of its
arguments. The joint moments and cumulants can be normalized to make them
dimensionless:

~μðx1; x2; x3; x4Þ ¼
μðx1; x2; x3; x4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjx1j2ihjx2j2ihjx3j2ihjx4j2i
p ; ð8Þ

and

~κðx1; x2; x3; x4Þ ¼
κðx1; x2; x3; x4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjx1j2ihjx2j2ihjx3j2ihjx4j2i
p : ð9Þ

Let x and y be zero-mean complex random variables. There are three normalized
fourth-order cumulants that appear in the relation between the coherence and the
power correlation between x and y (Eq. (1)). The first two are the kurtosis of x and
y, which are defined as

Kx ¼ ~κðx; x; �x; �xÞ; ð10Þ
and

Ky ¼ ~κðy; y;�y;�yÞ; ð11Þ
respectively, and the third is the cokurtosis between x and y, which is defined as

Kxy ¼ ~κðx; y; �x;�yÞ: ð12Þ
Note that Kx, Ky, and Kxy are real-valued.
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Conjugate coherence. Let z= (x, y) be a zero-mean bivariate complex random
variable. Generally, its cross-spectral matrix

hzzyi ¼ hjxj2i hx�yi
hy�xi hjyj2i

� �
: ð13Þ

is not sufficient for a complete characterization of its second-order statistical
structure. Specifically, the cross-spectral matrix is sufficient if and only if

hz�zyi ¼ hx2i hxyi
hxyi hy2i

� �
; ð14Þ

vanishes, in which case z is called proper. The matrix hz�zyi is referred to as the
conjugate covariance matrix32,71. In the context of frequency-domain signal pro-
cessing, however, covariance and correlation matrices are referred to as cross-
spectral and coherence matrices, respectively. To stay consistent with this termi-
nology, we hence will refer to hz�zyi as the conjugate cross-spectral matrix. The
conjugate coherence between x and y can be defined as the coherence between x
and �y:

ρx;�y ¼
hxyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjxj2ihjyj2i
p : ð15Þ

Thus, z is proper if and only if its conjugate coherence matrix vanishes. We note
that the conjugate coherence matrix is not an actual coherence matrix in the sense
that it is not Hermitian and positive semi-definite. Furthermore, its diagonal
entries, which are called circularity coefficients, are generally complex-valued and
therefore cannot be interpreted as variances. The circularity coefficient of x mea-
sures the deviation of the probability distribution of x from being circular, i.e.
invariant under phase-rotations x↦ eiϕx. In particular, x is proper if and only if its
real and imaginary parts have equal variances and are independent32,71.

Relation between power correlation and coherence. Let x and y be two observed
zero-mean complex-valued signals. We show that

rx;y ¼
jρx;yj2 þ Kx;y þ jρx;�yj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ Kx þ jρx;�xj2Þð1þ Ky þ jρy;�yj2Þ
q : ð16Þ

Writing the numerator of r Eq. (5) in terms of joint moments and cumulants gives

h jxj2 � hjxj2i� � jyj2 � hjyj2i� �i ¼ jμðx;�yÞj2 þ κðx; y; �x;�yÞ þ jμðx; yÞj2: ð17Þ
Setting y= x in Eq. (17) gives the terms inside the square-root of the denominator
of rx,y (Eq. (5)):

h jxj2 � hjxj2i� �2i ¼ jμðx; �xÞj2 þ κðx; x; �x; �xÞ þ jμðx; xÞj2; ð18Þ
and

h jyj2 � hjyj2i� �2i ¼ jμðy;�yÞj2 þ κðy; y;�y;�yÞ þ jμðy; yÞj2: ð19Þ

Dividing Eq. (17) by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjxj2ihjyj2i

p
and using the definitions of the coherence (Eq.

(4)), cokurtosis (Eq. (12)) and conjugate coherence (Eq. (15)) gives the numerator

of Eq. (16). Likewise, dividing Eqs. (18) by
ffiffiffiffiffiffiffiffiffiffiffi
hjxj2i

p
and Eq. (19) by

ffiffiffiffiffiffiffiffiffiffiffi
hjyj2i

p
and

using the definitions of the kurtosis (Eqs. (10) and (11)) and the conjugate
coherence, gives the two terms inside the square-root of the denominator of Eq.
(16). This establishes Eq. (16).

Non-Gaussian power correlation. We define the non-Gaussian power correlation
between two signals x and y as

rex;y ¼
Kx;yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ KxÞð1þ KyÞ
q : ð20Þ

As a measure of functional connectivity, the non-Gaussian power correlation is to
be preferred over the cokurtosis Kx,y. To see why, we first express the kurtosis in
terms of the power correlation as

Kx;y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ KxÞð1þ KyÞ

q
rx;y � jρx;yj2; ð21Þ

and note that

V jxj2� � ¼ hðjxj2 � hjxj2iÞ2i ¼ 1þ Kx; ð22Þ
and

V jyj2� � ¼ hðjyj2 � hjyj2iÞ2i ¼ 1þ Ky ; ð23Þ
whereV jxj2� �

andV jyj2� �
are the variances of ∣x∣2 and ∣y∣2, respectively. Denoting

the covariance between the power of x and y by γjxj2 ;jyj2 and noting that

γjxj2 ;jyj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ KxÞð1þ KyÞ

q
rx;y ; ð24Þ

we obtain the following expression for the cokurtosis:

Kx;y ¼ γjxj2 ;jyj2 � jρx;yj2: ð25Þ

It shows that the cokurtosis equals the covariance between the power of x and y,
relative to that between matched proper Gaussian signals. However, the covariance
γjxj2 ;jyj2 scales with the variances of the power of x and y, which is undesirable. This
is similar to the fact that the covariance between two signals scales with the var-
iance between the signals and therefore needs to be normalized by the product of
the standard deviations of the signals. Similarly, we normalize the cokurtosis by
dividing by the product of the standard deviations of the power of x and y. This
then yields the non-Gaussian power correlation.

Relative contributions. Since MEG signals are proper, the pseudo-coherences
vanish for sufficiently long signals and Eq. (16) reduces to

rx;y ¼
jρx;yj2 þ Kx;yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ KxÞð1þ KyÞ

q : ð26Þ

The relative contribution of the (magnitude squared) coherence to the power
correlation is defined as

cx;y ¼
jρx;yj2

jρx;yj2 þ Kx;y

; ð27Þ

and the relative contribution of the cokurtosis as 1− cx,y.

Effect of signal orthogonalization. Let x and y be two observed complex zero-
mean signals. In ref. 11, y is orthogonalized with respect to x by subtracting the
instantaneous linear contribution of x. This yields an orthogonalized signal
y⊥= y− αx, where

α ¼
ffiffiffiffiffiffiffiffiffiffiffi
hjyj2i
hjxj2i

s
Reðρx;yÞ: ð28Þ

It is constructed in such a way that x and y⊥ have purely imaginary cross-spectrum:
γx;y? ¼ iImðγx;yÞ. The relative contribution of the coherence between x and y⊥ to
their power correlation is

cx;y? ¼
jρx;y? j

2

jρx;y? j
2 þ Kx;y?

: ð29Þ

The magnitude squared coherence and cokurtosis between x and y⊥ are given by

jρx;y? j
2 ¼

Imðρx;yÞ2
1� Reðρx;yÞ2

; ð30Þ

and

Kx;y?
¼

Kx;y � 2Reð~κðx; y; �x; �xÞÞReðρx;yÞ þ KxReðρx;yÞ2
1� Reðρx;yÞ2

; ð31Þ

respectively. The term Reð~κðx; y; �x; �xÞÞ can be neglected (see SI) hence we obtain

cx;y? ¼
Imðρx;yÞ2

Imðρx;yÞ2 þ Kx;y þ KxReðρx;yÞ2
: ð32Þ

Note that if x is Gaussian, i.e. Kx= 0, then also Kx,y= 0, and hence the relative
contribution of the coherence becomes 1. If, in addition, Imðρx;yÞ ¼ 0, the con-
tribution of the coherence vanishes. If x is non-Gaussian and Imðρx;yÞ≠ 0, the
relative contribution of the coherence can be rewritten as

cx;y? ¼
jρx;yj2

jρx;yj2 þ Kx;y þ KxReðρx;yÞ2 þ cot2ðϕx;yÞðKx;y þ KxReðρx;yÞ2Þ
ð33Þ

where ϕx;y ¼ argðρx;yÞ. Comparing Eq. (33) with the definition of cx,y in Eq. (27),
we see that the effect of signal orthogonalization on the relative contribution of the
coherence is determined by the term

ηx;y ¼ KxReðρx;yÞ2 þ cot2ðϕx;yÞ Kx;y þ KxReðρx;yÞ2
� �

: ð34Þ
Equation (34) provides some insight into the power correlation between ortho-
gonalized signals. First, since in experimental MEG data, Kx, Kx,y ≥ 0, this implies
that ηx,y ≥ 0 as well, which shows that the contribution of the coherence can
decrease but not increase. Second, if the expected phase-difference ϕx,y between x
and y is small, the term cot2ðϕx;yÞ becomes large hence cx;y? will be small. In
particular, ϕx,y= 0 implies that cx;y? ¼ 0. This shows that if x and y that are
coherent with zero lag, the power correlation between x and y⊥ equals the non-
Gaussian power correlation Kx;y=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ KxÞð1þ KyÞp
between the x and y.

Co-occurrent bursts. For each pair (x, y) of source-projected MEG signals from an
individual subject, we z-scored x and y by subtracting their means and dividing by
their standard-deviations, yielding standardized signals x0 and y0 . Subsequently, y0

was orthogonalized to x0 , yielding y0? . Bursts were extracted by binarizing the
absolute values of the real parts of the signals x0 and y0? at a threshold value of 3.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04648-x ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:286 | https://doi.org/10.1038/s42003-023-04648-x | www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


The imaginary parts could be used instead of the real parts, but give the same
results due to the propriety of the signals and the fact the orthogonalization pre-
serves propriety. This yielded binary signals x″ and y00? with ones corresponding to
bursts and zeros corresponding to no bursts. The co-occurrence of bursts was
quantified by the dot product of x″ and y00? , divided by the length of the signals.
Gathering the co-occurrences of all signal pairs yielded subject-specific co-occur-
ence matrices, which were subsequently averaged over subjects. The above pro-
cedure was carried out separately in the alpha and beta frequency bands.

Computational model. We employed a corticothalamic mean-field model27,34,72,
which describes the aggregate activity of a neuronal population in terms of their
firing rate ϕa and mean membrane potential Va with a∈ {e, i, r, s}. The corti-
cothalamic mean-field model encompasses two cortical populations (excitatory e,
inhibitory i) and two thalamic populations (relay s, reticular r). The membrane
potential of a population fluctuates Va(t) as a result of the incoming firing rate ϕa(t)
from other population and/or itself according to

1
αβ

d2

dt2
þ 1

α
þ 1

β

� �
d
dt

þ 1

� �
VaðtÞ ¼ ∑

a0
νaa0ϕa0 ðtÞ þ∑

b
νabϕbðt � τÞ: ð35Þ

The constants α and β refer to the synaptic rise and decay constants, νaa0 and νab to
the connection strength between populations, where νab refers to connections
between the thalamic and cortical populations. Propagation between thalamic and
cortical populations is delayed by τ. At the cell body, the membrane potential Va is
transformed into a firing rate using a sigmoid function

QaðtÞ ¼
Qmax

1þ exp � VaðtÞ � θ
� �

=σ
� � : ð36Þ

The mean firing rate is further temporally damped using the following expression

1
γ2a

d2

dt2
þ 1

γa

d
dt

þ 1

� �
ϕaðtÞ ¼ QaðtÞ; ð37Þ

with γa being the temporal damping rate. For inhibitory, relay and reticular popu-
lations, γa ≈∞, hence ϕa(t)=Qa(t). Parameter values are exactly the same as in ref. 34.

To analyse power correlations, we coupled two corticothalamic models by
connecting their excitatory populations to each other, controlled by a coupling
parameter. Similar as in ref. 27, we implemented state-dependent noise to obtain
switching in a multistable system between noise-induced fluctuations in the linear
regime and limit cycle behaviour close to a Hopf bifurcation (see Hopf bifurcation
in Fig. 2b reconstructed by DDE biftool73). Hence, there is switching between low
amplitude fluctuations and high amplitude oscillations. State-dependent noise was
incorporated in the thalamic relay population and added to Eq. (29)27

ϕnðtÞ ¼ ϕð0Þn þ ϕðmÞ
n ðtÞ þ χϕðjÞn ðtÞϕeðt � τÞ: ð38Þ

The first term is a constant reflecting the mean and was set to ϕð0Þn ¼ 0:5. The
second and third term dependent on random values ϕðaÞn and ϕðmÞ

n drawn from a
Gaussian distribution with standard deviation equal to 0.1. The parameter χ
controls the balance between purely additive noise ϕðaÞn and the multiplicative noise
ϕðmÞ
n . To analyse the power correlation and the contribution of coherence and

cokurtosis we varied the coupling parameter and χ. All model equations (Eqs.
(35)–(38)) were solved in Matlab using the Euler-Maruyama method with
sufficiently small time step (1 × 10−4 s), i.e. smaller than the magnitude of the
corticothalamic delays.

Statistics and reproducibility. All results on the MEG data are validated using
non-parametric methods (surrogate data and bootstrapping) and their reprodu-
cibility is demonstrated by repeating all analyses on independent scanning sessions.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MEG and anatomical data used in this study have been provided by the Human
Connectome Project65. The data and documentation can be downloaded from https://
www.humanconnectome.org.

Code availability
All custom code was written in Matlab (MathWorks) Version 2019a (see
mathworks.com). Matlab code for source-projection of MEG sensor signals and the
calculation of the functional networks is available at https://github.com/Prejaas/
amplitudecoupling.
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