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A temporal classifier predicts histopathology state
and parses acute-chronic phasing in inflammatory
bowel disease patients
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Previous studies have conducted time course characterization of murine colitis models

through transcriptional profiling of differential expression. We characterize the transcriptional

landscape of acute and chronic models of dextran sodium sulfate (DSS) and adoptive transfer

(AT) colitis to derive temporal gene expression and splicing signatures in blood and colonic

tissue in order to capture dynamics of colitis remission and relapse. We identify sub networks

of patient-derived causal networks that are enriched in these temporal signatures to

distinguish acute and chronic disease components within the broader molecular landscape of

IBD. The interaction between the DSS phenotype and chronological time-point naturally

defines parsimonious temporal gene expression and splicing signatures associated with acute

and chronic phases disease (as opposed to ordinary time-specific differential expression/

splicing). We show these expression and splicing signatures are largely orthogonal, i.e. affect

different genetic bodies, and that using machine learning, signatures are predictive of

histopathological measures from both blood and intestinal data in murine colitis models as

well as an independent cohort of IBD patients. Through access to longitudinal multi-scale

profiling from disease tissue in IBD patient cohorts, we can apply this machine learning

pipeline to generation of direct patient temporal multimodal regulatory signatures for pre-

diction of histopathological outcomes.
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Inflammatory bowel disease (IBD) is characterized by a
breakdown of intestinal immune homeostasis, mediated by
cyclical flares of inflammation and driven by a complex

interplay of genetics and environmental factors. Clinically, two
major subsets of IBD are defined as Crohn’s disease (CD) and
Ulcerative colitis (UC) but their exact molecular etiologies remain
elusive1. Murine models of colitis have provided some valuable
insights into the molecular and histopathological changes asso-
ciated with disease progression and therapeutic intervention.
However, they have also been criticized for failing to fully reca-
pitulate the complexity of CD and UC, as specific models depict
different aspects of colitis development and progression. For
example, the dextran sulfate sodium (DSS)-induced colitis mouse
model induces colitis via barrier disruption and provides key
insight into innate immunity-driven inflammation. On the other
hand, adoptive T-cell transfer (AT) models represent T-cell-
mediated colitis and can serve as a model for CD. Nonetheless,
the DSS model has been successfully used to assess the effects of
various perturbations, including therapeutic agents2–4 and genetic
perturbations5–9, on both chronic and acute diseases.

Previous studies aimed at the characterization of the DSS
model have focused on clinical10, histopathological10,11, and
immunological12–14 aspects of the disease, however, a multiscale
model of the molecular alterations associated with disease
dynamics demands genome-wide and systems approaches. In
their earlier work, Breynaert et al.15 developed a multi-DSS-cycle
model mimicking the relapsing–remitting course of human colitis
while exploring colonic gene expression alterations contrasting
acute and chronic inflammation using microarray technology15.
They identified distinct expression signatures for acute and
chronic inflammation, which included overexpression of keratins
associated with wound healing15. More recently, Holgersen
et al.16 performed RNA sequencing (RNAseq) on colonic tissue
from IBD patients and three murine models of colitis:
interleukin-10 (IL10) knockout, AT, and DSS16. They showed
that, among the 115 genes previously identified in biomarker
studies of IBD, 92 were differentially expressed in human colonic
tissue and there was significant overlap with the genes deregu-
lated in the Il10KO and adoptive transfer models16. They con-
cluded that the colonic transcriptional profiles of human IBD and
the murine colitis models are homologous16. We and others have
also demonstrated the considerable utility of DSS models and
their high resolution within human IBD ex vivo models as part of
a comprehensive strategy for validating key driver genes9,17.

The temporal dynamics of disease onset in colitis are of key
importance, and are still largely uncharacterized, with clear
potential applications in disease staging and potentially in
developing treatment course prediction and management. In
order to further parse the temporal dynamics of colitis and
establish connections to key disease inflection points in IBD, we
characterized the temporal variance of colitis-associated tran-
scriptomic alterations in both acute and chronic mouse models.
We characterize the disease-specific expression and splicing
alterations across time and estimate their relative predictive
power for histopathological measurements compared to other
more traditional signatures. By projecting the most predictive
signatures onto existing human IBD causal networks, we show
that it is possible to explicitly identify acute and chronic sub-
networks which elucidate potential transition points of acute to
chronic colitis and thereby provide a quantitative framework of
disease evolution.

Results
Repeated cycles of DSS exposure interspersed with recovery
induce chronic disease pathology. We evaluated the induction

and evolution of DSS-induced colitis by measuring the primary
endpoint phenotypes of this model: body weight, colon length,
and histopathology scores. In line with disease model endpoints,
mice in the disease group showed weight losses of 20% and 10%
after DSS cycles one and three, respectively (Fig. 1a). No decrease
in body weight was observed after DSS cycle two. All three DSS-
free phases were accompanied by marked increases in body
weight. The pronounced weight loss, shortening of the colon
(Fig. 1b), and histopathology (Fig. 1c) confirm the development
of a severe colitis phenotype. H&E staining of distal colon slices
revealed edema and marked inflammation with moderate gland
loss (Fig. 1d). No microscopic signs of recovery were observed on
either day 12 or day 36. This suggests that the increased body
weight observed in DSS-free phases one and three reflect a
combination of recovery from systemic inflammation and
incomplete colonic healing.

Transcriptional features of DSS cycles. We performed RNAseq
on intestine and whole blood samples collected on days 5, 12, 17,
and 36. At each timepoint, we quantified gene expression and
differential exon-usage patterns (cassette exon excision and
retention), and carried out V(D)J alignment and CDR3 de novo
assembly to quantify adaptive immune response magnitude and
clonality (Supplementary Data 1, 2, Supplementary code 1). We
used these features in a linear statistical model which tested for
disease-specific differential expression signatures at each time-
point, which we called fixed colitis signatures, and also for
disease-specific temporal variation of expression across all four
timepoints (i.e., genes that significantly changed their differential
expression profile across time), which we called dynamic colitis
signatures.

Fixed colitis expression and splicing signatures. The four
timepoint-specific DSS vs. control differential gene expression
signatures (DE) defined as logFC > 0 with FDR < 0.05 show an
increase in transcriptomic alterations from day 5 (2040 DE genes)
to day 17 (5740 DE genes), with a decrease in the levels of disease
gene expression at day 36 (2771 DE genes) (Fig. 2a), suggesting
an initial surge in molecular alterations followed by a recession
and a disease-maintenance phase at later time-points. The com-
plete table with logFC and FDR by DSS cycle, along with gene
annotation, is provided in Supplementary Data 3.

The differential exon-usage signature, which we identify as the
genes with significant evidence of differential splicing (DS), was
found to be much weaker than gene-level expression changes in
terms of number of genes involved at the same significance
threshold. The highest number of significant DS genes peaked at
day 12 with 125 genes having evidence of differential splicing at
FDR < 0.05 (Fig. 2b; Supplementary Data 4). Both signals present
high temporal specificity with 55% of DE genes and 82% of DS
genes showing disease regulation specific to one-time point
(Supplementary Fig. 1a, b). Although half of the DS genes (50.4%)
are also differentially expressed at the gene level (Supplementary
Fig. 1), expression and splicing alterations seem to be orthogonal
to each other as first observed in Pan et al.18, with the genes that
show strong evidence for differential splicing having low gene-
level expression fold changes and vice versa (Supplementary
Fig. 2).

Colitis in the mouse induces the expression of minor Il1rl1 and
Lama3 isoforms. Among the 246 genes that showed significant
evidence of being differentially spliced at any of the timepoints
(Supplementary Fig. 1) we identified the genes that (a) have an
FDR < 10−4 for differential splicing at least one timepoint and (b)
whose differential exon-usage pattern can be explained by
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differential expression of annotated transcripts (in Refseq and/or
Ensembl). Two genes met those criteria: Il1rl1 (ST2), a receptor in
both membrane-bound and soluble forms belonging to the Toll-
like receptor superfamily whose ligand is Il-33, and Lama3, a

secreted protein that belongs to the laminin family and acts as the
alpha subunit of laminin-5 heterotrimer. The early DSS-specific
Lama3 isoform has an FDR of 2.39e-18 (row 1 of Supplementary
Data 6), while the early DSS-specific Il1rl1 isoform has an FDR of
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Fig. 1 DSS-induced colitis phenotype. a–c The evolution of colitis severity as exhibited by body-weight change (a), colon-length (b), and some of the
histopathology scores (Wilcox p values) (c). Body weight was measured every day throughout the experiment; colon length and histopathology scores
were measured at sacrifice days (5, 12, 17, and 34). Error bars denote one standard deviation across 6–24 mice per group. d Representative
photomicrographs of H&E stained distal colon slices. Magnification: ×100. DSS colons show edema (E), severely affected areas of mucosa (M), and marked
inflammation with moderate gland loss (arrow).
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1.4e-e3. Both are differentially spliced on day 5 (first hit DSS
cycle), while Lama3 is also differentially spliced on day 36.

A plot of the differential exon-usage results for Il1rl1 via
visualization of the alignment of a selected control and a DSS
sample as a sashimi plot (Fig. 3a) reveals that the differential
exon-usage pattern observed comes from the overexpression of a
short transcript (Refseq ID: NM_010743.3) in the disease group.
That transcript codes for a short soluble isoform of Il1rl1 that
lacks the intracellular Toll/interleukin-1 receptor (TIR) homology
domain (Refseq ID: NP_034873.2). A qPCR experiment on the
same samples using assays designed to specifically amplify the
transcripts that code for the TIR-containing and TIR-lacking
isoforms confirms the overexpression of the short transcript and
the increase of the TIR-lacking/TIR-containing isoform ratio

from 1:1 to 3.5:1 (Fig. 3b, c). However, in a differential splicing
analysis performed on an RNAseq dataset generated from
biopsies taken across the intestine of IBD patients, we have not
found any evidence of IL1RL1 being differentially spliced
(Supplementary Data 5).

In order to elucidate the functional impact of the shift in Il1rl1
transcript usage associated with DSS colitis, we have computed
isoform-specific expression from RNAseq data by measuring the
counts associated with the exons specific to either isoform. We
then combined the isoform-specific gene expression profile with
the gene-level analysis data and selected the genes positively
correlated with each of the isoform-specific genes above a
threshold (Pearson’s R > 0.8) and performed a pathway enrich-
ment analysis (from WikiPathways, KEGG, and Reactome) on

Fig. 2 Temporal differential expression and splicing signatures and trajectories. a, b Numbers of differentially expressed and spliced genes between
control and disease at fixed sacrifice days (DSS hit/rest cycle). c Subset of differentially expressed genes with unique disease-specific temporal
trajectories, which are clustered into five dominant classes each with 133–194 genes as indicated. Volcano plot depicting the change in log fold change
between days 5 and 12 as a function of p value. Gene label colors match cluster membership. Horizontal line depicts 5% FDR threshold. d Orthogonality of
disease-specific differential splicing and expression temporal profiles.
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the resulting isoform-specific co-correlated gene-lists. As the
majority of the genes that are co-correlated with the long, TIR-
containing isoform are also co-correlated with the short one
(95.7%), none of the significantly enriched pathways are specific
to the long-transcript (TIR-containing) gene list (Fig. 3d).

The differential exon-usage pattern for Lama3 (Fig. 3e) shows
that a group of exons at the 5’ half of the gene are under-
represented in disease. As with Il1rl1, the sashimi plot reveals that
the differential exon-usage pattern arises from overexpression of a

short transcript (Refseq IDs: XM_006525689.3 or XM_00652
5690.2) in colitis. These transcripts code for a short Lama3
isoform (Refseq IDs: XP_006525752.1 or XP_006525753.1) that
lacks the N-terminal laminin domain (LN-domain). Again, the
results of a transcript-specific qPCR experiment confirm the
overexpression of the short, LN-domain lacking isoform in colitis
and show that it is accompanied by reduced expression of the
long isoform, raising the short:long isoform expression ratio from
1:1 to 3:1 (Fig. 3f, g). Moreover, in the IBD patient dataset,

Fig. 3 Differential splicing. a–d Sashimi plot of Il1rl1 for two control mice (in blue) and two DSS mice (in red). Significantly varying exon and junction
readings are shown in zoomed regions for Il1rl1 (a). DSS mice overexpress short transcripts of Il1rl1 that lack exons coding for the intracellular signaling
Toll-interleukin-1 receptor (TIR) domain. b Relative expression of the TIR-containing and TIR-lacking Il1rl1 transcripts in the colon of the DSS and control
groups given as RQ values (using 36B4 as endogenous control) obtained in qPCR validation. c Relative TIR-lacking/TIR-containing transcript expression
calculated from the qPCR data. e–h Sashimi plot for Lama3 for two control mice (in blue) and two DSS mice (in red). Significantly varying exon and junction
read support are shown in zoomed regions for Lama3 (e). DSS mice overexpress short transcripts of Lama3 that lack exons coding for the LN terminal
(f, g), which have different functional enrichments (h).
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LAMA3 is differentially spliced (DS pval < .05), especially in the
ileum, cecum, right colon, and rectum of CD patients, and in the
cecum and rectum of UC patients (Supplementary Data 6). The
results of the pathway enrichment analysis performed on the
genes positively correlated (Pearson’s R > 0.7) with either Lama3
transcript in RNAseq data show a shift towards immunity-related
pathways, including Il-5 and Jak-STAT signaling, for the genes
correlated with the short transcript (Fig. 3h).

Dynamic gene, exon, and splicing expression signatures. To
identify genes that show different temporal expression profiles in
the disease and control groups, we selected those for which the fit
of the linear model was significantly improved when including a
disease:time interaction term. At FDR < 0.05, 725 genes showed a
disease-specific temporal expression pattern (Supplementary
Data 7), with the majority (87%) being also differentially
expressed in at least one time-point (Supplementary Fig. 1). By
applying the soft-clustering Mfuzz algorithm (Kumar & Futschik,
Bioinformation, 2007) on the median disease trajectories, we
identified five clusters of genes: 1) early genes (cluster A, high
expression at days 5 and 12; 113 genes), 2) late genes (cluster B,
progressively increasing expression; 125 genes), 3) very early
genes (cluster C, highest expression at day 5; 194 genes), 4) day 12
up-regulated genes (cluster D, highest expression at day 12; 157
genes), and 5) day 12 down-regulated genes (cluster E, lowest
expression at day 12; 136 genes) (Fig. 2c). Among these, cluster B
was strongly enriched in immunoglobulin genes (Supplementary
Fig. 3). The expression of the members of this cluster shows a
continuous increase from day 5 to day 36, pointing at a gradually
stronger involvement of B cells in the pathogenic process in
chronic disease. Taken together, these genes represent a small
subset of differentially expressed genes at specific times that also
differentially vary in time in diseased tissue. This smaller set of
genes reflects dynamic disease evolution which is ordinarily
averaged out in a case-control experimental design.

To identify genes with disease-specific splicing patterns across
timepoints, a model containing a disease:time interaction term
was fitted on exon-level data and the genes that showed evidence
of differential change in exon-usage across timepoints were
identified with a simple test. At FDR < 5%, 141 genes showed
significant evidence for differential evolution of splicing in the
DSS and control groups (Supplementary Data 8). Among those,
51 (36%) were differentially spliced at any single time-point
(Supplementary Fig. 1). Even more pronounced than for the
timepoint-specific results, the alterations observed in temporal
trajectories for expression and splicing provide orthogonal
information, as only 2 of the genes show different trajectories
in disease and control for both splicing and expression
(Supplementary Fig. 1) and the genes that show strong evidence
for differential splicing evolution show the weak signal of disease-
specificity of temporal expression patterns (Fig. 2d).

Tracing adaptive inflammatory processes throughout time via
adaptive immune profiling. To further elucidate the magnitude
and specificity of adaptive response throughout distinct disease
phases, we quantified the B and T cell receptor (B/TCR) RNAseq
reads mapping to VDJ loci, normalized by total library size. The
non-targeted and sparse nature of these data prevents a deep
characterization of the lymphocyte receptor repertoire which is
directly comparable to that of targeted amplicon DNA-based
sequencing19. Nevertheless, we and others have previously shown
that RNAseq data can be used to infer reliable estimates of
dominant immune clonotypes as a reasonable proxy of immune
clonality in the context of inflammation20.

Applying this technique to our RNAseq dataset across DSS hit-
rest cycles, we see a clear correlation between increasing
pathological lymphocyte aggregate counts in colonic tissue in
the first DSS phase and VDJ measurements in the same
(spearman rho ~0.86, pval ~0.05). Clonal diversity was reduced
in later rest cycles. VDJ clones were detected in >99% of the DSS
models at a median of 500 clones per sample, while on average
44% of samples in the adoptive T cell models had detections of
only about 8 clones per sample (Supplementary Figs. 3, 4). We
use this detailed molecular characterization of the time-
dependent magnitude and clonality of the adaptive response as
a key metric of colonic immune response.

Testing the predictive power of expression and splicing sig-
natures in IBD. In order to assess the predictive power of the
cycling and fixed signatures derived from the whole-colon Jans-
sen DSS cohort, we used fixed and trajectory expression and
splicing as features to predict histological scoring data across
different: experimental lab sites (Janssen and MSSM), tissues
(blood and colonic), and colitis model type (DSS and AT)). For
each signature, we constructed a random forest model using the
same DSS whole-colon training set to predict histological scoring
that incorporated predictive terms related to the specific fixed and
trajectory expression, splicing, and adaptive VDJ signatures
evaluated on the validation data (see Methods, Supplementary
Fig. 5). As shown in Fig. 4, we ultimately tested the performance,
and feature importance, of multiple signatures on multiple vali-
dation sets. Since our objective variable, histological scoring, is
continuous we assessed performance using the spearman corre-
lation and its associated p value. By tuning each random forest
model via 10-fold cross-validation, we ensured that only the most
important molecular features were retained for each model even
though initially each model had the same number of predictors
distributed among expression, splicing, and VDJ features. As
summarized in Fig. 4a, we used each specific fixed timepoint
signature (5 vs 5), cycling differential expression signature, and
splicing signature to predict histology scoring across different
validation sets with the most predictive features summarized.
These model features similarly predicted the averaged (all day)
signature set (20 vs 20). The validation sets included the DSS
Janssen Blood dataset, which has the highest risk of being batch-
correlated with the DSS whole-colon signatures, the DSS MSSM
blood and MSSM proximal colon (PC)/distal colon (DC) dataset,
and finally the two AT models (TC1 and TC2) with both colon
and blood expression. The distribution of histology scoring
among the AT and DSS models and experimental lab sites is
shown in Fig. 4b, underscoring the difference between the rela-
tively uniform frequency of low and high histological damage in
DSS models and that of AT models which are heavily peaked
around low to moderate histological damage.

Our results suggest that the dynamic trajectory expression
signature D is the most predictive of histology scoring in the DSS
proximal colon data (rho ~0.8, -log10(p) ~8), and that this
predictive power depends mostly on the gene expression features,
not on adaptive inflammation or exonic usage. Similarly, dynamic
trajectory signature B (immune influx) has moderate predictive
power in DSS blood (rho ~ 0.5, -log10(p) ~3) again with
expression features dominating the model. For the adoptive
transfer model, we see that the DSS day 36 average control vs
disease fixed signature is predictive for histological scoring using
distal mucosal expression, and notably highlights the predictive
power of differential exon usage (alternative splicing). Finally,
averaging all DSS day-specific signatures into one, we observe a
negative correlation between histology predicted in the adoptive
transfer model using proximal mucosal expression, supporting
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that these models manifest disease in different colonic regions
and time course.

The murine model molecular signatures were then tested for
their ability to predict the Nancy (UC) and GHAS (CD)
histological scores, as well as other related scores, in human
IBD patient biopsies (Fig. 5) across different regions in an
independent cohort of 1000 IBD patients (MSCCR cohort)
Supplementary Data 9)). Specifically, we demonstrate the
predictive power of the homologs of the colitis evolution
signatures in predicting biopsy-region-averaged histological
scores and subscores in Fig. 5. Exactly as in the evaluation of
the predictive power of the DSS models themselves, each
signature was broken down into the first several principal
components (PC1–PC4) (Supplementary Fig. 6) and these were
used in the prediction models.

Translating the modulated transcriptomic features in the
mouse DSS model to human IBD networks to further inform
on human IBD pathology. The relevance of the DSS-associated
transcriptomic alterations to human disease was assessed by
overlapping the murine DSS signatures obtained in this study to
a causal gene-regulatory network (GRN) built from gene
expression and genotyping data from intestinal biopsies of anti
TNFα CD patients undergoing a Phase II trial for Ustekinumab9.
The overlap of the timepoint-specific DSS signatures with the
human GRN yields four subnetworks that show considerable
overlap, with 52% of the genes appearing in two or more

subnetworks (Fig. 6a). In agreement with the degree of overlap
between the sub- networks, a KEGG pathway enrichment ana-
lysis shows a large number of pathways (28) enriched in two or
more time points, with three pathways (Staphylococcus aureus
infection, cytokine-cytokine receptor interaction and leukocyte
transendothelial migration) showing enrichment across all sub-
networks (Fig. 6b). The two extreme temporal points share
pathway enrichments absent at intermediate times, including the
TNFα and NF-kappa B signaling pathways. This suggests that
some of the immune alterations that trigger the pathogenic
process at the beginning and that taper down at intermediate
times are reactivated with repeated cycles of DSS treatment
(Fig. 6b).

Some of the altered pathways involved in colitis have
timepoint-specific enrichment. While day 5 shows enrichment
for innate immune (phagosome), anti-viral response (Influenza
A, HTLV- I infection) and mucosal immunoglobulin-mediated
response pathways (intestinal immune network for IgA produc-
tion), day 36 is specifically enriched for adaptive/MHC-mediated
immune pathways (T cell receptor signaling, natural killer cell-
mediated cytotoxicity, graft-versus-host disease) and genes that
have been implicated in IBD pathogenesis (Fig. 6b). These results,
along with the observation of the progressive increase in the
expression of immunoglobulin genes (Supplementary Fig. 7),
suggest that the resident immune response mechanisms to
bacterial invasion are active within few days (they are active at
day 5), while the systemic adaptive response that relies on the
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Fig. 4 DSS temporal signature and trajectory predictive power of colonic histopathology across tissue, location, and colitis model. The training data
comprise DSS whole-colon temporal expression/splicing signatures and trajectories and V(D)J clonal deconvolution. The signatures are dimensionally
reduced to the first three principal components and median expression score. A random forest model is trained on all of the DSS WC Janssen samples.
Validation of the trained model was performed over different tissues, DSS experimental locations, and adoptive transfer colitis models to predict colonic
histological scoring (or disease status). Prediction efficacy was evaluated via Spearman correlation value (and p value) and a corresponding Kappa value
computed for disease status classification. DSS temporal signature and trajectory predictive power of colonic histopathology across tissue, location, and
colitis model. a Heatmap of spearman correlation values (with value as color, significance as opacity and size) between predicted and observed
histopathology. The relative predictor importance to each predictive model is indicated by the bar-charts. b Distribution of histopathology scores across
models. Over 36 days the DSS models induce higher disease severity than either T-cell model.
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presentation of antigens by the MHC molecules is not fully
developed until 2–3 weeks (Fig. 2c and Supplementary Fig. 3a).

As with the pathways, days 5 and 36 show the strongest
enrichment in genes of three IBD relevant gene-sets: an intestinal
inflammatory signature of CD patients (CD signature), the list of
candidate genes identified in IBD GWAS studies (IBD genes) and
the genes involved in very early onset IBD (veoIBD genes)
(Fig. 6b). While the day 5 subnetwork is more strongly enriched
in genes of the intestinal inflammatory signature, the day
36 subnetwork shows stronger enrichment for genes potentially
involved in the genetic etiology of the disease, resolving in the
networks both the acute and chronic disease programs of relapse
remitting inflammation, which we have shown are predictive of
histological pathology.

Discussion
We have used integrative analysis of RNAseq expression profiling
of the blood and intestine to determine the degrees to which two
experimental murine models of colitis relate to human IBD. We
leveraged the power of RNAseq to characterize the differential
splicing induced by disease, which highlighted isoform-specific
contributions of the Lama3 and Il1rl1 loci. We then evaluated the
predictive power of differential expression, differential splicing,
VDJ repertoire and temporal clusters spanning acute and chronic
phases within the same tissue and across tissue, disease model
and species, for histological measurements. The temporal sig-
natures had the most predictive power and integrating these
regulatory readouts over time provided greater predictive power
over single timepoints. We have also shown that human causal
IBD networks can be intersected with the longitudinal murine
data to parse acute versus chronic stages and putative transition

phases. We were also able to highlight the conservation of
intermediate molecular phenotypes as the murine trajectory sig-
natures overlapped with the transcriptional causal networks
derived from the intestine from IBD patient populations. We
have also shown that the human causal IBD networks can be
intersected with the longitudinal murine data to parse acute
versus chronic stages and putative transition phases.

The predictive power of these colitis model signatures extends
to histological scores in a cohort of IBD patients. We used GHAS
max as an outcome measure because the area of worst disease/
inflammation determines the score. However, there could be
limitations with averaging and regressing out regional effects as
intestinal transcription is known to vary in a region dependent
manner, even with the exclusion of ileum. While the sample
representation was outnumbered in rectum, leading to a dom-
inance in transcriptional signal, regressing out region may affect
biology of disease signal as it is thought that there could be
regional differences in disease activity. Another limitation is that
averaging intestinal tissues across regions may be dilutive to the
expression of true disease signal, if there is a preponderance of
noninflamed affected regions included. However, this analysis can
also capture sub clinical molecular changes on a pathological
escalation. Furthermore, capturing transcriptional predictive
power in CD will differ from UC in disease region since UC is
continuous progression distal to proximal whereas and CD is
sporadic in its regional intestinal manifestation.

Nevertheless, this time series predictive pipeline has significant
potential in being applied to large human datasets where long-
itudinal molecular profiling data is available from intestinal
biopsy and/or blood. It may be used to generate IBD patient
sourced temporal trajectories for the prediction of disease

Fig. 5 Mouse temporal signatures are predictive of histology state in a cohort of inflammatory bowel disease patients. Comparison of adjusted R
squared values for penalized ordinary least squares models of histological measurements using human orthologs of DSS disease evolution signatures and
combined Nancy (UC) and GHAS (CD) signatures in a) (non-Ileal) patient tissue samples and b) patient blood samples. Each model fit the first five
principal components of each signature (including splines with three knots to test for non-linear associations), penalized by extremizing the Akaike
Information Criterion (AIC), and bias-corrected R-squared values were computed via 300 rounds of bootstrap resampling with replacement. Tissue
specific histological scores per patient were averaged across multi-regional tissue samples.
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severity, mucosal healing and therapeutic response and could be
of particular value if non-invasive tissue, such as the blood, can be
used to predict local disease status in the intestine. This study
highlights the utility of profiling aspects of experimental animal
disease models and will facilitate more precise use of the models
to test candidate therapies. Furthermore, this machine learning
pipeline can be adjusted to generate expression or other data
regulatory scale based histological annotation in convolutional
neural networks to better classify the molecular signatures of
histological stages and pathological tissue changes and identify
non-linear predictive features. Further refinements of this model
may enable the classification of patient subsets based on temporal
signatures of disease if more routine longitudinal patient mole-
cular profiling can facilitate a personalized medicine approach
where a patient remission and flare can be better predicted in
addition to defining sequential and/or combinatorial therapies
tailored to specific intervention time points. As more longitudinal
molecular data becomes available at various data scales, it can be
paired with clinical data in order to annotate and track variables
which may be driving the temporal clusters. Based on the con-
served homology, various perturbations can be tested in experi-
mental models and then profiled and re-integrated with human

data models leveraging longitudinal sample collection and pro-
filing in order to better predict efficacy of in silico interventions
for human clinical trials.

Methods
Murine colitis experiments (at Mount Sinai site): DSS. On Day 0, female
C57Bl/6 mice were weighed and divided into 2 groups of 90 mice per group such
that the average weight of each group is similar. Mice were enrolled onto study at
body weight of 16–18 grams. Enrolling mice at a range of 16–18 grams ensures
consistent disease across the groups while minimizing losses due to death. Mice in
Group 1 received 2.5% DSS in drinking water at times shown below while mice in
group 2 received plain drinking water at all times. Food was provided ad libitum.
See Table 1 below.

Clinical assessment. Mice were weighed daily for the duration of the study.

Termination. At various times during the study (Day 5, 12, 17, 23, 27, and 34) 15
mice from each group were chosen randomly and sacrificed after an overnight fast.
Colon was excised and feces were harvested aseptically and placed into cryotubes
and frozen. After feces collection, all contents of the colon were removed and
colons flushed with cold PBS. Feces collection only occurred on days 5, 17, and 34.
For all mice of each group, the 1 cm distal adjacent to the rectum was sectioned and
placed in 10% buffered formalin for subsequent histological analysis. The colons
from 15 mice per group at each time point were collected for RNA analysis. 1 cm
distal adjacent to rectum was used for histology and the remaining tissue was used
for RNA. The remaining colon tissues were frozen in RNAlater at −80°C for RNA
extraction. Blood was collected by cardiac puncture from mice from every group at
termination. Approximately 250 μl of whole blood was collected into PAXgene
tubes. Whole blood was assessed for RNA. Colons from all groups were measured
for length and weight. RNA was isolated with Qiagen RNeasy kits according to
manufacturer’s instructions.
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Fig. 6 DSS temporal signature projection onto a human intestinal IBD causal network. Colonic DSS temporal disease signatures were projected onto a
Bayesian gene-regulatory network built from genotype and gene expression data of colonic samples from patients with Crohn’s disease. a The 862 colitis-
genes that mapped show statistically significant overlap with the 905 genes of a subnetwork previously associated to Crohn’s disease (263 common
genes, −log(p)= 44). The visualized subnetwork shows these common genes, along with their first neighbors (undirected, 959 genes in total). The blue-
white-red color scale reflects the disease vs. control logFC of the genes in the mouse model. Gray genes were not differentially expressed in colitis. b Gene-
set enrichment analysis (GSEA) was performed on both the mouse signature and the human subnetwork genes for enrichment in hallmark signatures of
the Molecular Signature Database (MSigDB). Among the unique 42 molecular signatures found to be enriched in any of the gene-lists, 32 are shared, 7 are
mouse signature-specific and 3 human subnetwork-specific. The FDR values of enrichment for mouse and human can be seen in the scatterplot, where the
size of the circles represents the average number of genes in the overlap and the blue color gradient reflects the average −log (FDR).

Table 1 DSS protocol.

Days 1–5 6–12 13–17 18–23 24–27 28–34

Group 1 N= 90 DSS Water DSS Water DSS Water
Group 2 N= 90 Water Water Water Water Water Water
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Adoptive transfer. In this model, CD45RBhigh CD4+ T cells from C57Bl/6 J mice
were transferred to RAG1−/− mice which lack T and B cells.

Induction. On study day 0, spleens for CD45RBhigh CD4+ T-cell isolation were
obtained from female C57Bl/6 J mice using the RAG1−/− mice as recipient mice.
After cells had been obtained and sorted, each female RAG1−/− mouse received
an IP injection of 5 × 105 cells/ml (100 μl/mouse injection). Control RAG1−/−
mice served as a control.

Clinical assessment. Mice were weighed 2–3 times a week for the duration of
the study.

Termination. At various times during the study (Day 14, 21, 28, 35, and 42), 10
mice from each group were chosen randomly and sacrificed after an overnight fast.
Large bowel was excised and contents flushed with cold PBS. The 1 cm part of
distal colon was sectioned and placed in 10% buffered formalin for subsequent
histological analysis. The remaining part of colon from the 10 mice, per group, per
time point, were collected for RNA analysis. Colons were sectioned such that
proximal ends and distal ends of mucosa were placed into separate tubes for RNA
profiling. We froze the remaining colon tissues in RNAlater at −80°C for RNA
extraction. Blood was collected by cardiac puncture from mice from every group at
termination. Approximately 250 μl of whole blood was collected into PAXgene
tubes. Whole blood was assessed for RNA. Colons from all groups were measured
for length and weight.

Histological assessment. Tissues were fixed in 10% buffered formalin, embedded
in paraffin and cut into sections. Sections were stained with hematoxylin and eosin.
Stained sections were examined for evidence of colitis using as criteria the presence
of mononuclear inflammatory cells, erosions, glandular loss, elongation or dis-
tortion of crypts and hyperplasia.

Murine colitis experiments (at Janssen/Boulder Biopath site): adoptive
transfer. 160 C57 RAG(−/−) mice, 80 C57Bl/6 RAG(−/−) and 80 C57Bl/6 from
Taconic. Mice were 6–7 wks old C57Bl/6 were 12 weeks, and all mice were female.
Mice were acclimated for at least 7 days after arrival. Mice were housed at 5
animals/cage. On Study day 0, C57Bl/6 mice were terminated and spleens obtained
for CD45RBhigh and CD45RBlow cell isolation (Using IBD Cell Separation proto-
col). After cells were obtained and sorted, control animals (Group 1) received
~4 × 105 CD45RBlow cells (100 µl/mouse injections) and disease animals (Group 2)
received an IP injection of ~4 × 105 CD45RBhigh cells (100 µl/mouse injections). On
study day −1, mice were weighed and randomized into treatment groups
(described below) based on body weight. 10 animals were randomly selected from
each group and necropsied on study day 14, 21, 28, 35, 42, 49, 56, and 63. Intestinal
tissue was flushed with cold PBS, mucosa removed and placed into separate tubes
and flash frozen.

Samples for RNAseq.

i. DSS colon: 3 timepoints (basal, ‘middle’, end), n= 15 mice = 45 samples
ii. DSS blood: 3 timepoints, n= 15 mice (or pooling samples) = 45 samples
iii. *Rbhi mucosa: 3 timepoints, n= 10 mice = 30 samples
iv. *Rbhi muscularis: 3 timepoints, n= 10 mice = 30 samples
v. Rbhi blood: 3 timepoints, n= 10 mice = 30 samples

Total: 180 samples (90 samples if pooled two mice/analysis)
Quality control further limited sequenced samples for analysis.

RNAseq alignment. Raw RNAseq reads were aligned against the mm10 reference
genome using STAR (version 2.4.0g1)21 and gene- and exon-level read summar-
izations were performed with the featureCounts program in subRead22. Ensembl
annotations were used for both the alignment and the read summarization. For the
exon-level read summarization, a collapsed version of the annotations file where
gene designs are described based on non-overlapping “counting- bins” was used to
avoid over- or under-counting of reads. The raw data files, the gene- and exon-level
read count matrices, a sample descriptor file and an experimental procedure
descriptor file have been uploaded to the Gene Expression Omnibus (GSE*).

Differential expression and splicing at fixed timepoints. The differential
expression analysis was performed with the DESeq2 package in R23.

The differential splicing analysis was performed using the R limma package.
A voom transformation24 was applied to the gene- and exon-level read count
matrices and the resulting log2-transformed counts per million (log2cpm) matrices
and the observation-level weights were fed to the lmFit function to fit the mixed
linear model described in equation (1). The p values associated with the DSS vs.
control effect on each gene and exon were computed using empirical Bayes
moderated t statistics. The differential exon-usage estimations were done using the
diffSplice function (limma) on the exon-level fit object and only those genes with

an FDR < 10% as given by either moderated F-statistics or simes-adjusted t sta-
tistics were considered as differentially spliced.

Differential expression and splicing trajectories. For the identification of the
genes that show different temporal trajectories of expression in the DSS and control
groups, DESeq2 was used (11) to perform a likelihood-ratio test between a full
model containing a disease-time interaction term fitted on gene-level count data X
and a reduced model without such term Y.

The identification of genes that show differential splicing trajectory across time
in control and disease was done by fitting a model containing a disease-time
interaction term on exon-level data and performing a simes-moderated t test to
obtain gene-wise significance of disease-time interaction using diffSplice (limma).

Machine learning and validation models. Each box in Fig. 4a reports on the
performance of the model outlined in the flowchart of Supplementary Fig. 5.
Random forest was used to solve

HistoScore ~ PC1_{gene} + PC2_{gene} + PC3_{gene}
+ PC1_{exon} + PC2_{exon} + PC3_{exon}
+ median_expression + median_splice + VDJ_{read_{cpm}} + VDJ_{clonality}

in the Janssen WC colonic dataset. This gives a function relating HistoScore to gene,
exon usage, V(D)J burden and clonality, trained only on the 40 mice of the DSS
Janssen cohort and only on the colonic expression signatures so derived. Here,
PC1,2,3 are the first three principal components of the DSS WC signature for either
genes or exon usage, median is the median expression (relative isoform expression) of
the genes in that signature, and VDJ-read-cpm, VDJ-clonality are the adaptive
inflammation scores for each mouse in that dataset, respectively. In order to validate
the predictive power of the training function above, we use it to predict the HistoScore
using each validation dataset. For each validation set of the y axis we allow this
training function to predict HistoScore. For each signature and each validation set we
have a model with a predicted HistoScore, and in this model we can perform variable
selection to pick which predictors are the most important to that model. Using k-fold
cross validation, we avoid superflous predictors and generally mitigate overfitting.
Also note that for each model, we keep the same number of predictors even though
the number of genes in each signature can vary tremendously. In each box, we only
report the top three predictors for that model.

Differential expression and splicing calls. The differential splicing of Il1rl1 and
Lama3 was interpreted in terms of differential transcript expression by comparing
the differential exon-usage pattern identified by diffSplice, the alignment pattern
observed in the exploration of BAM files using the Integrative Genome Viewer
(IGV)25,26 and the transcript variants described in RefSeq27 (both validated and
predicted) for those genes.

Human subnetwork generation. To explore the relevance of the transcriptomic
alterations identified in the DSS model for human disease, we used a colonic gene-
regulatory network (GRN) built from mi- croarray gene expression and genotype
data from a population of Crohn’s Disease (CD) patients9. The overlap between the
murine differential expression signatures and the human GRN was done using
Cytoscape 3.2.128.

Experimental validation of differential transcript expression. Experimental
validation of the differential transcript usage for Il1rl1 and Lama3 was performed
through a qPCR experiment using transcript- specific primers spanning exon
junctions (Supplementary Data 5, 6). RNA (range 500 to 1000 ng) was reverse
transcribed using the Super script IV Kit including an RNase H step (Invitrogen,
180901050). cDNA was diluted up to 1∶4 prior to running the qPCR. Primers used
for SYBR® green I detection (Power SYBR™ Green PCR Master Mix Applied
Biosystems, 4368706) were Il1rl1 lacking TIR homology domain (Forward:
AGGTCGAAATGAAAGTTCCAGC, Reverse: AGCAATGTGTGAGGGACACT),
Il1rl1 with TIR homology domain (Forward: CGGAACGATGGCAAGCTCTA,
Reverse: TGGATACTGCTTTCCACCACG), Lama3 lacking N-laminin (Forward:
TCAGAGCAGCAAAGGGTAGC, Reverse: TGTGTTGTGCTGACAGTTAA
TGC), Lama3 with N-laminin (Forward: CCTTGGATCTGGGTCAGCTCT,
Reverse: CTGGGTAATTGCCATGTTTGCT). As control gene, we used expression
of Mapre1 (Forward: TGATTTGCCAGGAGAACG, Reverse: GCCCCCTTCATC
AGGTATCA) or Rplp0 (36B4; Forward: ATGGGTACAAGCGCGTCCTG,
Reverse: GCCTTGACCTTTTCAGTAAG). The qPCR was run using the 7900HT
Applied Biosystems Real-Time PCR System (Stage 1: 95 °C 2:00 (1 cycle); Stage 2:
95 °C 0:20, 55 °C 0:15, 72 °C 0:10 (40 cycles); Stage 3: dissociation stage). Data were
analyzed using SDS 2.2.1 software.

MSCCR cohort. The Mount Sinai Crohn’s and Colitis registry (MSCCR is a
prospective cross-sectional cohort consisting of ~1500 IBD patients and controls
recruited during their endoscopy visit from December 2013–September 2016.
Paired blood and biopsy RNAseq transcriptome data collected alongside as well as
histological, endoscopic and clinical assessments were determined at the time of
their MSCCR endoscopy29.
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Biopsy RNAseq data were generated as previously described. Briefly biopsy and
Blood RNA was extracted and processed in randomly allocated batchers as
previously described1. RNA was isolated from frozen tissue using Qiagen
QIAsymphony RNA Kit (cat.# 931636) on the QIAsymphony. RNA from whole
blood collected in PAXgene tubes was isolated using QIAsymphony Blood
PAXgene RNA kit (cat.# 762635). One microgram of total RNA was used for the
preparation of the sequencing libraries using the RNA Tru Seq Kit (Illumina (Cat #
RS-122-2001-48). Ribosomal RNA from biopsy tissue was depleted from total RNA
using the Ribozero kit (Illumina Cat # MRZG12324), and globin RNA along with
ribosomal RNA was depleted from total blood RNA using Globin zero gold rRNA
removal kit (Illumina cat.# GZG1224) to enrich poly-adenylated coding RNA as
well as non-coding RNA. The rRNA and globin + rRNA depleted RNA from
biopsy and blood total RNA, respectively was used for preparation of the
sequencing library using RNA Tru Seq Kit supplied by Illumina (Cat # 1004814).
The ribozero and globin zero RNASeq libraries were sequenced on the Illumina
HiSeq 2500 platform using 100 bp paired end protocol following manufacturer’s
procedure.

Genomic alignment to GRCh37 of single-end RNAseq reads was performed
using 2-pass STAR21. Default parameters for STAR were used, as were those for the
quantification of aligned reads to GRCh37.75 gene features via featureCounts22.
Multimapping reads were flagged and discarded. Raw count data was pre-filtered to
keep genes with CPM > 0.5 for at least 3% of the samples. After filtering, count data
were normalized via the weighted trimmed mean of M-values30.

Gene expression matrices were generated using the voom transformation and
adjusted for technical variables (e.g. RIN, processing batch, rRNA rate, and exonic
rate) using the limma framework. Expression matrices were also adjusted for age,
gender, and genetic PCs for further analysis.

Regulatory approval. Icahn School of Medicine at Mount Sinai and Boulder
Biopath received Institutional Animal Care and Use Committee (IACUC) approval
for conducting these murine disease model experimental studies and have com-
plied with all relevant ethical regulatory requirements. All human data were from
previously published cohorts and therefore, IRB and informed consent was not
required for this study.

Appendices. Authors submit individual source files to ensure readability. This file
type is published in raw format and is not edited or composed.

Statistics and reproducibility. Statistical analysis was designed as described in the
Methods section. All analysis was reproduced in at least two independent
experiments.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MSCCR data and the blood and intestine expression data and clinical/
demographical description of the MSCCR cohort including tables are described in:
PMID: 32980345, PMID: 35190725, and PMID: 34780722. The MSCCR data are
available on GEO (GEO accession: GSE186507 for blood and GSE193677 for biopsy).
Data are private and will be released in October 2024 and 2025 (PMID: 36109152)31.
Mouse model data are available at GEO accession GSE214600: Go to. Numerical source
data are provided here (Supplementary Data 10): https://doi.org/10.6084/m9.figshare.
21706202.v2.

Code availability
Code is provided in the supplementary data (Supplementary code 1). Open-source R
code from publicly available packages that was exclusively used in this study is available
here https://github.com/LosicLab/losiclab.github.io.
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