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Placental cell type deconvolution reveals that cell
proportions drive preeclampsia gene expression
differences
Kyle A. Campbell 1, Justin A. Colacino 2,3, Muraly Puttabyatappa4, John F. Dou1, Elana R. Elkin 2,

Saher S. Hammoud5,6,7, Steven E. Domino6, Dana C. Dolinoy2,3, Jaclyn M. Goodrich 2, Rita Loch-Caruso2,

Vasantha Padmanabhan 2,3,4,6 & Kelly M. Bakulski 1✉

The placenta mediates adverse pregnancy outcomes, including preeclampsia, which is

characterized by gestational hypertension and proteinuria. Placental cell type heterogeneity in

preeclampsia is not well-understood and limits mechanistic interpretation of bulk gene

expression measures. We generated single-cell RNA-sequencing samples for integration with

existing data to create the largest deconvolution reference of 19 fetal and 8 maternal cell

types from placental villous tissue (n= 9 biological replicates) at term (n= 40,494 cells).

We deconvoluted eight published microarray case–control studies of preeclampsia (n= 173

controls, 157 cases). Preeclampsia was associated with excess extravillous trophoblasts and

fewer mesenchymal and Hofbauer cells. Adjustment for cellular composition reduced

preeclampsia-associated differentially expressed genes (log2 fold-change cutoff= 0.1,

FDR < 0.05) from 1154 to 0, whereas downregulation of mitochondrial biogenesis, aerobic

respiration, and ribosome biogenesis were robust to cell type adjustment, suggesting direct

changes to these pathways. Cellular composition mediated a substantial proportion of the

association between preeclampsia and FLT1 (37.8%, 95% CI [27.5%, 48.8%]), LEP (34.5%,

95% CI [26.0%, 44.9%]), and ENG (34.5%, 95% CI [25.0%, 45.3%]) overexpression. Our

findings indicate substantial placental cellular heterogeneity in preeclampsia contributes to

previously observed bulk gene expression differences. This deconvolution reference lays the

groundwork for cellular heterogeneity-aware investigation into placental dysfunction and

adverse birth outcomes.
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The public health burden of adverse pregnancy outcomes is
substantial. An important example is preeclampsia, which
affected 6.5% of all live births in the United States in 2017

and is characterized by high maternal blood pressure, proteinuria,
and damage to other organ systems1. Adverse pregnancy out-
comes may lead to myriad health complications including an
elevated risk of chronic diseases throughout the life course2. The
placenta, a temporary organ that develops early in pregnancy,
promotes maternal uterine artery remodeling; mediates transport
of oxygen, nutrients, and waste3; secretes hormones to regulate
pregnancy; metabolizes various macromolecules and xenobiotics;
and can serve as a selective barrier to some, but not all, pathogens
and xenobiotics4. The executive summary of the Placental Origins
of Adverse Pregnancy Outcomes: Potential Molecular Targets
workshop recently concluded that most adverse pregnancy out-
comes are rooted in placental dysfunction5. Despite this, the
molecular underpinnings of placental dysfunction are poorly
understood.

Placenta-specific cell types including cytotrophoblasts, syncy-
tiotrophoblasts, extravillous trophoblasts, and placental resident
macrophage Hofbauer cells are all essential for placental devel-
opment, structure, and function6. Dysfunction of these specific
cell types likely plays a role in placental pathogenesis. For
example, extravillous trophoblasts are responsible for invading
into the maternal decidua early in pregnancy to remodel uterine
arteries and increase blood flow to the placenta3. Inadequate or
inappropriate invasion of extravillous trophoblasts has previously
been implicated in preeclampsia etiology7–9. Despite some
knowledge of the roles of specific placental cell types in the
development of preeclampsia, relatively little is known about how
individual cell types contribute to placental dysfunction.

Existing research models used to investigate the function and
dysfunction of individual cell types are limited. Protocols to
isolate primary placental cells for experimental research are
restricted to one or few cell types10–15. Cell type-specific assays
are costly and require special techniques or training resulting in
small sample sizes and have not yet been scalable to large epi-
demiological studies16–18. Furthermore, placental cell lines such
as BeWo, derived from choriocarcinoma19, and HTR-8/SVneo,
immortalized by SV4020, are typically derived by processes that
alter the DNA of the cells, limiting their in vivo translatability.
Consequently, the characteristics of even healthy placental cell
type function and especially their connections to adverse out-
comes such as preeclampsia are incompletely understood.

Measures of gene expression in bulk placental tissue are used to
better understand the biological mechanisms underlying adverse
pregnancy outcomes21–23 and are common in epidemiological
studies24. Gene expression profiles differ systematically by cell
type25,26. Thus, bulk placental tissue-level gene expression mea-
surements represent a convolution of gene expression signals
from individual cells and cell types27,28. Deconvolution refers to
the bioinformatic process of estimating the distribution of cell
types that constitute the tissue29,30. Deconvoluting tissue-level
gene expression profiles is essential to account for effects intro-
duced by unmodeled cell type proportions31 by disentangling
shifts in cell type proportions from direct changes to cellular gene
expression32. Reference-based deconvolution boasts biologically
interpretable cell type proportion estimates with few modeling
assumptions but relies on independently collected cell type-
specific gene expression profiles as inputs32. Prior placental cell
type-specific gene expression measures from term villous
tissue16,17 had a limited number of biological replicates and
included neither technical replicates nor benchmarking against
physically isolated placental cell types. A robust, accessible, and
publicly available gene expression deconvolution reference is
currently unavailable for healthy placental villous tissue.

To advance the field of perinatal molecular epidemiology, our goal
was to develop an accessible and robust gene expression deconvo-
lution reference for healthy placental villous tissue at term. We
generated single-cell RNA-sequencing data with technical replicates
for integration with existing cell type-specific placental gene expres-
sion data16,17. In addition, we benchmarked these single-cell cell
type-specific gene expression profiles against placental cell types
isolated with more conventional fluorescence-activated cell sorting
(FACS) followed by bulk RNA-sequencing. Finally, to assess links
between preeclampsia and placental cell types and their proportions,
we applied our placenta cell type gene expression reference to
deconvolute bulk placental tissues in a secondary data analysis of a
case–control study33 of preeclampsia, including a mediation analysis
of the preeclampsia-associated genes FLT1, LEP, and ENG that
quantifies the role cellular composition plays in explaining bulk gene
expression measures.

Results
Single-cell gene expression map of healthy placental villous
tissue. A conceptual layout of the laboratory methods and ana-
lyses contained within this manuscript is provided in Supple-
mentary Fig. 1. From healthy term placental villous tissue, 9244
cells across a total of two biological replicates and two technical
replicates were sequenced and analyzed (Michigan sample). These
data were combined with single-cell RNA-sequencing data of
5911 cells from three healthy term villous tissue samples in a
previously published study (Pique-Regi sample)17 and 25,339
cells from four healthy term villous tissue samples in another
previously published study, two of which were subsampled with
an additional peripheral placental villous tissue sample (Tsang
sample)16 (Supplementary Table 1). Cells were excluded if they
had low RNA content (<500 unique RNA molecules), few genes
detected (<200), or were doublets or outliers in mitochondrial
gene expression (Supplementary Figs. 2 and 3). Fetal or maternal
origin of cells was determined by genetic variation in sequencing
data. Fetal sex was determined by XIST expression (Supplemen-
tary Fig. 4). The final analytic sample included 40,494 cells and
36,601 genes across nine biological replicates, two of which had a
technical replicate and another two included peripheral
subsampling.

Uniform Manifold Approximation and Projection (UMAP)34

was used to visualize sequencing results in two dimensions with
mutual nearest neighbor batch correction35 (Fig. 1a). Cells
clustered into 19 fetal and 8 maternal cell types with 84.4% of
all cells being of fetal origin (Table 1). Cell type clustering
decisions balanced cluster stability, resolution, and biologic
plausibility with prior knowledge. If desired, downstream analyses
could collapse cell subtypes into a single, more general cell type
cluster. We observed placenta-specific trophoblast cell types
including cytotrophoblasts (KRT7), proliferative cytotrophoblasts
(KRT7, STMN1 and other proliferation-related genes)36, extra-
villous trophoblasts (HLA-G)37, and syncytiotrophoblasts (PSG4
and other pregnancy-specific hormone genes) (Supplementary
Fig. 5a)38. Proliferative cytotrophoblasts were distinguished from
other cytotrophoblasts by overexpression of genes related to
cytoplasmic translation (padj= 8.1 × 10−15) and mitotic sister
chromatin segregation (padj= 1.5 × 10−12), indicative of their
proliferative phenotype (Supplementary Fig. 6). Other fetal-
specific cell types included mesenchymal stem cells (COL1A1lo,
TAGLNlo, LUMhi), fibroblasts (COL1A1hi, TAGLNhi, LUMlo)39,
endothelial cells (PECAM1)40, and Hofbauer cells (CD163)11

(Fig. 1b).
Fetal and maternal lymphocytes, B cells, and monocytes were

also captured (Fig. 1b, c). We observed fetal and maternal B cells
(CD79A)41 and maternal plasma cells (XBP1, IGHA and other
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immunoglobulins)42. We also observed fetal and maternal
CD14+ monocytes (CD14+/FCGR3A−), maternal FCGR3A+
monocytes (CD14+/FCGR3A+)43, and a small population of fetal
plasmacytoid dendritic-like cells (FLT3+/ITM2C+)44,45. We
further observed fetal and maternal natural killer cells (NKG7),
fetal GZMB+ or GZMK+ natural killer cell subtypes, and fetal
natural killer T cells (NKG7+/CD3E+/CD8A-)46,47. Finally, we
observed a variety of T cell subtypes: naïve CD4+ (CCR7, CD3E,
CD4), naïve CD8+ (CCR7, CD3E, CD8A), memory CD4+
(S100A4, CD3E, CD4, IL2, CCR7lo), and activated CD8+ T cells
(NKG7, CD3E, CD8A) (Supplementary Fig. 5b)48.

To identify upregulated genes in each cell type, we compared
the expression of a gene in one cell type against that gene’s
average expression in all other cell types (Supplementary Data 2).
Consequently, the same genes could be upregulated across several
cell types of a similar lineage. FLT1 expression was highly
upregulated in extravillous trophoblasts (log2 fold-change (FC)=
3.89, padj < 0.001). Trophoblast cell types had the largest and
most diverse transcriptomes, characterized by the largest number
of unique RNA transcripts and detected genes per cell
(Supplementary Fig. 7). Functional analysis of upregulated genes
revealed cell type-specific biological processes (Supplementary
Data 3). For example, fetal extravillous trophoblasts were
enriched for genes relevant to placental structure and function
such as cell migration (padj < 0.001) and response to oxygen levels
(padj < 0.001) and syncytiotrophoblasts were enriched for genes

involved in steroid hormone biosynthetic process (padj < 0.001).
Technical replication in Michigan samples 1 and 2 appeared high
in UMAP space (Supplementary Fig. 8a, b). Indeed, the average
intra-cluster gene expression between technical replicates had an
average Spearman correlation (mean ± standard deviation) of
0.94 ± 0.14 for sample 1 and 0.88 ± 0.20 for sample 2 (p values <
0.001).

Single-cell RNA-sequencing deconvolution reference exhibits
excellent in silico performance. Based on the single-cell data, we
created a placental signature gene matrix that incorporated
expression information across an algorithmically selected
5229 signature genes to estimate the cellular composition of 27
fetal and maternal cell types from whole tissue gene expression
data (Supplementary Fig. 9). To test the performance and
robustness of this placental single-cell RNA-sequencing decon-
volution reference, we randomly split our analytic single-cell
RNA-sequencing dataset into 50% training and 50% testing
subsets with balanced cell type proportions49. The same training
dataset was used for each comparison; test mixtures were gen-
erated from the testing half of the dataset. Using a signature gene
expression matrix generated from the training data, we estimated
cell type composition in in silico pseudo-bulk testing data mix-
tures of known cell type composition with varying contributions
of fetal vs. maternal origin cells and male vs. female fetal cells

Fig. 1 Integrated single-cell gene expression map of healthy placental villous tissue. a Uniform Manifold Approximation and Projection (UMAP) plot of
all cells (n= 40,494), with each cell colored by cell type cluster. b UMAP plot of fetal cells only (n= 34,165), with each cell colored by cell type cluster.
c UMAP plot of maternal cells only (n= 6329), with each cell colored by cell type cluster.
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(Fig. 2). In all mixtures, the 27 predicted and actual cell type
proportions were correlated (p value < 0.001 for each test). In the
primary deconvolution analysis of all cell types at their natural
rates (n= 20,242), estimated and actual cell type proportions had
a Pearson correlation coefficient of 0.956 (95% CI [0.904, 0.980]).
The worst performance was under the unrealistic scenario that
the mixture was composed entirely of maternal cell types
(n= 3162) with a Pearson correlation of 0.734 (95% CI [0.491,
0.871]) between actual estimated cell type proportions. Our
deconvolution reference was also robust to fetal sex when only
male fetal cells (Pearson correlation = 0.893, 95% CI [0.776,
0.950]) were included (n= 8394), or only female fetal cells
(Pearson correlation = 0.983, 95% CI [0.964, 0.993]) (n= 8394).
Together, these results show that our reference panel can suc-
cessfully deconvolute placental tissues, though some maternal cell
types common to both mother and fetus may be erroneously
labeled fetal in the absence of fetal cells of those cell types.

Fluorescence-activated cell sorting of major placental cell types
yielded mixed cell type isolation results. We isolated whole bulk
placental villous tissue, enriched syncytiotrophoblasts, and sorted

five cell types (Hofbauer cells, endothelial cells, fibroblasts, leu-
kocytes, extravillous trophoblasts, and cytotrophoblasts) via
FACS from four healthy term, uncomplicated Cesarean sections
for bulk RNA-sequencing, labeled Sorted 1 (same sample source
as single-cell RNA-sequencing sample 1), Sorted 2, Sorted 3, and
Sorted 4 (Supplementary Fig. 10 and Supplementary Table 2). For
analysis, as recommended50, we excluded 19,048 genes that were
not present in at least 3 samples and an additional 865 genes that
did not have a cumulative library size-normalized count of at least
10. Principal component (PC) analysis of whole-transcriptome
sorted-cell bulk RNA-sequencing normalized counts is provided
in Supplementary Fig. 11.

To identify upregulated genes in each cell type, we compared the
expression of a gene in one cell type against that gene’s average
expression in all other cell types (Supplementary Fig. 12). Conse-
quently, the same genes could be upregulated across several cell types
of a similar lineage. All 38,468 uniquely mapping genes were tested.
A total of 746 genes were algorithmically dropped from the
syncytiotrophoblast contrast due to excessively low counts, low
variability, or extreme outlier status. Large-scale gene expression
differences were observed for each cell type (Supplementary Data 4).

Fig. 2 In silico placental deconvolution testing. Scatter plots summarizing the performance of our single-cell deconvolution reference using CIBERSORTx
with in silico mixtures of single-cell libraries from a 50/50 training/test split of the integrated single-cell RNA-seq dataset (n= 40,494). The same training
dataset was used for each comparison; test mixtures were generated from the testing half of the dataset. Predicted deconvoluted cell type proportions for
each of the 27 cell types are encoded on the x-axis. Actual cell type proportions from the test dataset are encoded on the y-axis. Correlation coefficients
and root mean square error measures are presented for each comparison. A linear line of best fit overlays the results. The gray shaded area represents the
95% confidence intervals around the simple linear regression estimates. a The test mixture is the test half of the single-cell dataset (n= 20,242). b The
test mixture sampled only fetal cells (n= 17,080). c The test mixture sampled only maternal cells (n= 3162). d The test mixture sampled only female fetal
cells (n= 8394). e The test mixture sampled only male fetal cells (n= 8394).
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Functional analysis of upregulated genes revealed cell type-specific
biological processes (Supplementary Data 5). For example, syncytio-
trophoblasts were enriched for genes relevant to placental structure
and function such as angiogenesis, cell-substrate adhesion, and
regulation of epithelial cell proliferation (padj < 0.001). To compare
sorted and single-cell differential expression and enrichment results,
we tabulated the number of unique genes and pathways overlapping
between the two analyses after collapsing the single-cell cell type
cluster labels to the seven cell type fractions that we had targeted to
isolate for downstream analyses (Supplementary Table 3). On
average, 15.0% of single-cell upregulated genes and 5.9% of enriched
pathways were also identified among the sorted-cell data. On average,
17.5% of sorted cell type upregulated genes and 39.2% of pathways
were also identified among the single-cell data. Sorted endothelial cell
results were limited due to the limited number of biological replicates.

We applied the single-cell deconvolution reference to estimate cell
proportions in the 4 whole tissue (with 1 additional technical
replicate) and 19 sorted or enriched cell type fractions. We collapsed
the single-cell cell type cluster labels to the seven cell type fractions we
targeted for isolation for downstream analyses (Supplementary
Data 6, Sheet 1). All deconvoluted samples exhibited high
goodness-of-fit between original bulk mixtures and the estimated
cell type proportion mixtures (p values < 0.001). Among the
signature genes, original bulk and estimated cell type fractions had a
Pearson correlation (mean ± standard deviation) of 0.73 ± 0.11
and root mean square error of 0.88 ± 0.04 (Supplementary Data 6,
Sheet 2). Deconvolution results (mean ± standard deviation) suggest
we successfully isolated fibroblast- (n= 3, 74.7% ± 0.6%) and
leukocyte-enriched (n= 4, 82.3% ± 24.8%) cell type fractions. Other
cell type targets were less successful (range 0–26% estimated purity).
The Hofbauer cell fraction was predicted to be mostly leukocytes
(n= 4, 91.5% ± 0.5%).

Cell proportion deconvolution of bulk placental tissue pre-
eclampsia dataset. We applied the single-cell deconvolution
reference to estimate cell proportions from bulk placental tissue
in 157 preeclampsia cases and 173 controls33 compiled from eight
previously published studies33,51–57. Mean gestational age was
2.2 weeks younger in cases than controls (p value < 0.001,
Table 2). All deconvoluted samples exhibited high goodness-of-fit
between original bulk mixtures and the estimated cell type pro-
portion mixtures (p values < 0.001). Among the signature genes,
original bulk and estimated mixtures had a Pearson correlation
(mean ± standard deviation) of 0.70 ± 0.04 and root mean square
error of 0.73 ± 0.03 (Supplementary Data 7). Fetal naïve CD4+
T cells and fetal GZMB+ natural killer cells were estimated to be
at 0% abundance in all samples and were dropped from down-
stream analyses. Cytotrophoblasts were the most abundant
(mean ± standard deviation) estimated fetal cell type
(27.9% ± 4.3%) followed by syncytiotrophoblasts (23.4% ± 5.0%)
and mesenchymal stem cells (10.3% ± 3.3%). The most common
maternal cell types were naïve CD8+ T cells (2.8% ± 1.5%),
plasma cells (1.4% ± 0.7%), and B cells (1.3% ± 0.8%). A com-
parison of deconvoluted whole tissue cell type proportions among
healthy individuals (Supplementary Fig. 13) between the micro-
array dataset GSE75010 (n= 173 controls), our whole tissue bulk
RNA-sequencing samples (sorted samples 1–4), and the single-
cell dataset compiled here (single-cell samples 1–9) suggests that
syncytiotrophoblasts and endothelial cells are underrepresented
in the single-cell data. This is likely due to dissociation bias, which
has been commonly observed in single-cell assays of other
tissues58. Overall, the Pearson correlation of the average decon-
voluted cell type proportion across the 27 cell types between
healthy bulk RNA-sequencing and microarray controls was 0.80
(95% CI: [0.60, 0.91]).

Differentially abundant cell type proportions in preeclampsia
cases versus controls. To test for differences in cell proportions
between preeclampsia cases and controls (Supplementary Fig. 14),
we fit beta regression models for each cell type proportion
adjusted for study source, fetal sex, and gestational age to estimate
the prevalence odds ratio for each cell type (Supplementary
Data 8). Among fetal cell types, extravillous trophoblasts
(p < 0.001), memory CD4+ T cells (p= 0.007), CD8+ activated
T cells (p= 0.005), and natural killer T cells (p= 0.006) were more
abundant (Fig. 3) in preeclampsia cases relative to controls. The
unadjusted median extravillous trophoblast abundance was 6.4%
among cases compared to 2.1% among controls. Mesenchymal
stem cells (median percent composition in cases vs. controls, 8.8%
vs. 11.0%), Hofbauer cells (2.7% vs. 4.4%), and fetal naive CD8+ T
Cells (4.2% vs. 4.5%) were all less abundant among preeclampsia
cases compared to controls (p < 0.001). Among maternal cell
types, maternal plasma cells (1.6% vs. 1.2%) were more abundant
among preeclampsia cases compared to controls (p < 0.001).

Differential expression between preeclampsia cases and
controls attenuated by cell type proportion adjustment. To test
whether microarray gene expression differences between pre-
eclampsia cases and controls are partly driven by differences in cell
type abundances, we fit linear differential gene expression models
adjusted for covariates study source, fetal sex, and gestational age
with and without adjustment for deconvoluted cell type propor-
tions. To reduce the number of model covariates and account for
dependence between deconvoluted cell type proportions, we
applied PC analysis to deconvoluted cell type proportions.
The first five PCs accounted for 87.2% of the variance in decon-
voluted cell type proportions and were added as additional cov-
ariates to form the cell type-adjusted model. Variation in PCs 1
and 2 was largely driven by syncytiotrophoblasts (33.8%), extra-
villous trophoblasts (33.5%), and cytotrophoblasts (15.3%) pro-
portions and provided some separation between cases from
controls (Supplementary Fig. 15a, c). Variation in PC3 was largely
driven by cytotrophoblasts (50.1%) and to a lesser extent

Table 2 Demographic characteristics of eight previously
published bulk microarray placental gene expression
case–control studies (accessed through GSE75010) for
deconvolution application testing.

Descriptive statistics of microarray preeclampsia case–control studies

Control
(N= 173)

Preeclampsia
(N= 157)

P value

Fetal sex
Female 78 (45.1%) 81 (51.6%) 0.28
Male 95 (54.9%) 76 (48.4%)

Gestational age
(weeks)

Mean (SD) 35.2 (3.97) 33.0 (3.17) <0.001
Median
[min, max]

37.0 [25.0, 41.0] 33.0 [25.0, 39.0]

Study
GSE10588 26 (15.0%) 17 (10.8%) 0.39
GSE24129 8 (4.6%) 8 (5.1%)
GSE25906 37 (21.4%) 23 (14.6%)
GSE30186 6 (3.5%) 6 (3.8%)
GSE43942 7 (4.0%) 5 (3.2%)
GSE44711 8 (4.6%) 8 (5.1%)
GSE4707 4 (2.3%) 10 (6.4%)
GSE75010 77 (44.5%) 80 (51.0%)

Bivariate batch with Kruskal–Wallis ANOVA (regular ANOVA homogeneity of variances
violated) for continuous variables and χ2 test for categorical outcomes.
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syncytiotrophoblasts (16.6%), mesenchymal stems cells (14.5%),
and extravillous trophoblasts (13.7%) (Supplementary Fig. 15b, d).

In the cell type-naïve base models (n= 14,651 genes, 173
controls, and 157 cases) adjusted for study source, gestational age,
and fetal sex, 550 genes were differentially upregulated and 604
were downregulated in preeclampsia cases versus controls (Fig. 4a
and Supplementary Data 9). Gene set enrichment analysis of
biological processes identified 41 overrepresented pathways in the
base model (Fig. 5a and Supplementary Data 10). Biological
process pathways such as aerobic respiration (false discovery
adjusted q < 0.001), mitochondrial respiratory chain complex
assembly (q < 0.001), glutathione metabolism (q= 0.003), and
ribosome biogenesis (q= 0.001) were overrepresented among
downregulated genes. No pathways were overrepresented among
upregulated genes, though intermediate filament organization
(q= 0.26), keratinocyte differentiation (q= 0.77), and endothelial
cell development (q= 0.42) had comparable enrichment scores.
Remarkably, when the base model was additionally adjusted for
the first five PCs of imputed cell type proportions, there were zero
differentially expressed genes between preeclampsia cases and
controls (Fig. 4b and Supplementary Data 9). Of the cell type-
adjusted results, 19 pathways were overrepresented (Fig. 5b and
Supplementary Data 10). Downregulation of mitochondrial
respiratory chain complex assembly (q < 0.001), aerobic respira-
tion (q= 0.001), ribosome biogenesis (q= 0.001), and glutathione
metabolism (q= 0.02) were overrepresented among downregu-
lated genes. Detection of chemical stimulus involved in sensory
perception of smell (q= 0.04) and non-coding RNA processing
(q= 0.04) were also overrepresented pathways among down-
regulated genes. Neuroepithelial cell differentiation (q= 0.04) was
overrepresented among upregulated genes. Vascular endothelial
growth factor receptor signaling pathway (q= 0.15), of which
FLT1 is a member, had an enrichment score of 1.77 (up from
1.34, q= 0.43 in the base model) but did not meet the q value
cutoff. Overall, downregulation of mitochondrial biogenesis,
aerobic respiration, and ribosome biogenesis and related path-
ways were robust to cell type proportion adjustment.

Differential expression of preeclampsia-associated genes
mediated by placental cell type proportions. Overexpression of
FLT1 in placental tissue59–62, detection of a soluble isoform of
FLT1 in maternal circulation63,64, and fetal genetic variants near
FLT165 have implicated FLT1 in preeclampsia etiology. Because
we observed cell type-specific expression patterns of FLT1 in
trophoblasts, particularly in extravillous trophoblasts, we hypo-
thesized that the observed attenuation of FLT1 differential
expression may be due in part to the differences in cell type
proportions observed between preeclampsia cases and controls.
To test this hypothesis, we applied a unified mediation and
interaction analysis to quantify the proportion of FLT1 expression
differences mediated by deconvoluted cell type proportions. We
did not observe an interaction between preeclampsia status and
cellular composition (overall proportion attributable to interac-
tion=−5.8%, 95% CI [−17.1%, 5.0%]). We therefore dropped
interaction parameters from the model for the final analysis. In
the model without interaction, 37.8% (95% CI [27.5%, 48.8%]) of
the 1.05 (95% CI [0.89, 1.21]) log2 signal intensity increase in the
association between preeclampsia and FLT1 expression was
attributable to differences in placental cell composition between
preeclampsia cases and controls (Fig. 6). Overexpression of LEP
and ENG have also been associated with preeclampsia59–62.
Mediation results were similar for LEP (total effect = 2.62 (95%
CI [2.26, 2.97] log2 signal intensity increase; proportion mediated
= 34.5% (95% CI [26.0%, 44.9%]) and ENG (total effect = 0.93
(95% CI [0.79, 1.07] log2 signal intensity increase; proportion
mediated = 34.5% (95% CI [25.0%, 45.3%]).

Discussion
To create the largest publicly available placental RNA deconvo-
lution reference of 19 fetal and 8 maternal cell type-specific gene
expression profiles, we newly sequenced placental villous cells,
integrated those results with data from previously published
studies, and built a signature gene matrix for deconvolution of
bulk villous tissue gene expression data. In silico testing of our
deconvolution reference demonstrated successful and robust

Fig. 3 Preeclampsia case–control status and cell type proportion differential abundance analysis. Forest plot of multivariate beta regression models’
prevalence odds ratio estimates adjusted for study source, gestational age, and fetal sex tested for a difference in each cell type’s proportions in cases
versus controls (n= 157 cases, 173 controls). Horizontal lines indicate the range of the 95% confidence interval.
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deconvolution. To compare single-cell placental cell type
expression profiles to more conventional sorting methods, we
created a FACS scheme to enrich and sequence RNA from five
important placental cell types as well as syncytiotrophoblasts.
Deconvolution of sorted cell type fractions with the single-cell
deconvolution reference suggested most conventionally sorted
cell types are far less pure than what can be accomplished with
clustering and aggregation of single-cell results, and at much
lower cell type resolution. We applied the single-cell deconvolu-
tion reference to estimate cell type proportions in a previously
published epidemiologic microarray study of the pregnancy
complication preeclampsia, revealing placental cell type propor-
tion differences between preeclampsia cases and controls at term.
We then showed that large gene expression differences between
preeclampsia cases and controls were markedly attenuated after
adjustment for cell type proportions. Preeclampsia-associated
pathways, including downregulation of mitochondrial biogenesis,
aerobic respiration, and ribosome biogenesis were robust to cell
type adjustment, suggesting direct changes to these pathways.
Finally, to quantify the attenuation of differential expression of
the preeclampsia biomarkers FLT1, LEP, and ENG, we applied
mediation analysis to show cellular composition mediated a
substantial proportion of the association between preeclampsia
and FLT1, LEP, and ENG overexpression. Cell type proportions
may be an important and often overlooked factor in gene
expression differences in placental tissue studies.

By integrating our new single-cell RNA-sequencing results with
those from a previously published study, our integrated dataset, to
our knowledge, is the largest and possibly only reference available for
healthy, term placental villous tissue to date. We document term cell
type-specific gene expression patterns for well-characterized placental
cell types, including syncytiotrophoblasts10, cytotrophoblasts13, and
extravillous trophoblasts14. In addition, we provide gene expression

markers for relatively understudied placental cell types such as
endothelial cells, mesenchymal stem cells, and Hofbauer cells as well
as maternal peripheral mononuclear cells recovered from the
maternal-fetal interface. Compared to the previous analysis of the
published samples17 which relied on predominately sex-specific gene
expression markers to differentiate proliferative from non-
proliferative cytotrophoblasts, we show that functional enrichment
analysis revealed broad upregulation of proliferation pathways in
proliferative cytotrophoblasts. The low representation of some cell
types such as trophoblasts in our single-cell RNA-sequencing results
from the Michigan study suggests that these cell types may be
especially sensitive to dissociation and disintegrate before transcript
capture, commonly referred to as dissociation bias58. Michigan
samples 1 and 2 also included a cryopreservation step like those
employed in large-scale epidemiological studies that may have exa-
cerbated dissociation bias66; this applies to both single-cell and sorted
cell type experiments. Future studies may propose alternative
approaches to perform unbiased single-cell RNA-sequencing in
placental tissues; indeed, single-nucleus RNA-sequencing has been
used to characterize an in vitro syncytiotrophoblast model and may
be more appropriate to assay such cell types sensitive to dissociation
procedures67. We verified that our deconvolution reference exhibited
strong performance even with extremely imbalanced and unlikely
real-world test mixture distributions by fetal sex and maternal cell
type representation.

Our preeclampsia findings are consistent with a prior patho-
physiological understanding of the disorder, linking cell type
proportion estimates and gene expression data in bulk tissue.
Among preeclampsia cases, we observed an elevated proportion
of extravillous trophoblasts and underrepresentation of stromal
cell types, which may reflect an arrest in conventional placental
cell type differentiation and maturation following insufficient
uterine spiral artery remodeling implicated in preeclampsia68–70.

Fig. 4 Preeclampsia case–control differential expression analysis. Volcano plots comparing differentially expressed genes in samples from 153
preeclampsia cases versus 173 healthy controls across two models: a the base model adjusted for covariates fetal sex, study source, and gestational age
and b the model adjusted for fetal sex, study source, and gestational age and additionally adjusted for the first five principal components of estimated cell
type proportions. Dotted line represents a false discovery rate-adjusted q value of 0.05. FLT1, LEP, and ENG are labeled as genes of interest in preeclampsia.
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A recent study of bulk placental gene expression across trimesters
suggests that Hofbauer cells may more abundant in the second
trimester compared to the third, possibly to support vasculo-
genesis, though this study involved a small deconvolution refer-
ence that contained a limited variety of cell types71. A better
understanding of the evolution of temporal placental composition
changes may yield greater insight into placental pathologies. In
the cell type-naïve differential expression model, consistent with
previous findings, placentas from pregnancies with preeclampsia
overexpressed FLT1, LEP, and ENG59–62. In our cell type-adjusted
model, FLT1 and LEP remained only nominally significant
whereas ENG did not meet the nominal significance threshold.
Mediation analysis confirmed that a significant proportion of
FLT1, LEP, and ENG overexpression was attributable to differ-
ences in the cellular composition of the placenta. These results
suggest that placental cell type proportion differences may be an
overlooked factor in explaining the well-documented association
between preeclampsia and FLT1, LEP, and ENG expression59–62.
Downregulation of mitochondrial biogenesis, aerobic respiration,
and ribosome biogenesis was robust to cell type adjustment,
indicating direct changes to these pathways beyond shifts in cell
type abundance. Indeed, disruption of the mitochondrial fission-
fusion cycle72, malperfusion73,74, and inhibited protein synthesis
secondary to endoplasmic reticulum stress75,76 have all previously

been associated with preeclampsia. Interestingly, cell type
adjustment increased the enrichment score results of vascular
endothelial growth factor receptor signaling pathway, a
mechanistic hypothesis in preeclampsia etiology63,73,77,78, from
1.36 to 1.77 (q= 0.43 to q= 0.15). This approach may reveal the
biological mechanisms of other diseases beyond cellular compo-
sition differences. Because oxygen tension is a critical factor in
trophoblast differentiation, inappropriate oxygenation may par-
tially explain the elevated proportion of extravillous trophoblasts,
though regulators of this process such as HIF1A and TGFB379

were not differentially expressed at the tissue level in our analysis.
A recent single-cell RNA-sequencing case–control study of pre-
eclampsia, however, identified upregulation of TGFB1 in extra-
villous trophoblasts, potentially indicative of altered trophoblast
differentiation or invasion80,81. A similar study revealed
decreased activity of gene network modules regulated by tran-
scription factors ATF3, CEBPB, and GTF2B and decreased
expression of CEBPB and GTF2B in preeclamptic extravillous
trophoblasts compared to controls; follow-up in vitro experi-
ments suggested CEBPB and GTF2B knockdown reduced extra-
villous trophoblast viability and invasion82. Consistent with our
other findings, this study also observed a similar trend in cell type
proportion differences and upregulation of FLT1 in extravillous
trophoblasts and ENG in syncytiotrophoblasts between

Fig. 5 Preeclampsia case–control differential expression enrichment analysis. Top Gene Set Enrichment Analysis pathways from the Gene Ontology:
Biological Processes database results for the differential expression analysis by preeclampsia case–control status. Results arranged by descending
magnitude of the absolute value of the normalized enrichment score. Pathways colored red are significant at a false discovery rate-adjusted (FDR) q value
of 0.05 whereas pathways in blue are statistically insignificant. a Top pathways from the cell type-unadjusted analysis. b Top pathways from the cell type-
adjusted analysis.
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preeclampsia cases and controls80. Future work should consider
and account for cell type proportions and the cell type-specific
expression patterns of genes that regulate placental development
or are associated with preeclampsia to better understand pre-
eclampsia etiology.

This study has several strengths. We profile the parenchymal
healthy term villous tissue in the placenta and integrate our dataset
with samples from previously published studies to generate the lar-
gest, to the best of our knowledge, cell type-specific placental villous
tissue gene expression reference to date. Single-cell RNA-sequencing
allowed us to agnostically capture diverse placental cell types without
a priori knowledge of cell types and their characteristics and tabulate
gene expression patterns at high resolution and specificity. Our in
silico deconvolution tests demonstrated robust performance to even
extreme distributions of maternal or sex of fetal cells. We demon-
strate technical replication of single-cell RNA-sequencing in placental
villous tissue. We were able to apply our findings to a large target
deconvolution dataset of preeclampsia that contained placental
measures from hundreds of participants across eight different studies.
Most importantly, we evaluate cell type proportion differences in an
epidemiological study of placental parenchymal tissue and pre-
eclampsia, and genome-wide gene expression differences accounting
for cell type heterogeneity, a critical limitation in bulk tissue assays.

This study also has several limitations. Although our cellular
sample size comprised of 40,494 cells is relatively large compared to
previous single-cell RNA-sequencing studies of term placental villous
tissue, this dataset still represents a limited biologic replicate sample
size compared to epidemiologic scale studies. Our newly sequenced
samples came from a convenience sample without available demo-
graphic information beyond uncomplicated and healthy Cesarean-
section status. Similarly, the sample size of FACS-sorted tissues was
limited, and some cell type fractions were excluded due to low RNA
quality or exhibited poor estimated purity, likely complicated by
degradation of cell surface markers from apoptosis characteristic of
development and parturition83,84 and sample processing. This study
did not include placental tissues for single-cell analysis from pre-
eclamptic patients to confirm intra-cell type gene expression changes.
Despite excellent in silico performance, we had no external gold
standard to verify deconvolution performance. This deconvolution
reference may not be sensitive enough to discriminate between cell
subtypes such as proliferative vs. non-proliferative cytotrophoblasts
that are clearly delineated in the single-cell analysis; in such cases,
investigators may collapse cell type proportions counts into a single

major cell type group, such as cytotrophoblasts. Future studies may
verify whether cell type proportions estimated in diseased or vaginally
delivered tissues are robust to a deconvolution reference generated
from healthy villous tissue delivered via Cesarean-section. Residual
confounding may remain in our statistical models due to the limited
number of common covariates across all eight preeclampsia
case–control studies. Due to the nature of villous tissue sampling, our
study design is cross-sectional, limiting our ability to establish tem-
porality between exposure and outcome to rule out reverse causation.
As with any study conditioned on live birth, selection bias may affect
our results. However, the effects of harmful exposures that lead to
selection tend to be underestimated in these scenarios85,86. Therefore,
our results likely represent a conservative underestimate of the effects
of preeclampsia on inappropriate cell composition and preeclampsia
status on gene expression.

In summary, we provide a cell type-specific deconvolution
reference via single-cell RNA-sequencing in the parenchymal
placental term villous tissue. We demonstrated this reference was
robust to different distributions of maternal and fetal sex through
in silico validation testing. In addition, we benchmarked these
single-cell cell type-specific gene expression profiles against pla-
cental cell types isolated with more conventional FACS followed
by bulk RNA-sequencing. We applied this deconvolution refer-
ence to an epidemiologic preeclampsia dataset to reveal biologi-
cally relevant shifts in placental cell type proportions between
preeclampsia cases and controls. Once cell type proportion dif-
ferences were accounted for, differential gene expression differ-
ences were markedly attenuated between preeclampsia cases and
controls. Enrichment analysis revealed downregulation of mito-
chondrial biogenesis, aerobic respiration, and ribosome biogen-
esis were robust to cell type adjustment, suggesting direct changes
to these pathways. A substantial proportion of the overexpression
of the FLT1, LEP, and ENG in preeclampsia was mediated by
placental cell composition. These results add to the growing body
of literature that emphasizes the centrality of cell type hetero-
geneity in molecular measures of bulk tissues. We provide a
publicly available placental cell type-specific gene expression
reference for term placental villous tissue to overcome this critical
limitation.

Methods
Placental tissue collection and dissociation. Placentas were collected shortly
after delivery from healthy, full-term, singleton uncomplicated Cesarean sections at
the University of Michigan Von Voigtlander Women’s Hospital. Pregnant women
provided written informed consent for research use of discarded tissues. Study
protocols for discarded tissue collection and research use were approved by the
University of Michigan Institutional Review Board (HUM00017941,
HUM00102038). Villous placental tissue biopsies were collected and minced for
dissociation after cutting away the basal and chorionic plates and scraping villous
tissue from blood vessels13. We subjected approximately 1 g minced dissected
villous tissue to the Miltenyi Tumor Dissociation Kit on the GentleMACS Octo
Dissociator with Heaters (Miltenyi Biotec) to yield single-cell suspensions of viable
placental cells in 5 μM StemMACS™ Y27632 (Miltenyi Biotec) in RPMI 1640
(Gibco) according to manufacturer’s instructions for soft tumor type. Red blood
cells were depleted using RBC lysis buffer (BioLegend) according to manufacturer’s
protocol A. Single-cell suspensions were size-filtered at 100 μm to remove undi-
gested tissue and subsequently at 40 μm12,13. To collect a syncytiotrophoblast-
enriched fraction, the fraction between 40 and 100 μm was washed from the 40-μm
strainers, adapting a previous protocol that collected syncytiotrophoblasts
throughout this size range10. Single-cell suspensions <40 μm were cryogenically
stored in 5 μM StemMACS™ Y27632 90% heat-inactivated fetal bovine serum
(Gibco)/10% dimethyl sulfoxide (Invitrogen). For each placenta, additional whole
villous tissue samples were stored in RNALater (Qiagen).

Previously published single-cell RNA-sequencing raw data of healthy, term
placental villous tissue samples came from the Database of Genotypes and
Phenotypes (Pique-Regi et al., accession number phs001886.v1.p187) SRR10166478
(Sample 3), SRR10166481 (Sample 4), and SRR10166484 (Sample 5)17. The
collection and use of human materials for the study were approved by the
Institutional Review Boards of the Wayne State University School of Medicine. All
participating women provided written informed consent prior to sample
collection17. Additional previously published samples came the European Genome-

Fig. 6 Placental cell composition as a mediator of FLT1 expression.
Mediation of FLT1 gene expression by placental cell type composition
(n= 157 cases, 173 controls). Placental cell composition was
operationalized as first five principal components of estimated cell type
proportions. 95% confidence intervals are provided after effect estimates
for each model parameter. The same framework was also applied with LEP
or ENG expression as the outcome.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04623-6

10 COMMUNICATIONS BIOLOGY |           (2023) 6:264 | https://doi.org/10.1038/s42003-023-04623-6 | www.nature.com/commsbio

www.nature.com/commsbio


Phenome Archive (Tsang et al., accession number EGAS0000100244988) (Samples
6–9)16. The study was approved by the Joint Chinese University of Hong Kong-
New Territories East Cluster Clinical Research Ethics Committee, and informed
consent was obtained after the nature and possible consequences of the studies
were explained. Pregnant women were recruited from the Department of
Obstetrics and Gynecology, Prince of Wales Hospital, Hong Kong with informed
consent; the subjects studied had consented to sequencing data archiving16.

Placental single-cell RNA-sequencing. Villous tissue single-cell suspensions were
thawed and sorted via FACS with LIVE/DEAD Near-IR stain (Invitrogen) for
viability and forward-scatter and side-scatter profiles to eliminate cellular debris
and cell doublets. Viability- and size-sorted single-cell suspensions were submitted
to the University of Michigan Advanced Genomics Core for single-cell RNA-
sequencing. Single cells were barcoded, and cDNA libraries constructed on the
Chromium platform (10X Genomics, Single Cell 3’ v2 chemistry). Paired-end 110
base pair reads were sequenced on NovaSeq 6000 (Illumina).

Single-cell RNA-sequencing preprocessing. Raw reads were processed, decon-
voluted, droplet filtered, and aligned at the gene level with the Cell Ranger pipeline
using default settings (v4.0.0, 10X Genomics) based on the GRCh38 GENCO-
DEv32/Ensembl 98 reference transcriptome with STAR v2.5.1b89. Previously
published single-cell RNA-sequencing raw data of healthy, term placental villous
tissue samples from the Database of Genotypes and Phenotypes (Pique-Regi et al.,
accession number phs001886.v1.p1) SRR10166478 (Sample 3), SRR10166481
(Sample 4), and SRR10166484 (Sample 5)17 and from the European Genome-
Phenome Archive (Tsang et al., accession number EGAS00001002449) (Samples
6–9)16 were processed identically. The freemuxlet program in the latest version
(accessed December 5, 2021) of the “popscle” package was used to assign fetal or
maternal origin and identify 736 mosaic doublets for removal based on single
nucleotide polymorphisms with minor allele frequency greater than 10% from the
1000 Genomes Phase 3 reference panel (released May 2, 2013)90. Per cell quality
control criteria were calculated using the quickQCPerCell() function (scater R
package, version 1.18.6) with default settings91 (Supplementary Figs. 2 and 3) and
included total unique RNA transcripts (also called unique molecular identifiers),
unique genes, and percentage of reads mapping to mitochondrial genes92.
According to the current recommended best practice, each batch was quality-
controlled separately93. We excluded 6497 low-quality outlier cells defined as cells
with less than 500 unique RNA molecules, less than 200 unique genes, or that were
outliers in mitochondrial gene mapping rate. Mitochondrial mapping outliers
exceeded four median absolute deviations in samples 1 and 2 (mitochondrial reads
>9.2%) or three median absolute deviations in samples 3, 4, and 5 (mitochondrial
reads >8.9%) and samples 6, 7, 8C, 8P, 9C, and 9P (mitochondrial reads >9.1%). To
generate normalized gene expression data for visualizations and analyses that
required normalization, single-cell gene counts were library size normalized by
dividing the number of counts by the total number of counts expressed in that cell,
multiplied by a scale factor of 10,000, and log-transformed with the Normal-
izeData() function (Seurat R package, version 4.1.1).

Single-cell RNA-sequencing clustering and cluster annotation. Maternal and
fetal cells were split into separate datasets for clustering. To integrate data from
cells across study sources and visualize clustering results with uniform manifold
projection34, we used the mutual nearest neighbor batch correction approach via
FastMNN from “SeuratWrapper” with default settings (R package, version 0.3.0)35.
Supervised iterative clustering and sub-clustering with “Seurat” (R package, version
4.0.1) function FindClusters at different resolution parameters were evaluated using
cluster stability via clustering trees in “clustree”94,95. A priori canonical cell type
marker gene expression patterns and cluster marker genes were used to assign cell
types to cell clusters (see results). Cells that fell outside cell type clusters or outlying
in doublet density calculated with computeDoubletDensity were removed as
putative doublets and doublet clusters were identified with findDoubletClusters for
removal in “scDblFinder” (R package, version 1.4.0)96. 723 maternal-maternal or
fetal-fetal putative doublets were excluded after integration and clustering. Using
the manually annotated Michigan (this study) and Pique-Regi (phs001886.v1.p1)
cell cluster labels as the reference data, Tsang sample (EGAS00001002449) cells
were algorithmically annotated with “SingleR” (R package, version 1.6.1)97 with
default settings, followed by manual review. Cells with low prediction certainty
(assignment score lower than three median absolute deviations of all cells assigned)
were excluded as putative maternal-maternal or fetal-fetal doublets. Fetal sex in
Michigan (this study) samples was determined with average normalized XIST
expression; fetal sex in Pique-Regi and Tsang samples was determined by anno-
tation and confirmed with average normalized XIST expression (Supplementary
Fig. 4). The final analytic sample included 40,494 cells and 36,601 genes across nine
biological replicates, two of which had a technical replicate (Samples 1 and 2) and
another two included peripheral subsampling (Samples 8 and 9).

Single-cell RNA-sequencing differential expression and biological pathway
enrichment statistical analysis. Technical correlation was assessed by Spearman
correlation after averaging the normalized expression for each gene by cluster and
by technical replicate. Cluster marker genes were identified in “Seurat” with the

FindAllMarkers function with default settings on single-cell gene expression
counts92,95. Specifically, including both maternal and fetal cell types, the expression
level in each cell type cluster was compared against the average expression of that
gene across all other cell types using the two-tailed Wilcoxon rank sum test with
significance defined at a false discovery rate-adjusted p value less than 0.05 and a
log2 FC cutoff of 0.25. Pairwise cluster markers were identified in “Seurat” with the
FindMarkers function with an identical testing regime. Overexpressed genes were
ranked by decreasing log2 FC for functional enrichment analysis with “gprofiler2”
(R package, version 0.2.0, database version e102_eg49_p15_7a9b4d6) using
annotated genes as the universe, excluding electronically generated annotations,
and with the g:SCS multiple testing correction method applying a significance
threshold 0.0598.

In silico testing of deconvolution performance. To test the performance and
robustness of our placental single-cell RNA-sequencing deconvolution reference,
we randomly split our analytic single-cell RNA-sequencing dataset into 50%
training and 50% testing subsets with balanced cell type proportions49. We applied
the test subset with the CIBERSORTx Docker container (accessed December 7,
2021) to create a signature gene expression matrix to test deconvolution perfor-
mance with default settings99. To evaluate the reference’s robustness to fetal sex
and ability to discriminate immune cell types of fetal versus maternal origin, we
generated in silico pseudo-bulk test mixtures with known distributions of fetal and
maternal cells, as well as male and female placental cells. Test mixtures included all
of the 50% testing data, only fetal cells from the test data, only maternal cells from
the test data, only female fetal cells from the test data, or only male cells from the
test data. For the female and male fetal cell test mixtures, the baseline distribution
of maternal cells was maintained by randomly down-sampling the maternal cells
and randomly down-sampling the male fetal cells to the number of female fetal
cells. We used the signature matrix generated from the training data to estimate
constituent cell type proportions in these test mixtures using CIBERSORTx with
cross-platform S-mode batch correction and 50 permutations to evaluate impu-
tation goodness-of-fit. Pearson correlations and root mean square error between
the test set predicted and actual cell type proportions in the test mixtures were used
to assess deconvolution performance.

Fluorescence-activated cell sorting of major placental cell types from villous
tissue. Villous tissue single-cell suspensions were quickly thawed and stained
according to manufacturer’s instructions with five fluorescently labeled antibodies
(CD9-FITC, CD45-APC, HLA-A,B,C-PE/Cy7, CD31-BV421, and HLA-G-PE) as
well as LIVE/DEAD Near-IR stain (Invitrogen) to isolate six viable populations of
placental cells by FACS at the University of Michigan Flow Cytometry Core
Facility. Initial flow cytometry experiments included fluorescence minus one,
single-color compensation, and isotype controls. Isotype controls were found to be
the most conservative and were consequently included in all sorting experiments,
as well as single-color compensation controls due to the large number of colors
used in sorting. The six populations of cells were Hofbauer cells, endothelial cells,
fibroblasts, leukocytes, extravillous trophoblasts, and cytotrophoblasts. We devel-
oped a five-marker cell surface FACS scheme to sort cytotrophoblasts (HLA-A,B,C-
), endothelial cells (CD31+), extravillous trophoblasts (HLA-G+), fibroblasts
(CD9+), Hofbauer cells (CD9-), and leukocytes (CD45+/CD9+) from villous
tissue (Supplementary Fig. 10)11,12,14,37,100–106. Syncytiotrophoblast fragments
were enriched from villous tissue digests. We isolated cell type fractions and whole
villous tissue from four healthy term, uncomplicated Cesarean sections, labeled
Sorted 1 (same sample source as single-cell RNA-sequencing sample 1), Sorted 2,
Sorted 3, and Sorted 4. We subjected 24 cell type fractions with sufficient RNA
content to RNA-sequencing, including two cytotrophoblast, one endothelial, three
extravillous trophoblast, three fibroblast, four Hofbauer cell, four leukocyte, and
two syncytiotrophoblast fractions, and five whole tissue samples (Supplementary
Table 2).

Detailed antibody information: FITC, marker CD9: Mouse IgG1-kappa, clone
HI9a (2.5 μg/mL), BioLegend #312103, lot B188319, BioLegend #312104, lot
B232916; isotype control: clone MOPC-21 BioLegend #400107, Lot B199152
(2.5 μg/mL). APC, marker CD45: Mouse IgG1-kappa, clone 2D1, BioLegend
#368511, Lot B215062 (0.125 μg/mL); isotype control: clone MOPC-21, BioLegend
#400121, lot B216780 (0.125 μg/mL). PE/CY-7, marker HLA-ABC: Mouse IgG2a-
kappa, clone W6/32, BioLegend #311429, lot B188649, BioLegend #3111430, lot
B238602 (0.44 μg/mL); isotype control: clone MOPC-173, BioLegend #400231, lot
B209000 (0.44 μg/mL);. BV421, marker CD31: Mouse IgG1-kappa, clone WM59,
BioLegend #303123, lot B204347, BioLegend #303124, lot B232010 (0.625 μg/mL);
isotype control: clone MOPC-21, BioLegend #400157, lot B225357 (0.625 μg/mL).
PE, marker HLA-G: Mouse IgG2a-kappa, clone 87G, BioLegend #335905, lot
B222326, BioLegend #335906, lot B199294 (5 μg/mL); isotype control clone
MOPC-173, BioLegend #400211, lot B227641 (5 μg/mL). Mouse IgG1-kappa, clone
MEM-G/9, Abcam #24384 Lot GR3176304-1 (2.5 μg/mL); isotype control:
monoclonal, Abcam #ab81200, lot GR267131-1 (2.5 μg/mL). Validation
information available on the manufacturer’s website under the catalog ID for each
antibody.

A cutoff of 0.1% events was used to set a series of gates. Cells were first gated on
size and granularity (FSC-HxSSC-H) to eliminate debris, followed by doublet
discrimination (FSC-HxFSC-W and SSC-HxSSC-W). Ax750 was used to sort on
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viability. Extravillous trophoblasts were isolated based on Human Leukocyte
Antigen-G (HLA-G) expression (Supplementary Fig. 10a). Cytotrophoblasts are
HLA-ABC negative (Supplementary Fig. 10b). HLA-ABC-positive cells were then
subjected to a CD45/CD9 gate to isolate Hofbauer cells and a heterogeneous
population of leukocytes (Supplementary Fig. 10c). Finally, CD45-/CD9-
population is sorted into the endothelial or fibroblast bins based on CD31
expression (Supplementary Fig. 10d).

Bulk placental tissue and sorted placental cell type RNA extraction and
sequencing. Approximately 2 mg of bulk RNALater-stabilized (Qiagen) bulk vil-
lous tissue was added to 350 μL 1% β-mercaptoethanol (Sigma-Aldrich) RLT Buffer
Plus (Qiagen) to Lysing Matrix D vials (MP Biomedicals). Samples were disrupted
and homogenized on the MP-24 FastPrep homogenizer (MP Biomedicals) at 6 m/s,
setting MP24x2 for 35 s. For the homogenized bulk villous tissue,
syncytiotrophoblast-enriched fraction, and sorted cell types, RNA extraction was
completed according to the manufacturer’s instructions using the AllPrep DNA/
RNA Mini Kit (Qiagen) and stored at −80 °C. RNA samples were submitted to the
University of Michigan Advanced Genomics Core for RNA-sequencing. Ribosomal
RNAs were depleted with RiboGone (Takara) and libraries were prepared with the
SMARTer Stranded RNA-Seq v2 kit (Takara). Paired- or single-end 50 base pair
reads were sequenced on the HiSeq platform (Illumina). Raw RNA reads were
assessed for sequencing quality using “FastQC” v0.11.5107 and “MultiQC” v1.7108.
Reads were aligned to the GRCh38.p12/ GENCODEv28 reference transcriptome
using “STAR” v2.6.0c with default settings89. featureCounts from “subread” v1.6.1
was used to quantify and summarize gene expression with default settings109.

Sorted placental cell type differential expression analysis and comparison to
single-cell results. For visualizations or analyses that required normalized gene
counts, sorted cell type gene counts were library size normalized with the median
ratio method using the counts() function (DESeq2 R package, version 1.32.0). As
recommended50, we excluded genes that were not present in at least three samples
and did not have an expression of 10 library size-normalized counts. To visualize
broad cell type-specific gene expression patterns, we used “DESeq2’s” (R package,
version 1.32.0) plotPCA() function with the regularized logarithm transformation,
blinded to experimental design. Upregulated genes in each cell type were identified
using the negative binomial linear model two-tailed Wald test in “DESeq2” (R
package, version 1.32.0) adjusted for biological replicate using default settings with
contrasts comparing the expression of a gene in one cell type against the average
expression across all other cell types at a false discovery rate-adjusted p value less
than 0.05 and a log2 FC cutoff of 1.250. Overexpressed genes were ranked by
decreasing log-FC for functional enrichment analysis with “gprofiler2” (R package,
version 0.2.0, database version e102_eg49_p15_7a9b4d6) using annotated genes as
the universe, excluding electronically generated annotations, and with the default
g:SCS multiple testing correction method applying significance threshold adjusted
p value of 0.0598. To compare sorted and single-cell results, we tabulated unique
overlapping differentially expressed genes and overrepresented pathways by cell
type (Supplementary Table 3) Peripheral fetal and maternal immune cell types
from the single-cell RNA-sequencing data were collapsed to one leukocyte cate-
gory, cytotrophoblast subtypes to one cytotrophoblast category, and mesenchymal
stem cells and fibroblasts to one fibroblast category for this comparison.

We used the CIBERSORTx Docker container (accessed December 7, 2021) to
create a signature gene expression matrix for deconvolution from the counts of the
single-cell RNA-sequencing data with the following default parameters: differential
expression q value < 0.01, no minimum gene expression cutoff, and a 300 gene
feature selection floor and a 500 gene feature selection ceiling99. We used the
signature matrix to estimate constituent cell type proportions in the 4 whole tissue
(with 1 additional technical replicate) and 19 sorted or enriched cell type fractions
using CIBERSORTx with cross-platform S-mode batch correction and 50
permutations to evaluate imputation goodness-of-fit. We collapsed the high-
resolution single-cell cell type cluster labels to the seven cell type fractions we
targeted for comparison with sorted cell type results.

Application: bulk placenta gene expression dataset and CIBERSORTx
deconvolution. Bulk placental tissue microarray gene expression (previously
batch-corrected and normalized) from eight preeclampsia case–control studies was
downloaded from the NCBI Gene Expression Omnibus (accession number
GSE75010) for deconvolution33. We used the CIBERSORTx Docker container
(accessed December 7, 2021) to create a signature gene expression matrix for
deconvolution from the counts of the single-cell RNA-sequencing data with the
following default parameters: differential expression q value < 0.01, no minimum
gene expression cutoff, and a 300 gene feature selection floor and a 500 gene feature
selection ceiling99. We used the signature matrix to estimate constituent cell type
proportions in GSE75010 using CIBERSORTx with cross-platform S-mode batch
correction and 50 permutations to evaluate imputation goodness-of-fit.

Application: preeclampsia case–control differential cell type abundance, dif-
ferential gene expression statistical analysis, and mediation analysis. To test
for differences in estimated cell type proportions between preeclampsia cases and
controls, estimated cell type proportions for GSE75010 were regressed on

preeclampsia case–control status using beta regression models adjusted for gesta-
tional age, sex, and study source110 (Supplementary Data 8). Statistical significance
was assessed using the two-tailed Wald test applying a nominal significance
threshold of 0.05. Cell types imputed at zero percent abundance across all samples
were excluded. For modelling purposes, zero percent abundance estimates were
transformed to 1

2 =n where n is the number of observations (n= 330).
Differential expression analysis was conducted in limma111 with default linear

models adjusted for gestational age, fetal sex, and study source with empirical Bayes
standard error moderated t-test statistics. A cell type-adjusted model was built on the
base model adjusted for gestational age, fetal sex, and study source and additionally
adjusted for the first five PCs of deconvoluted cell type proportions (Supplementary
Data 9). Statistical significance was assessed at false discovery rate-adjusted q value <
0.05 and a log2 FC cutoff of 0.1. Differentially expressed genes were descending-ranked
by value of the moderated test statistic for gene set enrichment analysis in desktop
version GSEA 4.1.0 with the GSEAPreranked tool with default settings against the
c5.go.bp.v7.5.1.symbols.gmt gene set database112,113 (Supplementary Data 10). PC
analysis was performed with prcomp() from “stats-package” (R, version 4.0.5) without
scaling and with default settings.

A unified mediation and interaction analysis114 was conducted in “CMAverse”
(R package, version 0.1.0)115 via the g-formula approach116 to estimate causal
randomized-intervention analogs of natural direct and indirect effects117 through
direct counterfactual imputation. The model was operationalized with
preeclampsia status as the binary exposure, log2 transformed gene expression
intensity as the continuous outcome, and the first five PCs of deconvoluted cell
type proportions as continuous mediators. Baseline covariates included fetal sex
and study source. Continuous gestational age was included as a confounder of the
mediator-outcome relationship affected by the exposure. Confidence intervals were
bootstrapped with 1000 boots with otherwise default settings. Statistical tests were
two-tailed and interpreted at a p value significance threshold of 0.05.

Statistics and reproducibility. Technical replication measured by average intra-
cluster gene expression between technical replicates was tested via the two-tailed
Spearman correlation test within Samples 1 and 2 assessed across all 32,738
common genes. The number of cells contributing expression data for each cell type
is available in Table 1. Single-cell cluster marker genes were identified in “Seurat”
with the FindAllMarkers function with default settings on single-cell gene
expression counts92,95. Specifically, including cells from both maternal and fetal cell
types, the expression level in each cell type cluster was compared against the
average expression of that gene across all other cell types using the two-tailed
Wilcoxon rank sum test with significance defined at a false discovery rate-adjusted
p value less than 0.05 and a log2 FC cutoff of 0.25 (n= 40,494 cells). The final
analytic sample included 40,494 cells and 36,601 genes across nine biological
replicates, two of which had a technical replicate (Samples 1B and 2B) and another
two included peripheral subsampling (Samples 8P and 9P). Pairwise cluster mar-
kers were identified in “Seurat” with the FindMarkers function with an identical
testing regime (n= 6132 cells for proliferative vs. non-proliferative cytotropho-
blasts). Overexpressed genes were ranked by decreasing log-FC for functional
enrichment analysis with “gprofiler2” (R package, version 0.2.0, database version
e102_eg49_p15_7a9b4d6) using annotated genes as the universe, excluding elec-
tronically generated annotations, and with the default g:SCS multiple testing cor-
rection method applying significance threshold adjusted p value of 0.0598.
Overexpressed genes per cell type cluster are available in Supplementary Data 2
and ontology results in Supplementary Data 3. Overexpressed genes and related
enrichment results comparing proliferative to non-proliferative cytotrophoblasts
are available in Supplementary Data 1.

Upregulated genes in each cell type were identified using the negative binomial
linear model two-tailed Wald test in “DESeq2” (R package, version 1.32.0) adjusted for
biological replicate using default settings with contrasts comparing the expression of a
gene in one cell type against the average expression across all other cell types at a false
discovery rate-adjusted p value less than 0.05 and a log2 FC cutoff of 1.250 (n= 19 cell
type fraction samples with breakdown by cell type available in Supplementary Table 2).
Overexpressed genes were ranked by decreasing log-FC for functional enrichment
analysis with “gprofiler2” (R package, version 0.2.0, database version e102_eg49_
p15_7a9b4d6) using annotated genes as the universe, excluding electronically generated
annotations, and with the default g:SCS multiple testing correction method applying
significance threshold adjusted p value of 0.0598. Differentially expressed genes per cell
type available in Supplementary Data 4 and number of differentially expressed genes are
summarized in Supplementary Fig. 12. Ontology results are available in Supplementary
Data 5.

Bulk placental tissue microarray gene expression (previously batch-corrected
and normalized) from eight preeclampsia case–control studies was downloaded
from the NCBI Gene Expression Omnibus (GSE75010) for deconvolution
(n= 330)33. We used the CIBERSORTx Docker container (accessed December 7,
2021) to create a signature gene expression matrix for deconvolution from the
counts of the single-cell RNA-sequencing data with the following default
parameters: differential expression q value < 0.01, no minimum gene expression
cutoff, and a 300 gene feature selection floor and a 500 gene feature selection
ceiling99. We used the signature matrix to estimate constituent cell type
proportions in GSE75010 using CIBERSORTx with cross-platform S-mode batch
correction and 50 permutations to evaluate imputation goodness-of-fit.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04623-6

12 COMMUNICATIONS BIOLOGY |           (2023) 6:264 | https://doi.org/10.1038/s42003-023-04623-6 | www.nature.com/commsbio

www.nature.com/commsbio


To test for differences in estimated cell type proportions between preeclampsia
cases and controls (n= 330), estimated cell type proportions for GSE75010 were
regressed on preeclampsia case–control status using beta regression models (n= 25
cell type proportion outcomes) adjusted for gestational age, sex, and study
source110. Cell types imputed at zero percent abundance across all samples were
excluded (n= 2 excluded: fetal naïve CD4+ T cells and fetal GZMB+ natural killer
cells). Statistical significance was assessed using the two-tailed Wald test applying a
nominal significance threshold of 0.05.

Differential expression analysis was conducted in limma111 with default settings
using linear models (n= 14,651 genes) adjusted for gestational age, fetal sex, and
study source (n= 330). A cell type-adjusted model was built on the base model
additionally adjusted for the first five PCs of deconvoluted cell type proportions.
PC analysis was performed with prcomp from “stats-package” (R, version 4.0.5)
without scaling and default settings. Statistical significance was assessed at false
discovery rate-adjusted q value < 0.05 and a log2 FC cutoff of 0.1. Differentially
expressed genes were descending-ranked by the value of the moderated test statistic
for gene set enrichment analysis in desktop version GSEA 4.1.0 with the
GSEAPreranked tool with default settings against the c5.go.bp.v7.5.1.symbols.gmt
gene set database112,113.

A unified mediation and interaction analysis114 was conducted in “CMAverse” (R
package, version 0.1.0)115 via the g-formula approach116 to estimate causal randomized-
intervention analogs of natural direct and indirect effects117 through direct
counterfactual imputation. The model (n= 330) was operationalized with preeclampsia
status as the binary exposure, normalized log2 gene expression signal intensity as the
outcome, and the first five PCs of deconvoluted cell type proportions as continuous
mediators. Baseline covariates included fetal sex and categorical study source.
Continuous gestational age was included as a confounder of the mediator-outcome
relationship affected by the exposure. Confidence intervals were bootstrapped with 1000
boots with otherwise default settings. Statistical tests were two-tailed and interpreted at a
p value significance threshold of 0.05.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw placental single-cell RNA-sequencing and raw placental bulk RNA-sequencing
generated by this study are freely available in the Gene Expression Omnibus repository
(accession number GSE182381). The cell type signature matrix and related files to
deconvolute bulk gene expression measures are available through the Gene Expression
Omnibus (accession number GSE182381) as supplementary material for download. This
study uses data generated by The Chinese University of Hong Kong (CUHK) Circulating
Nucleic Acids Research Group, as reported by Tsang et al. in Proc. Natl Acad. Sci. USA
(doi: 10.1073/pnas.1710470114, accession number EGAS00001002449)16,88. The
placental single-cell RNA-sequencing data that support the findings of this study can be
accessed through the Database of Genotypes and Phenotypes (accession number
phs001886.v1.p1)17,87 and the European Genome-Phenome Archive (accession number
EGAS00001002449)16,88. The preeclampsia case–control microarray data that support
the findings of this study are available in Gene Expression Omnibus repository (accession
number GSE75010)33,118. Source data underlying Figs. 3–5 are presented in
Supplementary Data 8–10, respectively.

Code availability
All scripts to perform preprocessing, analyses, and deconvolution are available119.
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