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Preadapted to adapt: underpinnings of adaptive
plasticity revealed by the downy brome genome
Samuel R. Revolinski 1, Peter J. Maughan2, Craig E. Coleman2 & Ian C. Burke 1✉

Bromus tectorum L. is arguably the most successful invasive weed in the world. It has fun-

damentally altered arid ecosystems of the western United States, where it now found on an

excess of 20 million hectares. Invasion success is related to avoidance of abiotic stress and

human management. Early flowering is a heritable trait utilized by B. tectorum, enabling the

species to temporally monopolize limited resources and outcompete the native plant com-

munity. Thus, understanding the genetic underpinning of flowering time is critical for the

design of integrated management strategies. To study flowering time traits in B. tectorum, we

assembled a chromosome scale reference genome for B. tectorum. To assess the utility of the

assembled genome, 121 diverse B. tectorum accessions are phenotyped and subjected to a

genome wide association study (GWAS). Candidate genes, representing homologs of genes

that have been previously associated with plant height or flowering phenology traits in related

species are located near QTLs we identified. This study uses a high-resolution GWAS to

identify reproductive phenology genes in a weedy species and represents a considerable step

forward in understanding the mechanisms underlying genetic plasticity in one of the most

successful invasive weed species.
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B romus tectorum is the most abundant invasive weed in
North America. In the western United States, it is esti-
mated to infest 31.4% (210,000 km2) of the Great Basin1. It

is most notorious for and especially problematic in non-cropland
and rangelands of the intermountain west where B. tectorum
invasion has altered intervals between fires from at least 60 years
to less than 5 years2,3, exacerbating the degradation of ecosystems
caused by climate change1,4. Bromus tectorum is also a damaging
weed in agricultural crops, causing substantial yield loss in winter
wheat (Triticum aestivum L.) across a large proportion of the
western North American wheat producing region5.

The history of Bromus tectorum (L.) in North America is
proposed to have begun as the arrival of a small number of
founder genotypes from multiple introductions originating from
a wide range of native habitats in Eurasia6. Due to multiple
introductions of B. tectorum from Eurasia to North America the
overall genetic diversity in Eurasia is higher than in North
America but within populations the genetic diversity was higher
in North America because the North American populations of B.
tectorum are often a heterogenous mix of the introduced
genotypes6. The seed likely arrived in animal bedding, grain
contaminants, or it was imported intentionally as a potential
forage7. Bromus tectorum, known as cheatgrass or downy brome,
is predominantly a self-fertilizing, cleistogamous species, adapted
to multiple ecosystems in its native range8. Although the species
is distributed across North American ecosystems, the population
has retained genetic signatures that trace back to ancestral
populations and ecosystems6. Thus, the success of B. tectorum
invasiveness is due in large part to the diversity of these original
populations that exhibit substantial levels of plasticity in pheno-
logical traits. Plasticity allows individual B. tectorum plants to
establish them-selves in a locale by being pre-adapted to local
changes in the availability of in-season resources9, while popu-
lations of B. tectorum are composed of an assemblage of diverse
genotypes, facilitating success in response to long term and local
variation in climate10–12. Such adaptive variation in life cycle
traits13,14 hinders management efforts in both natural and agri-
cultural ecosystems. In short, B. tectorum individuals and popu-
lations express adaptive plasticity and, when expressed as earlier
and variable reproductive phenology, allow B. tectorum to out-
compete for limited resources at the expense of the native plant
community9. Where it successfully invades, B. tectorum germi-
nates and flowers early, facilitating access to limited resources,
usually moisture, well before the native vegetation or crops can
compete successfully for these resources15,16.

Phenotypic variation in B. tectorum for adaptive traits like the
aforementioned flowering time, but also seed dormancy and
vernalization are undoubtedly major drivers of B. tectorum’s
highly successful invasion across a wide variety of North Amer-
ican ecosystems13,15–17. In model and crop Poaceae species,
growth and flowering phenology is controlled by an array of light
and temperature sensitive gene pathways. Unfortunately, little is
currently known about the genetic basis of adaptive variation in
B. tectorum. Orthologous genes, such as FT (flowering time),
VRN1 (VERNALIZATION1), and VRN2 (VERNALIZATION2)
are likely contributing factors18. As a member of the Pooideae
subfamily in the Poaceae family, B. tectorum is closely related to
the Triticeae tribe, which includes the agriculturally important
species barley (Hordeum vulgare L.), wheat (Triticum aestivum L.)
and rye (Secale cereale L.)19,20. Thus, extensive genomic resour-
ces, including well annotated genomes, in these sister taxa are
available that will facilitate comparative genomics and gene dis-
covery efforts in B. tectorum.

Here we report a high-quality, annotated reference genome for
B. tectorum. We utilize the reference genome in a genome wide
association study (GWAS) to identify candidate genes for

reproductive phenology (days to first joint, days to first visible
panicle, days to first ripe seed and number of tillers) and plant
height—traits that are known to directly influence the success of
B. tectorum as an invasive weed species. Genome wide association
studies (GWAS) are particularly useful for dissecting complex
traits in species where controlled crossing is not practical or
possible21–25. Our study demonstrates a successful application of
GWAS for the identification of QTL controlling heritable
reproductive phenology traits in a weedy, highly invasive species.
The identification of candidate gene targets controlling important
climate and management adaptive characteristics underlying
these QTL suggests how B. tectorum might respond to climate
change, thus enabling the development enhanced and more
reliable management practices for this highly invasive and pro-
blematic weed species.

Results and discussion
Genome assembly. The Omni-C chromosomal assembly pro-
duced a near complete assembly for B. tectorum. The assembly
was 2,482 megabases (Mb) in total length (Supplementary
Table S1) with 1298 genes and 82% of the genome consisting of
repetitive elements (Supplementary Table S2). The contig N50
was 19.4 Mb, the scaffold N50 was 357.4, and the resulting
assembly contained 92.1% of the BUSCO genes with 259 gaps.
The final assembly had a L50 of four and a L90 of seven corre-
sponding to the seven chromosomes (x= 7) expected for mem-
bers of the Pooideae in the Poeae, Aveneae, Bromeae and
Triticeae tribes26.

Based on CDS comparisons using MCScanX27, the seven
largest scaffolds of the B. tectorum reference genome were found
to have a one-to-one syntenic relationship with the seven
chromosomes of the barley genome—not surprising given their
phylogenetic proximity. As expected, synteny between B.
tectorum and H. vulgare was highest in the chromosome arms
where gene density is known to be high and lowest though the
centromeric region where gene density is substantially reduced
(Fig. 1). A translocation is present between chromosomes two
and five where the first half of Bt5 has synteny with chromosome
two in barley and the second half of Bt2 has synteny with
chromosome 5 in barley (Fig. 1).

Phenotypic analysis. Broad Sense Heritability (Reliability), the
mean, standard deviation, min, max, and correlation of Best
Linear Unbiased Estimates (BLUEs) were calculated to char-
acterize the variation in traits and obtain a measure of the effect
of each genotype. The distributions of BLUEs for reproductive
phenology traits indicated a bimodal distribution (Fig. 2), where
more rapidly flowering and taller plants consisted of accessions
from Washington and GRIN collections. In contrast, Montana
accessions flowered later and were shorter (Supplementary
Data 1, Supplementary Data 2 and Fig. S1). Broad sense herit-
ability was high for all the traits and ranged from 0.94 for tiller
number to 0.99 for days to first visible panicle (VPN) (Table 1).
Genotypes had a wide range of BLUEs for all traits measured:
plant height (PH) ranged from 36.5 to 89 cm, number of tillers
ranged from 5.5 to 38.5, and days to first ripe seed (FRS) ranged
from 43.2 to 112.5 d (Table 1). Spearman correlations between
BLUEs of different reproductive phenology traits were all above
0.95 (Fig. 2). Reproductive phenology and PH traits were mod-
erately negatively correlated, with Spearman correlations ranging
from the −0.44 (PH and FRS) to −0.53 (PH and J1).

Genome-wide association mapping for height, tiller number,
and phenology traits. To identify regions of the genome asso-
ciated with variation in adaptive traits, a GWAS was performed
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on 121 genotypes to find QTL for PH, VPN, days to first visible
joint (J1), FRS, days to 50% ripe seed (AWN50) and tiller number
using BLINK with three principal components and significance
threshold of 0.05 after multiple testing correction. Nineteen QTLs
were significantly (q < 0.05) associated with PH and reproductive
phenology, with one QTL for PH (1), nine QTL for VPN (9),
three QTL for J1 (3), nine QTL for FRS (9), and three QTL for
AWN50 (3). A QTL on Bt6 (Bt6:8628087) was significant
(q < 0.05) for all the reproductive phenology related traits except
J1, where a second significant (q= 2.070E-07) QTL for J1 was at a
nearby position (Bt6:8417488) on Bt6 (Table 2). The QTL on Bt1
(Bt1:276755111) was significant (q < 0.05) for J1, FRS, and
AWN50 (Table 2). QTLs on Bt2 (Bt2:9403921) and Bt7
(Bt7:347158582) were significantly (q < 0.05) associated with
VPN and FRS (Table 2).

Plant height. We identified a QTL that was significantly
(q= 1.360E-05, Table 2) associated with PH on Bt6:301800092.
The QTL explained 16.9% (Table 2) of the phenotypic variation.
The MAF at the PH QTL on Bt6 was 0.44, indicating both allelic

states are common in our panel. Searching the area flanking the
QTL associated with PH at Bt6:301800092 on both sides by up to
500 Kb revealed a homolog of Xanthine Dehydrogenase (XDH)
29 Kb from the QTL and a homolog of Indole-3-pyruvate
monooxygenase YUCCA6 (YUC6) 242 Kb from the QTL
(Table 3). XDH and YUC6 are promising candidate genes for the
QTL associated with PH we identified on Bt6 as they both are well
document to be associated with changes in PH, senescence, and
response to drought28,29. In rice (Oryza sativa L.), overexpression
of the XDH homolog led to increased PH while under-expression
of the XDH homolog resulted in reduced PH28, indicating that
homologs of XDH would be fitting candidate genes for PH.
Indeed, in rice, a GWAS identified XDH as a candidate gene for
coleoptile length in response to flooding30 indicating XDH
homologs may be involved with stem elongation in grasses and
thus PH. Furthermore, in Arabidopsis knock-out mutations of
the XDH gene led to reduced PH31. Knock-out mutations of the
YUC6 gene in Arabidopsis was found to increase auxin produc-
tion in the shoots leading to reduced PH32. Further investigation,
including gene expression experiments and/or knockout of the
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Fig. 1 Circos synteny plot depicting the synteny between the Bromus tectorum draft reference genome and a previously published barley genome.
Strips and barley chromosomes colored in reference to the corresponding barley chromosomes. Histograms above B. tectorum chromosomes are coded
black for gene density and red for telomere repeats for each 1Mb window of the chromosome.
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XDH gene homolog in B. tectorum, is needed to validate and
further understand the underlying genetics controlling the large
effect QTL for PH.

Unexpectedly, PH and reproductive phenology timing were
negatively correlated, contradicting previous findings that PH and
reproductive phenology were positively correlated (i.e., earlier
flowering plants do not have as much time to grow)33–35. Lolium
perenne (L.) was also found to have a negative genetic correlation
between PH and flowering time36. The negative correlation was
thought to be the result of selection imposed by grazing, where
biological fit plants remained short until they were ready to flower
at which point they elongated and flowered quickly37. Bromus

tectorum may also be under similar grazing selection pressure38.
Competition with crops could also select for taller, fast-growing
phenotypes to facilitate competition for space.

Although only a single QTL was uncovered by the GWAS for
PH in B. tectorum, there is likely many QTL of small effect that
GWAS model did not have the statistical power to detect. When
GWASs were used to uncover variants associated with complex
diseases in humans, the QTLs identified only explained a fraction
of the variation compared to what was expected based on
heritability estimates39, becoming known as “the missing
heritability problem”. Because the missing heritability problem
is caused by a lack of power to detect causal variants and by
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Fig. 2 Distributions, Spearman correlations, and scatter plots of the genotype BLUEs for height (cm), number of tillers, days until first panicle (VPN),
days until 50% rip seed (50%), days until first joint (J1), days until first ripe seed (FRS) used in the GWAS analysis. Histograms with density ticks and
a smoothing line are on the diagonals. The upper diagonal contains the Spearman correlation between BLUEs of traits with “***” denoting a significant level
(p < 0.0001) of correlation between traits, where N= 121 genotypes. The lower diagonal contains scatter plots between traits with center dot, a centroid
with a standard deviation of 1 and locally estimated scatterplot smoothing (LOESS) smoothing curve.

Table 1 Description of the variation and consistency of phenotypic data across lines in greenhouse trials.

Trait H2 BLUEµ BLUEsd BLUEmin BLUEmax

Height 0.96 65.57 9.82 36.5 89
Tillers 0.94 2.88 (19.05) 0.37 1.70 (5.5) 3.65 (38.5)
VPNa 0.99 3.22 (27.89) 0.49 1.48 (4.41) 4.28 (72.00)
J1b 0.98 3.58 (38.70) 0.38 0.38 (18.50) 4.43 (83.77)
FRSc 0.96 4.12 (62.94) 0.2 3.76 (43.15) 4.72 (112.5)
AWN50

d 0.97 4.23 (70.46) 0.21 3.89 (70.46) 4.77 (118.1)

Mean (BLUEµ), standard deviation (BLUEsd), minimum (BLUEmin), and maximum (BLUEmax) of best linear unbiased estimates (BLUE) and reliability (H2) of the phenotypic traits measured in the
greenhouse.
aDays to first visible panicle.
bDays to first visible joint.
cDays to first ripe seed.
dDays to 50% ripe seed.
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inflated measures of heritability, increasing the sample size can
partially resolve the heritability problem by increasing the power
to detect causal variants. In Atlantic salmon (Salmo salar L.), an
initial GWAS for age at maturity with a sample size of 1518 only
detected a single QTL that explained 39% of the variation in age
at maturity40. However, a subsequent GWAS study for age at
maturity in S. salar with a sample size 11,166 uncovered the same
QTL previously identified along with 115 other QTLs with
smaller effect sizes and low MAFs41. If subsequent GWASs are
performed for PH in B. tectorum, then substantially increasing
the number of genotypes in the GWAS would likely uncover
smaller effect loci contributing to PH.

Phenology traits. Flowering time is an important adaptive trait for
ensuring the survival of plants in a broad range of climates, often
driving local adaptation42–44. In predominantly self-fertilizing
species, large effect QTLs control the variation in flowering
time45,46, in contrast to maize where flowering time is controlled by
many QTL of small effect47. Here, we phenotyped four traits (VPN,
J1, FRS, AWN50) associated with flowering time to facilitate a
GWAS to identify candidate reproductive phenology genes. Days
to first visible panicle (VPN) was the first reproductive phenology
stage observed and had the highest heritability at 0.99 (Table 1).
The largest effect estimated for a significant (q= 3.630E-07) QTL
for VPN was found at Bt7:70795764, explaining 16.3% of the
variation in VPN with a MAF of 0.26. The eight-remaining sig-
nificant (q < 0.05) QTL on Bt3 (Bt3:2025814), Bt4 (Bt4:382636922),
Bt6 (Bt6:8628087), Bt7 (Bt7:347158582), Bt2 (Bt2:9403921), Bt3
(Bt3:383345273), Bt3 (Bt3:324738958) and Bt3 (Bt3:324739133)
explained 4.3, 4.3, 2.9, 4.7, 3.3, 3.8, 3.4 and 3.4% of the phenotypic

variation, respectively, with MAF ranging from 0.2 to 0.49
(Table 2). Small to moderate effect QTL were also underlying the
emergence of panicles from the flag leaf in barley48 with the PVE of
QTLs ranging from 1 to 13%.

Developmentally, days to first joint (J1) was the second
reproductive phenology trait to occur. Three significant (q < 0.05)
quantitative trait loci (QTL) were associated with J1. The QTL at
Bt6 (Bt6:8417488; q= 2.070E−07) was 12 Kb from a homolog of
Heading Date Repression 1 (HDR1) and explained 6.7% of the
phenotypic variation with an MAF of 0.35 (Tables 2, 3). The QTL
at Bt1 (Bt1:276755111; q= 3.870E−05) explained 8.1% of the
phenotypic variation with a MAF of 0.2. The other QTL on Bt1
(Bt1:169814345; q= 1.909E−03) explained 4.2% of the pheno-
typic variation and had an MAF of 0.35. Although no previous
studies have directly mapped genes for time of the visible first
joint in a grass species, the high correlations between reproduc-
tive phenology traits (Fig. 2) indicate that the genetic architecture
of J1 in B. tectorum should be like the genetic architecture of
other reproductive phenology traits. A QTL mapping study in
Panicum hallii (Vasey), a perennial primarily self-fertilizing grass
species native to the Southwestern United States, revealed only
two QTL controlling flowering time with PVEs of 6.4 and 7.449,
indicating that moderate effect QTL like those found underlying
J1 may be underlying reproductive phenology traits in wild
populations of self-fertilizing grasses.

The next developmental stage was first ripe seed (FRS). Days to
first ripe seed was associated with nine significantly (q < 0.05)
associated QTL. The leading QTL located on Bt7 (Bt7:347158582;
q= 1.360E−05) explained 7.2% of the phenotypic variation of
FRS and was common (MAF= 0.29) (Table 2). The remaining
QTLs on Bt7 (Bt7:347158582; q= 5.280E−09), Bt1 (Bt1:173453

Table 2 Marker-trait associations detected by BLINK for plant height (PH) first ripe seed (FRS), first visible panicle (VPN), or
50% ripe seed (AWN50); the marker the trait appears to be associated with; the minor allele frequency (MAF), the percent of
variation explained by the QTL, and the P-value of the SNP after FDR correction for multiple testing.

Trait Genetic marker Minor allele frequency Variation explained (%) P-value

PHa Bt6:301800092 0.44 16.9 1.360E−05
FRSb Bt7:347158582 0.29 7.2 5.280E−09
FRS Bt1:173453655 0.16 1.4 1.582E−04
FRS Bt1: 39144935 0.22 1.8 1.786E−04
FRS Bt3:48964562 0.21 1.2 1.786E−04
FRS Bt1:276755111 0.2 4.1 2.823E−04
FRS Bt2:9403921 0.25 1.9 4.166E−04
FRS Bt4:382201414 0.058 0.6 1.026E−03
FRS Bt3:4974562 0.15 4 1.836E−03
FRS Bt6:8628087 0.2 2.3 4.110E−02
VPNc Bt7:70795764 0.26 16.3 3.630E−07
VPN Bt3:2025814 0.31 4.3 8.210E−07
VPN Bt4:382636922 0.42 4.3 1.920E−05
VPN Bt6:8628087 0.2 2.9 4.830E−03
VPN Bt7:347158582 0.29 4.7 1.046E−02
VPN Bt2:9403921 0.25 3.3 3.485E−02
VPN Bt3:324738958 0.45 3.8 3.797E−02
VPN Bt3:324739133 0.49 3.4 3.797E−02
VPN Bt3:383345273 0.49 3.4 3.797E−02
AWN50

d Bt1:276755111 0.2 6.5 6.760E−05
AWN50 Bt5:348443767 0.37 5.6 1.637E−04
AWN50 Bt6:8628087 0.2 4.8 5.973E−03
J1e Bt6:8417488 0.35 6.7 2.070E−07
J1 Bt1:276755111 0.2 8.1 3.870E−05
J1 Bt1:169814345 0.35 4.2 1.909E−03

aPlant height.
bDays to first ripe seed.
cDays to first visible panicle.
dDays to 50% ripe seed.
eDays to first visible joint.
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655; q= 1.582E−04), Bt1(Bt1:39144935; q= 1.786E−04), Bt3
(Bt3:48964562; q= 1.786E−04), Bt1 (Bt1:276755111; q= 2.823E
−04), Bt2 (Bt2:9403921; q= 4.166E−04), Bt4 (Bt4:382201414;
q= 1.026E−03), Bt3 (Bt3:4974562; q= 1.836E−03) and Bt6
(Bt6:8628087; q= 4.110E−02) explained 1.4%, 1.8%, 1.2%,
4.1%, 1.9%, 0.6%, 4.0% and 2.3% of the variation, respectively
(Table 2). The MAF of QTL associated with FRS were lower than
those identified for the other reproductive phenology traits,
varying from 0.058 to 0.29.

In Erythranthe laciniata (A. Gray), a self-fertilizing dicot plant
species, populations along an altitudinal gradient differed in their
times to FRS with populations from low elevations having the
earliest FRS dates and high-elevation populations having the
latest FRS dates50. The differences in the FRS phenotype between
populations of E. lacinata are likely driven by moderate to large
effect QTL controlling other reproductive phenology trait with
PVEs ranging from 9 to 39%51, exceeding the effect sizes
identified for FRS in B. tectorum (Table 2). However, the QTL
mapping study in E. laciniata included both genotypes that
require and do not require vernalization51. The GWAS study
presented here only included B. tectorum genotypes that required
vernalization, thus major QTL associated with vernalization
would not be present. The lack of variation in vernalization genes
in the B. tectorum genotypes used for the GWAS could explain
the absence of large effect QTL underlying FRS in B. tectorum.

The final developmental reproductive phenology trait to occur
was AWN50, resulting in three significant associations (q < 0.05).
The leading QTL on Bt1 (Bt1:276755111; q= 6.760E−05)
explained 6.5% of the phenotypic variation and had a MAF of
0.2 (Table 2). The other two QTL were located on Bt5
(Bt5:348443767; q= 1.637E-04) and Bt6 (Bt6:8628087;
q= 5.973E−03) explaining 5.6% and 4.8% of the phenotypic

variation with MAFs of 0.37 and 0.2, respectively. Although no
previous studies have mapped genes for AWN50, the high
correlation with other reproductive phenology traits likely means
that the genetic architecture underlying the traits will be similar.

Although phenotypic Spearman correlations between repro-
ductive phenology traits are all above 0.95 (Fig. 2), and there is
overlap in the QTLs detected (Table 2), the number of
associated QTL detected varied from three to nine for
reproductive phenology traits (Table 2). The most likely
explanation is that slight differences in the phenotype are great
enough to change the p-values for association of QTL with a
trait. In maize, a study revealed nine QTLs for growing degree
days (GDD) to silk while one of the QTL identified for GDD to
silk was the only QTL identified by the GWAS for GDD to
tassel52, indicating that it is possible for correlated reproductive
phenology traits to yield different number of QTL. Further-
more, the GWAS study presented here uses the GWAS method
BLINK, a multi-locus iterative GWAS model53. The process of
BLINK iteratively updating the model and recalculating
p-values means that if the traits are differing, even by a small
amount, that different sets of QTLs could be selected early on to
build the statistical model used for significance testing thus
leading to substantially different sets of QTL being identified for
the two correlated traits.

Survey of candidate genes associated with phenology. Seventeen
genes were identified as punitive candidates for reproductive
phenology traits, based on their proximity to QTL (within a
500 Kb interval, spanning 250 Kb on either side of the SNP) and
previous functional characterization related to specific phenolo-
gies. The most promising of these genes is a homolog of HDR1.
The proximity of a homolog of HDR1 with QTL from all the
maturity-related trait analyzed suggests that HDR1 influences
maturation in B. tectorum. In O. sativa, HDR1 promotes Heading
date 1 (Hd1) and represses Early heading date 1 (Ehd1) delaying
flowering54. Knockout mutations or RNA interference of HDR1
resulted in rice plants that flowered 30 days earlier in long day
light conditions, making HDR1 a promising candidate gene for
reproductive phenology traits54.

Multiple candidate genes were identified for several reproduc-
tive phenology-associated QTL, indicating multiple genes may
underlie reproductive phenology in B. tectorum. The QTL on Bt2
(9403921) associated with VPN and FRS was 13, 29 and 133 Kb
from homologs of ABC transporter B family member 19
(ABCB19), Cullin-3A (CUL3A), and Gibberellin 20 oxidase 2
(GA20OX2), respectively. Loss of function mutations in ABCB19,
CUL3A, and GA20OX2 led to longer flowering times, indicating
all three promote advancement of reproductive phenology55–57.
Coincidentally, a gene near another QTL associated with FRS is
known to interact with GA20OX2. The QTL on Bt1 (173453655)
associated with FRS was 78Kb from orthologs of FAR1-RELATED
SEQUENCE 5 (FRS5), a punitive transcription factor regulating
far-red light control of development58, associated with adaptation
to photoperiod59, and dehydration-responsive element-binding
protein 1 F (DREB1F), a putative transcription factor, when
upregulated, represses gibberellic acid (GA) biosynthesis cata-
lyzed by GA20OX genes. The upregulation of DREB1F causing
shorter plants with delayed flowering60, indicates that DREB1F
and GA20OX can act in an epistatic manner to control
reproductive phenology. A likelihood ratio test of the interaction
between the FRS QTLs on Bt2 (9403921) and Bt1 (173453655)
revealed epistasis is likely (X2= 3.71 df= 1, p= 0.054), indicating
DREB1F and GA20OX are interacting to control FRS in an
epistatic manner. The epistatic interaction also indicates further
that DREB1F and GA20OX are likely the genes actively

Table 3 Candidate genes within 250 kbp of SNP identified
by GWAS, with two ortholog species Arabidopsis thaliana
and Oryza sativa.

Trait(s) Gene Ortholog
Species

Associated SNPa Distance
From
SNP (Kb)

PHb XDH O. sativa Bt6_301800092 29
PH YUC6 A. thaliana Bt6_301800092 242
FRSc, VPNd FHY3 A. thaliana Bt7_347158582 149
VPN FRS7 A. thaliana Bt3_383280959 64
FRS, VPN FRS6 A. thaliana Bt7_347158582 147
FRS FRS5 A. thaliana Bt1_173453655 78
FRS DREB1F O. sativa Bt1_173453655 236
FRS CKX2 O. sativa Bt3_48964562 55
FRS, VPN CUL3A A. thaliana Bt2_9403921 29
FRS, VPN ABCB19 A. thaliana Bt2_9403921 13
FRS, VPN GA20OX2 O. sativa Bt2_9403921 133
FRS, VPN,
AWN50

e
HDR1 O. sativa Bt6_8628087 212

J1f HDR1 O. sativa Bt6_8417488 12
VPN PHL A. thaliana Bt3_2025814 240
VPN BPM1 A. thaliana Bt3_2025814 120
VPN BPM2 A. thaliana Bt3_2025814 177
VPN UVR8 A. thaliana Bt3_324738958 113
VPN UFC A. thaliana Bt3_324738958 64
VPN VIP2 A. thaliana Bt3_324738958 189

aSingle nucleotide polymorphism.
bPlant height.
cDays to first ripe seed.
dDays to first visible panicle.
eDays to 50% ripe seed.
fDays to first visible joint.
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controlling FRS at the QTL on Bt2 (9403921) and Bt1
(173453655).

The QTL associated with VPN on Bt3 (2025814) was 120Kb,
177Kb and 240Kb from homologues of BTB/POZ and MATH
domain-containing protein 1 (BPM1), BTB/POZ and MATH
domain-containing protein 2 (BPM2) and PHYTOCHROME-
DEPENDENT LATE-FLOWERING (PHL), respectively. PHL
triggers flowering under long-day conditions by repressing the
phytochrome b (PHYB) and the constans (CO) genes61. BPM1
and BPM2 are transcription factors of the BTB/POZ and MATH
domain-containing protein (BPM) gene family and are involved in
regulating flowering time by making proteins that are part of the
Cullin E3 ubiquitin ligase complexes that include CUL3A62. A
likelihood ratio test did not detect epistasis (X2= 0.02, df= 1,
p= 0.901) between the QTL on Bt2 (9403921) near CUL3A and
the QTL on Bt3 (2025814) near BPM1 and BPM2.

A QTL on Bt3 (324738958) associated with VPN was located
64Kb, 113Kb and 189Kb from homologs of UPSTREAM of FLC
(UFC), Ultraviolet-B receptor 8 (UVR8) and Early Flowering 7
(VIP2), respectively. UVR8, VIP2 and UFC are involved with the
regulation of Flowering Locus C (FLC) in A. thaliana63–65,
suggesting one mechanism maintaining genetic variation in B.
tectorum flowering time is the regulation of FLC expression.
Homologs of four genes in the FHY3/FAR1 gene family were near
QTL found associated with maturity traits indicating the FHY3/
FAR1 gene family is part of a mechanism maintaining variation in
maturity traits in B. tectorum. Homologues of FHY3 and FRS6
were found 147 and 149 Kb from a QTL on Bt7 (Table 3),
respectively. A homologue of FRS7 was near the QTL on Bt3
associated with VPN (Table 3) FRS5 discussed earlier is also
member of the FHY3/FAR1 gene family. The FHY3/FAR1 gene
family is comprised of 14 homologous genes, regulating
transcription as a response to far red light58. FHY3, FRS6, FRS7
have been demonstrated to regulate flowering time in A.
thaliana58,66,67 making members of the FHY3/FAR1 good
candidate genes for maturity traits.

In addition, a Cytokinin Dehydrogenase 2 (CKX2) homolog was
identified as a candidate gene for the QTL at Bt3:48964562
associated with FRS. CKX2 catalyzes the oxidation of
cytokinins68. Cytokinins have been shown to regulate flowering
time via transcriptional activation of Twin Sister of FT (TST)69

and overexpression in members of the Cytokinin Dehydrogenase
(CKX) gene family have shown to delay flowering time in long
day conditions68 indicating that the CKX2 homolog could be
controlling maturity traits through the regulation of cytokinins in
B. tectorum.

Implications of the reference genome and phenology GWAS.
The reference quality genome we have assembled is an invaluable
resource for understanding the fundamental genetic controls that
have facilitate one of the most successful invasive weeds in North
America. Understanding the genetic basis of adaptive traits in B.
tectorum will lead to improved management strategies. Using the
genome we explored the genetic underpinnings of reproductive
phenology traits in B. tectorum, revealing pathways and
mechanisms contributing to adaptive plasticity which directly
contributes to the species invasive spread across a wide range of
environments. Indeed, our GWAS uncovered genetic mechan-
isms contributing to plasticity within the species. We identified
QTL for maturity traits that were near candidate genes respon-
sible for controlling the photoperiod pathway, plant hormone
regulation, and transcription factors triggered by far-red or
UV light.

Our study indicates that not only is the genome very similar to
barley (Fig. 1), but the adaptive control of reproductive phenology

also closely mirrors barley. Both domesticated and wild barley are
adapted to latitudinal clines, where reproductive phenology is
controlled by genes responding to environmental cues70. Our
identification of a GA20OX ortholog as a candidate gene for
reproductive phenology corroborates previous work, where
GA20OX loss of function was found to reduce PH and delay
flowering35,71,72. Interestingly, GA20OX orthologs are semi-
dwarfing genes implicated in the green revolution73. The semi-
dwarfing gene we identified as a candidate gene could also explain
the negative correlation between reproductive phenology traits
and PH. In addition, wild barley was found to adapt using
variation in photoperiod response genes70, supporting our
findings where the FHY3/FAR1 photoperiod receptor gene family
was implicated in controlling reproductive phenology.

Although GA20OX is a known controller of PH, its homolog
was not identified by the GWAS as associated with PH. Plant
height is an adaptive trait with large effect QTL conserved for
maintaining phenotypic variation within in and between species
of Poaceae74. However, GWASs for PH in predominantly self-
fertilizing grass species have revealed variable effect sizes of the
leading QTLs (QTL with highest PVE for a trait in a GWAS)
between species, ranging from 1 to 23%75–77, demonstrating that
the genetic architecture of plant height varies among self-
fertilizing grass species. Our study indicates that B. tectorum
uses at least one moderate to large effect locus to control PH as
we only identified a single locus explaining 16.9% of the
phenotypic variation. If mutations in B. tectorum are slightly
deleterious then it would be expected that B. tectorum would need
to use a small number of large effect QTL to facilitate local
adaptation in the presence of divergent stabilizing selection78.
Thus, the identification of the single moderate to large effect locus
for PH may indicate the presence of deleterious mutations and
divergent stabilizing selection between locales in B. tectorum,
although further experiments would be needed to validate the
selection and deleterious mutations imposed on B. tectorum. The
homologs of XDH and YUC6 as candidate genes reflected the
involvement of stress response and hormonal regulator genes
controlling PH as found in other phylogenetically proximal
grasses, such as wheat28, barley29, and oats30.

Our study indicates B. tectorum is armed with a complex array
of genetic mechanisms to create adaptive variation underlying
reproductive phenology and PH which has facilitated its invasion
into N. America and suggests that it is likely to continue to spread
north into western Canada as climate change facilitates range
expansion79. Identifying candidate FHY3, FRS5, FRS6, FRS7,
ABCB19, UVR8, and PHL genes that all act in response to light
stimulus indicate that photoreceptor genes are critical for
controlling variation in flowering time in B. tectorum. Photo-
receptors controlling reproductive phenology will result in
phenotypic plasticity because light signals of the environment
will influence the underlying pathways80. Genetic control of traits
was quite high, ranging from 0.99 to 0.94 for VPN and tiller
number, respectively.

Furthermore, our results indicated the presence of small to
moderate effect QTL controlling reproductive phenology traits,
rather than singular large effect loci. The high heritability and
moderate effect QTL detected for adaptive traits indicate that B.
tectorum has already been adapting and will continue to adapt to
a wide range of environments utilizing moderate-sized QTL—as
genetic recombination is very rare. Further investigation into the
plasticity and regulation of flowering time in B. tectorum is
needed to understand how local populations respond to stress or
climate variation, and how the genetic variation we have
discovered confers success in the arid, dry southern reaches of
the American southwest and northern Mexico north to western
Canada.
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Methods
Plant Material and DNA extraction for whole genome sequencing. For whole
genome assembly, a single plant from the B. tectorum accession (FMH10) was
grown hydroponically in an isolated, disease-free growth chamber under a 12-h
photoperiod. Growing temperatures ranged from 18 °C (night) to 20 °C (day). The
hydroponic growth solution was based on MaxiBloom® Hydroponics Plant Food
(General Hydroponics, Sevastopol, CA, United States) at a concentration of 1.7 g/L.
FMH10 is a common clade accession11. In preparation for PacBio CLR sequencing,
high molecular weight DNA was extracted from 72-h dark-treated leaf samples
using a CTAB-Qiagen Genomic-tip protocol as described by Vaillancourt and
Buell81.

Whole genome sequencing. For whole-genome sequencing, large-insert
SMRTBell libraries (>20 kb), selected using a SageElf (Sage Science, Inc., Beverly,
MA, USA), were prepared according to standard manufacture protocols and
sequenced at the BYU DNA Sequencing Center (Provo, UT, USA) using P6-C4
chemistry on a Sequel II instrument (Pacific BioSciences, Menlo Park, CA, USA).
For whole genome polishing, DNA was sent to for Illumina HiSeq (2 × 150 bp)
sequencing from standard 500‐bp insert libraries. Trimmomatic v0.3582 was used
to remove adapter sequences and leading and trailing bases with a quality score <
20 or with an average per-base quality of 20 over a four-nucleotide sliding window.
After trimming, any reads shorter than 75 nucleotides in length were removed.
Raw PacBio and Illumina reads have been deposited in GenBank.

Genome assembly, polishing, and Hi-C scaffolding. A primary assembly of B.
tectorum accession FMH10 was constructed using Canu v1.983 with default
parameters (corMhapSensitivity= normal and corOutCoverage= 40). The pri-
mary assembly was polished twice with Illumina short reads using Arrow from the
GenomicConsensus package in the Pacific BioSciences SMRT portal v5.1.0 fol-
lowed by a single round of insertion/deletion correction using PILON v0.2284. The
average read depth for the genome assembly was 68.6. Fresh leaf tissue from a
single 3-week-old FMH10 plant was sent to Dovetail Genomics LLC (Santa Cruz,
CA, USA) in preparation for construction of an Omni-C™ proximity-guided final
chromosome-scale assembly. The Omni-C™ technology uses an approach to Hi-C
library preparation via DNA digestion with a non-specific endonuclease to increase
uniformity and genomic coverage (https://dovetailgenomics.com/omni-c/). The
libraries were prepared using a standard Illumina library prep followed by
sequencing on an Illumina HiSeq X in rapid run mode. The HiRiSE™ scaffolder and
the Omni-C™ library-based read pairs were used to produce a likelihood model for
genomic distance between read pairs, which was used to break putative miss-joins
and to identify and make prospective joins in primary contig assembly to produce
the final chromosome scale reference assembly.

GWAS plant materials collection. Bromus tectorum genotypes were obtained
from Genome Resources Information Network (GRIN), field samples in eastern
Washington collected by Jon Witkop and Amber Hauvermale in 2015 as part of the
“Regional Approaches to Climate Change for Pacific Northwest Agriculture” a
multi-disciplinary project that aims to mitigate the impacts climate change has on
agriculture85, and samples from natural areas in Montana (contributed by Lisa
Rew, Montana State University) with 11, 64, and 46 samples, respectively. Each
genotype was grown for one generation in the greenhouse to increase seed and
verify purity. Six replicates of each line were vernalized at 4 °C with 10 h light
per day for 53 d, then planted in 1.4-liter square pots. Supplemental lighting was
used to keep day lengths at least 15 h per day.

Phenotyping. Plants in the greenhouse were observed daily to record reproductive
phenology-associated phenotypes. The phenotypes measured included days until
first panicle visible (VPN, Feekes 10.1), days to first joint (J1, Feekes 6), days until
first mature seed (FRS), days until 50% of seeds dry with awns angled outward
(AWN50), number of tillers, and height of the tallest panicle (PH). Number of
tillers were counted for each plant at the end of the experiment before harvest. The
height of the tallest panicle was measured in centimeters, measuring from the base
of the plant to the tip of the longest panicle.

GWAS DNA extraction and resequencing. DNA was extracted using a bromide
CTAB protocol as previously described86. Samples were diluted to a 50 ng/µl
concentration. Genotyping by sequencing libraries were prepared for each sample
by LGC Genomics (Berlin, Germany) following Elshire et al.87 using the Msl1
restriction enzyme. Barcode adapters were ligated to each sample and the samples
were put into 48-plex library plates. The polymerase chain reaction was used to
amplify samples on the plates which were then sequenced using a single lane of
Illumina NextSeq 500 V2. Approximately 1.5 million (2 × 150 bp) reads were
generated per sample.

After sequencing, all the library groups were de-multiplexed with bcl2fastq
v2.17.1.14 (https://support.illumina.com/sequencing/sequencing_software/
bcl2fastq-conversion-software.html) software allowing for up to two mismatches
on the barcodes. Library groups were de-multiplexed further into separate samples
according to the inline barcodes, where no mismatches were allowed. The adapter
barcodes were clipped and reads <20 bases in length were discarded as were any

reads where the 5′ end did not match the restriction enzyme cutting motif. Reads
were quality trimmed from the 3′ end so that the average Phred quality score across
ten neighboring bases >20.

GWAS SNP calling. De-multiplexed filtered reads for each sample were aligned to
the de novo reference genome using BWA mem88 with default settings for paired
end reads. SAM files generated from the alignments were converted to BAM files
and sorted using SAMTOOLS89. The mpileup and call functions from Bcftools90

were used to call SNPs. The vcf file generated from Bcftools was filtered so only
SNP variants were kept, minor allele frequency (MAF) > 0.05, Missing Alleles <25%
and a QUAL score of at least 30 for each SNP, using Bcftools89. Although the vcf
file was not explicitly filtered for read depth, read depths were adequate with a
minimum read depth of 54 and a median read depth of 808. Scripts in R statistical
programming language were used to read the vcf file into an allelic dosage table and
filter out markers with more than two alleles or more than 5 heterozygous calls (B.
tectorum is an autogamous species). Missing calls were imputed with a kth nearest
neighbor imputation using the “impute” package91 from the Bioconductor
project92 in the R statistical programming language93.

Linkage-disequilibrium. Linkage-disequilibrium (LD) was calculated on a pairwise
basis between SNP on the same chromosome within 3 Mb using 1500 randomly
sampled SNP from each chromosome. LD, measured as r2sv, was calculated using
the method described by Mangin et al.94, that calculates the Pearson correlation
between SNP but corrects for population structure and kinship in LD calculations
implemented in the “LDcorSV” R package95. A genomic kinship matrix was esti-
mated from the SNP data using the method from VanRaden96 implemented in
GAPIT97. Landscape and Ecological Analysis (LEA)98 was used in R to determine
the optimal number of ancestral groups, and then calculate the admixture of each
of these ancestral groups. Values of K, ranging from 1 to 20, were evaluated using
the snmf function in LEA for cross entropy in ten replications and the lowest K
near the lowest cross entropy was selected as the optimal K. The kinship matrix
and population components from snmf described above were used with LDcorSV
to correct for population structure, with distances above 3 Mb being discarded. The
data from all the chromosomes was pooled together after filtering SNP by distance.
The nlrq function of the quantreg R package99 was used estimate an asymptotic
decay by physical genetic distance for the 90th percent quantile of LD values. The
LD decay was defined as the distance required for the LD (90th percent quantile of
corrected r2) to drop from its initial starting point to half-way between the starting
point and the lower asymptotic limit (LD90,1/2). LD90,1/2 as a measure was found by
simulation to be a more accurate estimate then r2= 0.1 as a measure of LD
decay100.

GWAS analysis. GWAS was performed using the Bayesian-information and
Linkage-disequilibrium Iteratively Nested Keyway (BLINK) algorithm53 with the
BLUEs for each phenotype as the response variables and the numeric SNP matrix
as the genetic data. BLINK was ran using the GAPIT package97 in R. Three
principal components were chosen to be included as a covariate in the BLINK
which represented the smallest number of principal components that controlled
inflation on the P-P diagnostic plots generated by GAPIT. Potential candidate
genes within a 1 Mb window, based on LD (Fig. S2) for each of the genomic regions
identified in the GWAS analysis were manually identified from the previously
described annotated gene set with functional annotations indicating association
with maturity traits.

Transcriptome assembly and genome annotation. RNA-Seq data (2 × 150 bp
Illumina reads), derived from a bulk tissue sample consisting of 7-d old seedlings
and leaf, roots, and stems from hydroponically grown B. tectorum (FMH10) plants,
was trimmed using Trimmomatic72 and aligned to Omni-C reference assembly
using HiSat2 v2.0.4101 with default parameters and max intron length set to
50,000 bp. The resulting SAM file was sorted and indexed using SAMtools v1.689

and assembled into putative transcripts using StringTie v1.3.4102. The quality of the
assembled transcriptome was assessed relative to completeness using BLAST
comparisons to the reference Brachypodium distachyon L. (ftp://ftp.
ensemblgenomes.org/pub/plants/release-37/fasta/brachypodium_distachyon/pep/).

Prior to annotation with MAKER2 v2.31.10103, RepeatModeler v1.0.11104 and
RepeatMasker v4.0.7105 were used to identify repetitive elements in the final
reference assembly, relative to RepBase libraries v20181026; www.girinst.org.
Transcriptome evidence for the annotation included the de novo transcriptome for
B. tectorum as well as the cDNA models from Brachypodium distachyon (v 1.0;
Ensembl genomes). Protein evidence included the uniprot-sprot database
(downloaded September 25, 2018) as well as the peptide models from B. distachyon
(v 1.0; Ensembl genomes). Repeats within the reference assembly were masked
based on the species-specific sequences produced by RepeatModeler. For ab initio
gene prediction, B. tectorum-specific AUGUSTUS gene prediction models were
provided to MAKER as well as rice (Oryza sativa L.)-based SNAP models.
Benchmarking Universal Single-Copy Orthologs (BUSCO) v3.0.2106 was used to
assess the completeness of the final assembly using the Embryophyta odb10
dataset, with the “–long” argument.
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Syntenny analysis was performed using McScanX27 with results of a pBlast with
default settings between the predicted genes of our OMNI-C B. tectorum and the
barley reference genome. Gene density was calculated for each 1Mb window of the
B. tectorum reference genome. Telomere density was also calculated for 1Mb
windows using the Blast results between the nucleotide sequence of the B. tectorum
reference genome and “TTAGGG” the telomeric repeat of most plant species107

repeated four times. Custom Python code was used to create simplified GFF files to
run McScanX and format the results for creating a circle plot. Circos108 was used to
create a circle plot using the results from the protein blast between barley and B.
tectorum.

Statistics and reproducibility. Three replicates, or blocks, were placed in one of
two greenhouses with the same N= 121 genotypes in each. The plants were
arranged in a completely randomized block design, with each block grown on a
separate greenhouse bench. linear mixed effect (LME) and generalized linear mixed
effect (GLME) models were fit using the “lme4” R package109 using lmer and glmer
functions, respectively. LMEs were used for traits that are continuous measure-
ments, GLMEs with a sqrt link function were used for count data. The linear model
for the LME is:

yijk ¼ μþ gi þ βðEÞjk þ Ek þ ðgEÞik þ ϵijk ð1Þ

Genotype ∼ N (0, σ2g)
Block within Greenhouse ~ N (0, σ2β(E))
Greenhouse ~ N (0, σ2E)
Genotype × Greenhouse ~ N (0, σ2 (gE))
Error ~ N (0, σ2ε)
Where yijk the phenotype, µ is the mean, gi is a random effect due to genotype,

β(E)jk is a random effect of the block within greenhouse, Ek is the random effect of
greenhouse, and ∈ijk is the error term. Broad Sense Heritability for each trait was
estimated according to Cullis et al.110.

H2 ¼ 1� �vBlup
2σ2g

ð2Þ

where �vBlup is the mean variance of a difference of two blups and σ2g is the
variation of the random effect for genotype. For count data where a generalized
mixed linear model was used heritability was calculated in the latent (transformed)
distribution. BLUEs were calculated for the GWAS using the model for heritability
modified to have genotype set as a fixed effect instead of a random effect, and a log
link function instead of square root link function.

The statistical testing for the GWAS analyses and ad-hoc analyses for the
GWAS all used BLUEs generated from [1] with N= 121 genotypes. Interactions
were tested for when protein products of two genes near two QTL are known to
interact through previous studies are found near significant (q < 0.05) QTL for the
same trait. The following models for each trait where QTL associated with the trait
were fit using the lme4qtl111 R package. For kinship matrix required we used the
“Van-Raden” method implemented in GAPIT R package on our full SNP matrix to
generate a kinship matrix. Models were solved using restricted maximum
likelihood (REML) for calculating percent variation explained by SNPs while
maximum likelihood (ML) was used to solve the models when the models were
used for likelihood ratio test of an interaction112.

y ¼ Xbþ ZuþMv þ e ð3Þ

y ¼ Xbþ ZuþMv þ ðmi �mjÞvij þ e ð4Þ

where ynx1 is a vector of the standardized BLUEs, Xnx3 is a matrix of fixed effects
which in our case is the first three principal components of the full SNP matrix
with the corresponding vector of coefficients b3x1. Mnxp is a numeric SNP matrix
comprising of the significant (q < 0.05) SNP found by BLINK in the GWAS, vpxn is
the vector of corresponding fixed-effect coefficients for the SNP found by Blink.
(mi⊙mj) is a nx1 vector is the product of component wise vector multiplication of
the SNPs being tested for an interaction between SNPi and SNPj with vij a scalar as
its fixed effect coefficient. Znxn is an incidence matrix representing the genetic
relationship between genotypes and unx1 is a vector of random polygenic effects
that follows the distribution Nð0; σ2gAnxnÞwhere Anxn is the additive relationship

matrix. enx1 is a vector of residual error that follows the distribution Nð0; σ2e InxnÞ.
The likelihood ratio tests were implemented using the anova function in r on

the models fit for [3] and [4]. Because only one interaction was tested at a time the
[3] was nested in the more general model [4]. The anova function was used with
both fit models are the input. The anova function calculates the log-likelihood of
each model to calculate the likelihood ratio that is tested using a chi-sq test with
one degree of freedom ([4] has one more parameter then [3]). Significant results
(p < 0.05) indicate the more general model (model with SNP interaction [2]) is
more likely to be explained by the data thus there is likely an interaction between
those SNP.

Percent variation explained by QTL was calculated for each QTL identified by
BLINK for each trait using the following formula for each QTL in model [1]. For

each trait the markers were fit to a model simultaneously to estimate coefficients.

h2qtl ¼
σ2qtl
σ2y

¼
ðB̂*

qtlÞ
2

σ2y
¼ VarðB̂PÞ

σ2y
¼ VarðPÞB̂2

σ2y
¼ 2f ð1� f ÞB̂2

σ2y
ð5Þ

where h2qtl is the percent of phenotypic variation explained by a given QTL, σ2y is

total phenotypic variation, σ2qtl is the phenotypic variation explained by the QTL, B̂
is the estimated effect of a marker (vi) from equation [3], P is the allele frequency
which follows a binomial distribution with 2 trials and probability p, f is the minor
allele frequency (1-p). By standardizing the BLUEs, σ2y is set to 1 thus simplifying
the equation to:

h2qtl ¼ 2f ð1� f ÞB̂2 ð6Þ

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequences used for the B. tectorum genome assembly are deposited in the
National Center for Biotechnology Information (NCBI) Sequence Read Archive database
under the BioProject PRJNA728981 with the following accession numbers:
SRR14498212–SRR14498217 (PacBio reads), SRR14578284–SRR14578290 (Hi-C reads),
SRR14578282 (Transcriptome) and SRR14498209–SRR14498211 (Polishing short reads).
The raw reads for the resequencing panel are found in BioProject PRJNA728981 with the
following NCBI accession numbers: SRR15308470–SRR15308851 (resequencing panel).
Genome browsing and bulk data downloads, including annotations and BLAST analysis
of the final proximity-guided assemblies are available at CoGe (https://genomevolution.
org/coge/) with genome ID: id64356. Source data pertaining to general information on
the genotypes is available in Supplementary Data 1 and source data of the BLUEs used to
produce Fig. 2 and perform GWAS analyses is available in Supplementary Data 2.
Genotype files (VCF, numeric SNP matrix), GWAS summary statistics are all freely
available for download in a figshare repository associated with this manuscript. (https://
doi.org/10.6084/m9.figshare.c.6419786.v1).

Materials availability
All the genotypes that were phenotyped and genotyped in this manuscript are available
upon request.

Code availability
The custom scripts in R and Python for the phenotypic analysis, automating
bioinformatics, and performing GWAS analyses are freely available without restriction
on the figshare repository associated with this manuscript (https://doi.org/10.6084/m9.
figshare.c.6419786.v1).
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