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Sharing GWAS summary statistics
results in more citations
Guillermo Reales 1,2✉ & Chris Wallace 1,2,3

Rates of sharing of genome-wide association studies (GWAS) summary sta-
tistics are historically low, limiting potential for scientific discovery. Here we
show, using GWAS Catalog data, that GWAS papers that share data get on
average 81.8% more citations, an effect that is sustained over time.

In recent years, we have witnessed an increasing and solid push toward open science in the form
of incentives for open-access publishing and data sharing across scientific fields, exemplified by
Plan S (https://www.coalition-s.org/) and the rise of the FAIR (Findable, Accessible, Inter-
operable, and Reusable) principles, created as guidance for good data sharing practice to support
data reusability1. This effort comes from recognising that the accessibility and reuse of research
data have a huge potential to boost scientific progress, especially given the vast amounts of data
generated in genomics and biomedical fields2.

Human genomics pioneered the establishment of norms for data sharing, starting with the
Human Genome Project, reflected in the Bermuda principles (https://web.ornl.gov/sci/
techresources/Human_Genome/research/bermuda.shtml) and later expanded by the Fort Lau-
derdale agreement3, which promoted the publication, sharing and maintenance of a community
resource of genetic data, paving the way for successful multinational collaborative work.

Genome-wide association studies (GWAS) have been the workhorse of genomics for over a
decade and are an example of reproducible science principles in practice due to the sharing of
results and data4. GWAS typical output, summary statistics (i.e. plain text files with the results of
the per-SNP tests), are especially suited for sharing, as they are easily stored, alleviate privacy
concerns posed by sharing individual data, and can be exploited by many bioinformatic tech-
niques (eg. meta-analysis5, Mendelian randomisation6, linkage disequilibrium score regression7,
colocalisation8, polygenic risk scores)9, thus enabling the reuse of existing data to explore new
questions.

The NHGRI-EBI GWAS Catalog10 is a publicly available and manually curated resource of
human GWAS, which not only provides the most significant results and metadata of published
GWAS but also offers structured and harmonised GWAS summary statistics associated with
each study when available. However, there is still no agreement on GWAS summary statistic
format, although efforts to develop one are being made11 or sharing policy, and recent work
shows that most authors do not share their GWAS data12.

Lack of data sharing is a common phenomenon across fields, and factors influencing data
sharing have been investigated elsewhere (eg.13,14). Within GWAS, one particular challenge is
participant privacy since individual-level genetic data is theoretically identifiable15,16, and some
possibility of identifiability exists even in summary statistics17, although either would require
someone to hold the genetic data on an individual already to identify them within a published
study. Despite these concerns, in 2018, after considering all the risks and benefits, NIH sup-
ported the open sharing of summary-level GWAS data (https://grants.nih.gov/grants/guide/
notice-files/NOT-OD-19-023.html).

There is still no definitive answer to which incentives would act to increase data sharing18. We
hypothesised that data sharing might benefit authors regarding citations upon data reuse. If this
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were so, it would provide an additional incentive, beyond good
citizenship, for data sharing. We, therefore, used data from the
GWAS Catalog10 to explore the current sharing landscape of
human GWAS summary statistics and to analyse the relationship
between sharing and potential citations.

Results
We collected sharing and citation information from 5756 studies
with results published in the GWAS Catalog (Supplementary
Data 1)10. Roughly one in ten (604, 10.5%) had summary sta-
tistics available for download. The proportion of summary
statistics-sharing studies has increased over the years, especially
since 2015, but even in 2021, only 121 out of 578 studies (~21%)
shared their summary statistics. (Fig. 1). Although we considered
the GWAS Catalog as the prime source of GWAS summary
statistics, some datasets might be available elsewhere (e.g. authors’
or consortium’s websites or alternative repositories), making
studies be mislabeled as non-sharers. To verify that our measure
of sharing—whether the summary statistics were available in the
GWAS Catalog—was valid, we manually inspected a random
sample of 353 manuscripts (out of 629) from two journals with
high levels of GWAS publications, PLoS Genetics and Nature
Genetics, and for which GWAS Catalog did not hold summary
statistics. We found that 324 (91.7%) did not provide full sum-
mary statistics or data was controlled-access, 5 (1.4%) claimed to
provide access, but links were either broken or contained no data,
and only 24 (6.8%) linked to full summary statistics in non-
GWAS catalog websites (Supplementary Data 2).

Most mislabeled articles (ie. classified as non-sharers in GWAS
Catalog but sharing data elsewhere) in our sample appeared after
2017, indicating that sharing elsewhere also increased over time.
We next downloaded the full text of 3317/5152 non-sharer arti-
cles in our dataset that were available from PubMed central and
developed a custom search strategy to identify articles sharing
data outside GWAS Catalog (see Methods). We found 217
additional sharers, raising the total proportion of data-sharing
articles to 14.26% (Fig. 1, Supplementary Data 3).

Satisfied that this was a valid measure, we used logistic
regression to study which factors influence sharing. According to
the Bayesian Information Criterion (BIC), the optimal model
included the year of publication and log-journal impact factor.

Both year (OR= 1.4911 [1.4373–1.5469]) and journal impact
factor (log(SJR) OR= 2.6896[2.4118–2.9993]) have positive
effects on sharing, suggesting that sharing has increased over
time, and tends to be more frequent in journals with higher
reported impact factors (Supplementary Data 4).

We decided to investigate the impact of sharing on a paper’s
citations using the relative citation ratio (RCR), which compares
the number of citations an article has to the average citation rates
of the journals in its co-citation network19. In the early years of
GWAS, such articles appeared to outperform their co-citation
network before a gradual decrease in the median score (towards
RCR= 1), except for the most recent complete year, 2021. This
bump may reflect incomplete data or a sudden behaviour change
(Fig. 2a). As a broad pattern, studies that shared their summary
statistics in the GWAS Catalog had consistently higher RCR over
the years than their non-sharing counterparts (Fig. 2b). Again,
the data from 2021 appeared anomalous, with sharing papers
showing only a weak advantage over non-sharing papers.

To try and understand the 2021 data, which had the shortest
follow-up time by definition, we analysed the citation patterns of
sharing and non-sharing studies over time by year of publication
(Fig. 3). On average, GWAS citations rise quickly and stabilise
around 2 years after publication. Then citations either stay stable
or slowly decrease throughout the following years. However,
summary statistics-sharing GWAS citation counts grow faster
(Fig. 3a) and sustain higher mean citation counts, regardless of
the year of publication (Fig. 3b). Given the citation advantage of
sharing papers to non-sharing takes two or more years to accu-
mulate, we decided to exclude the anomalous data points from
2021 because there had not been sufficient time for them to
stabilise.

To analyse the effect of sharing on citations, we first built an
optimal linear model of log(RCR) using all considered covariates
(ie. year of publication, SJR, publication in one of the top 20
GWAS journals by number of publications, and NLM score)
except sharing status according to the BIC. The selected model
included the year of publication, log-journal impact factor, and
the National Library of Medicine’s (NLM) “molecular/cellular”
score. The molecular/cellular score represents the proportion of
molecular/cellular MeSH terms in the articles’ text, used to pre-
dict the translation potential of the research20. By adding a binary
variable describing sharing practice, we concluded that sharing
summary statistics has a positive effect on the RCR, providing
~81.8% more citations on average than non-sharing articles (RCR
ratio= 1.8177 [1.6798–1.967], P < 2e-16, Supplementary Data 5).

We recognised that our custom search was likely to be
imperfect, not least because only 70% of papers had full text
available. We estimated the same quantity using GWAS Catalog
inferred sharing status, and found the estimated effect of sharing
to be very similar (RCR ratio= 1.8438 [1.6858–2.0166]), pro-
viding reassurance that our result is robust to remaining
mislabelling.

Discussion
Data sharing in the life sciences remains a controversial topic. We
showed that overall summary statistics sharing rates are low,
although we see a remarkable increase in the past 5 years. Many
factors not included in this work but analysed elsewhere21, such
as changes in scientific culture towards sharing, growing incen-
tives from public and private funders, and varying privacy reg-
ulations across countries, along with technical difficulties, may
influence sharing of GWAS summary statistics and other datasets.
This may be further complicated by the multifactorial nature of
data in many cases, the lack of clear definitions of what con-
stitutes shared data, and the challenge of verifying the

Fig. 1 GWAS summary statistics sharing patterns by year (2007–2021).
Despite increased sharing from 2015 onwards, most GWAS studies do not
share their summary statistics.
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completeness of any dataset. Funders like Wellcome Trust, the
NIH, the MRC and the ERC have mandated open-access pub-
lishing for articles, but strong mandates on data sharing are still
generally lacking, and existing journal policies on data are not
consistently enforced22. Thus, while data sharing remains reliant
on the goodwill and diligence of researchers, both the inertia to
changing practice and the effort required may outweigh the
limited incentives, leaving data unshared.

Citations are imperfect yet crucial metrics for evaluating
research impact, which affects hiring decisions and career pro-
spects. We hypothesised that sharing GWAS summary statistics
may positively affect citations by allowing other scientists to
conduct research using shared data and, in turn, cite the original
research. Indeed, we observed a consistent pattern of increased
citation rates over time, and by using linear models, we estimated
that sharing increased citation rates by 81.8% on average, an

Fig. 2 Citation patterns over time (2006–2021), measured in log relative citation ratio. a All GWAS. b Split by summary statistics sharing status. Sharing
studies are consistently more cited than non-sharing studies. Lower and upper box hinges represent the 25th and 75th percentiles, respectively. The
whiskers extend for 1.5 * IQR from each hinge, and the horizontal line within the boxes represents the median.

Fig. 3 Mean citation count evolution after publication, by year of publication (2010–2018). Sharing studies get more citations from early on, then
stabilising circa 2 years after publication. a Mean citation count ratio (shared/unshared). b Sharing (orange) and non-sharing (blue) mean citation count.
Text in squares indicates the number of studies in each category.
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estimate slightly higher than the 68% increase in citations found
in a study of microarray data sharing >15 years ago23, and much
higher than the 25% increase predicted in papers linking to more
general biological data repositories24.

Our analysis of 353 GWAS papers that did not use the GWAS
Catalog revealed that most studies did not share data at all or
shared either restricted access and/or incomplete data (e.g. only
top significant hits), which hampers reuse. Only 24 articles shared
full summary statistics without controlled access or request
requirements using alternative repositories, and five provided
links that did not work anymore. An additional, broader analysis
including all 3317 non-sharing papers for which full text was
available provided 217 mislabeled sharers, although the estimated
effect of sharing was similar to that using GWAS Catalog sharing
only. These results highlight that the GWAS Catalog has become
the de facto standard for unrestricted summary statistic sharing as
well as a reliable, future-proof data storage platform. Therefore,
we encourage authors to use standard repositories like GWAS
Catalog whenever possible.

Finally, the field of GWAS has been focused on studies of white
European subjects conducted by authors based in North Amer-
ican or European institutions, reflecting both early concerns of
ancestry or admixture confounding and concentration of scien-
tific funding in these regions25–27. This has led to a well-
documented understudy of diverse populations (see https://
gwasdiversitymonitor.com/ for a visual approach to the issue),
and the data that is now accruing demonstrates the value of
studying the whole human population to have better coverage of
all human variation as well as to enable equitable benefits as
GWAS findings begin to have clinical impacts28. The data we use
reflect this history, and thus cannot be considered to reflect the
impact of data sharing on citations of studies of under-
represented populations, although we do expect the direction of
the effect would also be positive.

Whilst our work shows that there can be a direct benefit to the
authors for sharing data, further work is needed to properly
understand the other barriers to sharing, and to allow that these
barriers may be different in studies of under-represented popu-
lations, to more fully support wider sharing of GWAS data for the
benefit of all.

While appreciating the issue’s complexity, we support the
implementation of more data-sharing mandates and recognition-
based incentives, such as alternative metrics to promote data-
sharing work, independent of journal of publication, as well as the
inclusion of data generation and stewardship on researchers’
CVs29,30. We also agree with other authors that the nature of
increasingly large and more complex datasets will require
improved training on data stewardship13.

We consider that the strongest incentive for scientists to share
data is good citizenship because data sharing increases the ability
of all of us to make discoveries through meta-analysis or inte-
grative studies, thus accelerating scientific knowledge. However,
and despite the observed recent trend changes, that incentive
alone is clearly insufficient because papers sharing data remain a
minority. We hope the robust evidence here that data sharing can
increase citations independent of the journal of publication will
provide further incentives and that we will see sharing of sum-
mary statistics continue to increase in the coming years.

Methods
Analyses. The GWAS Catalog10 is an established and high-
quality repository of curated human GWAS results, providing
easy access to summary statistics made public by authors (via
curator inclusion or author submission). Its large coverage
(400,000+ associations from 5690 publications as of May 2022)

and its easy-to-access statistics make it an ideal reference database
for our analyses. Hence, we downloaded the full list of studies and
available summary statistics in GWAS Catalog on 26th May 2022.

We fetched citation information for each study from NIH’s
database using iCiteR v0.2.131, a wrapper for NIH’s iCite API32.
To quantify citations, here we focused on relative citation ratio
(RCR), an improved metric to quantify the influence of a research
article by using co-citation networks to field-normalise the
number of citations19. We also used iCiteR to retrieve the number
of citations each study received each year.

Despite not being an appropriate indicator for the individual
quality of a given paper, journal impact factor can affect citations
via journal visibility and prestige. We retrieved 2021 SJR
(SCimago Journal Rank) scores to assess overall journal
prestige33,34. There were 723 journals in our dataset, from which
691 had SJR data available for at least 1 year. Those 27 without
SJR data were either too new to have scores (eg. Nature Aging,
EISSN: 2662-8465) or changed names (eg. BMC Genomic Data,
ISSN: 2730-6844, previously known as BMC Genetics), or
contained 2022 articles only (eg. PLoS Biology, ISSN:1545-
7885), for which we did not collect SJR data. We additionally
considered factors for the 20 journals with the most published
GWAS to allow for additional variation between journals, pooling
the rest as a reference category. The top 20 journals are Am J
Hum Genet, Am J Med Genet B Neuropsychiatr Genet, Ann
Rheum Dis, BMC Med Genet, Circ Cardiovasc Genet, Diabetes,
Eur J Hum Genet, Front Genet, Hum Genet, Hum Mol Genet, J
Allergy Clin Immunol, J Hum Genet, Mol Psychiatry, Nat
Commun, Nat Genet, Nature, PLoS Genet, PLoS One, Sci Rep,
and Transl Psychiatry (Supplementary Data 6).

We used the glm function in R 4.1.235 to fit (1) a set of logistic
models to explore the effects of time, journal of publication and
other available factors on sharing, and (2) a set of linear models to
explore the effect of sharing and other available factors on RCR.
We chose to include all datasets published between 2007 and
2021 only, with 2007 being the first year with a shared summary
statistics dataset and 2021 the last complete calendar year.

iCite tool uses Medical Subject Headings (MeSH) terms in
articles’ text to predict the potential for translation of research20.
The tool provides scores that represent the proportion of terms
that can be classified within three overarching branches of the
MeSH ontology: Human, Animal, and Molecular/Cellular.

For each set of models, we sequentially added and removed
predictors, using the BIC to choose the optimal model. For (1),
this procedure selected the logistic model:

logitðpSSÞ ¼ αþ βyearyear þ βlSJRlSJRþ ε ð1Þ
where pSS stands for public summary statistics dataset available,
encoded as [0, 1], year is the year of online publication
[2007–2020], and lSJR is the logarithm of the SJR score, log(SJR).

For (2), we selected covariates excluding pSS which produced
the baseline linear model

logðRCRÞ ¼ αþ βyearyear þ βlSJRlSJRþ βmolcelmolcel þ ε ð2Þ
where molcel corresponds to the NLM molecular/cellular score,
which showed to contribute to model fit, which we compared to

logðRCRÞ ¼ αþ βyearyear þ βlSJRlSJRþ βmolcelmolcel þ βpSSpSSþ ε

ð3Þ
to quantify the effect of sharing on log(RCR). In this case,

modelling year as a factor, rather than a continuous variable,
improved model fit.

While we expect manually curated GWAS Catalog to contain
most publicly available summary statistics datasets, authors can
choose to share their data on a different platform (eg. their own or
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consortium’s website, Dryad, or GWAS archive), posing a potential
bias in our analysis. To explore this scenario, we selected random
50% of studies labelled as non-sharers in two of the journals with
most published GWAS (PLoS Genetics (100 studies) and Nature
Genetics (253 studies)) and manually checked whether their
summary statistics were listed in the manuscript as freely available
elsewhere and whether the statistics still resided at any such URL.
We noted that most mislabeled articles in our sample appeared
after 2017. We broadened our analysis by checking for full-text
availability on PubMed Central for 5152 non-sharer articles
(Supplementary Data 3) and downloading the full text for 3317
where it was available. We developed a custom search strategy to
identify sharing articles, matching phrases such as “available for
download”, “available at figshare” and more complex patterns.
Where the text search suggested data was available via dbGaP, we
confirmed that data was freely available (ie not via data access
committee) by confirming the dbGaP identifier contained files in
the “analyses” subdirectory according to index file https://ftp.ncbi.
nlm.nih.gov/dbgap/studies/Ftp_Table_of_Contents.zip down-
loaded on 25 October 2022. Full code for performing this search
is at https://github.com/chr1swallace/data-sharing-search.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All source and generated data underlying figures in this study are available in two
Zenodo repositories, one containing the main data analysis (https://doi.org/10.5281/
zenodo.7516613)36 and another containing the extended search for sharing outside
GWAS Catalog (https://doi.org/10.5281/zenodo.7516708)37. These repositories contain
links and information about how the source data was obtained. GWAS Catalog
accessions and PubMed Identifiers for all GWAS Catalog studies included in our analysis
are available in Supplementary Data 1.

Code availability
All code used in this work is publicly available without restriction in two Zenodo
repositories,, one containing the main data analysis (https://doi.org/10.5281/zenodo.
7516613)36 and another containing the extended search for sharing outside GWAS
Catalog (https://doi.org/10.5281/zenodo.7516708)37. These repositories contain the
scripts and datasets used to generate all figures, results, and supplementary tables.
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