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Opposite effects of positive and negative
symptoms on resting-state brain networks in
schizophrenia
Xinrui Wang 1,2, Zhao Chang1,2 & Rong Wang 1✉

Schizophrenia is a severe psychotic disorder characterized by positive and negative symp-

toms, but their neural bases remain poorly understood. Here, we utilized a nested-spectral

partition (NSP) approach to detect hierarchical modules in resting-state brain functional

networks in schizophrenia patients and healthy controls, and we studied dynamic transitions

of segregation and integration as well as their relationships with clinical symptoms. Schi-

zophrenia brains showed a more stable integrating process and a more variable segregating

process, thus maintaining higher segregation, especially in the limbic system. Hallucinations

were associated with higher integration in attention systems, and avolition was related to a

more variable segregating process in default-mode network (DMN) and control systems. In a

machine-learning model, NSP-based features outperformed graph measures at predicting

positive and negative symptoms. Multivariate analysis confirmed that positive and negative

symptoms had opposite effects on dynamic segregation and integration of brain networks.

Gene ontology analysis revealed that the effect of negative symptoms was related to autistic,

aggressive and violent behavior; the effect of positive symptoms was associated with

hyperammonemia and acidosis; and the interaction effect was correlated with abnormal

motor function. Our findings could contribute to the development of more accurate diag-

nostic criteria for positive and negative symptoms in schizophrenia.
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Schizophrenia is a complex and severe psychotic disorder
featuring impaired functions across multiple dimensions,
including cognition, language, movement, emotion, and

social behavior1. This disorder affects approximately 1% of the
global population and results in considerable burdens on patients,
families, and society2,3. In the clinic, schizophrenia is ordinarily
diagnosed through the observation of positive symptoms (delu-
sions, hallucinations, disordered speech, and behavior dis-
turbances) and negative symptoms (avolition, alogia, and
anhedonia)4,5. However, schizophrenia has considerable overlap
with other neurological disorders (e.g., bipolar disorder, autistic
spectrum disorder, and Huntington’s disease) at both the clinical
and genetic levels6–8, which makes accurate diagnosis quite
challenging. Identifying the neural mechanisms of schizophrenia
and linking neural signatures to multidimensional clinical
symptoms are promising approaches for developing more effec-
tive and individual-specific diagnoses.

Noninvasive neuroimaging technology advances the investi-
gation of cognition and brain disorders on the whole-brain scale.
The brain has been modeled as a complex network wherein
regions of interest (ROIs) are set as nodes, while the functional
connections measured by correlation or synchronization between
regional signals are edges. Schizophrenia has been widely regar-
ded as a dysconnectivity disorder9. In general, schizophrenia is
characterized by overall reductions in functional connectivity
(FC) compared to that of healthy controls9–11, as well as altera-
tions in network topologies, including a decline in global effi-
ciency, decreased functional integration, reduced modular
structure, and increased global network robustness12–15. Abnor-
mal connectivity can predict the total score of schizophrenia and
explain part of its neural mechanism, but opposite results have
been widely reported16–18. For example, the total score of schi-
zophrenia was positively correlated with hyperconnectivity
involving the thalamus and temporal cortices19 but negatively
related to hyperconnectivity within the frontoparietal network16.
While the total score is an overall measure of positive and
negative symptom dimensions, the possible reason for these
inconsistent observations may be that positive and negative
symptoms have separate mechanisms. The dopamine hypothesis,
which is currently a widely accepted hypothesis of schizophrenia,
notes that enhanced dopamine release may ascribe ‘aberrant
salience’ to irrelevant stimuli (e.g., via failure of top-down inhi-
bitory control) and result in positive symptoms, while reduced
release induces a failure to appropriately respond to meaningful
reward cues and thus results in negative symptoms20,21. Oppos-
ing predictions regarding positive and negative symptoms were
found for primary motor and cerebellar connectivity22,23. Cru-
cially, both the self-similarity and the multifractality of resting-
state brain signals were associated with increased negative and
positive symptoms, but they had opposite distribution patterns
across the brain24. Thus, positive and negative symptoms may
have opposite effects on the dominant components of the brain
FC network.

To address this question, neural signatures that link the brain
to diverse schizophrenia symptoms must be explicitly defined.
Sufficiently segregated processing in specialized systems and
effective global integration are the two basic principles that the
brain needs to generate diverse cognitive functions25. Abnorm-
alities in segregation and integration have been linked to many
brain disorders25,26, including schizophrenia27,28. However,
whether positive and negative symptoms have opposite effects on
segregation and integration remains unknown. Recently, a
nested-spectral partition (NSP) method based on eigenmodes was
proposed to detect hierarchical modules in brain networks and
describe segregation and integration across multiple levels29,
different from the classical graph measures (e.g., modularity and

participant coefficient) at a single level30. More importantly, the
NSP method has been found to yield better neural signatures than
graph theory for linking brain features to cognitive functions and
attention-deficit/hyperactivity disorder (ADHD) symptoms31–33.
It is thus expected that an NSP-based analysis may better reveal
the opposite neural biomarkers that underlie positive and nega-
tive symptoms in schizophrenia.

Therefore, in this work, we studied hierarchical segregation and
integration in brain FC networks in the resting state and explored
their distinct associations with positive and negative symptoms in
schizophrenia. In addition, the brain dynamically and flexibly
integrates neural information across distinctly segregated systems.
It has been suggested that dynamic analysis may provide more
informative measures related to various neurological and psy-
chiatric conditions, including schizophrenia19. We thus con-
structed dynamic FC networks using open-source functional
magnetic resonance imaging (fMRI) datasets derived from schi-
zophrenia patients (SCH group, n= 50) and healthy controls
(HC group, n= 50), and we further defined the strength and
variability of dynamic integration/segregation processes. We first
studied the alterations in dynamic segregation and integration
related to schizophrenia. Second, we identified the associations of
dynamic networks with diverse schizophrenia symptoms in
positive and negative symptom dimensions. Then, we constructed
a machine-learning model to predict positive and negative
symptom scores and investigated the opposite effects of positive
and negative symptoms on brain FC networks. Finally,
we extracted the genes related to distinct effects of positive/
negative symptoms and performed Gene Ontology (GO)
enrichment analysis.

Results
Analysis of dynamic segregation and integration. Brain func-
tional organization dynamically switches between segregated and
integrated states32. The NSP method can extract the separated
segregation and integration components from a single brain FC
network without any threshold, which is able to study the net-
work dynamic transitions in two separate dimensions. When all
regions had strongly cooperative activation with high FC
(Fig. 1a), the brain network was in an integrated state; otherwise,
the connectivity was low, and the brain was in a segregated state.
These state transitions can be effectively detected by the dynamic
integration and segregation components. We first investigated the
integration strength HIn and segregation strength HSe during the
dynamic state transitions, as measured by time-averaged segre-
gation and integration components. Compared to the healthy
control (HC) group, the schizophrenia (SCH) group had
decreased integration strength (ANCOVA, t(98)=−2.845,
p= 0.004, Fig. 1b) and increased segregation strength
(t(98)= 4.558, p < 0.001, Fig. 1c). At the local scale, all functional
systems had significantly decreased integration strength HIn and
increased segregation strength HSe (all p < 0.05, FDR corrected,
Fig. 1d), and the limbic system had the largest alterations (per-
mutation test, p < 0.001, see Fig. 1d and Supplementary Fig. 1).
We further defined the standard deviations of temporal-resolved
integration and segregation components to study the dynamic
integration variability FIn and segregation variability FSe. Inte-
gration variability FIn in schizophrenia patients was significantly
decreased in the whole brain (t(98)=−3.368, p= 0.001, Fig. 1e),
and segregation variability FSe is significantly increased
(t(98)= 5.317, p < 0.001, Fig. 1f), reflecting the more variable
segregation process and more stable integration process. These
changing trends were observed in all functional systems (all
p < 0.05, FDR corrected, Fig. 1g), and the limbic system also had a
higher decrease in integration variability FIn and an increase in
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segregation variability FSe (see Fig. 1g and Supplementary Fig. 1).
We also calculated the corresponding graph theory measures:
degree, participant coefficient, variability of degree and variability
of participant coefficient, and found that there were no significant
differences in graph theory measures between the HC and SCH
groups (see Supplementary Fig. 2).

Overall, schizophrenia, characterized by the loss of effective
global integration, is related to a more stable global integration
process and a more variable segregation process, and the limbic
system is most significantly changed. These alterations can be
effectively detected by the NSP method relative to graph theory
analysis.

Associations between dynamic brain networks and clinical
symptoms in schizophrenia. We next tested whether the NSP
method could link dynamic brain networks to clinical symptoms
of schizophrenia. There are a total of ten symptom scores in the
positive and negative symptom dimensions, and we focused on
the key positive symptom (i.e., hallucinations) and key negative
symptom (i.e., avolition). A significant correlation was found for
the hallucinations (see Fig. 2a, b and Supplementary Data. 1).

Specifically, the hallucinations are positively correlated with the
integration strength HIn in the dorsal attention system
(t(48)= 2.205, r= 0.303, p= 0.032, Fig. 2a and Supplementary
Fig. 4) and negatively related to the segregation strength HSe in
the salient attention system (t(48)=−2.336, r=−0.319,
p= 0.024) and the dorsal attention system (t(48)=−2.101,
r=−0.290, p= 0.041) (see Fig. 2b and Supplementary Fig. 4). A
significant correlation was also found for avolition (see Fig. 2c
and Supplementary Data. 1). The dynamic segregation variability
FSe was negatively related to the avolition score in the DMN
(t(48)=−2.682, r=−0.361, p= 0.010) and control systems
(t(48)=−2.367, r=−0.323, p= 0.022) (see Fig. 2c and Supple-
mentary Fig. 4). The multivariable regression models further
confirmed the above results (see Supplementary Data. 2). Graph
theory measures have consistent correlations to the key positive
symptoms (i.e., hallucinations) but are not related to negative
symptoms (i.e., avolition, see Supplementary Fig. 5)

Overall, brain dynamic networks are related to key positive
symptoms (i.e., hallucinations) and key negative symptoms (i.e.,
avolition). More serious hallucinations correspond to higher
integration strength in attention systems. Weaker avolition is

Fig. 1 Dynamic segregation and integration. a Schematic diagram of dynamic segregation and integration analysis. The brain functional connectivity (FC)
network temporally switches between segregated (low FC) and integrated (high FC) state. Using the NSP method, this dynamic transition can be studied
separately in two dimensions: dynamic segregation and integration. The white lines indicate the mean values, and the ranges of the y-axis are indicated by
the color bars. b Comparisons of integration strength HIn and c segregation strength HSe between the healthy control (HC, n= 50) and schizophrenia (SCH,
n= 50) groups. Each point indicates the value of an individual, and the boxplot of each group was also provided. ** indicates a significant group difference
with p < 0.01, *** p < 0.001. d Relative changes in integration strength HIn and segregation strength HSe from HC to SCH in seven functional systems. All
systems had significant alterations (p < 0.05, FDR corrected). e Comparisons of integration variability FIn, f segregation variability FSe between HC and SCH
groups. g Relative changes in the integration variability FIn and segregation variability FSe from HC to SCH in seven functional systems. All systems had
significant alterations (p < 0.05, FDR corrected). VIS: visual, MOT: motor, DOR: dorsal attention, SAL: salient attention, LIM: limbic, CON: control, DMN:
default-mode network (see similar results for the brain parcellation of 500 regions in Supplementary Fig. 3).
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associated with higher dynamic variability of the segregation
process in the default-mode network (DMN) and control systems.

Predictions of positive and negative symptoms. In the clinic, the
negative and positive symptom scores (SANS and SAPS) are
crucially important to diagnose schizophrenia, but we did not
find a significant correlation between these two scores and brain
network measures (see Supplementary Table. 1). To further
explore the neural mechanisms of schizophrenia, we utilized a
machine-learning approach to predict SANS and SAPS scores.
Linear regression models were constructed, and leave-one-out
cross-validation (LOO-CV) was used to validate the results. In the
prediction model, the input features were regional measures,
including integration strength Hi

In, segregation strength Hi
Se,

integration variability Fi
In, and segregation variability Fi

Se. The
prediction accuracy was estimated by the correlation between real
and predicted scores that was further tested by the permutation
test (10000 times). Our results showed that segregation variability
FSe has the best prediction of the SAPS score ðr ¼ 0:654; p<0:001Þ
and SANS score ðr ¼ 0:659; p<0:001Þ (Fig. 3a, b) and outper-
forms the classical graph theory measures (see Supplementary
Fig. 7). By summing the weights of regions belonging to the same
system (Fig. 3c), we studied which system predominantly

contributed to the SAPS/SANS scores. In the SAPS prediction
model, the visual and DMN systems had high positive weights,
and the limbic system had a high negative weight (Fig. 4d). Thus,
the more variable segregation in the limbic system contributes to
smaller SAPS, but higher variability in the visual and DMN
systems corresponds to higher SAPS. In the SANS prediction
model, the featured regions were distributed in the visual and
DMN systems. The visual system had a high positive weight, and
the DMN system had a high negative weight (Fig. 4d), indicating
that more variable segregation in the DMN system contributes to
a smaller SANS, but the opposite is true for the visual system.

Overall, compared to graph theory measures, NSP-based
features can better predict the SAPS and SANS scores, suggesting
potential biomarkers for schizophrenia. The DMN, visual and
limbic systems significantly participate in the predictions,
reflecting their important roles in schizophrenia.

Opposite effects of positive and negative symptoms on the
brain. In Fig. 3d, the DMN system has opposite contributions to
the predictions of SANS and SAPS scores, reflecting that SANS
and SAPS may have contrary effects on brain functional orga-
nizations. However, it should be noted that SANS and SAPS
scores are positively correlated (r= 0.261, p= 0.067,

Fig. 2 Associations between resting-state brain networks and schizophrenia symptoms. a Correlations of hallucinations score to integration strength HIn

and b segregation strength HSe for the whole-brain (ALL) and seven functional systems. The red dots indicate significant correlations. c Correlations
between avolition score and segregation variability FSe for the whole-brain (ALL) and functional systems (see Supplementary Data. 1 for more results of
correlations between brain network measures and diverse clinical symptoms, see Supplementary Fig. 6 for similar results for the brain parcellation of 500
regions).

Fig. 3 Prediction of SANS and SAPS scores. a Four brain network measures, integration strength HIn, segregation strength HSe, integration variability FIn,
and segregation variability FSe, were used to predict the SAPS (upper panel) and SANS (lower panel) scores. The bar charts are correlations between real
SAPS/SANS scores and predicted scores using different brain measures. ***p < 0.001, **p < 0.01, *p < 0.05. b The correlation between SAPS (upper
panel)/SANS (lower panel) scores and predicted scores for segregation variability FSe. c The weights of regions in the best predictions of SAPS (upper
panel)/SANS (lower panel) scores were mapped to the brain surface. d The summed weight of the regions in seven functional systems in the best
predictions of SAPS (upper panel)/SANS (lower panel) scores (see similar results for the brain parcellation of 500 regions in Supplementary Fig. 8).
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t(48)= 1.872), indicating the existence of a latent common
domain between them. To test the above possibilities, we con-
structed a multiple regression model to evaluate the effects of
SANS and SAPS on brain networks, as well as their interaction
effect (Eq. 8). We indeed found that the effect of SAPS and the
effect of SANS on regions are negatively correlated for dynamic
segregation variability FSe (t(48)=−2.419, r=−0.169, p= 0.016)
and integration variability FIn (t(48)=−6.211, r=−0.404,
p < 0.001, see Fig. 4a, b). More importantly, most of the SANS
effect is negative for integration variability FIn among regions,
and most of the SAPS effect is positive; for segregation variability
FSe, most of the SANS effect is positive, and most of the SAPS
effect is negative, indicating that the SANS and SAPS have
opposite effects on the dynamic variability of integration and
segregation in brain networks. These opposite effects of SAPS and
SANS on regions were also found in graph theory measures (see
Supplementary Fig. 9).

To identify which systems are predominantly affected by SANS
or SAPS, we performed principal component analysis (PCA) on
the two vectors of effects of SANS/SAPS for integration variability
FIn and segregation variability FSe, respectively. The first
component was used to measure the coeffect by SANS and SAPS
(explained 70.19% for integration variability FIn and 58.47% for
segregation variability FSe), wherein positive values indicate the
effect of SANS and negative values indicate the effect of SAPS
(Fig. 4c). We then averaged the coeffects of regions within each
system to represent the coeffects on this system. The motor
system has a consistently high negative coeffect for both
integration variability FIn and segregation variability FSe, indicat-
ing that SAPS predominantly affects the dynamic segregating and
integrating process in this system. However, the largest positive
coeffect is in the control system for integration variability FIn and

in the salient attention system for segregation variability FSe.
Thus, SANS dominantly affects the integration variability FIn of
the control system and the segregation variability FSe of the
salient attention system. We further studied the interaction effects
of SANS and SAPS on brain networks. The regression coefficients
of the SANS × SAPS item of regions were also averaged within
each system to represent the interaction effect on this system.
Dorsal and salient attention systems have the highest interaction
effect for both integration variability FIn and segregation
variability FSe (Fig. 4d), indicating that SANS and SAPS
interactively affect both segregating and integrating processes in
attention systems.

Overall, positive and negative symptoms of schizophrenia have
opposite effects on the functional organization of resting-state
brains. SAPS predominantly affects the motor system; SANS
dominantly affects the control system; SANS × SAPS interaction
interactively affects both attention systems.

Linking effects of schizophrenia symptoms to gene transcrip-
tional profiles. To investigate whether the components dom-
inantly affected by SAPS/SANS are related to clinical
manifestations, we first linked the effects of regions to gene
transcriptional profiles and then performed gene ontology (GO)
enrichment analysis. We collected whole-brain gene expression
data from the Allen Human Brain Atlas and mapped the gene
expression profiles to 200 parcellation regions (see Methods).
Each region contains 15,633 genes (Fig. 5a). To identify the sig-
nificant genes, the coeffects of SANS/SAPS on integration varia-
bility FIn and segregation variability FSe (see Fig. 4c) were
gathered to perform a PCA. The first component (explaining
76.46% of the variance) was extracted to reflect the overall effect
of schizophrenia (Fig. 5a), wherein high positive values represent

Fig. 4 Effects of schizophrenia symptoms on brain networks. Effects of SANS/SAPS on a dynamic integration variability FIn and b segregation variability
FSe. The effects were measured by the regression coefficients in the multiple regression model (Eq. 8). c Coeffects of SANS/SAPS on integration variability
FIn and segregation variability FSe. The coeffects were obtained from a and b using principal component analysis (PCA). The averaged coeffects of SANS
and SAPS on regions within seven functional systems are marked. d Interaction effect of SANS and SAPS on integration variability FIn and segregation
variability FSe. The coeffects on the seven functional systems are also shown (see similar results for the brain parcellation of 500 regions in Supplementary
Fig. 10).
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the overall effect of SANS, and high negative values represent the
overall effect of SAPS. By calculating the correlations between the
overall effect and gene transcriptional profiles, we identified 1780
SANS-related genes that had significant positive correlations
(p < 0.05, FDR corrected) and 2281 SAPS-related genes that had
significant negative correlations (p < 0.05, FDR corrected). We
then used these significant genes to perform GO annotation
analysis using the ToppGene Suite. The overall effect of SANS is
mainly related to biological signaling through synapses, and the
corresponding human phenotypes include abnormal autistic,

aggressive, and violent behavior (Fig. 5b). The overall effect of
SAPS is related to the generation of precursor metabolites and
energy and to small molecule metabolic processes. The corre-
sponding human phenotypes include hyperammonemia,
increased serum lactate, and acidosis (Fig. 5b).

Furthermore, we also focused on whether the components
affected by SAPS × SANS are related to clinical manifestations. In
the PCA on the effects of SANS×SAPS on integration variability
FIn and segregation variability FSe (see Fig. 4d), the first
component (explained 77.19% of variance) was extracted to

Fig. 5 Effects of schizophrenia symptoms and gene profiles. a The pipeline of gene selection for SANS, SAPS, and SANS × SAPS interaction effects. The
correlations between the overall effect and gene transcriptional profiles were calculated to identify significant genes (p < 0.05, FDR corrected). b Top five
gene ontology (GO) enrichment results for biological processes and human phenotypes using ToppGene, showing specific functional relevance (see similar
results for the brain parcellation of 500 regions in Supplementary Fig. 11).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04637-0

6 COMMUNICATIONS BIOLOGY |           (2023) 6:279 | https://doi.org/10.1038/s42003-023-04637-0 | www.nature.com/commsbio

www.nature.com/commsbio


reflect the overall effect of interactions (Fig. 5a), wherein high
positive values indicate the high overall effect by the interaction.
We identified 3055 SANS × SAPS-related genes that had
significant positive correlations with the overall effect of the
interaction (p < 0.05, FDR corrected). GO analysis showed that
the SANS × SAPS interaction is mainly related to biological
cellular localization and intracellular transport, and the corre-
sponding human phenotypes are ataxia, abnormal central motor
function, and hypertonia (Fig. 5b). Moreover, schizophrenia-
related genes (27/32 available in the Allen data) with damaging
ultrarare mutations have been identified34. We observed 12 genes
associated with the effects of SANS and SAPS (see Supplementary
Table. 2), and nine genes were related to the SANS × SAPS
interaction, indicating the correspondence between ultrarare
mutation genes and common effects of schizophrenia symptoms.
For graph theory measures, the number of significantly related
genes is not enough to statistically enrich biological processes and
human phenotypes; e.g., only 194 SANS-related genes were
identified for the graph theory measures.

Overall, the effect of SANS is related to synaptic signaling
processes and abnormal autistic, aggressive, and violent beha-
viors; the effect of SAPS is related to metabolic precursors,
hyperammonemia, and acidosis; and the SANS × SAPS interac-
tion effect is related to cellular localization and transport and
abnormal motor function. All these phenotypes have been found
in schizophrenia35–39.

Discussion
To identify the neural mechanisms of diverse clinical symptoms
in schizophrenia, we studied dynamic functional segregation and
integration based on hierarchical modules in brain FC networks.
The brain networks of schizophrenia patients show a loss of
effective global integration, accompanied by a more stable
dynamic integrating process and a more variable segregating
process. The limbic system has the highest relative degree of
alteration. Additionally, among positive symptoms, hallucinations
are linearly related to increased network integration in the dorsal
attention system; among negative symptoms, avolition is nega-
tively related to segregation variability in the DMN and control
systems. Furthermore, by adopting a machine-learning approach,
we successfully predicted the SANS and SAPS scores and sug-
gested that NSP-based dynamic features may be biomarkers for
schizophrenia. Most importantly, SANS and SAPS scores have
opposite effects on integration/segregation variabilities in brain
networks. The GO enrichment analysis revealed that the effect of
SANS was related to autistic, aggressive, and violent behaviors;
the SAPS effect was associated with hyperammonemia and
acidosis; and the SANS×SAPS interaction was correlated with
abnormal motor function. These results have potential applica-
tions for further separately identifying the positive and negative
symptoms and could thus contribute to the development of more
accurate diagnostic criteria for schizophrenia.

Schizophrenia has been regarded as a dysconnectivity
disorder9. While many studies have found decreased integration
at the whole-brain level in schizophrenia9–15, we further con-
firmed that schizophrenia is typically characterized by the loss of
global integration. In contrast to a previous study in which
schizophrenia patients showed consistently increased resting-
state FC variability in the sensory and perceptual systems and
decreased variability in high-order networks at the region and
network levels40, we used the NSP method, which separates FC
into segregation and integration components, and provided that
the dynamic integration process is more stable in schizophrenia
patients than in healthy controls and that the dynamic segrega-
tion process is more variable. Thus, the brains of schizophrenia

patients may lose the flexibility to integrate and coordinate dif-
ferent neural systems in response to internal and external stimuli.
Interestingly, the limbic system has the largest alterations in all
network measures for schizophrenia patients, which has long
been implicated in the pathogenesis of schizophrenia41,42 and
displays significantly greater deformation43. This system is
believed to drive disruptions in both the extrinsic (i.e., delusions)
and intrinsic (i.e., hallucinations) interpretation of sensory stimuli
in positive symptoms44, and it has also been suggested to drive
affective flattening and change in the sense of self in negative
symptoms45,46. In fact, the limbic system involves a set of regions
in the paleocortex and supports a variety of functions related to
emotion regulation and motivation meditation47,48. The devel-
opment of the limbic system reduces impulsive choices from early
adolescence to mid-adulthood49, and abnormal immaturity of
this system confidently predicts hyperactivity50. In particular, the
limbic system best predicts the increase in hyperactivity in
ADHD patients across the lifespan33. Here, the SANSхSAPS
interaction has the largest negative effect on the limbic
system, and its GO-based human phenotype is related to
motor dysfunction that has been widely observed in
schizophrenia35–38,51,52. Our results provide further support that
the limbic system is a key factor affecting individuals with
schizophrenia42 and may underlie abnormal motor function.

Hallucinations, a core positive symptom of schizophrenia, have
been regarded as a failure of the top-down suppression of
bottom-up perceptual processes21. Abnormal attribution of sal-
ience to external and internal stimuli is a core feature of
schizophrenia53. We found that higher integration in salient and
dorsal attention systems is closely related to several hallucina-
tions. The salient attention system was thought to enable brains
to direct attention toward salient stimuli by excluding irrelevant
noise, which supports automatic “bottom-up” forms of
attention54, and the dorsal attention network is engaged to exert
top-down influences on visual areas during the spatial orienting
of attentional tasks, which was greater than the reverse bottom-up
effects from the visual cortex55,56. Both systems are typically task-
positive, and their abnormalities are related to the brain imbal-
ance between top-down and bottom-up controls57 that may
underlie the impaired hallucinations58 in terms of functional
organization and structural anatomy1,53,58,59. Our results further
reinforce the importance of the salient attention system in
schizophrenia27. Meanwhile, many studies have proposed that
hallucinations may arise with dysconnectivity of the salient
attention system with other systems27, especially with the
DMN27,58,60. Here, we did not find a close relationship between
the DMN and hallucinations, as observed in previous studies58,60,
e.g., strong FC within the DMN and spontaneous DMN with-
drawal for the hallucination state58,60, but we found that a less
variable segregation process in the DMN and control systems is
related to more severe avolition, which is the core negative
symptom in schizophrenia61 and reflects a reduction in
the motivation to initiate or persist in goal-directed behavior. The
DMN and control networks are associated with goal-directed
behavior62, and their abnormalities are closely related to
avolition63–65, as confirmed in our study. Meanwhile, the
salience-monitoring theory proposes that abnormal coupling
between the salient attention system and DMN begets positive
and negative symptoms of schizophrenia66. Our relationships
between the DMN and avolition and between the salient attention
system and hallucinations provide further support for this
hypothesis.

We did not find a significant relationship between SANS/SAPS
scores and brain features, including both NSP and graph theory
measures, at the whole-brain level or the system level, but we
adopted the machine-learning method to successfully predict the
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scores. Compared to classical graph theory, the NSP-based
method had superior performance in predicting SANS/SAPS
scores and detecting network alterations, reflecting the advantages
of our method based on hierarchical modules in brain FC net-
works. This result is highly consistent with a series of our works
wherein the NSP-based method is more powerful in linking the
brain to diverse cognitive abilities32, task performance31, stress
conditions67, ADHD symptoms33, and bipolar disorder
symptoms68. All these findings demonstrated that the NSP-based
features detected across multiple levels are promising biomarkers
for schizophrenia and other brain disorders.

In the prediction models, the features in the DMN have
opposite contributions to SAPS and SANS, and using a multi-
variate regression model, we further confirmed that SANS and
SAPS have opposite effects on brain networks. Previous studies
found that primary motor and cerebellar connectivity have
opposite predictions on positive and negative symptoms22,23, and
self-similarity and multifractality of resting-state brain signals
with opposite distribution patterns have the same associations
with negative and positive symptoms24. Here, we provided the
first direct evidence that positive and negative symptoms of
schizophrenia have opposite effects on the functional organiza-
tion of resting-state brains while excluding their interaction,
especially that the DMN has opposite contributions to the pre-
dictions of SANS and SAPS scores. The DMN is negatively cor-
related with other systems69, and its abnormality may underlie
the positive symptoms58,60,70 and negative symptoms63–65 of
schizophrenia. Hare SM et al. reported that FC with a 4 s lag
between the anterior DMN and posterior DMN was negatively
associated with the severity of disordered thought and attentional
deficits, and FC with a 2 s lag between the anterior DMN and
salience network was positively related to the severity of flat affect
and bizarre behavior66, which is highly consistent with our
observations of opposite functions of the DMN on positive and
negative symptoms. In particular, negative symptoms often per-
sist after treatment with antipsychotic medication71. Even though
negative symptoms (e.g., anhedonia/asociality) were found to be
related to the posterior cingulate and precuneus, part of the
DMN, in a two-tone auditory oddball task, identifying reliable
targets of regions for treatment remains a challenge in the
clinic72. Our results greatly extend the understanding of schizo-
phrenia and provide that distinct DMN regions may be targets for
positive and negative symptoms.

Using GO enrichment, we demonstrated that the SANS ×
SAPS interaction is related to the pathology of intracellular
transport and cellular localization, such as in mitochondria35,52.
These biological processes may impact neuronal development,
synaptic function, and plasticity36,37. The corresponding phe-
notypes are related to ataxia and abnormal motor function,
which have been widely observed in schizophrenia38,51. In
particular, visual control influenced the age-associated increase
in ataxic gait51, and we found that the visual system contributed
to both positive and negative symptoms in the machine-
learning prediction models. These results may suggest baseline
pathological changes in motor function in schizophrenia.
Meanwhile, we confirmed that 12/32 schizophrenia-related
genes had damaging ultrarare mutations34, and 9/12 genes
were related to the SANS × SAPS interaction, indicating that
ultrarare mutation genes may mainly contribute to the baseline
symptoms of abnormal motor function in schizophrenia. Thus,
beginning with motor abnormalities, further development of the
disorder in different directions may generate positive and
negative symptoms. More specifically, negative symptoms may
be inherent to the alternated biological process in synapses that
transfer neural information between neurons, as also suggested
by the genetics and protein-interaction evidence for the role of

postsynaptic signaling processes in schizophrenia36,73. In
human phenotypes, negative symptoms are related to autistic
and aggressive behaviors that extensively overlap between
schizophrenia38 and autism74. As language disturbances are a
key feature of schizophrenia75, our results suggest that patients
are unable to flexibly communicate with others and effectively
express themselves, resulting in impulsive and violent behaviors
in the clinic, as also seen in autism76. Finally, we found that
positive symptoms are related to the abnormal biological pro-
cess of metabolism and the phenotypes of hyperammonemia,
increased serum lactate, and acidosis. A recent meta-analysis on
lactate or pH in schizophrenia revealed a significant increase in
lactate in schizophrenia and a nonsignificant decrease in pH77.
Our GO enrichment results provide further evidence that
abnormal metabolic processes in schizophrenia brains result in
the accumulation of ammonia, inducing hyperammonemia,
acidosis, and increased serum lactate39. All these abnormalities
are closely related to schizophrenia39,78, especially acidosis
altering dopamine and glutamate neurotransmission, causing
symptoms of schizophrenia39.

Methods
Participants. The dataset was extracted from the UCLA Consortium for Neu-
ropsychiatric Phenomics LA5c Study79. Fifty schizophrenia patients (female: 12;
age: 36.46 ± 8.88 years old) and 50 healthy controls (female; 12, age: 34.84 ± 9.03
years old) were included. There was no significant difference in age (two-sample
t-test, t(98)= 0.905, p= 0.354). The clinical symptoms of schizophrenia patients
were evaluated with the Scale for the Assessment of Positive Symptoms (SAPS) and
the Scale for the Assessment of Negative Symptoms (SANS)80. The SANS includes
five symptom dimensions, namely, avolition, alogia, anhedonia, attention, and
affective flattening; the SAPS includes hallucinations, delusions, bizarre behavior,
thought disorder, and blunted affect. The clinical scores of these symptoms are
provided in the Supplementary Data. 3 (SANS) and Supplementary Data. 4 (SAPS).
All studies were conducted in accordance with principles for human experi-
mentation as defined in the Declaration of Helsinki and the International Con-
ference on Harmonization Good Clinical Practice guidelines. All participants gave
written informed consent according to the procedures approved by the University
of California Los Angeles Institutional Review Board.

MRI data processing. Each participant completed one resting-state fMRI
scanning session (time of repetition [TR]= 2 s), lasting for 304 s (152 frames);
see ref. 81 for more detailed scanning parameters. Resting-state fMRI data were
processed using FSL (http://www.fmrib.ox.ac.uk/fsl/) and AFNI (http://afni.
nimh.nih.gov/afni/) software in the Ubuntu 14.04 system29. The procedure
included (1) slice-timing correction to the median slice; (2) motion correction;
(3) segmenting the anatomical image; (4) Montreal Neurological Institute (MNI)
normalization; (5) spatial smoothing using a Gaussian kernel with a 6-mm full
width at half maximum (FWHM); (6) bandpass filtering (0.01–0.1 Hz); and (7)
elimination of 6 rigid body motion correction parameters and the signal from
the white matter and a ventricular region of interest using linear regression. The
mean framewise displacement (FD) was 0.160 ± 0.159 mm for the healthy con-
trol group and 0.267 ± 0.215 mm for the schizophrenia group. The difference in
FD between the two groups was significant (two-sample t-test, t(98)= 2.779,
p= 0.004). Thus, an analysis of covariance (ANCOVA) was carried out for the
group comparison. Since the global whole-brain signal was related to brain
network integration and segregation (Supplementary Table. 3) and may contain
the clinical information of schizophrenia symptoms82–84, it was not removed
from our analysis.

Brain functional connectivity. The brain was parcellated into N= 200 regions of
interest (ROIs) using the Schaefer atlas85, and the results were similar for the brain
parcellation of 500 regions (see Supplementary Figs. 3, 6, 8, 10, 11). The blood
oxygen level-dependent (BOLD) signals of voxels within each region were averaged
to obtain the regional fMRI time series, and the Pearson correlation coefficient was
used to estimate the FC between regions. The BOLD signals were divided into
pieces using the sliding window method, and temporal-dynamic FC was calculated
in each window. As suggested by ref. 86, we chose a window width of 60 s (30
points) and a sliding step of 2 s (1 point), and there were 132 windows. Meanwhile,
group-stable, individual static FC networks were also constructed, which were used
to address the limitation of shorter fMRI series lengths resulting in stronger net-
work segregation32 (see fMRI length calibration). For the group-stable FC, the
fMRI time series for all participants in each group were concentrated, and the FC
was computed on a sufficiently long time scale. Individual static FC networks were
constructed using the whole fMRI time series in each participant. In all FC
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networks, negative connectivity was set to zero, and the diagonal elements were
kept at one32,87,88.

Nested-spectral partition (NSP) method. The NSP method was introduced to
detect hierarchical modules in FC networks based on eigenmodes. The FC matrix C
can be decomposed into functional modes with eigenvectors U and eigenvalues Λ,
and the modes were sorted according to the descending order of eigenvalues Λ. The
NSP method has the following procedures32:

1. In the first functional mode, all regions had the same negative or positive
eigenvector value; this mode was regarded as the first level, with one module
(i.e., whole-brain network).

2. In the second functional mode, the regions with positive eigenvector signs
were assigned to a module, and the regions with negative signs formed the
second module. This mode was regarded as the second level, with two
modules.

3. Based on the positive or negative sign of regions in the third mode, each
module in the second level was further partitioned into two submodules,
forming the third level. Subsequently, the FC network could be modularly
partitioned into multiple levels with the order of functional modes
increasing (see Supplementary Fig. 12 for a more detailed description of
the process). Regions within a module in a level may have the same sign of
eigenvector values in the next level, and then the module is indivisible,
which has no effect on the subsequent partitioning process. When each
module contained only a single region at a given level, the partitioning
process was stopped.

After the partitioning process, the NSP method outputs the module number
Miði ¼ 1; � � � ;NÞ and the modular size mjðj ¼ 1; � � � ;MiÞ, e.g., the number of
regions within a module, at each level.

Hierarchical segregation and integration components. Functional segregation
and integration in brain FC networks were defined across hierarchical modules that
were detected by the NSP method31,32. Consistent with the graph-based
modularity30, modules at a given level support the segregation between them and
integration within them. The increased module number Mi with the increasing
order of functional mode reflects higher segregation. At each level, segregation and
integration can be defined as32:

Hi ¼
Λ2
i Mið1� piÞ

N
ð1Þ

with

pi ¼
∑jjmj � N=Mij

N
ð2Þ

Here, N is the number of regions; Λi is the eigenvalue for the i-th functional
mode; pi is a correction factor for heterogeneous modular size and reflects the
deviation from the optimized modular size mj ¼ N=Mi at the i-th level. Since the
first level contains only a single module for all regions, this level was taken to reflect
the global integration component:

HIn ¼ H1

N
¼ Λ2

1M1ð1� p1Þ
N2

ð3Þ

With the increasing order of functional modes, the levels contain more modules
with smaller sizes and support higher segregation. Thus, the segregation
component was summed from the second to Nth levels:

HSe ¼ ∑
N

i¼2

Hi

N
¼ ∑

N

i¼2

Λ2
i Mið1� piÞ

N2
ð4Þ

Consequently, for a single FC network, we obtained the separated integration
component HIn and segregation component HSe. A larger HSe and smaller HIn

reflect stronger network segregation and weaker global integration.
The contribution of each region to the integration and segregation components

can be further defined as:

Hj
In ¼ H1U

2
1j andH

j
Se ¼ ∑

N

2
HiU

2
ij ð5Þ

where∑N
j¼1U

2
ij ¼ 1 for the i-th functional mode. The integration and segregation of

the functional system were obtained by averaging the corresponding components
of regions within this system.

For the dynamic FC networks, the time-resolved segregation component HSeðtÞ
and integration component HInðtÞ at each time window for each individual were
obtained. The values of integration and segregation strength were defined as the
average values of HInðtÞ and HSeðtÞ over time, respectively. The values of
integration and segregation variability were calculated as follows:

Fj
In ¼ σHj

In
and Fj

Se ¼ σHj
Se

ð6Þ

where σHj
In
and σHj

Se
represent the standard deviations of the Hj

InðtÞ and Hj
SeðtÞ time

series.

Notably, finer parcellation of the brain (i.e., 500 regions) would generate more
modules with smaller sizes in higher-order levels of brain functional networks,
accompanied by a larger segregation component and lower integration component
(see Supplementary Fig. 13). However, the results for schizophrenia are robust for
different brain parcellations (see Supplementary Figs. 3, 6, 8, 10, 11).

fMRI length calibration. Since shorter fMRI series lengths result in stronger
apparent network segregation32, we adopted a proportional calibration scheme to
address this limitation32. Assume that the integration component of the stable FC
network in each group is HS

In and that the integration components of individual
static FC networks for all participants are HIn ¼ ½HInð1Þ;HInð2Þ; � � � ;HInð50Þ�. The
group-averaged integration component is calibrated to the stable component:

H0
InðnÞ ¼ HInðnÞ ´HS

In=hHIni ð7Þ
Here, hi represents the group average across all participants, and n represents

the individual. Then, calibration was also performed for the regional integration
component Hj

In . For region j of the n-th participant, the calibrated regional

integration component is Hj’
In ¼ Hj

In=HInðnÞ ´H’
InðnÞ, where the relative

contribution of each region to network integration remains consistent.
For dynamic FC networks, the temporal integration component HInðtÞ for each

individual was calibrated to its static integration component H’
In to maintain the

individual rankings. The vector of the dynamic integration component for an
individual across all windows was hIn ¼ ½h1In; h2In; � � � ; h132In �, and the calibrated
result was calculated as ht0In ¼ htInH

i0
In=hhIni. Here, hi represents the average across

time windows.
The same calibration processes were performed for the segregation component

on the global and local scales and in static and dynamic networks, and the
calibration was performed separately in each group.

Machine-learning prediction model. The scikit-learn toolbox was used to
construct a machine-learning prediction model89. First, we used the function
linear_model. Linear regression to build linear predictive models. The inde-
pendent variables were regional measures (i.e., Hj

In, H
j
Se , F

j
In , F

j
Se), and the

dependent variables were the SANS or SAPS scores. Second, leave-one-out
cross-validation (LOO-CV) was applied with the function cross_val_predict. In
each iteration of LOO-CV, one participant was selected as the test set, and the
remaining participants were selected as the training set. This process was
repeated until every participant had been selected as a test set once. Then, we
used the correlation between the real clinical score and the predicted score to
evaluate the prediction accuracy, and the statistical comparison was performed
by permuting the ranks of clinical scores (10,000 times). In the prediction
model, the functions f_regression and SelectKBest were used to select features.
The f_regression function calculated the correlations between regional measures
and clinical scores and sorted the regions according to their F values. Then, the
first K features were selected and fed into the prediction model. Here, we varied
K from 1 to N and chose the best K, defined as the value at which the model had
the best predictive performance. The input features were normalized such that
the weights of regions were comparable.

Effects of SANS and SAPS on the brain. To extract the effects of positive and
negative symptoms, as well as their interaction effect on brain FC networks, we
built a multiple regression model:

H � SANSþ SAPSþ SANS´ SAPSþ sexþ ageþ FD ð8Þ

Here, H is the brain measure for each region, i.e., Hj
In, H

j
Se, F

j
In and Fj

Se. The
regression coefficients of SANS and SAPS reflect the effects of negative and positive
symptoms on the brain, and the coefficient of SANS × SAPS indicates the
interaction effect. FD is the mean framewise displacement.

Gene Ontology (GO) enrichment analysis. The gene expression data used in
this study were extracted from the Allen Human Brain Atlas (AHBA)90. This
open-source project contains ~3700 tissue samples from six donors and provides
the Montreal Neurological Institute (MNI) coordinates of the tissues. The tissue
samples from four donors are limited to the left hemisphere, and the samples
from the remaining two donors span the whole brain. The abagen toolbox was
used to map the microarray gene expression data to 200 regions in the Schaefer
atlas91. This toolbox provides a standardized processing procedure of accepting
an atlas and returning a parcellated regional gene expression matrix. Here, we
used the default settings, as suggested by ref. 91. Although only two donors had
gene expression data available from the right hemisphere, we chose to use
whole-brain gene expression due to the asymmetry between the left and right
hemispheres. We calculated the Pearson correlations between gene expression
and network components affected by SANS/SAPS scores to identify the sig-
nificant genes (p < 0.05, FDR corrected), which were further processed with
ToppGene Suite to perform GO annotation analysis (FDR correction method,
significance cutoff level of 0.01).
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Statistics and reproducibility. Statistical analysis was performed with MATLAB
R2016b and R (v4.0.4). A two-sample t-test was used to compare the age and FD
between the two groups. ANCOVA (analysis of covariance) tested the between-
group differences in brain network measures with FD as the confounding
variable. FDR method of Benjamini–Hochberg was used for multiple compar-
isons. A permutation test (1000 times) was conducted to test the differences in
relative changes between different systems. Pearson correlation was used to
evaluate the relationships between brain network measures and symptom scores.
P value < 0.05 was considered statistically significant.

To test the reproducibility of results, we used the Schaefer atlas to parcellate the
brain into N= 200 regions (main analysis) and N= 500 regions (reproducibility
analysis), and reported consistent results for these two parcellations. We also
performed the graph theory analysis for N= 200 regions, and the results are also
similar.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The original MRI and clinical scores datasets are available at https://openneuro.org/
datasets/ds000030. The original gene data were available at http://human.brain-map.org/.
The brain atlas and the partition of the seven functional systems are available at https://
github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation. The
abagen toolbox is available at https://abagen.readthedocs.io/en/stable/index.html#.
ToppGene Suite is available at https://toppgene.cchmc.org/.

Code availability
The code used in this study and the preprocessed gene data were available at https://
github.com/TobousRong/schizophrenia.

Received: 21 October 2022; Accepted: 28 February 2023;

References
1. Kaufmann, T. et al. Disintegration of sensorimotor brain networks in

schizophrenia. Schizophr. Bull. 41, 1326–1335 (2015).
2. Rossler, W., Salize, H. J., van Os, J. & Riecher-Rossler, A. Size of burden of

schizophrenia and psychotic disorders. Eur. Neuropsychopharmacol. 15,
399–409 (2005).

3. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic
biology in schizophrenia. Nature 604, 502–508 (2022).

4. Andreasen, N. C. Negative symptoms in schizophrenia: definition and
reliability. Arch. Gen. Psychiatry 39, 784 (1982).

5. Kay, S. R., Fiszbein, A. & Opler, L. A. The positive and negative syndrome
scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).

6. McColgan, P. & Tabrizi, S. J. Huntington’s disease: a clinical review. Eur. J.
Neurol. 25, 24–34 (2018).

7. Ritchie, S. J. et al. Sex differences in the adult human brain: evidence from
5216 UK biobank participants. Cereb. Cortex 28, 2959–2975 (2018).

8. Romero-Garcia, R. et al. Structural covariance networks are coupled to
expression of genes enriched in supragranular layers of the human cortex.
Neuroimage 171, 256–267 (2018).

9. Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P. & Mechelli, A.
Dysconnectivity in schizophrenia: where are we now? Neurosci. Biobehav. Rev.
35, 1110–1124 (2011).

10. Van Den Heuvel, M. P. & Fornito, A. Brain networks in schizophrenia.
Neuropsychol. Rev. 24, 32–48 (2014).

11. Dauvermann, M. R. et al. Changes in default-mode network associated with
childhood trauma in schizophrenia. Schizophr. Bull. 47, 1482–1494 (2021).

12. Baker, J. T. et al. Disruption of cortical association networks in schizophrenia
and psychotic bipolar disorder. JAMA Psychiatry 71, 109–118 (2014).

13. Zalesky, A., Fornito, A. & Bullmore, E. T. Network-based statistic: identifying
differences in brain networks. Neuroimage 53, 1197–1207 (2010).

14. Fornito, A., Yoon, J., Zalesky, A., Bullmore, E. T. & Carter, C. S. General and
specific functional connectivity disturbances in first-episode schizophrenia
during cognitive control performance. Biol. Psychiatry 70, 64–72 (2011).

15. Lynall, M.-E. et al. Functional connectivity and brain networks in
schizophrenia. J. Neurosci. 30, 9477–9487 (2010).

16. Xiang, Q. et al. Modular functional-metabolic coupling alterations of
frontoparietal network in schizophrenia patients. Front. Neurosci. 13, 40
(2019).

17. Lefort‐Besnard, J. et al. Different shades of default mode disturbance in
schizophrenia: subnodal covariance estimation in structure and function.
Hum. Brain Mapp. 39, 644–661 (2018).

18. Jiang, Y. et al. Common and distinct dysfunctional patterns contribute to
triple network model in schizophrenia and depression: a preliminary study.
Prog. Neuropsychopharmacol. Biol. Psychiatry 79, 302–310 (2017).

19. Du, Y. et al. Identifying dynamic functional connectivity biomarkers using
GIG-ICA: application to schizophrenia, schizoaffective disorder, and
psychotic bipolar disorder. Hum. Brain Mapp. 38, 2683–2708 (2017).

20. Whitton, A. E., Treadway, M. T. & Pizzagalli, D. A. Reward processing
dysfunction in major depression, bipolar disorder and schizophrenia. Curr.
Opin. Psychiatry 28, 7 (2015).

21. Hugdahl, K. “Hearing voices”: auditory hallucinations as failure of top-down
control of bottom-up perceptual processes. Scand. J. Psychol. 50, 553–560
(2009).

22. Bernard, J. A., Goen, J. R. & Maldonado, T. A case for motor network
contributions to schizophrenia symptoms: Evidence from resting-state
connectivity. Hum. Brain Mapp. 38, 4535–4545 (2017).

23. Zhou, Y. et al. Altered resting-state functional connectivity and anatomical
connectivity of hippocampus in schizophrenia. Schizophr. Res. 100, 120–132
(2008).

24. Alamian, G. et al. Altered brain criticality in schizophrenia: new insights from
magnetoencephalography. Front. Neural Circuits 16, 630621 (2022).

25. Shine, J. M. Neuromodulatory influences on integration and segregation in the
brain. Trends Cogn. Sci. 23, 572–583 (2019).

26. Lord, L. D., Stevner, A. B., Deco, G. & Kringelbach, M. L. Understanding
principles of integration and segregation using whole-brain computational
connectomics: implications for neuropsychiatric disorders. Philos. Trans. R.
Soc. A Math. Phys. Eng. Sci. 375, 20160283 (2017).

27. Lee, W. H., Doucet, G. E., Leibu, E. & Frangou, S. Resting-state network
connectivity and metastability predict clinical symptoms in schizophrenia.
Schizophr. Res. 201, 208–216 (2018).

28. Hadley, J. A. et al. Change in brain network topology as a function of
treatment response in schizophrenia: a longitudinal resting-state fMRI study
using graph theory. NPJ Schizophr. 2, 1–7 (2016).

29. Wang, R. et al. Hierarchical connectome modes and critical state jointly
maximize human brain functional diversity. Phys. Rev. Lett. 123, 038301
(2019).

30. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity:
uses and interpretations. Neuroimage 52, 1059–1069 (2010).

31. Wang, R., Su, X., Chang, Z., Wu, Y. & Lin, P. Flexible brain transitions
between hierarchical network segregation and integration associated with
cognitive performance during a multisource interference task. IEEE J. Biomed.
Health Inform. 26, 1835–1846 (2021).

32. Wang, R. et al. Segregation, integration and balance of large-scale resting brain
networks configure different cognitive abilities. Proc. Natl Acad. Sci. USA 118,
e2022288118 (2021).

33. Wang, R., Fan, Y., Wu, Y., Zang, Y.-F. & Zhou, C. Lifespan associations of
resting-state brain functional networks with ADHD symptoms. Iscience 25,
104673 (2022).

34. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for
schizophrenia. Nature 604, 509–516 (2022).

35. Kamiya, A. et al. A schizophrenia-associated mutation of DISC1 perturbs
cerebral cortex development. Nat. Cell Biol. 7, 1167–1178 (2005).

36. MacDonald, M. L. et al. Synaptic proteome alterations in the primary auditory
cortex of individuals with schizophrenia. JAMA Psychiatry 77, 86–95 (2020).

37. Chuhma, N., Mingote, S., Kalmbach, A., Yetnikoff, L. & Rayport, S.
Heterogeneity in dopamine neuron synaptic actions across the striatum and
its relevance for schizophrenia. Biol. Psychiatry 81, 43–51 (2017).

38. Soyka, M. Neurobiology of aggression and violence in schizophrenia.
Schizophr. Bull. 37, 913–920 (2011).

39. Park, H.-J., Choi, I. & Leem, K.-H. Decreased brain PH and pathophysiology
in schizophrenia. Int. J. Mol. Sci. 22, 8358 (2021).

40. Dong, D. et al. Reconfiguration of dynamic functional connectivity in sensory
and perceptual system in schizophrenia. Cereb. Cortex 29, 3577–3589 (2019).

41. Grace, A. Gating of information flow within the limbic system and the
pathophysiology of schizophrenia. Brain Res. Rev. 31, 330–341 (2000).

42. Torrey, E. F. PM. Schizophrenia and the limbic system. Lancet 304, 942–946
(1974).

43. Shafiei, G. et al. Spatial patterning of tissue volume loss in schizophrenia
reflects brain network architecture. Biol. Psychiatry 87, 727–735 (2020).

44. Epstein, J., Stern, E. & Silbersweig, D. Mesolimbic activity associated with
psychosis in schizophrenia: symptom-specific PET studies. Ann. N. Y Acad.
Sci. 877, 562–574 (1999).

45. White, T. et al. Limbic structures and networks in children and adolescents
with schizophrenia. Schizophr. Bull. 34, 18–29 (2008).

46. Tamminga, C. The limbic cortex in schizophrenia: focus on the anterior
cingulate. Brain Res. Rev. 31, 364–370 (2000).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04637-0

10 COMMUNICATIONS BIOLOGY |           (2023) 6:279 | https://doi.org/10.1038/s42003-023-04637-0 | www.nature.com/commsbio

https://openneuro.org/datasets/ds000030
https://openneuro.org/datasets/ds000030
http://human.brain-map.org/
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation
https://abagen.readthedocs.io/en/stable/index.html
https://toppgene.cchmc.org/
https://github.com/TobousRong/schizophrenia
https://github.com/TobousRong/schizophrenia
www.nature.com/commsbio


47. Guo, X. et al. Shared and distinct resting functional connectivity in children
and adults with attention-deficit/hyperactivity disorder. Transl. Psychiatry 10,
1–12 (2020).

48. Hoogman, M. et al. Subcortical brain volume differences in participants with
attention deficit hyperactivity disorder in children and adults: a cross-sectional
mega-analysis. Lancet Psychiatry 4, 310–319 (2017).

49. Christakou, A., Brammer, M. & Rubia, K. Maturation of limbic corticostriatal
activation and connectivity associated with developmental changes in
temporal discounting. Neuroimage 54, 1344–1354 (2011).

50. Baribeau, D. A. et al. Structural neuroimaging correlates of social deficits are
similar in autism spectrum disorder and attention-deficit/hyperactivity
disorder: analysis from the POND Network. Transl. Psychiatry 9, 1–14 (2019).

51. Jeon, H. J. et al. Quantitative analysis of ataxic gait in patients with
schizophrenia: the influence of age and visual control. Psychiatry Res. 152,
155–164 (2007).

52. Atkin, T. A., Brandon, N. J. & Kittler, J. T. Disrupted in Schizophrenia 1 forms
pathological aggresomes that disrupt its function in intracellular transport.
Hum. Mol. Genet. 21, 2017–2028 (2012).

53. Supekar, K., Cai, W., Krishnadas, R., Palaniyappan, L. & Menon, V.
Dysregulated brain dynamics in a triple-network saliency model of
schizophrenia and its relation to psychosis. Biol. Psychiatry 85, 60–69 (2019).

54. Kessler, D., Angstadt, M. & Sripada, C. Growth charting of brain connectivity
networks and the identification of attention impairment in youth. JAMA
Psychiatry 73, 481–489 (2016).

55. Bressler, S. L., Tang, W., Sylvester, C. M., Shulman, G. L. & Corbetta, M. Top-
down control of human visual cortex by frontal and parietal cortex in
anticipatory visual spatial attention. J. Neurosci. 28, 10056–10061 (2008).

56. Roebroeck, A., Formisano, E. & Goebel, R. Mapping directed influence over
the brain using Granger causality and fMRI. Neuroimage 25, 230–242 (2005).

57. Majerus, S., Péters, F., Bouffier, M., Cowan, N. & Phillips, C. The dorsal
attention network reflects both encoding load and top–down control during
working memory. J. Cogn. Neurosci. 30, 144–159 (2018).

58. Mallikarjun, P. K. et al. Aberrant salience network functional connectivity in
auditory verbal hallucinations: a first episode psychosis sample. Transl.
Psychiatry 8, 1–9 (2018).

59. Dong, D., Wang, Y., Chang, X., Luo, C. & Yao, D. Dysfunction of large-scale
brain networks in schizophrenia: a meta-analysis of resting-state functional
connectivity. Schizophr. Bull. 44, 168–181 (2018).

60. Weber, S. et al. Dynamic functional connectivity patterns in schizophrenia
and the relationship with hallucinations. Front. Psychiatry 11, 227 (2020).

61. Strauss, G. P., Bartolomeo, L. A. & Harvey, P. D. Avolition as the core negative
symptom in schizophrenia: relevance to pharmacological treatment
development. NPJ Schizophr. 7, 1–6 (2021).

62. Utevsky, A. V., Smith, D. V., Young, J. S. & Huettel, S. A. Large-scale network
coupling with the fusiform cortex facilitates future social motivation. eNeuro
4, ENEURO.0084-17.2017 (2017).

63. Waltz, J. A. et al. The roles of reward, default, and executive control networks
in set-shifting impairments in schizophrenia. PLoS ONE 8, e57257 (2013).

64. Brakowski, J. et al. Aberrant striatal coupling with default mode and central
executive network relates to self-reported avolition and anhedonia in
schizophrenia. J. Psychiatr. Res. 145, 263–275 (2020).

65. Forlim, C. G. et al. Reduced resting-state connectivity in the precuneus is
correlated with apathy in patients with schizophrenia. Sci. Rep. 10, 1–8 (2020).

66. Hare, S. M. et al. Salience–default mode functional network connectivity
linked to positive and negative symptoms of schizophrenia. Schizophr. Bull.
45, 892–901 (2019).

67. Wang, R., Zhen, S., Zhou, C. & Yu, R. Acute stress promotes brain network
integration and reduces state transition variability. Proc. Natl Acad. Sci. USA
119, e2204144119 (2022).

68. Chang, Z., Wang, X., Wu, Y., Lin, P. & Wang, R. Segregation, integration and
balance in resting‐state brain functional networks associated with bipolar
disorder symptoms. Hum. Brain Mapp. 43, 599–611(2022).

69. Kim, D. I. et al. Dysregulation of working memory and default-mode networks
in schizophrenia using independent component analysis, an fBIRN and MCIC
study. Hum. Brain Mapp. 30, 3795–3811 (2009).

70. Vanes, L. D. et al. Neural correlates of positive and negative symptoms
through the illness course: an fMRI study in early psychosis and chronic
schizophrenia. Sci. Rep. 9, 14444 (2019).

71. Reckless, G. E., Andreassen, O. A., Server, A., Østefjells, T. & Jensen, J.
Negative symptoms in schizophrenia are associated with aberrant striato-
cortical connectivity in a rewarded perceptual decision-making task.
Neuroimage Clin. 8, 290–297 (2015).

72. Shaffer, J. J. et al. Neural correlates of schizophrenia negative symptoms:
distinct subtypes impact dissociable brain circuits. Mol. Neuropsychiatry 1,
191–200 (2015).

73. Schijven, D. et al. Comprehensive pathway analyses of schizophrenia risk loci point to
dysfunctional postsynaptic signaling. Schizophr. Res. 199, 195–202 (2018).

74. Fitzgerald, M. Schizophrenia and Autism/Asperger’s syndrome: overlap and
difference. Clin. Neuropsychiatry 9, 171–176 (2012).

75. De Boer, J. N., Brederoo, S. G., Voppel, A. E. & Sommer, I. E. Anomalies in
language as a biomarker for schizophrenia. Curr. Opin. Psychiatry 33, 212–218
(2020).

76. Chan, S. Kaplan & Sadock’s comprehensive textbook of psychiatry. Hong
Kong J. Psychiatry 11, 23–25 (2001).

77. Pruett, B. S. & Meador-Woodruff, J. H. Evidence for altered energy
metabolism, increased lactate, and decreased pH in schizophrenia brain: a
focused review and meta-analysis of human postmortem and magnetic
resonance spectroscopy studies. Schizophr. Res. 223, 29–42 (2020).

78. Ando, M., Amayasu, H., Itai, T. & Yoshida, H. Association between the blood
concentrations of ammonia and carnitine/amino acid of schizophrenic
patients treated with valproic acid. Biopsychosoc. Med. 11, 1–8 (2017).

79. Bilder, R. et al. UCLA Consortium for Neuropsychiatric Phenomics LA5c
Study. (ed OpenNeuro) (2020).

80. Kumari, S., Malik, M., Florival, C., Manalai, P. & Sonje, S. An assessment of
five (PANSS, SAPS, SANS, NSA-16, CGI-SCH) commonly used symptoms
rating scales in schizophrenia and comparison to newer scales (CAINS,
BNSS). J. Addict. Res. Ther. 8, 324 (2017).

81. Poldrack, R. A. et al. A phenome-wide examination of neural and cognitive
function. Sci. Data 3, 1–12 (2016).

82. Yang, G. J. et al. Altered global brain signal in schizophrenia. Proc. Natl Acad.
Sci. USA 111, 7438–7443 (2014).

83. Umeh, A., Kumar, J., Francis, S. T., Liddle, P. F. & Palaniyappan, L. Global
fMRI signal at rest relates to symptom severity in schizophrenia. Schizophr.
Res. 220, 281–282 (2020).

84. Wu, X. et al. Dynamic changes in brain lateralization correlate with human
cognitive performance. PLoS Biol. 20, e3001560 (2022).

85. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from
intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

86. Leonardi, N. & Van De Ville, D. On spurious and real fluctuations of dynamic
functional connectivity during rest. Neuroimage 104, 430–436 (2015).

87. Lei T, et al. Progressive stabilization of brain network dynamics during
childhood and adolescence. Cereb Cortex 32, 1024–1039 (2022).

88. Shappell, H. M. et al. Children with attention-deficit/hyperactivity disorder
spend more time in hyperconnected network states and less time in segregated
network states as revealed by dynamic connectivity analysis. Neuroimage 229,
117753 (2021).

89. Pedregosa, F. V. A. G., Gramfort, A., Michel, V., Thirion, B. & Grisel, O.
Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830
(2011).

90. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult
human brain transcriptome. Nature 489, 391–399 (2012).

91. Markello, R. D. et al. Standardizing workflows in imaging transcriptomics
with the abagen toolbox. Elife 10, e72129 (2021).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (No.
12272292 and No. 11802229) and the Natural Science Basic Research Program of
Shaanxi (No. 2022JQ-005).

Author contributions
X.W.: Data processing, formal analysis, writing—original draft, and software. Z.C.:
Visualization, writing—review and editing. R.W.: Methodology, funding acquisition,
writing—introduction and discussion, writing—review and editing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-023-04637-0.

Correspondence and requests for materials should be addressed to Rong Wang.

Peer review information Communications Biology thanks Zirui Huang, Patrick Friedrich
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Primary Handling Editors: Christian Beste and Karli Montague-Cardoso. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04637-0 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:279 | https://doi.org/10.1038/s42003-023-04637-0 | www.nature.com/commsbio 11

https://doi.org/10.1038/s42003-023-04637-0
http://www.nature.com/reprints
www.nature.com/commsbio
www.nature.com/commsbio


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04637-0

12 COMMUNICATIONS BIOLOGY |           (2023) 6:279 | https://doi.org/10.1038/s42003-023-04637-0 | www.nature.com/commsbio

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Opposite effects of positive and negative symptoms on resting-state brain networks in schizophrenia
	Results
	Analysis of dynamic segregation and integration
	Associations between dynamic brain networks and clinical symptoms in schizophrenia
	Predictions of positive and negative symptoms
	Opposite effects of positive and negative symptoms on the brain
	Linking effects of schizophrenia symptoms to gene transcriptional profiles

	Discussion
	Methods
	Participants
	MRI data processing
	Brain functional connectivity
	Nested-spectral partition (NSP) method
	Hierarchical segregation and integration components
	fMRI length calibration
	Machine-learning prediction model
	Effects of SANS and SAPS on the brain
	Gene Ontology (GO) enrichment analysis
	Statistics and reproducibility

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




