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Open-source curation of a pancreatic ductal
adenocarcinoma gene expression analysis platform
(pdacR) supports a two-subtype model
Luke A. Torre-Healy 1,11, Ryan R. Kawalerski1,2,11, Ki Oh 1, Lucie Chrastecka3, Xianlu L. Peng4,5,

Andrew J. Aguirre6, Naim U. Rashid5,7, Jen Jen Yeh4,5,8 & Richard A. Moffitt 1,9,10✉

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease for which potent

therapies have limited efficacy. Several studies have described the transcriptomic landscape

of PDAC tumors to provide insight into potentially actionable gene expression signatures to

improve patient outcomes. Despite centralization efforts from multiple organizations and

increased transparency requirements from funding agencies and publishers, analysis of public

PDAC data remains difficult. Bioinformatic pitfalls litter public transcriptomic data, such as

subtle inclusion of low-purity and non-adenocarcinoma cases. These pitfalls can introduce

non-specificity to gene signatures without appropriate data curation, which can negatively

impact findings. To reduce barriers to analysis, we have created pdacR (http://pdacR.bmi.

stonybrook.edu, github.com/rmoffitt/pdacR), an open-source software package and web-

tool with annotated datasets from landmark studies and an interface for user-friendly analysis

in clustering, differential expression, survival, and dimensionality reduction. Using this tool,

we present a multi-dataset analysis of PDAC transcriptomics that confirms the basal-like/

classical model over alternatives.
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Over the past decade, several genomics studies of pan-
creatic ductal adenocarcinoma (PDAC) have contributed
a wealth of molecular-level data to guide investigation of

the disease. A subset of these studies have sought to define
transcriptomic subtypes. Although the datasets generated from
these studies are accessible as part of the public domain, bioin-
formatic hurdles ranging from decentralized data storage to
insufficiently annotated samples complicates multi-dataset
investigation, resulting in inappropriate and inconsistent appli-
cation of datasets. Thus, there is an unmet need for a PDAC
transcriptomic compendium that provides an easily accessible
interface for analysis by the PDAC research community, while
retaining the capacity for diverse analytical methods in dataset-
and application-specific situations.

Multiple PDAC gene expression subtype models have been
proposed toward the goal of using individualized therapeutic
approaches to treat patients with this disease1–7. Collisson et al.
first defined three prognostically-relevant PDAC-specific sub-
types (classical, quasi-mesenchymal (QM), and exocrine-like)
using non-negative matrix factorization consensus clustering
(NMF-CC) on a merged microarray dataset comprised of laser
capture microdissected PDAC tumors (n= 66)2. We later
decoupled NMF and consensus clustering to create a two-subtype
model (classical, with a similar gene set to Collisson’s classical
type, and basal-like, similar to basal breast and bladder cancers),
using microarrays from bulk primary and metastatic PDAC
tumors, normal pancreas and distant site normal tissue, and
PDAC cell lines (n= 357)3. Similar to Collisson et al., Bailey et al.
subsequently used NMF-CC to analyze RNA sequencing (RNA-
seq) data from a combination of PDAC and other uncommon
pancreatic cancer histological types, including acinar cell carci-
nomas, finding four tumor subtypes (pancreatic progenitor,
squamous, aberrantly differentiated endocrine exocrine (ADEX),
and immunogenic, n= 96)4. Then, in 2018, Puleo et al. proposed
a five-subtype model using a consensus clustering approach on
309 formalin fixed paraffin embedded whole PDAC tumor
samples (pure classical, immune classical, desmoplastic, stroma
activated, and pure basal-like). However, they confirmed two-
subtypes (classical and basal-like) when using only samples with
purity (defined by the predicted mean variant allele frequency, or
VAF) in the upper quartile of their dataset (n= 78)5.

In 2020, researchers have sought to further refine these defi-
nitions. Chan-Seng-Yue et al. utilized NMF to identify four gene
signatures, subdividing basal-like and classical subtypes into
“basal-like A”, “basal-like B”, “classical A”, and “classical B”6.
Separate work by Nicolle et al. then utilized Independent Com-
ponent Analysis (ICA) to generate a molecular gradient that
correlates with histological differentiation and seeks to assign a
continuous value to tumor samples using weighted valuations of
between 4000 and 20,434 genes7.

Independent studies have comparatively evaluated the clinical
utility of these proposed schemas. The Comprehensive Molecular
Characterization of Advanced Pancreatic Ductal Adenocarci-
noma for Better Treatment Selection (COMPASS) trial’s earliest
results showed that the Moffitt et al. classification system pro-
vided accurate prediction of the tumors which would respond or
not respond to modified FOLFIRINOX or gemcitabine/nab-
paclitaxel8. Furthermore, Tiriac et al. showed that the basal-like/
classical system could be applied to transcriptomic data from
patient-derived PDAC organoids to infer patient tumors which
would respond to either oxaliplatin or gemcitabine9, and, shortly
afterward, Aguirre et al. demonstrated utility using the Moffitt
subtypes to characterize metastatic PDAC biopsies for treatment
guidance in a future clinical care setting10. In 2019, Camolotto
et al. showed that knockout of the transcription factor Hnf4a in
mice resulted in a loss of classical expression, a decrease in tissue

differentiation, and worse prognosis11. Even more recent work by
Hayashi et al. was able to show concordance between the Moffitt
subtypes, morphological presentation, and clinical course12. In
addition, O’Kane et al. used GATA6 as a surrogate for the Moffitt
basal-like/classical identification and recapitulated robust
response to tumor and overall survival in the COMPASS
cohort13. To enhance the clinical applicability of the basal-like/
classical model, we previously generated a single-sample classifier
termed purity independent subtyping of tumors (PurIST)3, 14.
This classifier showed a robust ability to predict a patient’s
molecular subtype and response to therapy across multiple
technologies and without the need for a cohort8.

While a limited number of studies have begun comparisons of
subtype performance in clinical care, diversity of opinions in the
field and difficulty in obtaining data has led to confusion. Indeed,
even recent studies show mixed strategies among investigators
choosing which datasets or gene signatures to use. In particular,
we highlight three common issues. First, validation is frequently
only performed on one publicly available dataset. Second, there
are multiple examples of inappropriate use of The Cancer Gen-
ome Atlas (TCGA) Program PDAC dataset15–30. The mRNA
dataset includes 182 samples, but only 150 have been confirmed
histologically as PDAC. The remaining 32 samples are classified
as either other types of pancreatic cancer, no evidence of cancer,
or adjacent normal samples. Including such samples in derivation
or validation of expression signatures results in misleading
results. Finally, a growing consensus surrounding the two-
subtype model has led researchers to collapse other 3+ subtype
models into two in an attempt to harmonize with the basal-like/
classical model31–33. However, this approach does not address
confounding factors related to purity and tissue specificity
inherent in the approaches used to derive the models. Given that
the two-subtype and collapsed 3+ subtype signatures are not
completely redundant, attempting to interchangeably label a
subset of the data as basal-like, squamous, or QM is not
equivalent.

To facilitate standardized investigation of PDAC data, we have
created an R package, termed pdacR, for public use. As part of
this package, we have gathered and carefully annotated thirteen
human PDAC datasets from the past decade for a thorough
comparison of the performance of subtyping schemas in identi-
fying only the tumor cells within PDAC tumors (Table 1). In
keeping with the Findability, Accessibility, Interoperability, and
Reusability (FAIR) practices promoted by the NIH, we also cre-
ated a graphical user interface (GUI) for easy-to-use interrogation
of these datasets in a point-and-click manner that aims to enable
a wide audience to succinctly pursue hypotheses in existing
PDAC transcriptomic data34–36. This GUI is available as web-
hosted software for ease of access and use. The flexibility of
pdacR, combined with its inclusion of a wide range of PDAC
datasets that are focused on the most reliable, large, and com-
monly referenced studies, expands upon on previous work by
Marzec et al. and Tan et al. to develop the Pancreatic Expression
Database (PED) and Human Pancreatic Cancer Database
(HPCDb), respectively, for pancreatic cancer data centralization
and user interface development for genomics analysis37–40.

Results
Features and organization of the pdacR package. To facilitate
access and investigation of the datasets used for this paper, we
compiled thirteen of the most referenced transcriptomic human
PDAC datasets in an open-source R package we call pdacR.
Beyond gene expression and sample information for these data-
sets, the package includes curated gene sets defined in earlier
PDAC and immunological studies, the R code used to parse and
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visualize the data shown in this work, and a shiny-based graphical
user interface (UI) for point-and-click analysis of public and user-
generated data (Fig. 1).

UI structure and data analysis. The UI is composed of four
primary functional components that enable a range of investi-
gative methods: heatmapping, dimension reduction, survival
analysis, and differential expression. Users begin by choosing
their dataset of choice from the list of those already curated or, on
a local instance, may choose to load a user-generated dataset.
User-generated datasets may be imported as R-formatted data
which has been converted to a SummarizedExperiment container
format. While the application will automatically check and con-
vert data format from SummarizedExperiment to the appropriate
list-style upon loading, specifics of this format and the conversion
are provided on the pdacR GitHub page’s README file. Once a
dataset and a gene list has been selected, many common analyses
can be performed. The heatmapping component enables users to
generate ordered heatmaps using user-defined gene sets and
customizable clustering or sorting methods. The gene sets
included are pulled directly from a variety of seminal publications
in the field of PDAC transcriptomics, allowing for comparison of
their performance and robustness across the available datasets.
The dimension reduction component generates projections of
data by either principal component analysis or t-SNE methods,
with data point coloring by sample metadata or up to three gene
set expression scores in an RGB color space. The survival analysis
component can generate either a Kaplan Meier or Cox-based
survival curve on continuous (e.g., gene expression) or categorical
(e.g., tumor grade) data, and enables the user to define continuous
data as categorical by toggling a quantile cutoff. The differential
expression component allows users to generate volcano plots with
full user freedom to define head-to-head comparisons and select
which genes or gene sets to highlight.

Comparison to other resources. Other graphical user interfaces
have been developed to facilitate transcriptomics investigation in
pancreatic cancer, though there are clear advantages offered in
pdacR (Supplementary Table 1). Similar to the pancreatic
expression database (PED) and the human pancreatic cancer
database (HPCDb), pdacR combines data from several indepen-
dent studies to enable hypothesis testing in different sample types
from a range of datasets. PED, like pdacR, features a graphical
user interface to make analyses available to users without com-
puter programming abilities and allows users to filter their
datasets based on some clinical parameters, though it is limited in
other areas critical for accurate and reproducible investigation.
Unlike other tools, pdacR features datasets that were parsed in a
manner consistent with the recommendations of the original
authors. Also, pdacR allows for extensive and flexible sample
filtration prior to analysis. This is a unique feature critical to
ensuring that analysis is performed on the appropriate sub-
populations of datasets, while also allowing for the generation of
forward-looking analyses. Importantly, the structure of pdacR as
a functional R package provides investigators the ability to move
their hypothesis testing from the graphical user interface to more
intensive code-based analyses in an ad-hoc and specialized
manner when necessary, a functionality not offered in other
pancreatic cancer investigation software. Finally, pdacR uniquely
combines the most frequently cited datasets from the PDAC lit-
erature with the ability for researchers to locally load their own
data for ease of access to computational tools. While this package
is currently limited in its ability to analyze large-scale mutation
data and lacks pathways-based investigation modes, it is also,
importantly, open-source to enable continuous interfaceT
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development and dataset inclusion, submitted using github pull
requests.

ADEX, Exocrine, and Immunogenic subtypes are not tumor
intrinsic. Recent work from Rashid et al. compared the prog-
nostic values of the Collisson, Moffitt, and Bailey subtyping
schemas across clinical studies14. Here, we used transcriptomic
data from several pancreatic cancer studies to evaluate the tumor
cell specificity of these schemas. Using data from the TCGA
study, we determined that high expression of genes specific to the
Bailey ADEX (“ADEX”, Fig. 2a) gene signature in PDAC tumors
predicts low tumor cellularity as estimated by ABSOLUTE
(Spearman rho=−0.260, p= 0.0014) as does the Collisson
exocrine gene set (Supplementary Fig. 1A). Low tumor cellularity,
however, was not predictive of high ADEX gene signature
expression. Using data from Puleo et al., with predicted sample
average variant allele frequency (VAF) as a proxy for
sample tumor cellularity, we then confirmed that the Collisson

Exocrine signature is similarly predictive of low sample purity
(Spearman rho=−0.221, p= 0.0003, Fig. 2b, association with
Bailey ADEX gene set in Supplementary Fig. 2B). Importantly,
these trends were not found in other gene signatures of the
Collisson or Bailey subtyping schemas, suggesting that ADEX and
Exocrine subtypes may be driven by expression from non-
neoplastic cells.

In an analysis of paired samples (primary tumor-primary
tumor, primary tumor-metastatic tumor, or primary tumor-cell
line) from the PACA-AU RNAseq and PACA-AU microarray
datasets, we determined that expression of the Bailey ADEX,
Bailey Immunogenic, and Collisson exocrine gene signatures are
lost in cell lines derived from primary PDAC tumors with a range
of expression of these same signatures (Fig. 2c). Contrastingly, we
found that tumor cell lines retain expression of the Collisson
classical and QM, Moffitt classical and basal-like, and Bailey
pancreatic progenitor and squamous subtypes (Supplementary
Fig. 1). The retention of certain signatures describing both basal-
like and classical populations suggests that a non-tumor cell
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Fig. 1 Features and organization of the pdacR package. The pdacR package contains hand-curated and annotated datasets from many of the landmark
PDAC studies conducted over the past decade and others. Data layer: Dataset sample- and gene-based data are organized by the primary author of the
dataset and the year of publication. Gene lists defined in these and other studies are compiled for ease of analysis, named by author and cell/tissue type
defined by the list (e.g., “CIBERSORT Monocytes”, a gene list that specifically identifies cells of the monocyte lineage). User interface: A GUI that enables
point-and-click is hosted online and also may be called locally by the user through the R Shiny interface. Users may select from the compiled datasets, filter
samples, select genes to use in their analysis (either user-defined or built into the package), and select factors from the samples with which to visualize the
data. Visualization: The package includes functions to facilitate data analysis and visualization, either generated for this package or from others in the
literature. In the GUI, users may save images from their analysis as PNGs or PDFs for further illustration and publication.
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component of the whole tumor PDACs used in this study is
contributing to the expression of genes defining the ADEX,
Immunogenic, and Exocrine subtypes.

To further assess the specificity of existing subtype gene
signatures, we used RNAseq and microarray data from Moffitt
et al., which includes primary PDACs, patient-derived xenografts,
PDAC cell lines, cancer-associated fibroblasts (CAFs), and
normal and metastatic PDAC tissue from liver, lung, perito-
neum/stomach/intestine, and spleen/lymph node. We found that
the ADEX, Exocrine, and Immunogenic gene sets are highly
expressed in primary PDACs compared to either PDAC cell lines
or subcutaneously implanted patient-derived xenografts (PDXs).
Notably, primary PDACs also demonstrate increased expression
of these gene sets compared to CAF cell lines (p < 0.0001),
suggesting that the non-tumor component driving ADEX,
Exocrine, and Immunogenic gene expression is unlikely domi-
nated by CAFs (Fig. 2d). Moffitt basal-like and classical subtypes
were similarly resistant to confounding by CAF gene expression
(Supplementary Fig. 1B). Similarly, this trend is maintained
across the Collisson classical/QM subtypes and the Bailey
progenitor/squamous subtypes, which are highly concordant
(~60% overlap) with the Moffitt classical/basal-like subtypes,
respectively (Supplementary Fig. 1b, c). Importantly, we found
that the ADEX/Exocrine signatures are enriched in normal
pancreata compared to PDACs (p < 0.0001), suggesting a
pancreas cell intrinsic ADEX/Exocrine gene expression origin
(Fig. 2e). The Bailey Immunogenic subtype, however, was
enriched in normal pancreas, metastatic tumor, and primary
PDACs compared to cell lines (p < 0.0001), suggesting that a non-
tumor cell component drives expression of this gene set across
several tissue types (Fig. 2e). Contrastingly, though Moffitt basal-
like and classical subtypes demonstrate varied representation
across normal pancreas, primary pancreatic tumor, and meta-
static tumor, expression of these subtypes is retained in PDAC
cell lines, with similar expression patterns to the analogous
Collisson and Bailey subtypes (Supplementary Fig. 1C). It is
important to note that there exist pancreatic tumors of high
tumor cell purity that also show high expression of the ADEX and
Exocrine gene sets. Histologic characterization of these tumors,
however, reliably identifies these tumors as acinar cell carcinomas
(ACCs), not PDAC (Fig. 3b, c, Supplementary Fig. 2c).

Subsets of the ADEX, Exocrine, and Immunogenic gene sig-
natures mark non-adenocarcinoma samples. After identifying
that the ADEX, Exocrine, and Immunogenic gene signatures are
not tumor cell specific, we hypothesized that expression of these
gene sets might be confounded by subsets of genes which are not
PDAC-specific. To determine if this were the case, we performed
gene-based consensus clustering of the PACA-AU RNAseq and
Moffitt RNAseq datasets. We found that the Bailey ADEX gene
set is comprised of primarily three subsets of genes: those that are
generally nonspecific, those that are pancreas nonspecific, and
those that are ACC-specific. This could explain why ADEX sig-
natures are enriched in ACC samples, and provides justification
for the non-tumor-specific nature of the signature (Fig. 3a).

A similar analysis of the Bailey Immunogenic gene set
demonstrated 26% overlap with the pancreatic progenitor and
9% of the ADEX gene sets, suggesting a lack of specificity in the
signature. Furthermore, we identified that 24 of the 180
immunogenic genes used in this analysis are highly expressed
in primary PDACs but not PDXs, suggesting that these genes
likely confer non-tumor specificity to the signature (Fig. 3d). In
order to reliably investigate the role of tumor or stromal
expression patterns on response to therapy and survival, the
signals must be clearly separable by tissue compartment.

Large gene sets are confounded by expression in adjacent
normal tissues. Gene sets become increasingly prone to noise and
off-target effects as they increase in length and include more
biologically multi-functional transcripts. For example, normal
pancreas expresses even the neoplastic Collisson and Bailey gene
sets (Supplementary Fig. 1D, E). The lists extracted from Chan-
Seng-Yue et al. also show aberrant expression in a range of
normal tissues as well as susceptibility to confounding by CAFs
specifically in the Basal-like A list (Supplementary Fig. 3B, C). As
an addition to categorical approaches, Nicolle et al. recently
developed a Pancreatic Molecular Gradient (PAMG) to assign a
continuous score that correlates with differentiation status and
survival77. The signature, derived from primary tumors and
PDXs, incorporates up to 20,164 genes into scoring. As seen in
other signatures, PAMG application results in a varying range of
scores across purities and tissue types (Supplementary Figs. 3, 4).
The basal-like/classical signatures were purposefully derived with
this problem in mind (Moffitt 2015). As such, they are robust
against both metastatic location (Supplementary Fig. 1C) and
neoplastic purity (Supplementary Fig. 4)41. Thus, longer sig-
natures result in more complex and potentially less useful tools
than the basal-like/classical or PurIST models. The above data
together suggest that in the context of unpurified samples, the
basal-like/classical signatures or PurIST classifier should be used
in favor of seemingly similar models.

Discussion
Several studies have proposed PDAC transcriptomic subtypes.
Though efforts have been made to explain reasons for the dif-
ferences between these proposals, widespread uncertainty is evi-
dent in the PDAC literature regarding which subtyping schemas
are most relevant for prospective studies of tumor cells31. Here we
used transcriptomic data from several landmark PDAC studies to
understand which subtypes are the most tumor-cell specific. We
show that the basal-like/classical and PurIST two-subtype sche-
mas specifically are the most likely to identify tumor cell com-
ponents of PDAC tumors across studies, reinforcing and
expanding upon early suggestions by TCGA and Maurer
et al.41, 42.

One goal of describing molecular subtypes is to predict patient
outcomes and response to therapy. We previously have shown
that the logistic regression classifier PurIST remains robust across
multiple datasets at predicting patient outcomes14. A benefit of
our classifier is the lack of variation between datasets, cohorts,
and data types. By utilizing pre-defined top-scoring pairs of
genes, PurIST can be applied to a single patient and generate a
prediction without the need for a cohort. This reduces uncer-
tainty and promotes reliability regardless of available technology
or dataset size. Conversely, continuous scores such as PAMG
introduce uncertainty at the clinical level due to the requirement
for normalization. This makes the score, and therefore the pre-
diction, cohort dependent.

Beyond needing clarity regarding the clinical application and
tumor-intrinsic quality of transcriptomic subtypes, the PDAC
research field currently lacks data centralization. Furthermore,
others have indicated that data that is readily accessible through
online repositories has, in some cases, been either poorly for-
matted or poorly annotated for subsequent analysis43, 44. In
certain instances, this may lead to misguided or misinformed
conclusions in well-meaning investigations15–30. Clearly, these
challenges pose a major hurdle in the development of novel
hypotheses, particularly for those without first-hand familiarity
with how the data were generated. To remedy this, we developed
an R package termed pdacR that houses carefully organized and
annotated public PDAC transcriptomics data for ease of access
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and heightened transparency. pdacR includes a point-and-click
user interface to facilitate investigation of these datasets by
researchers without formal training in computational statistics in
an effort to democratize data access. We have shown here that the
pdacR user interface provides the user with a wide variety of data
visualization methods that are highly customizable yet user-
friendly. Importantly, pdacR improves on existing pancreatic
cancer user interfaces, namely by retaining its flexibility as a user
interface and R package, with full customization by the experi-
enced statistician. We expect that this tool will become widely
adopted in the PDAC community, especially as RNA quantifi-
cation methods become more widely used to study this disease.

We have presented data to suggest that the basal-like/classical
subtyping schema is both the most clinically reliable model and
the most appropriate in describing only the tumor cells within a
non-purified PDAC tumor. This data and others are now com-
piled in a public R package, pdacR, for open use by the research
community. While this work has helped further our under-
standing of PDAC subtypes, future studies on these subtypes in
the context of patient outcomes and response to therapy are
necessary to apply our understanding to clinically meaningful
intervention strategies. We hope this tool (http://pdacR.bmi.
stonybrook.edu) and the associated code and data (github.com/
rmoffitt/pdacR) will be used by other researchers to facilitate
robust external validation of future analyses.

Recent attempts to improve our understanding of PDAC have
emphasized the utility of single-cell RNA sequencing (scRNA).
Given that the datasets provided here are all bulk analyses, we are
limited in our ability to fully separate cellular populations. We
partially address this shortcoming using datasets derived from a
multitude of pure cell type sources or those enhanced by LCM.
While scRNA sequencing is expanding in its utilization, it remains
prohibitively expensive for inclusion in the realm of clinical char-
acterization and application. While incorporation of new scRNA
datasets would improve this tool from a purely investigative
standpoint, the computational burden and memory required are
beyond the scope of a responsive GUI. We have, in parallel, made
available a parsed single-cell atlas (https://github.com/rmoffitt/
scOh). This atlas does not include a web interface, but covers many
substantial hurdles in scRNA analysis, including parsing, integra-
tion, and normalization. Another limitation inherent to this sort of
data collection is the inability to robustly merge datasets. Pre-
liminary versions of this tool did have the option for data aggre-
gation. However, in addition to being too computationally
intensive for a point-and-click interface, we found that aggregation
introduced more problems than it solved. If we cannot assume that
datasets come from comparable distributions and cell type com-
positions (e.g., all samples in both datasets are primary tumors),
then we necessarily confound our analysis. In addition, our datasets
come from a variety of platforms, including bulk RNA sequencing
and microarrays, adding another layer of complexity to aggregation
and batch correction. Believing that providing the option of poorly-
merged data would be more harmful than helpful, we ultimately
decided was beyond the scope of this project. It is our belief that the
rapidity with which a researcher could perform serialized analysis
on different datasets overcomes much of the limitation of not being
able to merge the data.

Methods
Data acquisition and processing. All datasets used in this study were obtained
from public repositories, indicated in Table 1. All data were previously publicly
available and were collected under the approval of the respective IRBs at the time of
collection and publication of the respective study. Expression matrices were
unmodified compared to the original publication, without re-alignment of RNAseq
data, or re-normalization of array data.

Gene expression analysis. Gene expression analyses were performed using log2-
scaled expression matrices. Heatmaps were generated using the “heatmap.3”
function in R. Gene set scores were called as the mean expression value of the genes
in gene set. For correlation between the PACA-AU RNAseq and Micro Array,
these gene set scores were compared directly. For evaluation of expression across
different tissue types in Moffitt Array and Moffitt Seq, these scores were mean-
centered and scaled.

Clustering. For clustering and subtype calls (when lacking in original publication),
datasets were trimmed down to include only PDAC samples and only the genes
present in the relevant gene sets. We then applied the ConsensusClusterPlus
function with kmeans clustering and euclidean distance to call the appropriate
number of cluster (k = number of gene sets).

Statistics and reproducibility. To account for the potential disproportionate
impact of outliers on correlations, correlation values were calculated using
Spearman Rho. Difference in expression of gene sets by cell types was calculated
using a non-parametric Wilcoxon Rank-Sum test. Reproducibility is one of our
main motivators for this publication. To that end, we have provided a web
application wherein all the analyses can be replicated with a series of clicks. We
have also provided all our analysis code, along with parsed and ready-to-analyze
datasets, in our github45.

R package and UI design. The pdacR UI was designed using the shiny R package.
Datasets were chosen for inclusion in the pdacR package based on public avail-
ability or investigator permission, as well as importance in the field as determined
by the authors. Differential expression analysis on RNAseq or Array experiments is
performed using the DESeq246 or limma47 packages respectively. The logFC is
calculated by dividing the mean of cohort A by the mean of cohort B for each gene.
Survival analysis is performed using the survival and survminer packages in R.
Censor and survival data are obtained from the initial publications, and are a
combination of overall and disease-specific survivals. User-generated data may be
converted from a SummarizedExperiment container style to a UI-compatible for-
mat using our ‘./R/Convert_GUI_data.R’ wrapper function.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are compiled in our pdacR package, which is freely
available to the public at github.com/rmoffitt/pdacR/data. All datasets have been pulled
from publicly accessible databases, and their accessions are contained within the
metadata of each R object. Accession numbers are also listed here: Chen - GSE57495;
CPTAC - phs001287; Nones - GSE50827; Bailey (PACA-AU) - EGAS00001000154;
PACA-CA - icgc.org; Moffitt Array - GSE71729; Moffitt Seq - PMID:26343385
(Supplement); Olive - GSE93326; Puleo - E-MTAB-6134; Seino - GSE107610; TCGA -
phs000178. Within R, these data can be pulled from their original sources using packages
such as TCGAbiolinks48–50 or GEOquery51, but we recommend using our pre-parsed
formats.

Code availability
All parsing and analytical code used in this study are compiled in our pdacR package,
which is available to the public at github.com/rmoffitt/pdacR. Figures were generated
using the .rmd files in inst/analysis, while the entire app framework is located at inst/
shiny/app.R. The Github version at time of manuscript preparation can be identified by
SHA: 3a3f5683059b943cb3ef2d762ab3cddccd572bb045.
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