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Integrating multiple plant functional traits to
predict ecosystem productivity
Pu Yan1,2,3, Nianpeng He 1,2,4✉, Kailiang Yu5,6, Li Xu1,2,7 & Koenraad Van Meerbeek3,8

Quantifying and predicting variation in gross primary productivity (GPP) is important for

accurate assessment of the ecosystem carbon budget under global change. Scaling traits to

community scales for predicting ecosystem functions (i.e., GPP) remain challenging, while it

is promising and well appreciated with the rapid development of trait-based ecology. In this

study, we aim to integrate multiple plant traits with the recently developed trait-based

productivity (TBP) theory, verify it via Bayesian structural equation modeling (SEM) and

complementary independent effect analysis. We further distinguish the relative importance of

different traits in explaining the variation in GPP. We apply the TBP theory based on plant

community traits to a multi-trait dataset containing more than 13,000 measurements of

approximately 2,500 species in Chinese forest and grassland systems. Remarkably, our SEM

accurately predicts variation in annual and monthly GPP across China (R2 values of 0.87 and

0.73, respectively). Plant community traits play a key role. This study shows that integrating

multiple plant functional traits into the TBP theory strengthens the quantification of eco-

system primary productivity variability and further advances understanding of the trait-

productivity relationship. Our findings facilitate integration of the growing plant trait data into

future ecological models.
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Gross primary productivity (GPP) is the largest carbon flux
in terrestrial ecosystems and thus plays a prominent role
in global carbon cycle regulation1. However, accurate

prediction of GPP across ecosystems or regions remains
challenging2, especially in the context of climate change and the
impact of human activities on the carbon balance of the
biosphere3. Although much research has been conducted on how
environmental changes across space and time affect ecosystem
primary productivity1,4,5, there remain fundamental knowledge
gaps in terms of accurately capturing spatial or temporal variation
in GPP and assessing its drivers. Intuitively, plants, especially its
leaves, are the direct organs for photosynthesis and plant biomass
production from first principles; hence, as the primary producer,
plants contribute most to carbon fluxes across ecosystems1. Thus,
plant leaf traits that are closely related to photosynthesis should
directly influence ecosystem GPP, in combination with the direct
and indirect effects of environmental factors, thereby regulating
the global terrestrial carbon cycle and its response to climate
change6–8. In this sense, previous studies have proposed the
ecosystem functional biogeography concept, which integrates the
effects of plant traits and environmental conditions in assessing
ecosystem function9.

In ecology, the trait-based approaches offer a promising way to
generalize predictions across organizational and spatial scales,
independent of taxonomy. Accordingly, predicting ecosystem
processes and functions such as GPP from functional traits
instead of species identity has been considered the “holy grail” of
trait-based ecological studies10,11. Although the use of plant traits
to capture and predict the variation in ecosystem primary pro-
ductivity (i.e., GPP) along a broad environmental gradient has
aroused widespread interest10,12–15, a recent study has shown that
plant traits alone are poor predictors of ecosystem functions16.
Most related studies have established correlative linkages between
the means of plant traits at the leaf scale and ecosystem primary
productivity per unit land area17–20. While these studies have
provided important insight into the trait-productivity relation-
ship, there remain knowledge gaps18,21. Indeed, there is little to
no evidence of causal linkage between the mean trait values
characterizing leaf-level photosynthesis and total carbon absorp-
tion via the continuous activity of all photosynthetic tissues per
unit land area during the growing season18,21. A high photo-
synthetic rate per unit leaf area or mass provides limited infor-
mation about the carbon uptake of the entire plant18,22, and
ignores the carbon-capture capacity of the ecosystem21. Even at
lower values of leaf-level traits (e.g., lower leaf nutrient con-
centration), a community’s primary productivity per unit land
area may still increase23,24. A more robust and mechanistic
approach is therefore needed to integrate plant traits to predict
variation in ecosystem primary productivity along broad envir-
onmental gradients.

Recently, a trait-based productivity (TBP) theory, which scales
plant traits to the community level, has been proposed (Fig. 1;
Text S1). The TBP theory assumes that ecosystem primary pro-
ductivity is determined by environmental factors, trait quantity
(Traitquantity), trait efficiency (Traitefficiency), and growing season
length (GSL). GPP is affected by environmental factors (including
growing season temperature, precipitation, and the moisture
index) that both power ecosystem carbon-uptake as energy inputs
(i.e., affecting net photosynthesis or maintaining respiration) and
regulate plant carbon distribution, such as the assimilation of C as
a nonstructural compound (i.e., in reserve pools) that represents
storage at the expense of organ formation24. Traitquantity, which
standardize traits on the unit land area, represents ecosystems
carbon uptake capacity21. GSL determines the effective period of
carbon absorption in the ecosystem, thus positively influencing
GPP25. In addition, environmental factors affect GPP both

directly and indirectly, by affecting plant community traits3,13,26.
We therefore assume that a large part of their effect on GPP is
mediated by plant community traits.

Integrating multiple functional traits to predict ecosystem
primary productivity, rather than simply relying on the type of
trait selected, is a major aspect of the TBP theory27. Based on the
mass ratio hypothesis, community-weighted mean values of leaf
traits (efficiency traits such as leaf nutrient concentration, LNC,
and specific leaf area, SLA) are considered to be closely related to
ecosystem efficiency13,28, ultimately affecting GPP13. However,
although leaf size appears to be a good predictor of GPP at large
scales20, leaf nutrient concentration is not a stable
predictor18,19,22, even though both are based on community-
weighted means. These knowledge gaps require a more reliable
method to integrate multiple traits to predict GPP, with more
convincing clear explanations. Meanwhile, “synthetic traits” (i.e.,
quantity traits) providing more contextual information (i.e.,
relating to phenotypic, environmental, and biogeographic con-
text) are better predictors of ecosystem function18,21. Synthesizing
these concepts, we propose a conceptual GPP model that inte-
grates multiple traits based on TBP theory, representing the
proposed hypothesis that the environment, plant community
traits (quantity and efficiency traits), and GSL jointly determine
GPP (Fig. 2a; Text S1).

We systematically applied a high-quality dataset of plant traits
and GPP, spanning broad environmental gradients, to verify our
conceptual model based on the TBP theory. We surveyed 72
typical natural ecosystems across China, with high biodiversity
and GPP gradients, measuring multiple leaf traits that are closely
related to photosynthesis24,29, and using more than 13,000 plant
samples and ca. 2,500 species (Fig. 2b). We asked three primary
research questions: 1) How well can structural equation modeling
based on TBP theory predict the observed yearly and monthly
GPP along broad environmental gradients? 2) How do environ-
mental factors and traits directly and indirectly affect GPP var-
iation? 3) What is the relative importance of environmental
factors and traits in determining the variation in GPP?

Results
Overall, our structural equation modelling (SEM), based on TBP
theory, significantly captured GPP variation along broad envir-
onmental gradients (R2= 0.87; Fig. 3a). Even after removing the
effect of GSL as a phenological trait (GPPyearly divided by GSL to
obtain GPPmonthly), the overall prediction ability was still strong
(R2= 0.73; Fig. 3b). Intriguingly, Traitquantity had the highest
direct effect on GPPyearly (βstd= 0.33; Fig. 4a), while MIgs exerted
the highest indirect effect on GPPyearly (βstd= 0.48; Fig. 4a). As

Fig. 1 An introduction to trait-based productivity (TBP) theory. As an
analogy to the Production Ecology Equation, we use emergent thinking to
elucidate the formation of productivity at the ecosystem level, applying
several simple and powerful parameters to predict ecosystem productivity
(gross primary productivity, GPP). Here, environmental factors refers to
energy input, representing the total supply of resources in an ecosystem; as
plant community traits, Traitquantity represents resource uptake and carbon
fixation, and Traitefficiency represents the intrinsic efficiency of resource
utilization and production; and growing season length represents the period
of CO2 absorption by the ecosystem. These three key parameters,
reflecting ecosystem attributes, jointly determine ecosystem productivity.
We extend this analogous multiplicative framework via structural equation
modeling, to distinguish direct and indirect effects. In essence, trait-based
productivity (TBP) theory scales traits to the community level, then uses
plant community traits to predict GPP.
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expected, a large proportion of the impact (71%; Fig. 4b) of the
environmental factors [growing season moisture index (MIgs),
growing season monthly mean temperature (Tgs), and Soilpc1] on
GPPyearly was due to indirect effects on GPPyearly via their effects
on plant community traits.

Our random forest trait model revealed that the quantity traits
predicted the variation in GPP well (Text S2; Fig. S1). The
quantity traits (leaf area index, LAI; leaf biomass per unit area,
LMI; and total leaf nitrogen and phosphorus per unit land area,
LNI and LPI, respectively), were significantly positively associated
with GPPyearly, and leaf area (LA) and leaf dry mass (LM) were
important as efficiency traits (Fig. S1a). For GPPmonthly, all four
quantity traits (LAI, LMI, LNI, and LPI) had robust predictive
power, considerably outperforming the efficiency traits (Fig. S1b).
Our random forest modeling and forecasting revealed that
GPPyearly (Slope, 1.12 ± 0.10, RMSE= 262.41) and GPPmonthly

(Slope, 1.16 ± 0.16, RMSE= 39.79) were well-predicted, based on
TBP theory (Fig. S2).

We applied independent effects analysis (IEA), an important
complementary analysis to SEM, to assess the independent effects
of each variable on GPP. Based on the GPPyearly model, trait
factors accounted for 69% of all the variables’ influence on
GPPyearly, while environmental variables accounted for 31%
(Fig. 5). Based on the GPPmonthly model, trait factors accounted
for 70% of all the variables’ influence on GPP, while environ-
mental factors accounted for 30% (Fig. 5). Irrespective of the
modeled response variable, the key results did not change when
the models were run separately for each vegetation type (Fig. 5).

Discussion
The primary goal of this study was to test whether this conceptual
model based on TBP theory can be used to capture the spatial
variation in ecosystem GPP along a wide environmental gradient,
at both yearly and monthly scales. Our model successfully cap-
tured the spatial variation in both yearly and monthly pro-
ductivity. Our TBP theory explains clearly how four key
controlling elements—environmental factors (Tgs and MIgs),
Traitquantity, Traitefficiency, and GSL—capture the spatial variation
in GPP.

Tgs and MIgs regulate plant structural growth by mediating
their energy and resource (water and nutrient) inputs24,30 and
carbon allocation24, thereby collectively affecting GPP. Here,

environmental factors significantly impacted GPP, both directly
and indirectly. Previous studies have assumed such a trait-based
response-and-effect framework26, in which plant traits mediate
the effects of environmental factors on ecosystem function.
Nonetheless, our study is one of few to present empirical evidence
of the irreplaceable mediatory role of plant traits.

Our findings for Traitquantity, the product of mass-based leaf
traits and leaf biomass per unit area (LMI), were consistent with
our expectations; this variable substantially affected GPP, even
more so than Traitefficiency. This is consistent with the carbon
economy theory, which predicts that the plant relative growth
rate is determined by the biomass allocated to photosynthetic
tissues22,31. Compared with Traitefficiency, Traitquantity represents
the vegetation nutrient stocks of the whole ecosystem and thus
can be better used to predict GPP. Although the plant nutrient
pool is not a direct measure of ecosystem function (i.e. ecosystem
fluxes of energy and matter)32, it is an important attribute that
determines ecosystem function (e.g., decomposition, carbon
sequestration, nitrification and nutrient recycling)33–37. Numer-
ous studies have shown that plant nutrient pool is particularly
relevant to the long-term net ecosystem balance of energy and
matter34,37. Higher plant nutrient pool values mean that, for each
unit area of land, the vegetation has better resource utilization
capacity, indicating that more productive species are selected
(such as leaf area index38). Plant nutrient pool is thus considered
a driver of ecosystem production-related function21,39.

Traitefficiency, a conventionally used community-weighted trait
mean trait, was positively related to GPP; this relationship was
primarily driven by LA (see Fig. 5). LA, representing leaf size, is
closely related to plant energy balance (including energy uptake
and conversion) and is a reliable indicator of GPP on a large
scale20. A recent global-scale study revealed a strong relationship
between LA and canopy size (including canopy height, diameter,
and tree height), which reflects the total photosynthetic capacity
of the whole tree40. While this explains why LA can predict large-
scale variation in GPP, this coupling does not necessarily reflect
causality. The efficiency traits leaf nutrient concentration (LNC)
and leaf phosphorus concentration (LPC), for instance, reflect the
photosynthetic rate per unit leaf area or unit leaf mass; however,
they do not always link well causally with GPP, because of the
absence of other community context information, such as leaf
biomass allocation or total leaf area18,22. The choice of efficiency
traits is therefore critical for predicting ecosystem function27. In

Fig. 2 Technology roadmap including conceptual model and sampling sites distribution in thie study. Conceptual model depicting linkages among the
environmental factors and plant community traits affecting the variation in GPP (a) and geographic distribution of study sites (b).Traitquantity and
Traitefficiency: quantity and efficiency traits, respectively; GSL: growing-season length (months). The map of sample distribution was created using ArcGIS
software v10.8.
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contrast, as quantity traits, nutrient concentration and leaf size
per unit land area predict variation in GPP well, by standardizing
the unit land area21, making the effect of trait choice less
important. GSL plays an important role in shaping GPP by
affecting the period of photosynthetic activity6,25,41.

Notably, Traitquantity and Traitefficiency pc2 (mainly representing
SLA), played key roles at the monthly scale (Fig. 4b), indicating
that once the vegetation growth of a particular ecosystem starts
under normal resource supply conditions, its efficiency, and
especially its capacity to capture resources, becomes more
important. SLA, an important component of the plants’ relative
growth rate model42, may further affect monthly ecosystem
productivity by affecting specific primary productivity43. More
than 90% of the spatial variation in annual GPP is determined by
the CO2 uptake period (i.e., GSL) and the ecosystem’s CO2 uptake
capacity25, which are closely related to vegetation community
structural variables such as total leaf area and above-ground

biomass8. Here, trait quantity, which represents ecosystem CO2

uptake capacity, reflects the structural characteristics of the
vegetation community21. Therefore, GPP at the monthly scale
(GPPyearly/GSL) was most affected by Traitquantity. Plant growth
peak sampling to measure plant functional traits ignores the
temporal variation of plant functional traits, which is an impor-
tant reason that only part of GPP variation can be captured.
Seasonal sampling of vegetation to measure plant functional traits
combined with dynamic flux observations will help us capture the
variation of GPP more accurately. Diversity can enhance total leaf
area (i.e., Traitquantity) and light interception due to increased
canopy packing, thus increasing the likelihood of overyielding44.

A large component of the impact of environmental factors on
ecosystem primary productivity was indirect, via the trait vari-
ables (Fig. 5). While there is no doubt that environmental factors
significantly affect GPP4, several studies have proposed quanti-
fying the pathways whereby abiotic factors (environmental

Fig. 3 Results from Bayesian piecewise structural equation models. Bayesian piecewise structural equation models exploring the direct and indirect
effects of environmental factors and traits on gross primary productivity (GPP) across all sites: (a) yearly GPP (GPPyearly) and (b) monthly GPP
(GPPmonthly). PC 1 and PC 2: the first two principal components (PCs) of the corresponding variables; Traitquantity and Traitefficiency: quantity and efficiency
traits, respectively; GSL: length of the growing season (months); βstd: standardized path coefficients; black and red arrows: positive and negative
relationships, respectively; solid and dotted lines: significant and non-significant effects, respectively; arrow width is proportional to the strength of the
relationship; LOOIC: leave-one-out cross-validation information criterion; ELPD, expected log predictive density.
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factors) contribute to GPP through biotic factors1,15,41. Under-
standing this impact has great significance for quantifying the
impact of environmental change on ecosystem carbon cycles3,
especially in the context of biodiversity loss due to global change.
Here, particularly at the monthly scale, environmental factors
strongly affected GPP, via their effects on traits (Fig. 4b).

These findings have important implications for future research.
Much of the impact of environmental factors on GPP is mediated
by traits, including Traitquantity, Traitefficiency, and phenology
(growing season length). Plant traits directly affect ecosystem
productivity, from first principles. In studies in which traits are
not standardized by unit land area7,17, the indirect effects of
environmental factors on GPP are difficult to detect or are greatly

weakened. Indeed, “synthesis traits”, such as Traitquantity, provide
extra information on the total amount of photosynthetic tissue;
such traits are needed to improve the capture of multi-
dimensional variation in plant function22. Here, soil nutrients
had no direct effects on GPP, possibly due to scale effects45,
whereas they acted indirectly via their effects on plant traits.

Global changes, such as increased atmospheric CO2 concentra-
tion and nitrogen deposition, alter plant biochemical traits (e.g.,
leaf nutrient concentration)46 and biomass allocation
characteristics23, which in turn have an important impacts on
ecosystem carbon uptake23. Our study demonstrates that such
plant traits can effectively predict GPP. Therefore, detecting
changes in traits will help to elucidate, even predict, potential
changes in ecosystem carbon balance, as highlighted in the trait-
based response-and-effect framework26. The effects of plant func-
tional traits on GPP are not limited to leaf traits. Root traits, such as
fine-root nutrients or biomass38, could potentially influence GPP,
especially if they are not coupled or coordinated with leaf traits47.
Phenological trait datasets require updating. As this study was
limited to large-scale data, we could only roughly estimate the
length of the growing season. It is better to use first-hand obser-
vational data, based on ecological field stations48. Further studies
are required to identify interactions among the various types of
plant community traits and/or across resource gradients. As such,
we could better understand or clarify whether Traitquantity and
Traitefficiency always act synergistically, and the circumstances under
which trade-offs occur. Standardizing traits by unit land area (i.e.,
Traitquantity), and further examining their relationships to ecosys-
tem function, deserves further attention, especially given that most
ecosystem functions are quantified on a unit land area basis. This
will improve our ability to explain and predict the responses of
terrestrial ecosystems to global change at different scales.

Methods
Plant traits and soil data. The dataset of plant functional traits was collected
during a large-scale field survey in 72 typical natural ecosystems using a unified
sampling standard from 2013–2019. These sites include evergreen broadleaf forests,
deciduous broadleaf forests, evergreen coniferous forests, deciduous coniferous
forests, shrublands, meadows, steppes, and sparse grasslands, spanning broad
environmental gradients and with high environmental heterogeneity. Standardized
sampling and measurement protocols were applied to each vegetation and soil
surveys. Specifically, the surveyed sites extended from 18.74°N to 53.33°N and
78.47°E to 128.89°E, with mean annual temperatures ranging from −3.8 °C to
22.2 °C, and mean annual precipitation ranging from 32–1942 mm. Plant samples
were collected using the quadrat method (30 m × 40 m for the forest, 10 m × 10 m

Fig. 4 Standardized direct and indirect effects of environmental factors and traits on gross primary productivity (GPP) across all sites. Panels a and
b represent the effect on yearly GPP; c and d represent the effect on monthly GPP; Panels b and d also additionally represent the ratio of direct and indirect
effects of environmental factors on GPP. PC 1 and PC 2: first two principal components (PCs) of the corresponding variables; Traitquantity and Traitefficiency:
quantity and efficiency traits, respectively; GSL: length of the growing season (months). MIgs and Tgs: growing season moisture index and temperature,
respectively.

Fig. 5 Variance partitioning of the independent-effects analysis applied
to the annual and monthly gross primary productivity (GPPyearly and
GPPmonthly) models. GPPyearly: yearly GPP model (GPPyearly ~ MIgs+ Tgs +
Soilpc1+ Traitquantity + Traitefficiency+GSL). GPPmonthly: monthly GPP model
(GPPmonthly ~ MIgs+ Tgs + Soilpc1 + Traitquantity + Traitefficiency). PC 1 and
PC 2: first two principal components (PCs) of the corresponding factors;
Traitquantity and Traitefficiency: quantity and efficiency traits, respectively;
GSL: growing season length (months). MIgs and Tgs: growing season
moisture index and temperature, respectively. n values in brackets: number
of observations for the corresponding group.
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for shrubland, and 1 m × 1m for grassland) to investigate the community structure
during the plant growth peak period from July to August (see Text S3 for more
information on the sampling protocol). In each plot within a site, key plant
community structure variables were measured, including species identity, species
number, plant height, diameter at breast height (DBH; basal stem diameter for
shrubs) for all woody plants with DBH ≥ 1 cm, and aboveground biomass for
herbaceous species. The measured individual-level functional traits for woody and
herbaceous plants included leaf area (LA, cm2), leaf dry mass (LM, g), specific leaf
area (SLA, cm2/g), leaf nitrogen concentration (LNC, mg/g), and leaf phosphorus
concentration (LPC, mg/g), closely related to plant photosynthesis and growth29,49

(Text S4). Functional traits were divided into size traits, reflecting plant size and
light competitiveness, and economic traits, reflecting leaf photosynthetic capacity
and nutrient economic40,50. All of these traits selected in this study are closely
related to the plant light competitiveness and ecosystem photosynthetic capacity.
Soil samples from the 0–10 cm soil layer were collected via auger boring for ana-
lysis of total soil carbon (%), nitrogen (%), phosphorus (%), and soil pH (Text S5).
For further details regarding plot setting, plant trait measurement, and soil analysis,
see Text S2–4, and other sources published by this team51–53.

Climate and length of the growing season. Monthly mean temperature (MMT)
and precipitation (MMP) data were downloaded from Climatologies at High
resolution for the Earth’s Land Surface Areas (CHELSA, https://chelsa-climate.org/
)54,55. Monthly potential evapotranspiration data were downloaded from the
Global Potential Evapo-Transpiration Climate Database (http://www.csi.cgiar.org).
The moisture index (MI) was calculated as MMP/PET to represent the monthly
water balance of the sample sites56. All consecutive months meeting the following

two conditions were determined as months of plant growth: (1) MMT ≥ 5 °C and
(2) moisture index (MI) ≥ 0.0557. We determined growing season length (GSL) as
number of months of plant growth, and further averaged and summed the MI,
MMT, and MMP of the growing months (MIgs, Tgs, and Pgs).

Plant community traits and gross primary productivity. As introduced by He,
et al.21,39, we linked GPP by scaling individual-level traits to the community level in
two ways:

Traitefficiency ¼ ∑
n

i¼1
Pi ´Traiti ð1Þ

where Pi is the relative biomass of the ith species in the community (%), and Traiti
represents the leaf nitrogen and phosphorus concentrations of the ith species
observed in the plot

Traitquantity ¼ ∑
n

i¼1
Traiti ´ LMIi ¼ Traitcwm ´ LMIT ð2Þ

where n is the number of species in the community, Traiti represents the leaf N and
P concentrations of the ith species observed in the plot, LMIi is the leaf mass per
land area of the ith species in a specific community (kg m−2), and LMIT is the total
leaf mass per land area in a specific community (kg m−2).

Site-specific annual GPP data for 2000–2016 were extracted from a global GPP
raster dataset with a moderate spatial resolution (500 m), validated against 113
eddy covariance flux towers across the globe58. We also calculated monthly GPP
(GPPmonthly = GPPyearly/GSL).

Fig. 6 Dimensions for multiple traits. a and b Biplots resulting from the principal component analysis for efficiency trait (Traitefficiency, a) and capacity trait
(Traitquantity, b). Grey points: different sites. c Bar plots of the contributions; LA, leaf area (cm2); LM, leaf dry mass (g); SLA, specific leaf area (cm2/g); LNC,
leaf nitrogen concentration (mg/g); LPC, leaf phosphorus concentration (mg/g); LAI, leaf area index (m2/m2); LMI, leaf mass index (g/m2); LNI, total leaf
nitrogen per unit land area (g/m2); and LPI, total leaf phosphorus per unit land area (g/m2).
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Statistics and reproducibility. To simplify the analysis and avoid overfitting
(Fig. S3), a principal component (PC) analysis was performed on all factors (soil
factor, trait efficiency, and trait capacity) containing more than three variables
(Fig. 6; Table S2). We applied Kaiser’s rule to retain PC axes whose eigenvalue is
greater than 1, and where the cumulative variance explained by the variables
reaches more than 80%, which meets the default variance capture threshold (≥
70%)59. The first two PC axes for the community-weighted means of LA, LM, SLA,
LNC, and LPC were used as the Traitefficiency and captured 53% (Traitefficiency pc1)
and 30% (Traitefficiency pc2) of the variation in these traits, respectively. Traitefficiency
pc1 primarily explained variability in LM (27%), LA (26%), LNC (22%), and LPC
(21%). Traitefficiency pc2 best explained variability in SLA (35%). The first PC axis for
leaf area index (LAI, m2/m2), leaf mass index (LMI, g/m2), and total leaf N and P
per unit land area (LNI and LPI, g/m2) was used as the Traitquantity, and captured
98% of the variation in these traits explaining the variability in the plant com-
munity traits evenly: LMI (25%), LAI (25%), LNI (25%), and LPI (25%). The traits
were log-transformed before analysis to eliminate size-dependent trait biases60. The
first PC axis of soil variables (including total soil carbon, nitrogen, phosphorus
content, and soil pH) explained 61% of the variation (Table S2). As high colli-
nearity can distort model estimation, collinearity was checked by first calculating
the variance inflation factor: this was >5 for Pgs, which was therefore discarded
from the main analysis.

To distinguish the direct and indirect effects of environmental factors and traits on
GPP and test our pathway hypothesis (Text S6), Bayesian piecewise structural
equation modeling (SEM)61,62 was used (Fig. 2b). The SEMmodels fitted in this study
were created in the Stan computational framework (http://mc-stan.org/) accessed
using the brms package63 and run with two Markov chain Monte Carlo (MCMC)
chains, 10,000 iterations, and a warm-up of 1000 runs. Model convergence was
assessed by visually examining trace plots and using R̂ values (the ratio of the effective
sample size to the overall number of iterations, with values close to one indicating
convergence). All R̂ values were below 1.01, and effective sample sizes were > 5000 for
all coefficient estimates (Supplementary Figs. 2–5). The significance of the coefficient
estimates assumes that the credible interval does not include zero. All variables were
standardized (mean= 0, standard deviation= 1) before analysis to ensure that
standardized path coefficients (hereafter βstd) were obtained. The indirect effect was
the product of the direct effects.

LOOIC (leave-one-out cross-validation [LOO] information criterion) and
ELPD (expected log predictive density)64 were used for model verification, using
the loo package (for LOOIC and ELPD, smaller and larger values indicate a better
fit, respectively)65. Posterior prediction checks were performed using the bayesplot
package66. The validation results for all the models are provided in Supplementary
Figs. 2–5. The Pareto shape k is used to diagnose abnormal observation points64.
Although some of the observations had k estimates reflecting abnormality, the
results were not substantially different after removing the outliers (Supplementary
Data 1). Considering that the site trait data was obtained via standard protocol field
surveys, and the need for caution when deleting outliers, we included all sites and
analyses in the main text. The model results without outliers are listed in the
attachment (Supplementary Data 1). We repeated the main analysis after dividing
the observations into woody and herbaceous communities (Supplementary Data 1),
and using a single trait to represent the quantity and efficiency traits, respectively
(Supplementary Data 2).

Complementary to the SEM analysis, we used independent effects analysis
(IEA) in the R package hier.part to examine the independent contribution of each
explanatory variable in predicting GPP67. This approach quantifies the
contribution of each predictor in explaining total variance in GPP by comparing
the fit of all models containing a particular variable to the fit of all nested models
lacking that variable, a process referred to as hierarchical partitioning68.
Considering the correlation between environmental factors and plant traits, and the
ability of IEA to robustly partition the independent contributions of correlated
predictors, this analysis is highly appropriate and effective for determining the
relative importance of the environmental factors and plant traits in our study68.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study are available via the Figshare repository (https://doi.org/10.
6084/m9.figshare.22081634.v1)69.

Code availability
All the R packages used are described in the methods section. No new code (or function)
was created.
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