
ARTICLE

Multivariate functional neuroimaging analyses
reveal that strength-dependent face expectations
are represented in higher-level face-identity areas
Helen Blank 1✉, Arjen Alink1 & Christian Büchel 1

Perception is an active inference in which prior expectations are combined with sensory

input. It is still unclear how the strength of prior expectations is represented in the human

brain. The strength, or precision, of a prior could be represented with its content, potentially

in higher-level sensory areas. We used multivariate analyses of functional resonance imaging

data to test whether expectation strength is represented together with the expected face in

high-level face-sensitive regions. Participants were trained to associate images of scenes with

subsequently presented images of different faces. Each scene predicted three faces, each

with either low, intermediate, or high probability. We found that anticipation enhances the

similarity of response patterns in the face-sensitive anterior temporal lobe to response

patterns specifically associated with the image of the expected face. In contrast, during face

presentation, activity increased for unexpected faces in a typical prediction error network,

containing areas such as the caudate and the insula. Our findings show that strength-

dependent face expectations are represented in higher-level face-identity areas, supporting

hierarchical theories of predictive processing according to which higher-level sensory regions

represent weighted priors.
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Perception is considered a process of hierarchical Bayesian
inference in which prior expectations are combined with
incoming sensory information1–3. Bayesian theories of

neural processing, such as predictive coding4, propose that the
strength of perceptual priors and sensory input determines the
extent to which expectations influence the resulting ‘posterior
percept’5,6. The strength of our predictions could be derived, for
example, from tracking the stability of our environment or from
the reliability with which particular cues precede a specific event.
While less precise priors have a smaller impact on the repre-
sentation and perception of sensory information, more precise
priors have a stronger influence.

In previous studies, the presence and content of prior expec-
tations were primarily inferred indirectly by examining brain
responses to the presentation of expected and unexpected stimuli
after some kind of prior had been induced7,8. Converging evi-
dence shows that expected stimuli lead to reduced responses,
whereas unexpected stimuli evoke increased responses9,10, a
phenomenon also called expectation suppression11–13. In addi-
tion, the increased response to unexpected sensory input is
interpreted as a signal of surprise, i.e., prediction errors due to
violation of prior expectations14,15.

In a second approach, the presence and content of prior
representations were examined directly by investigating induced
pre-activations of expected stimuli (with functional magnetic
resonance imaging (fMRI)16,17, magnetoencephalography
(MEG)18,19, and intracranial cortical recordings20). For example,
it has been shown that category cues (e.g., ‘face’ or ‘house’)
modulate pre-stimulus fMRI activity in associated category-
selective brain regions16,21. Hence, there is evidence that expected
sensory input is pre-activated in corresponding sensory
brain areas.

However, how item-specific priors and prior strength are
represented in the brain is less clear15,22. Prior strength could be
part of pre-activated sensory templates and thus be co-localized
with the representation of prior content itself in sensory
areas2,8,18. In this study, we tested how the brain represents and
weights multiple expectations, specifically, whether expectation
strength is represented in those regions that also represent the
content of the prior, here expected face. Secondly, we tested how
the representation of presented faces depends on the strength of
the preceding prior.

The hierarchically organized network of face-sensitive regions
from occipital over fusiform to anterior temporal areas of the
human brain provides an attractive system for examining pre-
diction principles23–25. It provides a pre-defined set of regions
with different specific functional preferences for faces, in which
lower-level regions such as the occipital face area (OFA) process
facial features, the fusiform face area (FFA) processes facial fea-
tures, as well as face identity, whereas a higher-level region in the
anterior temporal lobe (aTL) processes view-invariant face
identity23,24,26–29, specifically in the right hemisphere30,31. Neu-
rophysiological evidence for predictive codes throughout the face-
processing hierarchy was recently provided by high-level pre-
diction errors in lower-level face regions of the macaque cortex25.
This finding is in line with the suggestion that FFA represents the
combination of face expectations and presented faces in form of
prediction errors7–9. Higher-level face-identity expectations seem
to be represented in the aTL. In macaques, identity representa-
tions in the face-sensitive aTL emerged at an earlier latency than
in the middle face patch region of the temporal lobe, which is
topographically homologous to the human FFA32. These findings
suggest that face-identity representations emerge in face-sensitive
regions in the aTL and that feedback from these anterior regions
may be critical for context-dependent face representations in
more posterior face areas.

In the current study, we used functional resonance imaging
(fMRI) in combination with multivariate methods to test whether
the strength of face expectations can be detected alongside
expected face images in face-sensitive regions (i.e., OFA, FFA, and
aTL) of the human brain. Participants used scene cues to predict
faces with different probabilities (Fig. 1). We found evidence that
representations of expected faces were weighted according to
their probability in the high-level face-sensitive aTL.

Results
Behavioral results. Participants associated the three scenes and
faces with the corresponding low, intermediate, and high prob-
abilities (mean correct responses averaged across test runs 1 and
3: 75.07% for low, 72.57% for intermediate, and 89.58% for highly
expected faces, Fig. 2a). Inspection of individual correct perfor-
mance revealed that participants differed in their response pro-
files: 16 participants showed a linear increase in percent correct
with increasing face probability, whereas 14 participants showed a
U-shape relationship and better performance for faces with low
and high probability. These response profiles indicate that par-
ticipants might have differed in the way they attributed strength
to the scene priors, i.e., while the linear response profile indicates
the intended attribution of low, intermediate, and high prob-
ability, the u-shape response indicates that participants might
have used a different strategy such as anticipating the faces with
low and high probability.

Participants responded faster to faces that were expected with
high probability (mean reaction times in seconds across
participants for low probability= 701 ms, mid probability= 688
ms, and high probability= 639 ms, Repeated Measures Single-
Factor Analysis of Variance Test: F(2, 58)= 33.839, p < 0.001,
n2= 53.85, post-hoc t-tests for low vs mid probability: t(29)
1.9071, p= 0.0665; for low vs high probability: t(29)= 7.1668,
p < 0.001, and for mid vs high probability: t(29)= 5.9147,
p < 0.001).

In summary, behavioral results confirmed that participants
used weighted prior expectations during face recognition.

Univariate fMRI responses to presented faces depending on
their expectation strength. Next, we turned to investigate whe-
ther our expectation manipulation influenced the univariate
responses to presented face images depending on how much a
presented face had been expected. Since each presented face had
been either expected with low, mid, or high probability, we could
test how the evoked univariate fMRI signal was modulated by the
respective probability. Presentation of more unexpected faces
elicited stronger responses in a typical network related to
surprise33,34 containing activation of bilateral caudate, anterior
insula, middle frontal gyrus, parietal lobe, precuneus, and
superior frontal gyrus (negative linear parametric modulator
testing for increased signal in response to presented faces that
were less expected, Fig. 3a, Supplementary Table 2).

In contrast, presentation of more expected faces activated the
medial frontal cortex (positive linear parametric modulator testing
for increased signal in response to presented faces that were more
expected, Fig. 4b, x=−12, y= 50, z=−2, pFWE= 0.032 cluster-
corrected, at p < 0.001 uncorrected, Fig. 3b).

Thirdly, motivated by the u-shaped response pattern in the
behavioral responses, we tested for a u-shaped univariate
response reflecting increased activity for highly expected and
unexpected faces35. Indeed, activity in the right posterior FFA was
higher for the highly expected and unexpected faces in
comparison to the intermediate condition (quadratic parametric
modulator, x= 42, y=−54, z=−14, k= 8, pFWE= 0.025,
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Fig. 1 Procedure and stimuli. a The experiment started with a functional localizer in the scanner (30min) in which participants saw images of three scenes
and three faces (shown in b). This was followed by a training session outside the scanner (40min). Finally, the main scanning session consisted of three
test runs of which the first and the third were extinction runs, i.e., faces were presented with equal contingencies and no feedback about correct responses
was provided. The middle run was a refresher training with feedback and faces were presented with learned contingencies (i.e., 0.1, 0.3, and 0.6, 60min).
c Trial procedure during the test. Scene cues were followed by face images showing three different identities. Participants had to indicate by button press
how much they had expected the presented face, given the preceding scene cue (with low, mid, or high probability).

Fig. 2 Behavioral results. a Correct performance in the face task. Participants learned to associate scene cues and face images with their corresponding
probability. Participants could be split into two groups, based on whether their response profiles followed a linear (in b) or u-shaped fit (in c). This indicates
that they might have used different strategies to anticipate the faces. d Reaction times in the face task. Participants responded faster to faces that were
expected with high probability than to those expected with a low probability.
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small volume corrected with the right posterior FFA ROI from
the localizer identified on the group level, Fig. 3c).

Multivariate representations of face expectations depending on
their strength. To investigate how face expectations were
weighted and represented we used multivariate representational
similarity analysis (RSA36,37). A univariate approach was not
suitable to measure the weighted representation of face expecta-
tions, as all three faces were simultaneously expected during a
scene cue—but each with different expectation strength (e.g.,
scene 1 predicted face 1 with 0.1, face 2 with 0.3, and face 3 with
0.6 probability). Specifically, we tested whether the correlation
between multivoxel representations of faces presented in the
localizer and faces expected during the scene priors in the test
runs depended on how strongly the respective face was expected
(bottom of Fig. 4a).

Only in the high-level face-sensitive aTL region, RSA revealed
representations of expected faces (Fig. 4a). Multivariate patterns
of presented faces in the localizer correlated with graded face
expectations (r= 0.0796, Z(29)= 2.6508, p= 0.004) and with the
highly expected face (r= 0.0556, Z(29)= 2.4370, p= 0.0074)
during scene presentation in the test runs. The corresponding
hypothesis RDMs differed in their relatedness to the reference
RDM and both differed also from the alternative RDM testing for
a u-shaped expectation (black horizontal lines on top in Fig. 4a).

In contrast, in lower-level face-sensitive regions such as the
OFA and the FFA, RSA did not reveal representations of expected
faces (all p > 0.1 in the ROIs defined based on the group level). To
not overlook representations of face expectations in lower-level
face-sensitive regions, e.g., due to individual variability in the
location of the FFA, we investigated activation patterns from
individually localized posterior and anterior FFA regions. Also, in
these individually localized FFA regions, we could not identify
any multivariate representations of expected faces (all p > 0.1).

Multivariate representations of presented faces depending on
their strength. Finally, we applied this multivariate approach to
test whether it would allow us to detect multivariate representa-
tions of presented faces depending on their strength that were not
apparent in the univariate parametric approach (Fig. 3). Across
the face-sensitive regions from OFA, over posterior and anterior
FFA to the aTL, we only identified expectation-dependent mul-
tivariate representations of presented face images in the OFA
(Fig. 4b). Multivariate patterns of presented faces in the localizer
increased in similarity with graded face presentations (r= 0.1167,
Z(29)= 3.8112, p < 0.001) and were more similar to the presented
face that was highly expected than to those with low and inter-
mediate probability (r= 0.1037, Z(29)= 3.2884, p < 0.001) in the
test runs. The two corresponding hypothesis RDMs did not differ
in their relatedness to the reference RDM. Only the highly
expected face RDM differed from the alternative RDM testing for
a u-shaped representation of presented faces (black horizontal
line on top in Fig. 4b).

Discussion
Our findings demonstrate that face expectations are represented
in the high-level face-sensitive region in the right aTL. During the
presentation of scene cues, representations of expected faces,
measured in form of multivoxel fMRI patterns in the face-
sensitive aTL, contained a graded amount of face information
depending on the strength of the corresponding face prior.
Conversely, during the presentation of unexpected face images,
activity increased in a typical distributed network for processing
surprise and prediction error33,34. Our work contributes to our
understanding of how the strength of perceptual expectations is
represented by supporting the assumption that the strength or
certainty of anticipated stimuli is coded with the pre-activated
stimulus representation. In line with previous research mostly
done on lower-level visual stimuli such as gratings or stimulus
categories, our findings indicate that anticipated stimuli are pre-

Fig. 3 Univariate fMRI responses to presented face images depending on how much they were expected. a Activity in a typical network related to
surprise (e.g., including the insula, caudate, inferior parietal lobe, and a cluster in the inferior temporal gyrus) increased with face surprise (negative linear
parametric modulator, shown at p < 0.001, uncorrected). b Face confirmation, i.e., more expected faces, lead to stronger responses in the medial frontal
cortex (positive linear parametric modulator). c U-shape response to faces reflecting increased activity for highly expected and unexpected faces was
identified in the fusiform gyrus (quadratic parametric modulator).
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activated in the corresponding sensory brain area16–20. We
extended this previous work by investigating the anticipation of
face images and could show that when several faces are expected
with different probabilities, corresponding pre-activations of
these faces are simultaneously represented in the high-level face-
sensitive aTL.

From previous work on representations of presented stimuli,
we know that corresponding evoked univariate as well as multi-
variate activity patterns depend on how much these stimuli were
expected. Increased univariate responses to surprising faces have
been repeatedly shown in the FFA7–9,38. For example, a previous
univariate fMRI study demonstrated sensitivity to the conditional
probabilities of face stimuli in the FFA on a categorical level (i.e.,
face category vs house category), reporting the summation of
activity related to prediction (face expectation) and prediction
error (face surprise) in blocks with different probabilities for
seeing a face vs a house (25% and 50%, respectively)8. The results
from previous multivariate analyses are more controversial12.
Different methodological approaches found a dampening of sti-
mulus representations by expectations, e.g., with reduced
decoding of expected compared to unexpected stimuli in monkey
inferotemporal cortex39 and scaled expectation suppression
magnitude depending on image preference also in monkey
inferotemporal cortex40 and in the human visual cortex41. In
contrast, others found a sharpening of representations by
expectations, e.g., increased encoding of expected grating
orientations42 and of visual displays congruent with sensorimotor

predictions43 despite reduced univariate responses, and increased
decoding of expected faces from single-unit recordings in monkey
inferotemporal cortex44.

In our study, we could also test the evoked univariate fMRI
response to presented faces since they were either expected with
low, mid, or high probability. The only univariate modulation
effect in the FFA was for a u-shaped response, i.e., increased
activity for the highly expected and unexpected faces in com-
parison to the intermediate condition (Fig. 3c). This u-shape
response to presented faces modulated by probability could
reflect that in FFA two processes take place simultaneously, i.e.,
enhanced processing of highly expected faces, as well as
enhanced prediction error responses to unexpected faces45,
similar to effects of probability on memory35. The corresponding
measured fMRI signal may not combine in a linear way, leading
to the observed univariate quadratic effect. Furthermore, unex-
pected faces evoked activity in a network typically associated
with surprise, task control, action evaluation, and general
attentional mechanisms including bilateral caudate, anterior
insula, middle frontal gyrus, parietal lobe, precuneus, and
superior frontal gyrus (Fig. 3a33,46,47). The linear increase in
activity in these regions for unexpected faces could reflect
response adjustment and task difficulty since participants
potentially had to change their planned response upon the pre-
sentation of an unexpected face. Finally, expected faces activated
the medial frontal cortex (Fig. 3b), a region involved in outcome
monitoring48.

Fig. 4 Multivariate fMRI results. a Representation of expected faces in the anterior temporal lobe face region (aTL). The correlation between the reference
representational dissimilarity matrix (RDM) and the hypothesis RDMs was used to measure the performance of each hypothesis RDM. Gray error bars
indicate the standard error of the mean, based on the across-subject variation, black error bars indicate the within-subject standard error of the mean86,
and asterisks indicate significance with FDR control p < 0.05. The black horizontal lines indicate the pairwise comparisons for which the hypothesis RDMs
perform significantly differently (FDR controlled p < 0.05). The gray horizontal bar shows the noise ceiling, i.e., the upper and lower bound estimates of the
maximum performance any model could achieve given the level of noise in the data. b The hypothesis RDMs tested representations of graded expectations,
only the high expectation, and a u-shape. The three hypothesis RDMs are presented in performance descending order. c Representation of presented faces
in the occipital face area (OFA). d The hypothesis RDMs for testing the representation of presented faces, depending on how much they were expected.
Again, the three hypothesis RDMs are presented in performance descending order.
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In our design, participants were asked to learn the underlying
statistical regularities and perform a task to explicitly evaluate the
probability of the presented stimuli, likely resulting in explicit/
intentional learning. Therefore, our design intentionally differed
from many previous studies investigating the role of sensory
priors, which used visual statistical learning to form sensory
priors, mostly relying on many repetitions and incidental
learning40–43,49. These differences may also, at least partially,
account for differences in our results compared to prior studies;
i.e., the present results show little univariate differences between
expected and unexpected stimuli in the sensory cortex, while
numerous previous studies show extensive suppression through-
out sensory areas to expected stimuli (e.g.,41,49,50). Another dis-
crepancy between the present and previous studies is the long
interval between cue and stimulus, a necessary adjustment for our
fMRI study to assess pre-stimulus activity. In this extended pre-
stimulus time window, participants may have engaged in mental
imagery, already imagining the most likely upcoming stimulus.
Prior work showed that imagery can result in similar repre-
sentational patterns and relies on similar top-down connectivity
as perception51,52. It is an open question whether and how cue-
based mental imagery and explicit/intentional expectations refer
to different processes or indeed rely on the same neural substrates
for selective top-down activation of sensory cortex53. From phi-
losophical perspectives, it has been suggested that mental imagery
provides a way to generate explicit predictions and simulate
sensory input given different situations54,55.

In addition, our study enabled us to apply a multivariate
approach to test expectation-weighted representations of pre-
sented faces. We aimed to go beyond categorical face expectations
and to test how individual face images are expected and poten-
tially differentially weighted according to their probability. In
contrast to previous studies investigating categorical face
processing7,8, we did not find evidence for either a graded
representation of presented or expected faces in the FFA, in line
with other studies investigating face identity (independent of
prior expectations56). To rule out that we were not able to detect
face representations due to inter-individual variability in FFA
localization, we also localized posterior and anterior FFA on
individual statistical maps. One explanation for the absence of
expectation-dependent face representations in FFA in our study is
that previous studies identifying expectation effects for faces in
FFA manipulated the probability of categorical face priors (i.e.,
face vs house8), whereas we induced expectations for three dif-
ferent face images in parallel.

We also tested for representations of presented faces that
increase with expectedness, i.e., a potential sharpening or con-
firmation effect of a predicted face image. Only in the low-level
OFA, we identified enhanced representations, i.e., higher corre-
lations between response patterns evoked by the face image from
the localizer with the corresponding presented face image in the
test runs that was expected with high probability (Fig. 4b). Pre-
vious studies suggested that while both OFA and FFA both dis-
criminate between faces, both may serve different computational
roles and the face-related information encoded in OFA and FFA
may be distinct:57 While OFA responds to differences in low-level
image-based properties, FFA represents higher-level perceptual
and social face information, which was not associated with our
face images in the current study. Hence, the increased repre-
sentation for highly expected presented faces may reflect shar-
pened low-level facial features in OFA.

The main goal of this study was to go beyond the indirect
inference based on responses to presented stimuli to test whether
expectation strength is represented in sensory processing areas
before a stimulus is presented. Previous work provides evidence
for prior representations in form of pre-activations of expected

stimuli with different neuroimaging methods (fMRI:16,17,
MEG:18,19, and intracranial cortical recordings20). However, it is
still highly debated how the strength of expectations is repre-
sented in the human brain22,58. According to hierarchical pre-
dictive processing, expectation strength could be explicitly
represented at all stages along the processing hierarchy, including
sensory areas.

Our results provide evidence that during face expectations
multivariate fMRI patterns in the high-level face-sensitive right
aTL contained a graded amount of face information depending
on the strength of the corresponding expectation. This finding
provides further empirical evidence for computational archi-
tectures like predictive coding and supports a hierarchical orga-
nization of face-processing beyond pure feedforward schemes2,8.
The face area on the ventral surface of the right aTL in or near the
perirhinal cortex has been repeatedly implicated in facial
processing24,26,59 and representing face identity at a high level
within the face-processing hierarchy in the temporal
lobe27–29,56,60. Face-sensitive regions within the temporal lobe
form a tightly interconnected network in which the face-sensitive
aTL interacts and modulates activity in the FFA61,62. Therefore,
the face-sensitive aTL is ideally suited to send information about
weighted face-priors to lower-level face-sensitive regions, such as
the FFA, to improve context-dependent processing of incoming
face information.

Our design and stimulus set was strictly controlled do detect
changes in fMRI response patterns in response to strength-
dependent face expectations, but we acknowledge that the pre-
sented work is not without limitations. Firstly, in our controlled
stimulus set and design, we did not test viewpoint-independent
representations of face identity, as we were using only one face
image per identity (as in ref. 63). A design using different pictures
of the same people would have facilitated a conclusion about
representation of image-independent facial identity. We only
used a set of three computer-generated faces allowing us to
control that these faces were perceived as equally distant from
each other (see pilot study in Supplementary Information, Sup-
plementary Fig. 1). A more naturalistic approach of measuring
face identity representations has been taken in studies using
videos57 and it would be interesting to investigate the impact of
expectation and context on these.

Secondly, the relatively small effect sizes that we have
observed are common for multivariate fMRI analyses of indi-
vidual stimuli. The maximum possible correlation values that
could be observed in our fMRI data from the aTL [ceiling:
0.1056 0.2019] and the OFA [ceiling: 0.0806 and 0.1593] form
upper bounds that are substantially smaller than 1 (see Fig. 4),
indicating limitations of our experimental data (e.g., low spatial
resolution, high measurement noise, and/or limited amounts of
data). Nonetheless, none of these limitations should differen-
tially affect our experimental conditions and hence measure-
ment noise or other extraneous factors cannot explain the
observed similarity effects seen in the multivariate analyses. For
RSA, similar correlation values between fMRI-response based-
and hypothesized similarity matrices have been observed
previously64–67. Similarly, low classification accuracies are also
common in decoding task events using Multivariate Classifica-
tion of fMRI data68,69. Despite these small effect sizes,
condition-specific differences in the observed correlations (i.e.,
the different amounts of similarity across the different levels of
expectation strength) provide compelling support for
expectation-dependent multivoxel representations. However,
the cross-subject consistency measures suggest that with a more
appropriate hypothesis RDM we could have improved the cor-
relation values obtained with our theoretically motivated
hypothesis RDM.
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Finally, we restricted the regions of interest (ROIs) to the face-
sensitive regions in the ventral stream from the occipital and
fusiform face area (OFA and FFA) to the face-sensitive region in
the aTL23,24,26–29,56. Notably, though we focused on face-sensitive
regions in the right hemisphere, because activations in face
regions are often stronger, more consistent, and larger in the right
hemisphere30,56,57,70, analogous to observations from brain
lesions that the right hemisphere is specialized for face
processing71,72, similar face-related activations were found in
the left hemisphere and we do not rule out that these also play a
role in processing and generating face expectations. Furthermore,
faces are processed in several other regions outside the ventral
stream, for example, in the frontal lobe73,74 or the superior
temporal sulcus (STS), which responds stronger to dynamic than
static face stimuli75–77. An exploratory analysis of representations
of expected and presented faces, measured in form of multivoxel
fMRI patterns in the STS, did not reveal any influence of face
expectations in the current study (see Supplementary Note 1).
Potentially, these regions process context- and experience-derived
expectations with respect to other aspects of facial information,
such as priors for gaze or facial expressions in the STS78. The
present study offers a basis for targeting these questions in the
future.

In conclusion, our results indicate that during face expectations
the face-sensitive aTL contained a graded amount of face infor-
mation depending on the strength of the corresponding prior.
This finding supports theories of predictive coding which suggest
that the expectation strength is co-localized with the repre-
sentation of the prior itself2,8. In addition, there seem to be
additional specialized brain regions such as the caudate and the
insula that represent surprise during the presentation of unex-
pected stimuli. Our study contributes to the notion that the brain
is not a passive stimulus-response system, but rather an active,
hierarchical system, in which anticipatory activity is weighted
according to its prior probability4.

Methods
Participants. Thirty-five volunteers (16 female/19 male, age range 18–32 years)
participated in the study. Written informed consent was obtained from all parti-
cipants. All experimental procedures were approved by the Ethics Committee of
the Chamber of Physicians in Hamburg. Five participants were excluded because of
their behavioral performance indicating that they did not learn the scene-face
contingencies (see Supplementary Fig. 2). The remaining 30 participants
(15 female/15 male, age range 18–31 years) were included in the reported analysis.

Stimuli. In the main experiment, we used images of three scenes and three faces.
The images of the three scenes were selected to be different in color and site (i.e.,
blue beachfront, yellow field, and green grass, Fig. 1b) so that participants could
discriminate them quickly and remember them easily. The scene images were
normalized by their mean amplitude79. The three male face images were generated
with FaceGen software (FaceGen Modeller 2.0, Singular Inversion) and selected
based on a preceding behavioral face selection experiment (with different partici-
pants, n= 10, see next paragraph for details).

In the first step, eight male faces were generated with FaceGen. These faces were
designed to present eight identities that were easy to differentiate based on features
that have been shown to make faces distinct, such as lip thickness, eye color, and
eye shape80. The goal of the face selection experiment was to select three face
images, which were maximally and equally distinct from each other, from the set of
these eight images. In a behavioral pre-study (with different participants, n= 10),
at a given single trial (total 420 trials) a quadruple consisting of two pairs of faces
(Fa–Fb and Fc–Fd) was presented and participants were required to select the pair
that consisted of the more similar faces. The perceptual experiment was self-paced;
however, the stimuli were turned off after 7 s, and participants were required to
answer. The given responses were transformed into a representational dissimilarity
matrix containing the perceptual distance between the eight face images. To do
this, we filled the cells of the RDM with the number of dissimilar responses for each
pair of faces and normalized them by the number of all responses. We used
maximum likelihood difference scaling on the RDM averaged over all participants
to select three face images that were perceived as equally distant from each other
(Supplementary Fig. 1).

Overview of the experimental protocol. The experiment started with a functional
localizer in the scanner (30 min), followed by a training session outside the scanner
(40 min), and finally the main scanning session which consisted of three test runs
(60 min) (Fig. 1a). Across participants, we included three different combinations in
which scene and face images were paired, so that each scene predicted each face
identity with low, mid, and high probability in one of the versions. Participants
were randomly assigned to one of the three versions.

In the functional localizer, participants saw images of three faces and three
scenes before they had learned any associations between these images. The task was
to detect red dots occasionally presented on the face images. The localizer
contained 9 catch trials with a task in addition to 72 trials (eight repetitions of three
scenes paired with three faces) and lasted 16.8 min. The task was included to make
sure that participants paid attention to the face images. Across participants,
detection performance was high (mean correct 0.96, with a standard deviation
of 0.19). Responses of one participant were not recorded during the localizer.
The functional localizer run was used for was used for ROI definition with a
univariate contrast and for the RSA.

Participants were trained to relate images of scenes and faces outside the
scanner. Each scene predicted three faces: one with low, one with intermediate, and
one with high probability (10, 30, or 60%). First, we provided written instruction
with explicit information about the corresponding probabilities between scene and
face images. Second, participants experienced these probabilities in a training block
in which scene and face images were paired according to their associated
probabilities (20 repetitions for each of the three scenes, resulting in 60 trials of
5 min duration). Here, to facilitate learning, the scenes were presented in blocks.
Third, participants viewed scenes followed by the face images and had to indicate
in a Three-Alternative-Forced–Choice Task (3AFCT) for each face whether that
face was expected with low, intermediate, or high probability, given the preceding
scene (30 repetitions for each of the three scenes, resulting in 90 trials of
10.50 min). Participants received feedback about whether their response was
correct, incorrect, or too slow. In the final training part, participants performed the
same test again, while they were familiarized with the timing in the scanner, which
contained jittered and longer inter-stimulus intervals (10 repetitions for each of the
three scenes, resulting in 30 trials of 7 min). In this final part, participants only
received feedback about whether their response was too slow.

The test phase was recorded with fMRI to measure face expectations and their
associated strength during scene presentation. Participants performed the 3AFCT
and indicated via button press whether a presented face was expected with low,
intermediate, or high probability (Fig. 1a). There were three functional runs.

The first and the third run were identical. Participants only received feedback
about too slow responses. Importantly, these two runs were extinction runs, in
which faces were presented with equal contingencies after each scene. This was
done to avoid that functional measurements of expected faces during scene
presentation could be confounded by the following presented faces. In the second,
middle functional run, participants received another training block with feedback
about correct, incorrect, and too slow responses. In this second run, the
contingencies followed the trained/expected contingencies between scene and face
images.

The trial timing was identical in all functional runs. The scene image was
presented for 500 ms, followed by a jittered fixation cross of 4–8 s (6 s on average),
followed by a face presented for 1 s. Finally, either a fixation cross (localizer, run 1
and 3) or feedback (correct, incorrect, or too slow in run 2; too slow in runs 1
and 3) was presented for 500 ms. The inter-trial interval was jittered for 4–8 s (6 s
on average). In runs 1 and 3, the combination of three faces and three scenes was
repeated 16 times, resulting in a run with 72 trials of 16.8 min. In run 2, there were
20 repetitions per scene, resulting in a run with 60 trials of 14 min.

MRI data acquisition. All imaging data were acquired on a Prisma 3 T scanner
(Erlangen, Germany) using a 64-channel head coil. Functional data were obtained
using a multiband echo-planar imaging sequence (repetition time (TR)= 0.967 s,
echo time (TE)= 30 ms, flip angle= 50°, field of view (FoV)= 224 mm, multi-
band mode, number of bands: 3, interleaved phase encoding in descending order).
Each volume of the experimental data contained 45 slices (voxel size
2 × 2 × 2 mm+ 0.5 mm gap).

An additional structural image (magnetization prepared rapid acquisition
gradient echo) was acquired for functional preprocessing and anatomical overlay
(TR= 0.230 s, TE= 0.298 s, flip angle= 9°, FoV= 256 mm, 240 slices, voxel size
1 × 1 × 1 mm).

A fieldmap was acquired (TR= 0.555 s, TE 1= 0.612 s, TE2= 0.858 s, flip
angle= 40°, FoV= 224 mm, 45 slices (voxel size 2 × 2 × 2 mm+ 0.5 mm gap). The
detailed scanning protocols are available here https://osf.io/uygvm/.

Participants viewed the back-projected stimuli via a 45° mirror placed atop the
head coil, images were presented on the screen InroomViewingDevice (www.
nordicneurolab.com/product/inroomviewing-device). The stimuli were presented
with the Psychtoolbox (http://psychtoolbox.org) in MATLAB.

Behavioral analysis. To test whether participants learned the instructed con-
tingencies and associated the three scenes and faces with the corresponding low,
intermediate, and high probabilities, we computed mean correct responses aver-
aged across test runs 1 and 3 for the three levels of probability. As inspection of
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individual correct performance indicated that participants differed in their
response profiles, we visualized these profiles by grouping participants based on
whether a linear or quadratic polynomial curve provided a smaller sum of squares
due to error as a goodness-of-fit measure. This approach was descriptive.
In addition, we tested whether reaction times differed by a Repeated Measures
Single-Factor Analysis of Variance Test.

fMRI data analysis preprocessing. Structural and functional data were analyzed
using SPM12 (Welcome Department of Cognitive Neurology, London, UK) and
custom scripts in MATLAB. First, we applied field mapping distortion correction
to the functional volumes to correct for geometric distortions in EPI caused by
magnetic field inhomogeneity (with the FieldMap toolbox). The functional images
of all runs were realigned and the individual structural T1 image was co-registered
to the mean functional image generated during realignment. The functional images
were spatially normalized to MNI space. For the univariate analysis, the functional
images were additionally smoothed with a 6 mm full-width at half maximum
isotropic Gaussian kernel.

Univariate fMRI analysis. Data of all three functional runs (i.e., the functional
localizer and the two test runs without feedback) were analyzed using the general
linear model (GLM) with a 128 s high pass filter. We applied SPM’s alternative pre-
whitening method to account for autocorrelation, FAST, which has been suggested
to perform better than SPM’s default81. Raw motion parameters (three translations
and three rotations), their derivatives, squared derivatives, as well as the average
time-course of the left and right ventricles were included as nuisance covariates.

A functional localizer run was recorded before the training to define face-
sensitive ROIs (FFA and aTL)28,56. We included the onset of 7 event types in the
GLM, each convolved with the canonical SPM haemodynamic response: 7
conditions come from specifying the onset of three scenes, three faces, and the
onset of the task in catch trials. On the second level, we computed the t-contrast
‘face images > scene images’ to localize face-sensitive regions (see Supplementary
Table 1). In addition, we computed 6 separate contrasts of all three individual face
and scene images against the baseline to obtain beta-images for the following RSA
analysis (see below).

The GLM for the first and last run of the test phase in the scanner contained the
onsets of 13 event types in the GLM, each convolved with the canonical SPM
haemodynamic response: 13 conditions come from specifying the three repressors
for each of the three scenes (corresponding to three sets of simultaneous face
expectations: low probability for Face 1/2/3+ intermediate probability for Face
1/2/3+ high probability for Face 1/2/3, respectively); three repressors for each of
the three presented faces weighted by whether they were expected with low,
intermediate or high probability (i.e., 9 face onsets), and one onset for ‘too slow’
feedback. In sum, for the subsequent RSA analysis, we used one regressor per
condition, i.e., 3 scene regressors for expectation, and 3 × 3 face regressors for
presentation.

In addition, to investigate the effect of face expectation strength on the
activation during face presentation, we set up a GLM with a parametric modulator
on the presented faces. Specifically, we tested for (1) an increased signal in response
to presented faces that were less expected by means of a negative linear parametric
modulator, (2) an increased signal in response to presented faces that were more
expected with a positive linear parametric modulator, and (3) a u-shaped univariate
response reflecting increased activity for highly expected and unexpected faces with
with a quadratic parametric modulator. On the second level, we tested for the linear
modulator whether it was larger or smaller than 0, respectively, and for the
quadratic modulator whether it was larger than 0.

ROI definition. We defined the face-sensitive ROIs based on the functional localizer
run before participants learned the associations between face and scene images (see
Supplementary Table 1). We aimed to localize the higher-level face-sensitive region in
the aTL, a hierarchically-connected face-sensitive region that processes face identity,
as well as the occipital and posterior and anterior fusiform face area (OFA, pFFA,
aFFA)23,24,26–29,56 (see Supplementary Fig. 3). For the face-sensitive region in the
right aTL, we obtained the cluster size k= 776, peak at [39, −18, −32] from the
contrast ‘face images > scene images’ at p < 0.001, uncorrected and masked with the
right temporal fusiform cortex anterior division from the Oxford Harvard atlas. For
localization of the OFA and the posterior and anterior FFA, we combined the contrast
‘face images > scene images’ with the three respective clusters from the atlas82. We
used different levels of uncorrected threshold to obtain non-overlapping clusters. We
obtained for OFA a peak at [32, −74, −16], k= 934, at p < 0.0001, a sphere of 6 mm
around the peak for the posterior FFA at [39,−52,−10], k= 264, and for the anterior
FFA at [42, −34, −19], k= 254. We chose this size to obtain two non-overlapping
ROIs for the anterior and posterior FFA (see Supplementary Fig. 3).

To not overlook any effects because of differences in individual localization of
the posterior and anterior FFA across participants70, we also extracted individual
pFFA and aFFA ROIs from the individual statistical localizer maps (face
images > scene images). Specifically, we used the aFFA and pFFA ROI from the
second level and searched for the peak maximal 6 mm away from this ROI in each
participant’s individual statistical t map. From that individual peak we again
extracted an individual ROI with a sphere of 6 mm.

As in our previous work, we explicitly focused on face-sensitive regions in the
right hemisphere28,83, in line with the consideration that face-selective regions are
more consistent and larger in the right hemisphere57,70. Furthermore, high-level
face-identity processing in the aTL has predominantly been shown in the right
hemisphere, when both hemispheres were tested30,56.

Representational similarity analysis. We used RSA to test whether multivariate
pattern similarity between presented and expected faces depends on the prior
strength37.

For each of the three scene and the three face item-specific regressors, we
estimated single-subject beta-statistic images for the contrast of image onset
compared to the unmodelled resting period, for each of the three scanning runs
(localizer and the two extinction test runs). We used the resulting single item-
specific T-images for RSA36 using the RSA toolbox37.

RSA involves testing whether the observed similarity of brain responses in
specific conditions (a neural representational dissimilarity matrix, i.e., the reference
RDM) corresponds to a hypothetical pattern of similarity between these conditions
(hypothesis RDM). For that, we designed hypothesis representational dissimilarity
matrices (RDMs) that tested for similarity of (1) expected faces and (2) presented
faces, depending on the strength of the expectation (visualized at the bottom of
Fig. 4a and b, respectively). As in previous studies67,84,85, we used subsections to
test our hypotheses about representational similarity across localizer and test runs.
Specifically, to evaluate how representational dissimilarity depends on prior
strength, we weighted the hypothesized similarity (1) with the three graded levels of
expectation strength (i.e., 1, 0.5, 0), (2) the highly expected face (i.e., 1, 1, 0), and (3)
the face with the low and high probability (i.e., 0, 1, 0) for the expected faces
(Fig. 4a) and the presented faces (Fig. 4b), respectively. We measured multivoxel
RDMs by computing the dissimilarity (1–Pearson correlation across voxels) of
T-statistics for each either presented or expected weighted face image. The
similarity between the observed RDM in each ROI and each of the hypothetical
RDMs was computed using Kendall’s tau A correlation coefficient because of the
tied rank for the ‘only high expected face’ RDM (as implemented in ref. 37). For
comparing dissimilarity matrices, we prefer correlation distance, because it is
invariant to differences in the mean and variability of the dissimilarities and since
we do not assume a linear match between dissimilarity matrices.

The relatedness of each hypothesis RDM to the reference RDM was measured
as the average across subjects of the correlations between the hypothesis RDM and
the single-subject reference-RDM estimates (as implemented in ref. 37). The
relatedness of each hypothesis RDM to the reference RDM (bar height in Fig. 4)
was tested using a one-sided signed-rank test across the single-subject RDM
correlations.

To test whether two hypothesis RDMs differ in their relatedness to the reference
RDM, the difference between the RDM correlations in each subject was computed
and a two-sided signed-rank test across subjects was performed. This procedure
was repeated for each pair of RDMs and multiple testing was accounted for by
controlling the false-discovery rate. The significant comparisons are indicated by
horizontal lines above the bars (Fig. 4).

To provide an estimate of the maximum possible correlation value between the
observed RDM and the hypothesized RDMs, we used the procedure described in37

for computing the upper bound of the noise ceiling of the observed RDMs for the
fMRI data. Specifically, the rank-transformed single-subject RDMs were averaged
and were used in an iterative procedure to find the RDM with the maximum
average correlation to the single-subject RDMs (using published code from37).

In addition, to provide an estimate of the expected correlation value between
the observed RDM and the hypothesized RDMs, given the degree of inter-subject
variation in the fMRI data, we computed the cross-subject consistency of the
observed RDMs (using the procedure described for computing the lower bound of
the noise ceiling in37 and the corresponding published code). Specifically, a leave-
one-subject-out procedure was used in which each subject’s empirically observed
RDM was correlated using Kendall’s Τau A coefficient with the mean observed
RDM of the remaining 29 subjects. The empirical reference RDMs were computed
within the ROIs.

Statistics and reproducibility. We recruited 35 participants and ended up
including 30 participants as we had to exclude five participants because of their
behavioral performance indicating that they did not learn the scene-face con-
tingencies (see Supplementary Fig. 2).

The univariate fMRI analyses in the whole brain were p < 0.05 cluster FWE-
corrected with a p < 0.001 inducing threshold. In the region of interest analysis, we
used FWE correction at the peak level.

In the multivariate fMRI analysis, the correlation between the reference RDM
and the hypothesis RDMs was used to measure the performance of each hypothesis
RDM and significance was evaluated with FDR control p < 0.05. To test whether
two hypothesis RDMs differed in their relatedness to the reference RDM, the
difference between the RDM correlations in each subject was computed and a two-
sided signed-rank test across subjects was performed. This procedure was repeated
for each pair of RDMs and multiple testing was accounted for by controlling the
false-discovery rate.
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Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The experimental data that support the findings of this study are available from https://
osf.io/uygvm/ https://doi.org/10.17605/OSF.IO/UYGVM.

Code availability
The code that supports the findings of this study is available from https://osf.io/uygvm/
https://doi.org/10.17605/OSF.IO/UYGVM.
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