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Habit formation viewed as structural change in the
behavioral network
Kota Yamada 1,2✉ & Koji Toda 1

Habit formation is a process in which an action becomes involuntary. While goal-directed

behavior is driven by its consequences, habits are elicited by a situation rather than its

consequences. Existing theories have proposed that actions are controlled by corresponding

two distinct systems. Although canonical theories based on such distinctions are starting to

be challenged, there are a few theoretical frameworks that implement goal-directed behavior

and habits within a single system. Here, we propose a novel theoretical framework by

hypothesizing that behavior is a network composed of several responses. With this frame-

work, we have shown that the transition of goal-directed actions to habits is caused by a

change in a single network structure. Furthermore, we confirmed that the proposed network

model behaves in a manner consistent with the existing experimental results reported in

animal behavioral studies. Our results revealed that habit could be formed under the control

of a single system rather than two distinct systems. By capturing the behavior as a single

network change, this framework provides a new perspective on studying the structure of the

behavior for experimental and theoretical research.
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To behave flexibly in a given environment, organisms need
to choose their actions based on the consequences of the
actions. This type of behavior is called goal-directed

behavior. As we keep repeating the same action under a
certain situation, the action is elicited by the situation rather than
its consequences. This type of behavior is called a habit. Goal-
directed behavior requires high computational resources because
organisms must process the information about their external
environment and how their actions affect it. In contrast, habit
shows a more stereotyped and less flexible behavior, requiring less
computation. In this sense, habit formation can be viewed as the
optimization process of energy consumption by the organism.

Existing theories about habit formation are based on evidence
from experimental or theoretical research in psychology and
neuroscience. In the canonical view, responses are controlled by
two different systems: goal-directed and habit systems. Such
theories proposed that goal-directed and habit systems control
responses by assigning different weights, and the difference in the
weights determines whether the response is goal-directed or
habit1,2. In this assumption, habit formation can be viewed as
losing control by the consequence of the response or reward
sensitivity. However, some models explain habits in a multistage
Markov decision task and challenge the canonical dichotomy of
goal-directed and habits systems3,4. In addition, some researchers
reviewed existing studies on habit formation and cast doubt on
the canonical framework of habit formation by showing the
possibilities that habits are also controlled by their
consequences5,6.

In contrast to the canonical view, Dezfouli and Balleine7 pro-
posed a new perspective that habit formation can be viewed as
shaping or acquiring response sequences. In their model, an agent
chooses their goal in a goal-directed manner and generates a
response sequence to reach there. Although habits are viewed as a
lack of reward sensitivity in the canonical view, their new model
considers stereotyped behaviors as acquired response sequences.
To what extent could this model change the way of viewing
accumulating evidence of habit formation? Garr and Dalamater8

shows that rats acquired stereotyped response sequences did not
lose reward sensitivity. In a series of studies reported by Dezfouli
and Balleine7,9,10 dealt with only a few experiments on the reward
sensitivity in free operant situations11–15. Another approach
employs the planning process3,4. Pezzulo et al.3 stressed the
importance of planning in goal-directed behaviors and built a
single mixed-controller model consisting of goal-directed beha-
viors and habits. Keramati et al.4 proposed that the canonical
goal-directed and habits systems can be viewed as edges of the
spectrum by building an integrated model of goal-directed
planning and habits. Although application of their models was
limited to the multistage choice task, the model could serve as a
basis for a novel model with common assumptions and additional
applicability in experiments on reward sensitivity in free
situations11–15.

Here, instead of assuming two explicitly distinguished
mechanisms as in the canonical views, we consider behavior as a
network consisting of multiple responses and show that changes
in the structure of the network cause two behavioral features,
goal-directed behavior and habit. By doing so, we could explain
the lack of reward sensitivity in habit formation, which is a
characteristic of the canonical view on habits.

Behavioral network. There are two methodological approaches
for studying animal behavior. One stream is an in-laboratory
psychological approach that studies the behavior of animals,
including humans, under experimentally controlled environ-
ments. Here, investigators measure only experimentally defined

responses of subjects (lever press, key peck, nose poke, freezing,
salivation, licking, eye blink, etc.) or put them into rigidly con-
trolled situations where they can only engage in the responses to
the well-defined stimulus. Another stream is an ethological
approach that studies animal behavior under more natural and
ecologically valid environments16. In this case, behavior that the
organism is engaged in the real world could be observed, but the
stimulus is difficult to control in terms of the strength, frequency,
timing, etc. Although these two approaches seem to conflict with
each other, both are complementary for understanding behavior
and its biological substrates. Recent advances in machine learning
have allowed us to objectively measure the detailed structure of
behaviors16–18. Animals are engaged in more than lever press, key
peck, or nose poke, they approach and orient to the stimulus, and
walk or sniff around and explore in the given environment.
Although the importance of observation and measurement of the
behavior during learning was attempted in classic behavioral
studies19–22, current behavioral quantification methods are
expected to reveal the relationship between behavior and its
underlying mechanism in a way that integrates the different
disciplines of psychology, neuroscience, and ethology23,24. How-
ever, conventional views on behavior in psychology and neu-
roscience are based on empirical results obtained from the
approaches before the appearance of such a new quantification
technique of the behavior. Here, we present a new theoretical
novel framework that focuses on how behavior is organized and
how its structure brings specific characteristics to behavior.

Existing studies measured only specific experimenter-defined
responses of animals including humans, and ignored various
responses that the animals actually engaged in. However, there is
considerable evidence that animals engage in various responses
which affect the learned responses. For example, animals engage
in a specific response immediately after the reward
presentation25–27, engage in responses irrelevant to an
experiment20, show a specific response sequence between reward
presentations21, or show a specific response that counteracts
learned responses28. Theoretically, some characteristics of
operant responses are explained by assuming the existence of
other responses29–33. These experimental facts and theoretical
assumptions indicate that animal responses do not exist in
isolation but are associated with other responses. We assume such
relationships between responses as a network in which responses
and transitions between them are considered nodes and edges,
respectively.

Network science emerged in the mid to late 1990s and has
spread to a wide range of fields. One of the important aspects of
network science is handling the structure of the network. For
example, in a network in which individual nodes are randomly
connected, the distance between each node is large and the
information transmission is slow. However, if there is a node
called a hub in the network, which has acquired a large number of
edges from other nodes, information can be rapidly transmitted
through that node. In reality, this is like an influencer sending out
information on a social networking service, which attracts the
attention of a larger number of users and rapidly spreads the
information. In this way, the structure of the network is closely
related to the behavior of the entire system. We introduce this
perspective of network structure to behavioral science. In this
view, each response is assumed as a node, and behavior could be
captured as a network of interconnected nodes. By doing so, we
try to explain existing behavioral phenomena from a new
perspective of the overall structure of behavior. Introducing the
concept of network science to experimental analysis of behavior
and the theory of habit formation has not been focused on so far.

Here, we provide a computational formulation of the
behavioral network and explain habit formation from the
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viewpoint of changes in the network structure. In simulation 1,
we generated an arbitrary network and examined what kind of
structure forms habit, and showed that habit formation occurs
when edges are concentrated on a specific response. In Simulation
2, we examined whether the factors reported to promote or
inhibit habit formation from existing behavioral studies have
similar effects on the proposed model. There are three important
factors on habit formation: (1) the amount of training11,12, (2) the
schedule of rewards13, and (3) the presence or absence of
choice14,15. The effects of these factors on the proposed model
were consistent with the existing experimental results. These
results imply that habit formation can be explained not by the
control of the two systems, but by a single system constituting the
change in the structure of the behavioral network. Furthermore,
the results demonstrate that all responses are goal-directed, rather
than the conventional dichotomy of goal-directed and habitual
behaviors.

Results
We considered the behavior of an agent as a network consisting
of different categories of responses (e.g., lever pressing, grooming,
stretching, etc.). Each response was assumed to be a node, and the
transition between responses was assumed to be an edge (Fig. 1a).
The purpose of our agent was the same as the normal reinfor-
cement learning setting of reward maximization. To achieve it,
the agent’s behavior was modeled by choices based on the values
of rewards and the shortest path from the currently engaging
response to the chosen response. Although this modeling differed
from the ordinary setting, it accounted for the behavior of
organisms in the natural environment. Our model reflected three
facts (Fig. 1b). (1) Most organisms, including humans, engage in
various responses in their lives. For example, a rat in a free-
operant experiment presses a lever in one moment and grooms its
hair or explores the experimental apparatus the next moment. (2)
The responses are associated with different types of rewards.
Lever pressing is associated with food presentation. Hair
grooming is associated with removing disconformity. Exploring
within the apparatus is associated with escaping from the appa-
ratus. (3) When an animal shifts from the currently engaging
response to another response, it may choose to reach the response
via relatively fewer responses. For example, if a rat engages in
sniffing (Fig. 1b left) and then chooses to press a lever (Fig. 1b
center), two paths or response sequences are available: walking to
the front of the lever and pressing the lever or walking to the front
of the lever followed by grooming and then pressing the lever
(Fig. 1b center). Grooming requires additional time and is
redundant for pressing the lever. Thus, the rat may choose the
shortest path, i.e., walk to the front of the lever and press it
(Fig. 1b right). In a large behavioral space, random search
increases the time required to reach the desired response and does
not warrant reaching the desired response. In summary, the agent
chooses one available response associated with different rewards
and reaches the chosen response by following the shortest path
from the currently engaging response. The agent loops through
this process in the behavioral network, which is composed of
responses.

We assumed that how nodes in a network and attachment of
an edge between two nodes depended on the history of past
rewards experienced by the agent. We employed Q-learning34 to
represent the history of rewards obtained when transitioning
from one response to another. In ordinary Q-learning, an agent
learns the action-value in a state. However, since our model dealt
with transitions between responses, we treated the response of the
agent as a state. Thus, Q-learning in our model was represented
by the following equation, assigning the response a time point

prior to the state:

Q at�1; at
� � Q at�1:at

� �þ α � δ ð1Þ
In this equation, α denotes the learning rate, we set α = 0.1 for

all simulations; and δ is the reward prediction error (or temporal
difference error). The reward prediction error was calculated as
follows:

δ ¼ R at
� �þ γ �max

atþ1
Q at ; atþ1
� �� Q at�1; at

� �
ð2Þ

In this equation, γ denotes the discount rate of future rewards
and we set γ ¼ 0:5 for all simulations. Rt denotes the reward
obtained by a transition, and the reward functions are different
between simulations, which have been explained in detail in
“Materials and Methods” section.

The probability that an edge is attached between any two nodes
depends on the Q-value and is calculated using the softmax
function. The probability was calculated using the following
equation:

pi;j ¼
e�βnQ i;jð Þ

∑N
j¼1e
�βnQ i;jð Þ ð3Þ

In this equation, N denotes the number of nodes in the net-
work and all the responses that the agent can engage in. βn
denotes the inverse temperature and we set βn ¼ 50 in all
simulations. We also sampled two edges according to Eq. (3),
such that every node had at least two edges. We used “networkx,”
a Python library for network analysis, to generate the network.

The algorithm for the agent to choose a response contains two
steps: (1) choice of the response based on the value of the reward,
and (2) searching the shortest path from the current engaging
response to the chosen node. In the choice of the response based
on the value of the reward, the probability of choosing a response
is calculated by proportional allocation of the reward value. The
shortest path search includes selecting the shortest path between
the current response to the chosen response and the agent
engaging in the responses containing the path in sequence.

The probability of response i was calculated according to the
following equation:

pi ¼
ri

∑N
j¼1rj

ð4Þ

In this equation, ri denotes the value of the reward obtained
from response i. In our simulation, the value of the reward
obtained from the operant response was 1.0, and the other
response was 0.001.

The shortest path search is used to find the shortest path
between any two nodes in the network. We employed Dijkstra’s
algorithm35 in all our simulations. If there were multiple shortest
paths between any two nodes, we randomly choose one of them.
We implemented the path search by using NetworkX36.

Simulation 1: network structure and habit formation. In the
Simulation 1, we searched for the structure of the network where
habits formation occurs. First, we generate a network based on
the Q-matrix. We used an arbitrary Q-matrix to operate the
degree of the edge concentration on the operant response. The
Q-matrix is defined as the direct product of the Q-vector. The
Q-vector contains scalars ranging from 0. to 1. and each element
corresponds to each response. More specifically, The first element
corresponds to the operant response and others correspond to the
other responses. In simulation 1, we fixed the value for the other
responses to 0.001 and varied the value for the operant response,
Q-operant, from 0.0 to 1.0. To examine the degree of habit, we
used the reward devaluation procedure used in free-operant
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experimental situations. The earliest demonstrations of habit
formation by Dickinson et al.11–13 used the reward devaluation
procedure. In this procedure, the investigators train the animals
to press the lever with a reward. After the animal learned lever
pressings to obtain the reward, the value of reward was reduced
by poisoning it with lithium chloride. In this procedure, animals
learnt the reward value outside the experiment. Subsequently,
investigators examined if the animal pressed the lever without
reward deliveries, or an extinction test. Thus, the reward value for
the animal was not updated in the test. When the animal pressed
the lever, the reward was poisonous, and the responses were
considered to be a habit. When the lever-presses decreased after
devaluation, the responses were considered to be goal-directed

behavior. To reproduce the procedure in the simulation setting,
we set up the baseline and post devaluation phases where the
value of reward obtained by the operant response is 1 and 0,
respectively. As animals had experienced reward devaluation
outside the experiments in the experimental setting, our agents
did not update the reward value within the simulation but
changed it from 1.0 to 0.0 before starting when moving from
baseline to post devaluation phases. In both baseline and post
devaluation phases, the first response that the agent engaged was
randomly determined. Then, the agent chooses a response based
on the reward value and searches for the shortest path to the
response from the current engaging response. They engage in
responses contained in the path and the agent reaches the chosen

Fig. 1 Scheme of the behavioral network. a The schematic representation of the behavioral network model represents how agents learn the Q-values by
interacting with the environment and generate a behavioral network based on these values. The behavioral network consists of multiple responses. b The
schematic representation of the model’s behavior shows how the agents transit in the network. The left panel shows the initial state in which agents
engage in a response. The center panel shows that agents choose a goal and search for the shortest path. The right panel shows that agents transit from
the initial response to the goal via the shortest path.
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response. After the agent reaches the response, it repeats this
process again. After several loops, we calculated the proportion of
the operant response to the total number of responses to assess
whether the operant response is habit or not.

Simulation result. Figure 2a shows examples of generated net-
works under the Q-operant. Other responses (black nodes) con-
nected to the operant response (red node) as the Q-operant
increased. Figure 2b shows the resistance to devaluation (left
panel), number of edges that the operant response acquired
(center panel), and betweenness centrality (right panel). The
resistance to devaluation was larger when the operant response
did not decrease with reward devaluation and higher Q-operant
the resistance to devaluation were larger (Fig. 2b left). The
number of edges that the operant response acquired increased as
the Q-operant increased (Fig. 2a and b center), implying that
edges from other responses were concentrated to the operant
response. The betweenness centrality, i.e., the probability that the
operant response is included in the shortest path between two

nodes in the network, increased as the Q-operant increased
(Fig. 2b right). With edge concentration in the operant response,
distances between two nodes in the network decreased (Fig. 3
left). Furthermore, transitions made by agents in the simulations
became efficient, and time required for simulations shortened
(Fig. 3 right). These results were replicated in a wide range of
Q-operant and Q-others, in different numbers of nodes (Sup-
plementary Fig. 2), and with a different path search algorithm
(Supplementary Fig. 3).

Interim discussion. In simulation 1, we examined the structure
of the network and habit formation under arbitrary Q-matrix and
showed that habit formation occurred when edges from other
responses were concentrated in the operant response. By
manipulating Qoperant systematically, the operant response
acquired most edges in the network (Fig. 2a and b center) and it
caused that increase in the resistance to devaluation (Fig. 2b left).
These results suggest that habit formation can be viewed as the
structural change in the behavioral network. In particular, habits

Fig. 2 Results of simulation 1. a Change in network with an increased Q-operant. Each point denotes a response, with black and red indicating other
responses and the operant response, respectively. b Change in resistance to devaluation and features of the network with an increased Q-operant. The left
panel shows resistance to devaluation, which indicates the decrease in the operant response caused by reward devaluation and implies that the operant
response becomes a habit at higher values. The center panel shows the change in the number of edges that the operant response acquired. The right panel
shows the betweenness centrality, i.e., the probability that the operant response is included in the shortest path connecting two nodes in the generated
network. Each point denotes individual agent and error bars show standard error of the mean (SEM).
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are considered as concentration of edges from other responses to
the operant response. This is because when agents move one
response to another, the operant response is included in the path
between the two nodes (Fig. 2b right). These results were repli-
cated in different settings of algorithms or parameters (Supple-
mentary Fig. 1, 2, and 3), suggesting these results were not limited
to the specific setting.

Habits are considered to be efficient in the computational cost
and transition7,37. In our model, these features of habits were also
found. Animal responses are constrained by some factors, such as
space and the animal’s body. For example, an animal cannot eat
food if the food is not in front of it and if it cannot walk when it is
sleeping. These examples imply that not all responses are
connected to each other and that the number of edges in the
network is limited. When the number of edges was constrained,
the structure of the network promoted that agent to engage in the
desired response. When edges from other responses were
concentrated in the operant response, the average distance
between two nodes was shortened38, and transitions made by
agents became efficient (Fig. 3). These results also imply that
agents can find the path between two nodes faster. Thus, habit
formation, i.e., edge concentration to the response, reduces the
computational cost and hastens the transition under constraints.

Simulation 2: devaluation and its effect on behavior under
free-operant situation. We examined if our model could repro-
duce the effects of factors that promote or disrupt habit formation
in free-operant situations11–15. In simulation 2, we let an agent
learn Q-values under arbitrary experimental environments and
examine whether habit formation occurs. Under free-operant
situations, there are three factors that lead to an operant response
to habit. The first is the amount of training, where one response is
rewarded repeatedly under one situation, and the response
becomes habit11,12. The second factor is the rule, called schedule
of reinforcement, which determines the criteria for presentation
of a reward for a response13. Habit formation does not occur
when reward presentation is determined by the number of
responses by the animal. In this environment, the presence/
absence of a reward is determined with a certain probability each
time the animal presses a lever, e.g., in the bandit task or slot
machine use. Habit formation occurs when rewards are deter-
mined according to the time elapsed since the previous reward. In

this environment, the availability of a reward is determined
potentially at arbitrary time steps with a certain probability, and
the reward is presented at the first response after reward pre-
sentation becomes possible, such as checking a mailbox. The
former response-based rule is called the variable ratio (VR)
schedule, and the latter time-based rule is called the variable
interval (VI) schedule. The third factor is the presence of alter-
natives. If two alternatives are available under a situation and
different rewards are obtained from them (e.g., left lever → food,
right lever → water), the operant response does not become a
habit14,15. Here, we reproduce the above experimental settings
and examine whether our model becomes a habit under these
environments.

The only difference between simulations 1 and 2 is whether the
agent learns the Q-values. Here, the agent experienced the
training phase preceding the baseline phase, where the agent
learned Q-values through interaction with a given environment
and constructed a network based on them (more detail in
“Materials and Methods”). After the training phase, the agent
experienced the baseline, devaluation, and post devaluation
phases in the same way as in Simulation 1.

Simulation result. Figure 4a shows the growth of resistance to
devaluation (left), number of edges (center), and betweenness
centrality (right) with increased amounts of training in VI (time-
based rule; red line) and VR (response-based rule; blue line)
schedules. All measures were larger in the VI schedule than in the
VR schedule. Figure 4b shows the resistance to devaluation (left)
and examples of networks learned in the choice (center) and no-
choice situations (right). The resistance to devaluation was larger
in the no-choice situation than in the choice situation (Fig. 4b
left). Two operant responses acquired almost the same number of
edges in the choice situation (Fig. 4b center), while only one
operant response acquired the most number of edges in the
network in the no-choice situation (Fig. 4b right). Figure 5 shows
the Q-value for self-transition of the operant response. The
Q-value increased with an increased amount of training and was
larger in the VR schedule than in the VI schedule. These results
were replicated in different experimental settings. Supplementary
Fig. 2B shows the replicated results in different numbers of nodes
(25, 50, 75, and 100). In simulation 2, agents received rewards
every time they engaged in other responses. In other words, we

Fig. 3 Reduced computation costs with habit formation. The left panel shows the average path length, i.e., the average of the shortest path between two
nodes in the network. When the path length is shorter, the transition from one response to another becomes faster. The right panel shows the required
time to simulate the baseline phase. The required time is the real time, i.e., the duration from the start to the end of the simulation. Since the number of
loops is the same for all simulations, the decrease in required time implies efficiency in shortest path search and transitions between responses. Each point
denotes individual agent and error bars show SEM.
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assigned fixed ratio (FR) 1 for other responses. Supplementary
Fig. 4 shows the results when a different schedule was assigned to
other responses instead of FR 1. The results were almost the same.
We examined if the results remained similar when a different
learning algorithm, SARSA, was employed and Supplementary
Fig. 5 shows that similar results were obtained.

Interim discussion. In simulation 2, we examined whether our
model shows similar behavior to real animals in environments
that affect habit formation, and our model reproduced the similar
results reported from the empirical studies. The resistance to
devaluation increased with an increased amount of training and
was larger in the VI schedule than in the VR schedule (Fig. 4a
left). As we have seen in simulation 1, the operant response
acquired most of the edges in the network under VI schedule, but
not under VR schedule (Fig. 4a center), and it turned out that the
betweenness centrality grew up under VI schedule (Fig. 4a right).

These results imply that the VI schedule and a large amount of
training promote habit formation. The resistance to devaluation
was lower in the choice situation than in the no-choice situation
(Fig. 4b left), suggesting that the presence of explicit alternatives
disturbed habit formation.

The amount of training affects the structure of the network
(Fig. 4a), and as the amount of training increases, the cohesion of
edges in the operant response increases. The smaller the amount
of training, the smaller the Q-values of the transition from other
responses to the operant response. Consequently, the probability
that an edge is attached to the operant response is smaller. As
shown in simulation 1, habit formation occurs when the operant
response acquires most of the edges in the network. Thus, the
amount of training affects habit formation.

The resistance to devaluation was larger in the VI schedule
than in the VR schedule, suggesting that habit formation was
promoted in the VI schedule. The VR schedule is a response-

Fig. 4 Results of simulations in VI and VR schedules and presence and absence of choice. a Growth of habits and network features in simulations
manipulating the amount of training in the VI and VR schedules. In all panels, the red and blue lines denote the VI and VR schedules, respectively. The left,
center, and right panels show the resistance to devaluation, number of edges, and betweenness centrality, respectively. b Effects of choice on habit
formation and network features. The left panel shows the resistance to devaluation. The center and right panels show the learned network in the choice and
no-choice situations, respectively. In the network, the red and blue nodes denote the operant response, and black nodes denote other responses. Each point
denotes individual agent and error bars show SEM.
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based rule of reward presentation. Therefore, all operant
responses, independent of the agent’s engagement immediately
before, were rewarded with constant probability. In contrast, the
VI schedule is a time-based rule and it causes that an operant
response, longer elapsed time from last operant response, is
selectively rewarded. In other words, an operant response emitted
after a few periods was selectively rewarded and implied a
transition from the other responses to the operant response in our
model. In summary, transitioning from other responses to the
operant response was selectively rewarded in the VI schedule and
resulted in edge concentration in the operant response and habit
formation.

One might suspect that, contrary to the experimental facts that
the response rate is larger in VR schedule than VI schedule, if
operant responses acquire more edge in the VI schedule, then the
response rate would be higher in the VI schedule as well.
However, Fig. 5 shows the Q value of the self transition of the
operant response is larger in VR schedule than VI schedule. It
implies that once an agent starts to engage in an operant
response, it will repeat the same response over and over again. In
fact, it has been experimentally shown that the difference in
response rate between VI and VR schedules is caused by such a
mechanism39–41.

Although the operant response acquired most of the edges on
the network under the choice environment, the operant response
did not become a habit. There are two reasons for this. First, the
agent chooses its response based on the value of the reward
obtained from the response. In the test phase, the value of the
reward obtained from the operant response was reduced, and that
of the alternative response remained the same value as the
baseline. Thus, the agent chose the alternative response more in
the test phase than in the baseline phase. Second, if only the
operant response acquired most edges, any shortest path may
contain the operant response. However, the alternative response
acquired most of the edges, so that any shortest path contained
the alternative response. Thus, the operant response no longer
has a greater chance of being engaged, and habit formation does
not occur.

In the no-choice situation, the operant response acquired the
most edges in the network, but several other responses also
acquired multiple edges (Fig. 4b right), resembling the scale-free
network, which should be assessed by the distribution of degree.
However, habit formation occurred in the network. Therefore,
although scale-free networks were not compared with random or
hub-and-spoke networks, habit formation might be present in the
scale-free-like network.

Simulation 3: correlation-based account vs contiguity-based
account of habit formation. Here, we propose an experiment to
directly test the response-reinforcer correlation, which has been
considered as a factor leading to habit formation in the past, and
our model’s explanation: selective reinforcement of transitions
from other behaviors to the operant response and the resulting
structural changes in the network. This is a new experiment
predicted by our model, which has not yet been examined in real
animals, and will encourage future theoretical tests.

From canonical view, response-reward correlation, the operant
responses remain goal-directed when animals experience a
correlation between the operant responses and rewards, but
become habits when they do not experience the correlation1,42.
Under VR schedule, the more they engage the operant response,
the more rewards they can obtain. It leads that they experience
positive correlation between the operant response and rewards,
and the operant response remains goal-directed. In contrast,
under VI schedule, since rewards availability is governed by time,
such correlation is collapsed and they do not experience it. It
results that the operant response becomes habit.

In recent years, results have been reported that contradict the
response-reward correlation43–45. For example, De Russo, et al.44

trained mice under VI and FI schedules. FI and VI have a
common molar relationship between response rate and rewards:
in both schedules, animals can not obtain more than the
determined number of rewards within a certain duration, no
matter how much they engage in the operant response. Under
such a condition, the response-reward correlation view predicts
that both schedules guide the same level of habit formation.
However, the operant response of mice trained under FI schedule
remains goal-directed but under VI schedules, the operant
response becomes habit. DeRusso, et al.44 conclude that the
contiguity, which is defined by average temporal distance between
responses and successive rewards, disrupts habit formation. In the
FI schedule, animals tend to emit more response as they approach
the time when rewards are presented. In contrast, animals do not
know when the reward becomes available, they emit responses
uniformly during inter-reward intervals in VI schedule. Thus,
under the FI schedule, animals emit many responses just before
rewards and the contiguity of responses and rewards becomes
higher but, under the VI schedule, operant responses are
distributed uniformly and the contiguity becomes lower.

A similar discussion has been made for VI-VR response rate
difference and there are two kinds of accounts. One explains the
difference by the difference in interresponse time that is likely to
be rewarded46,47. In VI schedule, probability of reward avail-
ability increases as the elapsed time from last response increases
and it results that longer IRTs are more likely to be rewarded than
shorter ones. In contrast, such characteristics are not found in the
VR schedule or shorter IRTs are more likely to be reinforced.
(Fig. 6 right). Thus, response rate is lower in VI schedule than VR
schedule. Especially, the copyist model46 explains the difference
by average of interresponse times between successive rewards and
this is similar to contiguity-based account of habit formation44,45.
Second account is based on the molar relationship between
response rate and reward rate48,49. The more animals emit
responses under VR schedule, the more rewards they can obtain
(blue line in Fig. 6 left). In contrast, under VI schedule, animals
can not obtain more rewards than experimentally defined, no
matter how they emit responses under the schedule (red line in
Fig. 6 left). This account underlies the response-reward correla-
tion account of habit formation1,42.

Our model is positioned similarly to the contiguity-based
account in these discussions. As we show in simulation 2, the VI-
VR response rate difference can be explained by which transitions
are likely to be rewarded: In VI schedule, the transitions from

Fig. 5 Q-value for self-transition of the operant response. Q-value of self-
transition of the operant response. The red and blue lines denote the VI and
VR schedules, respectively. Each point denotes individual agent and error
bars show SEM.
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other responses to the operant response are more likely to be
rewarded but not in VR schedule (Fig. 5). Viewing the cause of
long IRTs as engagement in other responses32,50, differential
reinforcement of long IRTs can be interpreted as differential
reinforcement of the transition from other response to the
operant response. Considering these discussions, our model
suggests that the same discussions for VI-VR response rate
difference can be applied to habit formation.

Here, we mimic an experiment which is conducted to reveal
that the VI-VR response rate difference is caused by IRTs
immediately followed by rewards51. In the experiment, pigeons
are trained under tandem VI VR and tandem VR VI schedules.
The former schedule, tandem VI VR, shares a molar relationship
between response rate and reward rate with VI schedule.
However, VI schedule is immediately followed by short VR
schedule and longer IRTs are less likely to be rewarded than
simple VI schedule. The later one is tandem VR VI, it’s molar
relationship between response rate and reward rate is similar to
the simple VR schedule. However, since VR schedule is followed
by VI schedule, longer IRTs are more likely to be rewarded. In
this schedule, pigeons showed higher response rate in tandem VI
VR schedule and lower in tandem VR VI schedule51. These
findings contradict the account based on response rate and
reward rate correlation but well explained by differential
reinforcement of IRTs46. Will habit formation occur under these
schedules? From the view of response-reward correlation, tandem
VI VR schedule leads habit but not in tandem VR VI schedule
because there is lower response-reward correlation under the
former schedule but higher than the later one. In contrast, our
model makes the opposite prediction that habit formation will be
guided under tandem VR VI schedule but not under tandem VI
VR schedule. This is because, in the former schedule, transitions
from other responses to the operant response are more likely to
be rewarded, and the operant response acquired more edges. In
the later schedule, transitions from other response to the operant
response and the self transition of the operant response are
rewarded in the same probability so the operant response
acquired not so many edges.

Simulation result. Figure 7 shows the resistance to devaluation,
number of edges, and betweenness centrality simulated under VI,
tandem VI VR, VR, and tandem VR VI schedules. They were

higher under VI and tandem VR VI schedules than VR and
tandem VI VR schedules. Although the response-reward corre-
lation account suggests that habit formation is disrupted under
tandem VR VI schedule and is promoted tandem VI VR sche-
dule, the results were the opposite, habit formation was promoted
under tandem VR VI and but not under tandem VI VR. The
center of Fig. 7 shows the number of edges that the operant
response acquired to the overall number of edges in the network
and the operant response acquired more edges under VI and
tandem VR VI schedules. Figure 7 (right panel) shows the
betweenness centrality of the operant response. The betweenness
centrality was larger in the VI and tandem VR VI schedules than
in the VR and tandem VI VR schedules. Figure 8 shows the
Q-value of the operant response. It was larger in the VR and
tandem VI VR schedules than in the VI and tandem VR VI
schedules.

Interim discussion. In simulation 3, we mimicked the schedules
employed by Peele et al.51 to reveal what characteristics of
schedules, response-reward correlation or response reward con-
tiguity, promote habit formation. Traditional accounts suggest
that lack of the response-reward correlation promotes habit
formation1,42. In contrast, other researches suggest that the
response-reward contiguity is crucial for habit formation but not
the correlation44,45. These two accounts make different predic-
tions in the schedules we employed here. Tandem VR VI schedule
has a common molar relationship between response rate and
reward rate with simple VR schedule (blue line in Fig. 6 left) but it
also has a time-dependent property, which is found in VI sche-
dule (red line in Fig. 6 right), that the probability of obtaining
rewards increases as time elapses. In summary, the Tandem VR
VI schedule has higher response-reward correlation but lower
response-reward contiguity, and the response-reward correlation
account predicts that habit formation is disrupted in the schedule.
In contrast, the tandem VI VR schedule lacks both a molar
relationship between response rate and reward rates and time-
dependency (red line in Fig. 6 left and blue line in Fig. 6 right). In
such schedule, animals can not obtain more than the determined
number of rewards within a certain duration, no matter how
much they engage in the operant response but the transition from
other responses to the operant response is less likely rewarded. In
summary, the tandem VR VI schedule had a higher

Fig. 6 Example of response-reward correlation and contiguity. Response rate and reward rate correlation (left) and reward probability as function of
elapsed time last response (right) in VR and VI schedules. In VR schedule (black line), reward rate is proportional to response rate, in contrast, reward
rates reach a plateau as response rate increases in VI schedule (red line). Reward probability is constant independent from elapsed time from last response
in VR schedule, in contrast, it increases exponentially as the time increases.
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response–reward correlation but a lower response-reward con-
tiguity, and the response-reward correlation account predicted
that habit formation was disrupted in the schedule. However, in
contrast to the traditional view, our model predicts that habit
formation is more likely promoted in tandem VR VI schedule
(Fig. 7 left). Because of time-dependency tandem VR VI schedule
have, transition from others response to the operant response is
more likely to be rewarded in the schedule and acquired more
edges that simple VR schedule and tandem VI VR schedule
(Fig. 7 center). Thus, as we showed in simulation 1 and 2, the
probability that the operant response is included in the shortest
paths increased and habit formation occurred (Fig. 7 right).

Our model supports the account that the contiguity between
responses and rewards promotes habit formation44,45. In tandem
VI VR and simple VR schedule, the self transition of the operant
response is more likely rewarded than transition from other
responses to the operant response. This is because, the operant
response occurred as a bout, a burst of responses is followed by
long pauses, and this implies that animals emit more responses
just before reward presentation. In tandem VR VI and simple VI
schedule, the self-transition of the operant response is less likely
rewarded because of the time-dependent property between
response and reward (red line in Fig. 6 right). This result implies

that animals emit less response just before the reward presenta-
tion. Thus, response reward contiguity is higher in the tandem VI
VR and simple VR schedule than tandem VR VI and simple VI
schedule.

Discussion
In this research, we explain habit formation as changes in net-
work structure by assuming the behavior of organisms viewed as
a network of responses. In simulation 1, we generated arbitrary
networks and examined the underlying structure of goal-directed
behavior and habits. We revealed that habit formation occurs
when a particular response acquires most of the edges from other
responses. In Simulation 2, we simulated the environments that
were reported to promote or inhibit habit formation from existing
studies and examined whether the proposed model showed habit
formation. These results were consistent with experimental
results reported by many laboratories, suggesting that our results
demonstrate habit formation as a structural change in the beha-
vioral network. In simulation 3, we analyzed the behavior of the
proposed model in an experimental situation where the canonical
theory1,42 and the proposed model make different predictions.
The results suggest that our model supports the view of reward-
responses contiguity promoting habit formation44,45 but not the
canonical view of reward-response correlation.

Relationship to other theoretical models of habit formation.
Although there are many models of habit formation, most of
them are viewed as goal-directed behavior and habits as inter-
actions between two distinctive associative structures. Here, we
succeeded in providing a novel explanation by taking a more
molar view of behavior. Specifically, the proposed model sub-
stantially differs from existing models in three ways. First, the
proposed model does not consider behavior as a single element,
but as a network of interconnected responses. Conventional views
focus only on responses under highly constrained experimental
situations, such as lever pressings or button pushings, and ignore
the molar structure of behavior that the real organisms may have.
Responses of organisms, including humans, are not independent
of each other, but they are probabilistically conditioned by the
preceding and succeeding responses. In the proposed model, the
structures of such responses are represented as a network, and
habit formation is explained as a change in the structure. Second,
our model seems to have no state variable, unlike previous

Fig. 8 Q-value for self-transition of the operant response. Each point
denotes individual agent and error bars show SEM.

Fig. 7 The simulation results in tandem VI VR and tandem VR VI schedules. The left panel shows the resistance to devaluation in VI, Tandem VI VR, VR,
and Tandem VR VI schedules. The center panel shows the number of edges that the operant response acquired in each schedule. The right panel shows the
centrality of the operant response. Each point denotes individual agent and error bars show SEM.
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models3,4,7,52. We treated the immediately prior response of the
agent as a state; thus, so there is no lack of state variables. This
treatment of past responses as states has often been employed in
modeling animal behavior31,32,50,53. However, our model differs
from past models of habits. Many models of habits were built in
consideration of the multistage Markov decision task2–4,7. In the
multistage Markov decision task, experimentally explicit states,
each choice point, exist. In contrast, we studied habits in free-
operant situations in which animals could engage in responses
freely and repeatedly, and experimentally explicit states were
lacking. Previous models were applied to the free-operant situa-
tion in two different ways. One way was to not assume the state1,
and the other way was to introduce a hypothetical state7,52. We
treated the immediately prior response as a state, similar to the
later one. Although our model seems to have no state variable,
our approach was similar to the previous one7,52. Thus, we sug-
gest that the inclusion or exclusion of state variables to explain
habit formation in free-operant situations depends on the details
of the model and is not always necessary. Third, some models of
habits assumed two distinct systems corresponding to goal-
directed behavior and habits1,2,52. Particularly, only the model
that could explain habits in free-operant situations assumed them
explicitly1. Although all responses were assumed to be under
goal-directed control, choices were based on reward values and
shortest path search, and results reported in free-operant situa-
tions were reproduced11–15. Recently, in the context of the mul-
tistage Markov decision task, several models showed no distinct
systems between goal-directed behavior and habits3,4. Our model
also showed no explicit distinction but that the idea could be
applied to habits in free-operant situations.

Although the proposed model deals with experiments on habit
formation in rodents’ operant situations11–15, most of the
experiments discussed here are also dealt in Perez and
Dickinson1. Both models reproduce results that are consistent
with the experimental results. Perez and Dickison1 provide an
explanation based on reward-response correlations. In their
model, the lower the correlation between response and reward,
the more habit formation is promoted. On the other hand, the
proposed model provides an explanation based on contiguity
between response and reward44,45. Contiguity is defined by the
temporal distance between the reward and the emitted response
to obtain it. The lower the contiguity, the longer the temporal
distance between the response and the reward, the more habit
formation is promoted. Although the proposed model does not
explicitly incorporate contiguity as a variable in the model, it
allows for a similar representation by dividing the agent’s
behavior into the operant responses and other responses, and
separating transitions to the operant responses into self-
transitions and transitions from other responses. For example,
in a schedule with low reward-response contiguity, such as the VI
schedule, transitions from other behaviors to the operant are
more likely to be reinforced, while in a VR schedule with high
contiguity, transitions from other behaviors are less likely to be
reinforced. As a result, the operant response obtains more edges
and promotes habit formation in schedules with low contiguity.
As an experiment in which these two factors can be more clearly
separated, we employed the procedure of Peele et al. 51. Under
this procedure, correlation-based and contiguity-based explana-
tions provide opposite predictions. The proposed model repro-
duced the same results as predicted by the contiguity-based
explanation. Whether habit formation occurs under this experi-
mental procedure has yet to be examined, but it does provide
useful insights for updating the theory of habit formation.

The proposed model may seem similar to the model of
Dezfouli and Balleine7,9,10. In fact, their model and our proposed
model have two common assumptions. First, instead of treating

the agent’s behavior as a single response, the two models
explicitly assume other responses. They explain habit formation
in terms of the acquisition of those sequences or the structure of
the network. The second point is that the agent generates
sequences or searches for the shortest path based on the value of
the reward. However, the models have two differences. First, the
targeting experimental situations differed. Their model was built
with the multistage Markov decision task, while our model was
built to explain habit formation in free-operant situations. The
existing comprehensive theory in free-operant situations assumed
parallel control by two systems (1). A kind of response-chaining/
action-chunking models have limited applicability in free-operant
situations. Second, the view of behavior differed. Our model tried
to overcome the limitation. In free-operant situations, animals
could engage in responses freely without explicit states defined
experimentally. In the case of free-operant situations, direct
application of the idea of response-chaining or action-chunking
was difficult because no points corresponded to the start and end
of trials. Instead of the chunk or chain, we considered behavior as
a network and the agent’s behavior as a transition within the
network. In other words, by viewing behavior as a loop without a
clear start or end, we successfully modeled the behavior of free-
operant situations.

Actually, Dezfouli and Balline7 applied their model to the free
operant situation and reproduced the effect of amount of training
on habit formation. However, they did not treat how other
factors, schedule types and presence of alternatives, affect habit
formation. The proposed model, which shares common assump-
tions with their model, can reproduce the results reported in
empirical study11–15, suggesting that the idea of response-
chaining or action-chunking could be applied in free-operant
situations. Moreover, the model clarifies the difference between
the canonical correlation-based account and common points with
the contiguity-based account. We also found common features
with the recently proposed models3,4. In those models, goal-
directed planning was employed, and the behavior of human and
rodents’ multistage decision-making tasks, such as multistage
Markov decision tasks and tree-shaped maze, were explained.
Pezzulo et al. 3 built a mixed-controller model consisting of goal-
directed and habit behaviors in a single system. Keramati et al. 4

proposed that these two systems were not separated but placed in
one spectrum. Our model also considered these two systems to be
not separated but coexisting in a single system and placed in one
spectrum, with only a difference in the structure of the network.
However, similar to many other models, their models targeted
multistage decision-making tasks but not free-operant situations.
Our model shared common features, i.e., planning and singularity
of the system, with their models3,4 and successfully applied those
features in free-operant situations. From the canonical view, two
distinct systems control a response in the flat manner1,2. This
view has been challenged recently, and new models have been
proposed in the context of the multistage decision-making tasks.
Although their applications are limited to free-operant situations,
our model adopted those ideas, i.e., response-chaining/action-
chunking, planning, and mono-systematicity, and explained habit
formation in free-operant situations, suggesting a link between
the different experimental procedures and providing a compre-
hensive understanding of habit formation.

Neural substrates of behavioral network. The corticostriatal
network is involved in habit formation, and generates response
patterns54,55. Especially, dorsolateral striatum (DLS) is known to
be important in transition from goal-directed behavior to
habits56. DLS activity changes as proceedings of training and
responses become habits57,58, and lesion of DLS turns habits into
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goal-directed behavior after extended training56. DLS also carries
forming response sequences59 and motor routines60. In addition
to its importance in the learned behavior, DLS also encodes
innate response sequences61. These facts imply that habit for-
mation and the formation of response sequences have common
neural substrates.

A recent study reported that DLS encodes not only information
about response sequences but also more divergent information
about behavior, which are topographically categorized responses
and transitions between them17. They recorded the DLS activities
of mice with fiber-photometry under an open-field situation and
reported neural activities that correlated with the behavior. The
activities differed depending on the preceding and succeeding
responses, and DLS encoded a transition between the responses.
Moreover, the behavior of the mice with DLS lesions showed
random transitions of the responses compared to the sham-lesion
group. These results imply that the information encoded in DLS
is the transition of the structure of behavior. Thus, the function of
the DLS might be well understood by considering the habit and
goal-directed behavior from the viewpoint of the behavioral
network.

Corticostriatal circuits, the associative network, which consists
of the prefrontal cortex, dorsomedial, or ventral striatum, plays a
role in goal-directed behavior62. The dorsomedial striatum
(DMS) is known to be involved in the acquisition of goal-
directed behavior, maintaining sensitivity to outcomes, and
expressing goal-directed behavior63,64. The DMS receives excita-
tory inputs from the prefrontal cortex, whereas the DLS receives
inputs from the sensorimotor and premotor cortices64. In the
canonical dichotomous view of habit formation, goal-directed
behavior is replaced by habit after extensive training. After habit
formation, the contribution of DLS becomes more important
than that of DMS56,64. However, even after extensive training,
many brain areas such as the prefrontal cortex, anterior cingulate
cortex, and ventral and dorsal striatum are modulated by
anticipated rewards65–69. In our model, any response emitted
by an agent is considered goal-directed. Regardless of the training
stage, our agents choose their responses based on the value of the
rewards. Therefore, the fact that regions involving goal-directed
behavior are modulated by anticipated rewards even after
extensive training, our assumptions do not contradict each other.
Combined with the fact that DLS is more responsible for
sequential responding than DMS70, the transition from DMS to
DLS during habit formation might reflect the corresponding
behavioral sequence induced by changes in the behavioral
network.

Neuronal circuits involving ventral striatum and hippocampus
play key roles in spatial navigation and are considered to be
related to the planning71,72. Both spatial navigation and planning
are related to habits and they share common neurobiological
substrates3,73–77. Although roles of hippocampus and planning in
habits and goal-directed behavior in free-operant situations
remains unknown, our model sheds light on the role of planning
and related brain regions in habits in the free-operant situations.

Relationship to other behavioral phenomena. Animals engage
in specific responses, such as orienting, approaching, and con-
summatory behavior, just after the presentation of the reward.
Specific action sequences are observed during experiments, and
learning is sometimes disrupted by innate responses. These
experimental and observational facts lead us to assume that
behavior is a network constructed from responses.

In our model, the structure of a network depends only on past
experiences under a given situation. In other words, our model
does not consider the connections between specific responses that

real organisms may have. Thus, we could not reproduce this
phenomenon. However, our model can be further extended and
modified to include this phenomenon.

Schedule-induced behavior, observed under intermittent sche-
dules of reinforcement, is a behavioral phenomenon in which
animals show aggression or water intake just after the reward
presentation25–27. This phenomenon can be attributed to the
innate connections between reward consumption and schedule-
induced behavior. Because of these connections, animals tend to
engage in aggression or water intake immediately after reward
presentation. Similarly, terminal behavior, which occurs as
approaches reward presentations, can be explained by assuming
an innate connection, which may explain the fact that animals
show a specific sequence of responses during the experiment.

To deal with such phenomena, we assume that it is possible to
express the innate susceptibility of edges as a prior distribution
and impose constraints on the probabilities of edges attached by
learning. Furthermore, we can systematically treat phenomena
such as misbehavior and biological constraints on learning by
examining differences in prior distributions among species and
environments. Thus, we can extend our model to a comprehen-
sive framework of behavior that incorporates the innate behavior
of organisms under natural settings.

Goal-directed behavior and habits are related to spatial
navigation3,73–77. Pezzulo et al. 3 target an experiment with tree
type maze and the task is similar in the abstract structures to the
multistage Markov decision task. Our model employed a
planning process as the model proposed in Pezzullo et al. 3.
However, planning is made in the real space in their model, but
planning is made in behavioral space in ours. Thus, the
application of our model for spatial navigation is limited.
However, the idea of learning response sequence can be applied
to spatial navigation, such as learning a series of responses of
turning to left and then turning to the right. As we discussed in
the above, the limitation is also related to the experimental
situations, multistage Markov decision tasks and free-operant
situations. We expect a more comprehensive view or model that
targets both experimental situations in the future.

Limitations and future directions. Our model has three major
limitations. First, as we discussed in the previous section, our
model does not consider innate constraints that real organisms
have, and we believe that we can solve the problem by expressing
the innate constraints as a prior distribution. Second, our model
could not treat the self-transition of each response. Third, it can
only deal with experiments on habit formation under free-
operant situations.

Our model cannot treat the self-transition of responses because
we employed the shortest path search algorithm to generate
response sequences. Any self-transition makes paths between any
two responses longer, and paths containing self-transitions must
not be the shortest paths. However, animals show a particular
response pattern, which is called bout-and-pause and character-
ized by phasic bursts of one response and pauses following them.
Such response patterns imply that the responses have self-
transitions. To solve this problem, it is necessary to employ a
different algorithm to generate response sequences that allow self-
transition.

All our simulations deal with experiments in free-operant
situations, and not with recent experiments with the two-stage
Markov decision task. This is not a specific problem for our
model; other existing models treat either of them. Although many
experiments have been conducted in both experimental tasks, the
differences and identities of the procedures and results among
them have not been systematically examined. To obtain a more
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unified understanding of habit formation, we need to conduct a
systematic analysis of the procedures and results employed
and obtained from existing studies. Therefore, the validation
of our model is limited to habit formation in free-operant
situations.

Recent advances in machine learning allow us to measure
animal behavior more objectively and precisely than ever before.
However, behavior estimation technologies are not well estab-
lished at present, preventing us from validating some assump-
tions in our model. In this field, no consensus has been reached
on what timescale should be employed to classify behavior and
how finely behavior should be classified. For example, we
assumed that the behavioral network consisted of 50 nodes but
did not know how many nodes constitute the behavioral network
of real animals. However, as shown in Supplementary Fig. 2, habit
formation occurred in networks of a slightly smaller size,
suggesting that our explanation for habits could be applicable
to the real behavioral network even if the size is smaller than we
assumed. In the future, such technologies and by utilizing these
techniques, it is possible to understand behavior on a macroscale
rather than capture the behavior in highly constrained experi-
mental settings. Our model provided a novel perspective on how
behavior could be viewed on macroscale behavioral phenomena
and raised questions that could be answered by such techniques,
which would further help us understand the function of the brain
in behavioral changes.

In this paper, we provide a novel perspective on habit
formation by assuming behavior as a network. In existing
models, goal-directed behavior and habits are controlled by two
distinct systems. On the other hand, our model shows that
although all responses are goal-directed, both goal-directed and

habits result from the structure of the network. It proposes that
habit formation is not caused by a change in the control of the
two systems, but rather by a continuous change in a single system.
Furthermore, the most important feature of our model, which
differentiates it from other models, is that behavior is a network
constructed from responses. With this view, we have succeeded in
providing a novel explanation for habit formation. This implies
that the possible algorithms can be changed depending on how
one views the behavior of organisms. Our study also suggests that
changing the method of capturing behavior could be a
fundamental step in understanding the biological structure of
the behavior.

Methods
Overview. We conducted three simulations in this article, and they contain four
steps (Fig. 9). In the first step, agents learn the Q matrix in the given environments
in the simulation 2 and 3 but agents are given a hypothetical Q matrix in the
simulation 1. After the training phase, the agents generate a network based on the
Q matrix. The way to generate the network is the same in all simulations. In the
second step, the baseline phase, the agents travel in the network and engage
responses. Here, the agents choose their responses based on reward values and the
reward value obtained by the operant response is set to 1.0. The agents no longer
update the Q matrix nor reconstruct the network. In the third step, the devaluation
phase, the reward value of the operant response (r0 in Eq. 4) was reduced from 1.0
to 0.0 without any interaction with environments. If there were two operant
responses, the value of only one of them (reduced r0 but not r1) was reduced. In the
fourth step, the post devaluation phase, the agents behave in the same way as the
baseline. However, the reward value of operant response is reduced to 0.0. The only
difference between baseline and devaluation is the reward value of operant
response. We explain the procedures conducted in the four steps in detail after
sections. Our simulation codes are available at: https://github.com/7cm-diameter/
hbtnet.

Generate hypothetical Q matrix. Here, the agents are given a hypothetical
Q-matrix instead of learning it through interactions between an environment. First,

Fig. 9 Overview of simulations. The upper panel shows the schematic representation of the reward devaluation procedure in real experiments. The bottom
panel shows the simulation procedure as corresponding to the empirical procedure.
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we determine the number of nodes contained in a network. We assign a scalar
value for each node and it is represented by a vector. The first element of the vector
denotes the operant response and other elements denote other responses. The
values of the other responses are fixed to 0.01. The value of the operant response is
ranged from 0.01 to 1.0. The Q matrix is then defined as the direct product of the
Q-vector.

Learn Q matrix in the given environment. In simulation 2 and 3, agents learn the
Q-matrix in an experimental environment. In the simulation 2, we conducted
simulations with variable interval (VI), variable ratio (VR), concurrent VI VI, and
VI with non-contingent rewards. Moreover, we changed the number of rewards in
the learning phase to examine the effect of training on habit formation. In simu-
lation 3, we conducted simulations with tandem VI VR and tandem VR VI.

In all these simulations, the agent chooses a response and the environment
provides a reward based on the response. The agent chooses a response according
to the softmax function; pi ¼ eβcQi

∑N
j¼1e

βcQi
, where βc denotes the inverse temperature,

and Ndenotes the number of responses in the given environment. We set βc ¼ 3:0
in all simulations. Then, the agent updates the Q-matrix according to the response
and the reward. In all simulations, we employ fixed ratio (FR) 1 for other responses,
where the agent can obtain rewards every time it engages in the responses and the
reward values are 0.001 for all other responses. These flows are the same in all
simulations. The only difference between the simulations is the schedule in which
the environment gives rewards to the agents. Supplementary Algorithm 1 describes
general flow of all simulations. In the following sections, we explain the differences
in the schedules for each simulation.

VR VI comparison and amount of training. The VR schedule presents rewards
depending on the response of the agent. At each response, the reward is presented
at a given probability, which is the same as in the simulations. This means that
reward presentation follows the Bernoulli process, and the number of responses
required to obtain rewards follows the geometric distribution. We generate pseudo-
random numbers following the distribution in order for the numbers to converge
to the distribution in all simulations. More specifically, we divided the interval
ranging from 0 to 1 into equal divisions according to the number of rewards, and
the percentile points of the distribution were calculated for each point. Supple-
mentary Algorithm 2 shows how to generate the required number of responses that
follow the geometric distribution. We employ VR 15 in simulation 2.

The VI schedule presents rewards depending on the time lapse. However, the
agent must emit responses to obtain rewards. Reward availability is determined at
each time step according to a probability, and once the reward becomes available, it
remains available until the agent takes the response. Reward availability follows the
Poisson process, and the intervals between each reward follow an exponential
distribution. Pseudo-random numbers are generated following the distribution in
the same manner as the VR schedule. Supplementary Algorithm 3 shows how to
generate inter-reward intervals that follow an exponential distribution. Moreover,
we examined the effect of the amount of training on habit formation by
manipulating the number of rewards in both schedules. We calculated the average
of inter-reward intervals in the VR schedule and used them as the parameter of VI
schedule.

Comparison between choice and single schedule. To examine the degree of habit
formation when an explicit alternative is given, we used an environment that
mimics the experiment conducted by Kosaki and Dickinson15, where the effect of
the presence or absence of the alternative on habit formation. Here, the agent can
engage in two operant responses, and different rewards are assigned to each
response. For example, two levers were inserted into the apparatus and pressing the
left lever produced food, and the right levers produced a sucrose solution. In
addition, as a control condition, we used an environment in which the agent can
engage only one operant response, but the reward unavailable from the operant
response is presented independent of the agent responses.

We mimicked these experiments. In the choice condition, two of the responses
were treated as operant responses, and assigned two VI schedules with the same
value and the reward values obtained from both were set to 1.0. In the no-choice
condition, the operant response was assumed to be one, but the reward was
presented independently of the response in order to control the reward amount.
We assigned a variable time schedule to the rewards that are presented
independent from the agent responses. We employ concurrent VI 60 VI 60 in the
choice condition, and concurrent VI 60 VT 60 in the no choice condition.
Supplementary Algorithm 4 and 5 describe the implementation of both of
concurrent VI VI and VI VT schedules respectively.

Tandem VI VR and tandem VR VI. The tandem schedule is a schedule that pre-
sents multiple schedules in temporal succession. For example, tandem FR 5 VI 30
means that VI 30 will start after the agent has responded 5 times, and the reward
will be presented at the end of VI 30. In addition, since tandem does not provide
any explicit cues about the components it consists of, the agent can not know
which schedule it is under. In tandem VI VR, the agent is first placed under a VI
schedule, and after it is finished, it is moved to a VR schedule. In tandem VR VI the
order of components are reversed, starting with the VI schedule and followed by

the VR schedule. We employ tandem VI 15 VR 3 and VR 10 VI 5. Supplementary
Algorithm 6 and 7 describe the implementation of both of tandem VR VI and VR
VI schedules respectively.

Baseline and devaluation. The reward devaluation is a procedure to examine
whether an operant response is goal-directed or habit under free-operant situa-
tions. First, an animal learns that he or she can obtain a reward, food, or sucrose
solution by pressing the lever. Learning lever pressings, the animal was placed in an
experimental environment and trained to the operant response. After the training,
reward devaluation was done by poisoning it with lithium chloride and a brief
period was added where the animal can access the reward freely. Then, the animal
was put into the experimental environment again and examined whether the
number of operant responses decreased. If the number of responses does not
change, it implies that the response is no longer controlled by its consequence, and
the response becomes a habit. In contrast, if the number of responses decreases, the
response is controlled by its consequences, such as goal-directed behavior. In our
simulation, to reproduce the procedure, we reduced the value of the reward
obtained from the operant response after the baseline phase.

Baseline. In the baseline phase, an agent travels on a network by choosing a
response following Eq. (4) and searching for the shortest path between a currently
engaging response and the goal. The simulation contains three steps: (1) choice of
response based on reward values, (2) searching for the shortest path between the
current response and the goal, and (3) engaging responses successively contained in
the path. We calculated the proportion of an operant response to the total number
of responses after some loops of the above 3 three steps. Supplementary Algo-
rithm 1 shows the pseudocode of the simulation in the baseline phase.

Devaluation. In the devaluation phase, the agent behaved in the same way as in the
baseline phase. The difference between the devaluation and baseline phases is only
the value of the reward obtained from the operant response. In the baseline phase,
we set the value to 1, and in the test phase, we set it to 0. At the baseline phase, we
calculated the proportion of the number of operant responses to the total number
of responses. Supplementary Algorithm 8 describes the procedure of the baseline
and devaluation phase.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data are within the paper (Figs. 2–8 and all Supplementary Figures) and the
data and figures were generated using author’s scripts (See Code availability).

Code availability
All Python scripts written for the simulations and analysis are available at https://github.
com/7cm-diameter/hbtnet.
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