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Single-cell RNA binding protein regulatory network
analyses reveal oncogenic HNRNPK-MYC
signalling pathway in cancer
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RNA-binding proteins (RBPs) are key players of gene expression and perturbations of RBP-

RNA regulatory network have been observed in various cancer types. Here, we propose a

computational method, RBPreg, to identify the RBP regulators by integration of single cell

RNA-Seq (N= 233,591) and RBP binding data. Pan-cancer analyses suggest that RBP reg-

ulators exhibit cancer and cell specificity and perturbations of RBP regulatory network are

involved in cancer hallmark-related functions. We prioritize an oncogenic RBP-HNRNPK,

which is highly expressed in tumors and associated with poor prognosis of patients. Func-

tional assays performed in cancer cells reveal that HNRNPK promotes cancer cell pro-

liferation, migration, and invasion in vitro and in vivo. Mechanistic investigations further

demonstrate that HNRNPK promotes tumorigenesis and progression by directly binding to

MYC and perturbed the MYC targets pathway in lung cancer. Our results provide a valuable

resource for characterizing RBP regulatory networks in cancer, yielding potential biomarkers

for precision medicine.
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RNA-binding proteins (RBPs) are key players of gene
expression in post-transcriptional events1 and perturbation
of RBP-RNA regulatory network has been observed in

various cancer types2–4. Recent advances of cross-linking and
immunoprecipitation (CLIP) have provided exciting opportu-
nities to map transcriptome-wide binding sites of RNA-binding
proteins5,6. However, there is still a lack of computational
methods to comprehensively identify the critical RBP regulators
in cancer.

The transcriptional state of a cell is strictly regulated by
numbers of transcription factors (TFs) and RBPs. Considering the
important roles of RBPs, perturbation of their RNA-binding
function can impact many downstream genes and pathways,
leading to complex diseases phenotypes7. Transcriptome-wide
analyses have revealed numerous RBPs perturbed in various
cancer types. For example, the RBP SERBP1 was found to func-
tion as an oncogenic factor in glioblastoma by bridging cancer
metabolism and epigenetic regulation8. RBP FXR1 has been
found to drive cMYC translation by recruiting eIF4F complex to
the translation start site in cancer9. Integrated analysis of multi-
dimensional data had revealed EIF2S2 can promote tumorigen-
esis and progression by regulating MYC-mediated inhibition via
FHIT-related enhancers in gastrointestinal cancer10. These results
suggested that the transcriptome analysis provided comprehen-
sive insights into the function of RBPs.

Moreover, the development of single-cell sequencing technol-
ogies has led new biological insights into regulation of gene
expressions11. A few methods have been proposed to infer the cell
types from gene expression (i.e., SingleR12 and CaSTLe13) and
predict the interactions between TFs and target genes (i.e.,
SECNIC14). Yet the dynamics of RBP regulation in single cells is
largely unknown. STAMP (Surveying Targets by APOBEC-
Mediated Profiling) was developed to detect RBP-RNA interac-
tions in single cells15. However, it is still difficult to determine the
RBP activities in single cells, as well as prioritize the critical RBP
regulators in cancer.

In this study, we proposed a computational method RBPreg,
which was based on RBP to gene expression associations
(GENIE316) that were filtered for genes containing the respective
RBP binding motif identified with MEME17, to identify the RBP
regulators by integration of single-cell RNA-Seq (scRNA-Seq)
and RBP binding data. We demonstrated that RBPreg can be
exploited to identify the critical regulators in cell types of interest
and the RBP regulators exhibited cell type and cancer specificity.
In particular, we prioritized an oncogenic RBP-HNRNPK, which
potentially interacts with MYC to promote cancer cell prolifera-
tion, migration, and invasion. This study provided a generally
application method to identify RBP regulators and shed lights
into the mechanisms of RBP regulation in cancer.

Results
Overview of RBPreg: a computational pipeline for identifica-
tion of RBP regulators in cancer. RBPs are critical regulators of
gene expression and play fundamental roles in cancer9,10. How-
ever, there is still lack of computational method to identify the
functionally important RBPs18, particular based on single-cell
sequencing data. Here, we proposed an integrated computational
pipeline to identify RBP regulators in cancer specific cell types.
This pipeline integrated the RBP binding motifs, genomic
sequences of genes and single cell-based gene expression (Fig. 1a).
Motivated by the idea of SECNIC, this method was method based
on RBP to gene expression associations (identified by GENIE316)
that are filtered for genes containing the respective RBP binding
motif identified with MEME. We first de novo scanned the gene
and identified the RBP motifs in gene sequences. We found that

~80% genes on average were considered to have RBP binding
sites. Moreover, for each RBP motif, we calculated the proportion
of binding sites observed in introns or exons. We found that there
were 81.36% of RBP motifs were more likely observed in introns
of the genes (Supplementary Data 1). All protein coding genes
were ranked based on the significance levels. Next, the RBP-gene
regulatory correlations were evaluated based on the expression
correlation between RBP and gene (identified by GENIE316).
Finally, the activities of RBPs in specific cell types were evaluated
by AUCell.

Moreover, we proposed a user-friendly web server for
conveniently using the RBPreg pipeline. Users can upload the
customized scRNA-Seq gene expression profiles and identify the
activated RBP regulators in corresponding cell types (Fig. 1b).
The results will be returned to the email address provided by the
users when submitting their jobs. They can also retrieve the
results for previously submitted job by the unique job IDs. By
submitting the single-cell gene expression, RBPreg provides user-
friendly functionalities, ultra-efficient calculation, intuitive table
and figure visualization interface to display the RBP-gene
regulation, activities of RBP regulators and pathways enriched
by targets (Fig. 1b). Additional filtering options and elaborate
application notebooks were provided in this webserver (Fig. S1).
We anticipated that RBPreg pipeline will provide an opportunity
for better understanding the regulatory mechanisms of RBPs in
human complex diseases.

RBP regulators exhibit cancer and cell specificity. Genes
exhibited tissue or cell type specific expression19,20, which are
regulated by number of transcription factors and RBPs21,22. Based
on the expressions of marker genes (Supplementary Data 2), we
classified the cells into different cell types (Fig. 2a–d). In total, we
obtained 44,024 cells of 8 cell types in breast cancer (BRCA),
44,684 cells of 9 cell types in colorectal cancer (CRC), 93,575 cells
of 10 cell types in lung cancer (LC), and 45,114 cells of 6 cell types
in ovarian cancer (OvC) (Supplementary Data 3). By analysis of
the top highly expressed genes in each cluster, we found that the
classical marker genes exhibited high expression in corresponding
cell types (Fig. S2-S3 and Supplementary Data 2). For example,
CD3E and CD2 were highly expressed in T cells, CD79A was
highly expressed in B cells and KRT18 was highly expressed in
cancer cells (Fig. S3).

To evaluate the performance of RBPreg, we applied it to the
single-cell transcriptome of four cancers. In total, we identified 100
RBP regulators in BRCA, 114 in CRC, 131 in LC and 88 in OvC
(Supplementary Data 4). We also identified several RBPmotifs that
were significantly enriched in general (Supplementary Data 5). For
example, there were three motifs (UCCCCCAA_1029, ACCCC
CCCCCUA_s61 and CCCCCCC_1026) of HNRNPK were sig-
nificantly enriched in lung cancer (Fig. S4). Moreover, we found
that the majority of target genes for RBPs were significantly
supported by public eCLIP-Seq data (Fig. S5), although the Jaccard
index was lower since the comparisons are between different cell
contexts (Supplementary Data 6). We found that the gene
expressions of different cell types were regulated by diverse
numbers of RBP regulators (Fig. 2e). In particular, we identified 43
and 46 RBP regulators in B cells and T cells, respectively. There
were 49 activated RBPs identified in four cancer types. Moreover,
we found that the RBP regulators exhibited distinct activities across
cell types (Fig. 2f). PUM2 exhibited higher activity in ovarian
cancer cells (Fig. 2f), and targeting PUM2 has been identified as an
effective way to reverse cisplatin resistance in OvC23. HNRNPDL
exhibited higher activity in T cells of lung cancer (Fig. 2f), and it has
been demonstrated that RNPL regulates T cell differentiation and
migration by regulating pre-T cell receptor and chemokine
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receptor signaling24. These results suggested that RBPreg can
identify the RBP regulators that play important roles in
corresponding cell types.

Moreover, we compared the RBP regulators across cancer types
(Fig. S6). In total, 20 RBPs were identified in all cancers (Fig. 2g),
which was significantly larger than those of random conditions
(p < 0.001, random test). Several RBPs exhibited widespread
activities in various cell types and cancer types, such as
HNRNPH3, HNRNPH1 and TIAL1 (Fig. 2g and Fig. S7).
However, we also found that these RBPs exhibited activities in
different cell types. For example, ELAVL1 exhibited specific
activity in lung cancer cells (Fig. 2g), which has been found to
play critical roles in lung cancer25,26. HNRNPK exhibited higher
activities in CRC, LC and OvC cancer cells but not in BRCA
(Fig. 2g). Emerging evidence has indicated the critical roles of

HNRNPK in regulating a wide range of biological processes and
disease pathogenesis27–29. Moreover, we compared the RBP-gene
regulatory networks across cancer types. We found that the RBP
regulatory networks were statistically similar in the same cell
types across cancer types (Fig. S8). Taken together, RBP
regulators exhibit cancer and cell specific activities and play a
fundamental role in various cancer types.

RBPreg prioritizes oncogenic HNRNPK in lung cancer. Prior-
itizing the genes or regulators that act as drivers of cancer remains a
crucial bottleneck in cancer therapeutic development30,31. We thus
investigated the prioritized RBP regulators by RBPreg in detail.
First, we analysed the expression of RBP regulators across cell types.
We found that numbers of RBPs exhibited specifically high or low
expression across cell types (Fig. 2f and Supplementary Data 7).

Fig. 1 The RBPreg pipeline for identifying RBP regulators by integrating scRNA-Seq and regulation data. a The workflow of RBPreg computational
pipeline. b Illustration of the usage of RBPreg web server and the results showing RBP-gene regulation in cancer.
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There were higher numbers of RBPs exhibiting higher expression in
cancer cells of BRCA (3), CRC (9), LC (14) and OvC (18) (Fig. 3a),
when comparing with other immune cell types. In particular, we
identified seven RBPs exhibiting higher expression in cancer cells
but lower expression in T and B cells in corresponding cancer type
(Fig. 3b). Emerging evidence has suggested that these RBPs play
fundamental roles in cancer and literature mining revealed there
were 4 to 177 papers reporting their associations with cancer
(Fig. 3b and Supplementary Data 8). It has been unveiled that SFPQ
plays a central role in regulating alternative splicing and response to
platinum in OvC32. HNRNPH1 is frequently upregulated in mul-
tiple cancer cells and involved in tumorigenesis33.

In particular, HNRNPK was reported to be associated with
cancer development in 177 papers (Fig. 3b). We also found that
HNRNPK exhibited significantly higher expression in lung cancer
cells than other immune cells (Fig. S9). Moreover, we investigated
the expression of HNRNPK in lung cancer two cohorts from
TCGA project. We found that HNRNPK was highly expressed in
cancer patients of lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC) (Fig. 3c, p-values < 0.001 for
Wilcoxon’s rank sum test). Moreover, patients in high stages were
with significantly higher expression of HNRNPK in lung cancer
(Fig. 3d, p= 0.0018 for Kruskal–Wallis test). We also explored
the association of HNRNPK expression with patient survival. The
patients were classified into high-risk and low-risk based on the
median expression of HNRNPK. We found that patients with
higher expression of HNRPK exhibited poor survival in lung
cancer but not in other cancer types (Fig. 3e and Fig. S10, log-
rank p= 0.044). All these results suggested that HNRNPK
functions as an oncogene and play important roles in lung cancer.

HNRNPK promotes tumor growth and invasion in vitro and
in vivo. To further validate the molecular functions of HNRNPK,
we performed a series of functional assay in cell line and mouse

models. We first constructed a shRNA and overexpression
HNRNPK lentiviral vectors to construct knockdown and over-
expression HNRNPK cell models separately to explore the bio-
logical function of HNRNPK in human lung cancer cell line A549
cells. The effects of HNRNPK knockdown and overexpression on
the mRNA expression of HNRNPK was verified by Real-time
PCR (Fig. 4a), which showed that the expression of HNRNPK
mRNA levels were decreased or increased in HNRNPK knock-
down or overexpressed A549 cells, respectively. These results
showed that the stable HNRNPK knockdown (shHNRNPK) and
overexpression (HNRNPK) A549 cells were successfully gener-
ated. We next evaluated the effects of HNRNPK expression on
the cell proliferation by EdU and colony formation assays. The
results showed that HNRNPK knockdown suppressed A549 cell
proliferation (Fig. 4b, c). Conversely, overexpressed HNRNPK
remarkably promoted cell proliferation (Fig. 4b, c). These findings
suggested that HNRNPK promoted A549 cells proliferation.

To investigate the effects of HNRNPK on A549 cells migration
and invasion, we next performed wound-healing and transwell
assays on HNRNPK knockdown and overexpression cells,
respectively. The transwell assay revealed that knockdown
HNRNPK inhibited, but overexpressed HNRNPK enhanced cell
invasion (Fig. 4d). In addition, the wound-healing results showed
that HNRNPK knockdown significantly inhibited the A549 cell
migration while overexpressed HNRNPK promoted cell migra-
tion (Fig. 4e). These results indicate that HNRNPK promotes the
migration and invasion in A549 cells in vitro.

To further confirm the function of HNRNPK in A549 cells
in vivo, we constructed a mouse model of human lung cancer
xenograft. Knockdown and overexpression HNRNPK cell as well
as their control cells were delivered into nude mice, and tumor
growth was monitored and compared. We evaluated the tumor
progression by comparing the tumor size, growth curve, and
tumor weight among different groups. The results indicated that

Fig. 2 RBP regulators identified in four cancer types. a–d t-SNE representation for BRCA, CRC, LC and OvC. Color-coded for cell types. e The number of
RBP regulators identified in different cell types across cancers. f Heatmap of RBP regulatory activity in different cell types across cancers. The numbers with
the parenthesis mean the number of potentially target genes of RBPs. The heat maps on the right panels were for differential expressions of RBPs. Red for
upregulated and blue for downregulated. g Heatmap showing the commonly activated RBP regulators in pan-cancer. The black and red in the heap map
indicated that the RBPs were active in corresponding cell types and red is highlighting the cancer cell column.
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overexpression HNRNPK promoted tumorigenesis, as reflected
by increased tumor size and tumor weight in the model.
Meanwhile, the knockdown of HNRNPK significantly impaired
tumor progression, as reflected by decreased tumor size and
tumor weight in the model (Fig. 4f). Ki67 has become a very
important indicator to evaluate the activity of tumor cells34,35.
Next, the expression of HNRNPK and Ki67 were measured by
IHC. We found that the expression of HNRNPK and Ki67 were
increased in mice delivered overexpression HNRNPK cells, while
the expression of HNRNPK and Ki67 were significantly decreased
in mice delivered knockdown HNRNPK cells (Fig. 4g). Together,
these results demonstrated that HNRNPK promotes tumor
growth, invasion and migration in vitro and in vivo.

HNRNPK perturbs MYC singling pathways in cancer. To gain
insights into the potential targeting pathways of RBP regulators,
we next performed functional enrichment analysis based on the
target genes. We found that the targets of numerous RBPs were
significantly enriched in cancer hallmark-related pathways (Fig. 5
for lung cancer, Fig. S11 and Supplementary Data 9–10). In
addition, we found that these RBPs exhibited higher activities in
various cell types. We next calculated the number of RBP reg-
ulators for each pathway and found that several pathways were
regulated by >10 RBPs (Fig. S12). Mitotic spindle and MYC
targets were regulated by more RBPs across all four cancers.
Proper organization of the mitotic spindle is key to genetic

stability36 and the MYC oncogene and its targets contribute to the
genesis of many human cancers37. These results suggested that
RBPreg identified number of RBP regulators that play important
roles in cancer.

We next performed GSEA analysis based on the target genes to
further investigate the functional pathways of HNRNPK. Based
on the single-cell and bulk transcriptome of lung cancer, we
identified 9 cancer hallmark-related pathways that were poten-
tially activated by HNRNPK (Fig. 6a, b and Fig. S13). Moreover,
four pathways (MYC targets, oxidative phosphorylation,
MTORC1 signaling, and unfolded protein response) were
identified in two datasets (Fig. 6c). Leading edge gene analysis
identified 38 and 34 genes involving MYC targets pathway in
single-cell and bulk transcriptome, respectively (Fig. 6d, e). In
total, 31 genes were overlapped in both datasets and 12 genes (i.e.,
CNBP, HDAC2, LDAH, RPL6 and EIF4G2) were annotated in
Cancer Gene Census or CancerMine38,39. We next downloaded
the public CLIP-seq and eCLIP-seq of HNRNPK and investigated
the read distributions around MYC. Importantly, our CLIP-seq
and eCLIP-seq analyses revealed a strong association between
HNRNPK and the MYC. The presence of HNRNPK binding sites
on the MYC transcript were observed in cell lines (Fig. 6f). There
were clear peaks in HNRNPK CLIP-seq data but not observed in
IgG and control datasets. We also found that there were several
binding sites of HNRNPK in MYC mRNAs in the FIMO
scanning. However, when we integrated the single cell sequencing

Fig. 3 Prioritization of oncogenic RBP regulator HNRNPK in lung cancer. a Numbers of differentially expressed RBP regulators in different cell types
across cancers. Left for downregulated and right for upregulated RBP regulators. b The top panel showing the overlap of RBPs upregulated in cancer and
downregulated in immune cells. The comparison was performed by cancer type. The aberrations of cancer types indicated in brackets were the cancers in
which the RBP regulator was identified. The bottom bar plots showing the number of literatures for RBP regulators. c Boxplots showing the expressions of
HNRNPK in LUAD and LUSC. ***p < 0.001 for Wilcoxon’s rank sum tests. Error bars showing the first and third quantiles. d Boxplots showing the
expressions of lung cancer patients with different stages. Error bars showing the first and third quantiles. Comparison among groups was by Kruskal–Wallis
test and between two groups by Wilcoxon’s rank sum tests. e Kaplan–Meier survival analysis of lung cancer patients (LUAD) stratified by the median
expression levels of HNRNPK.
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data in lung cancer, we found that MYC was not observed in
potential target gene list of HNRNPK. These results suggested
that context-specific regulation of RBPs in cancer.

To further assess the effect of HNRNPK in regulating the
translation of MYCmRNA, we next detected the expression of MYC
in knockdown and overexpression HNRNPK cells and mice model.
We observed that HNRNPK knockdown resulted in a decrease in
MYC expression in A549 cells and mice model (Fig. 6g, h).
Conversely, HNRNPK overexpression resulted in an increase in
MYC expression in A549 cells and mice model (Fig. 6g, h),
indicating that HNRNPK may regulate MYC levels. All these results
suggested that HNRNPK plays important functions in lung cancer
by perturbing the MYC signaling pathway.

Discussion
Rapid progresses in high throughput sequencing technologies have
identified numerous of RBPs and perturbations in RBP-gene

regulatory network have been associated with cancer
development1,3. A few methods have been proposed to infer the co-
expression networks or identify the TFs regulators from single-cell
RNA-seq data, but there is still no method to predict the RBP
regulators in cancer. In this study, we proposed the computational
pipeline-RBPreg to prioritize the RBP regulators in distinct cell
types by integration of single-cell transcriptome and RBP regula-
tion in cancer. In addition, a web server was set up for facilitating
the identification of RBP regulators. The framework proposed in
this study can be used to analyse other cancer types and we
expected that RBPreg will be extremely useful for understanding
the function of RBPs in cancer.

We next applied RBPreg to public single cell RNA-seq data
across four cancer types and identified 100 RBP regulators in
BRCA, 114 in CRC, 131 in LC and 88 in OvC. Numbers of papers
reported their associations with cancer (Fig. 3b and Supplemen-
tary Data 8). We also evaluated the associations between
expressions of all RBP regulators and overall survival of patients.

Fig. 4 HNRNPK promote cancer cell growth, invasion and migration. a Relative mRNA expressions of HNRNPK in overexpression and knockdown
conditions. Error bars showing the variances. b Colony formation assays of the effects of overexpression/knockdown of HNRNPK vs. controls. c The rate of
EdU positive cells for overexpression/knockdown of HNRNPK vs. controls. Error bars showing the variances. d The number of invasion cells for
overexpression/knockdown of HNRNPK vs. controls. Error bars showing the variances. e The rate of migration of cancer cells for overexpression/
knockdown of HNRNPK vs. controls. Error bars showing the variances. f Tumor volumes for overexpression/knockdown of HNRNPK vs. controls. g IHC for
Ki67 in overexpression/knockdown of HNRNPK vs. controls.
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We found that several RBPs were associated with overall survival
across cancer types (Fig. S14 and Supplementary Data 11). To
further validate the RBP-gene regulation predicted by computa-
tional method, we analysed the public eCLIP-seq and shRNA-seq
data across cancer cell lines. We found that the majority of RBP-
gene regulations were supported by experimental data, suggesting
the accuracy of the predicted regulations. Moreover, we used the
same strategy in SCENIC and selected the targets of RBPs with
most significant p-value. A transcript with multiple good binding
sites might be more likely to be regulated by an RBP. However,
the most likely targets of RBPs are still predicted based on
computational methods. As the eCLIP-Seq data increase, we will
update the RBPreg method in the future by integrating the more
confident RBP regulation data.

Moreover, we found that the RBP regulators exhibited high cell
type specificity and cancer specificity. We built the XGBoost
classifiers based on the expression of RBP regulators, and found
that the classifiers can accurately distinguish corresponding cell
types from other cells. The AUCs ranged from 0.670 to 0.986
(Fig. S15). In addition, we further evaluated whether the RBP
regulons could be used to distinguish cancer cells from different

cancer types. We found that the classifiers constructed based on
the expressions of RBP regulons reached 0.71–0.76 in four cancer
types (Fig. S16). Tissue specificity is an important aspect of many
genetic diseases and various types of regulators, such as TFs, long
non-coding RNAs and microRNAs, have shown extensive tissue
specific expression patterns in cancer19,40. These results are an
important step towards the comprehensive characterization of
RBP functions in specific cell types of cancers. Based on func-
tional enrichment analysis, we found that the prioritized RBP
regulators were mainly involved in cancer-related pathways. In
particular, we prioritized the HNRNPK in lung cancer and vali-
dated its functions in cell lines and animal models.

Many studies have identified HNRNPK as an oncogene, and it
is central to many cellular events, such as lncRNA regulation (i.e.,
Neat1, Lncenc1 and Xist), activation of p53/p21 pathways and
bone homeostasis27. In this study, we revealed the association
between HNRNPK and MYC signaling pathway in lung cancer.
Although emerging studies have revealed the important functions
of HNRNPK and MYC in cancer, limited evidence were sup-
ported in lung cancer. In this study, we found that there were
HNRNPK binding motifs in MYC mRNAs. But when we

Fig. 5 Circos plot for functions of RBP regulators in lung cancer. RBPs and genes were linked if the genes were potential targets of corresponding RBPs.
Genes annotated to cancer hallmarks were linked to corresponding pathways. Lines were colored by cancer types. The colors of RBP gene names indicated
in which cell type the RBP was identified.
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integrated the single cell RNA sequencing data to identify the
potentially regulators in lung cancer, we found that MYC was not
a strong candidate target. The CLIP-seq data greatly supported
the RBP-gene regulation identified in this study, suggesting that
the genes identified in the HNRNPK regulatory network directly
post-transcriptionally regulated by HNRNPK (Fig. S5). We also
found that HNRNPK has binding sites around MYC in three cell
lines. In addition, protein-protein interaction data from STRING
suggested that HNRNPK physically interacts with MYC. We also
found that HNRNPK might co-regulate downstream target genes
with MYC (Fig. S17), and play important roles in cancer. Toge-
ther, all these observations suggest that HNRNPK might perform
its complex functions in multiple ways in different cancer con-
texts. DNA-methylation-induced silencing of DIO3OS has been
demonstrated to drive non-small cell lung cancer progression via
activating HNRNPK-MYC-CDC25A axis41. We demonstrated
that HNRNPK functions as an oncogene in lung cancer by
binding MYC mRNAs to promote the cancer development and
progression. These results make HNRNPK as a valuable pre-

clinical candidate for assessment of novel therapeutics in lung
cancer. However, we found that HNRNPK shows common
essentiality across all cancer cell lines in the DepMap42. Targeting
pan-essential genes may lead to broad cytotoxic effects43, which
may limit the application of HNRNPK as pre-clinical candidate.
Thus, additional functional experiments in cancer preclinical
models will be needed to make efforts to benefit cancer patients.

In summary, our study proposed a computational pipeline and
developed a webserver to identify the RBP regulators at single-cell
resolution. Our applications of RBPreg in cancers provided a
valuable resource for characterizing RBP regulatory networks,
and reveal oncogenic HNRNPK-MYC signaling pathway in lung
cancer.

Methods
Cell culture. A549 cell line was donated by Key Laboratory of Emergency and
Trauma, Ministry of Education, Hainan Medical University. 293 T cell line was
purchased from Institute of Cell Biology (Shanghai, China). Both cells were cul-
tured in DMEM (Gibco, Invitrogen, Carlsbad, CA, USA) containing 10% fetal

Fig. 6 HNRNPK-MYC signaling pathway perturbation in lung cancer. a, b Pathways enriched by potential targets of HNRNPK. a was based on single cell
RNA-seq data and b was for TCGA bulk transcriptome analysis. c Venn plot showing the overlap of pathways in single-cell and bulk transcriptomes.
d, e Enrichment plots of MYC target pathway identified by genes coexpressed with HNRNPK in lung cancer. d for single cell transcriptome analysis and e
for bulk transcriptome analysis. f Genome visualization of HNRNPK binding with MYC in cell lines. g Relative protein expression of MYC in overexpression
or knockdown of HNRNPK lung cancer cells. Error bars represent the standard errors. h IHC of MYC in overexpression or knockdown of HNRNPK lung
cancer cells.
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bovine serum (FBS) (Gibco, Invitrogen, Carlsbad, CA, USA) supplemented with
1% penicillin and streptomycin.

Cell transfection. Plasmids for HNRNPK knockdown (shRNA) and HNRNPK
overexpression were purchased from Genechem Co., LTD (Shanghai, China) and
empty vector-transfected cells were established as a control. 293 T cells were
transfected with plasmids encoding HNRNPK shRNA or HNRNPK over-
expression, as well as packaging plasmids (pSPAX2 and pMD2.G) using the cal-
cium phosphate method. Culture supernatant was collected 48 h and 72 h after
transfection, respectively. Before transfection, A549 cells were incubated overnight
and then separately transfected with an appropriate volume of virus solution.
Transfected cells were screened using 2 μg/ml puromycin (ST551, Beyotime,
China) for 7 days. Then, HNRNPK expression was verified by Real-time PCR.
A549 cells with HNRNPK knockdown were obtained and designated as A549-
shHNRNPK. A549 cells with HNRNPK overexpression were obtained and desig-
nated as A549-HNRNPK.

RNA isolation, real-time PCR. Total RNA was extracted using TRIzol reagent
(Life technology, USA) according to the manufacturer’s instruction. The RNA
concentration was measured and complementary DNA was synthesized using
reverse transcriptase kit (Takara, Dalian, China) according to the instruction. Real-
time PCR was carried out using SYBR Premix Ex TaqTMII (Takara, Dalian, China)
with Mx3000p QPCR system (Agilent, CA, USA). The primers sequences were
showed in Supplementary Data 12.

Western blot. Protein samples were extracted using RIPA buffer (89900, Fisher,
USA) containing protease inhibitor (S8830, Sigma, USA). Protein concentration
was measured using a BCA reagent kit (P0012, Beyotime, China). A total of 20 µg
cell protein was separated by SDS-PAGE, and then transferred to PVDF mem-
branes. After blocking, the membranes were incubated with the anti-HNRNPK
(1:2000 dilution, ab52600, Abcam, UK), anti-MYC (1:1000 dilution, ab32072,
Abcam, UK) and GAPDH (1:20,000 dilution, Abcam, UK) primary antibodies at
4 °C overnight, followed by another incubation with appropriate HRP-conjugated
secondary antibodies for 1 h at room temperature. The protein bands were
visualized using a Millipore detection kit (WBKLS0100, Millipore Corporation,
USA). The grayscale of protein bands were analyzed using Image J.

5-ethynyl-29-deoxyuridine (EdU) assay. Cells were collected by 0.25% trypsin
(Gibco, NY, USA) and a density of 2 × 105/ml cells were plated onto 24-well plates
(Corning, NY, USA). After 48 h, EdU solution was added to the medium and
conducted according to the manufacturer’s instruction (RIBOBIO, China).

Colony formation assay. Cells were cultured at a density of 2000 cells per well in
6-well plates (Corning, NY, USA) at 37 °C for 7 days. The colonies were stained
with Giemsa for 15 min after fix with 4% paraformaldehyde (PFA) (St. Louis, MO,
USA) for 30 min.

Wound scratch assay and transwell assay. Cell migration ability was performed
by the wound scratch assay using ibidi Culture Insert Two Wells (ibidi, Germany)
following manufacturer’s protocol. Cell migration images were captured at an
hourly interval. Transwell assay was examined by chambers precoated with
Matrigel (BD, USA). Cells with the density of 10 × 104/ml were suspended to the
upper chambers coated with Matrigel. Cells were cultured in at 37 °C for 24 h,
invaded cells on the bottom of the chambers were stained with Giemsa and
counted in ten random fields with x400.

Nude mouse xenograft model. Female athymic BALB/c nude mice (5 weeks old)
were purchased from GemPharmatech Animal Center (Jiangsu, China) and ran-
domly divided into four groups (n= 5) for injection with 5×106 A549-HNRNPK,
A549-psin-HA, A549-shHNRNPK and A549-scramble, respectively. Lung cancer
cells in 200 μL PBS were injected into the right flank of nude mice. Tumor size was
measured and recorded with vernier calipers every 4 days. Four weeks after
orthotopic injection, the tumor-bearing mice were sacrificed by cervical dislocation.
Then, tumors in each group were harvested, and the weights of tumors were
recorded. All animal experiments were approved by the Ethics Committee of the
First Affiliated Hospital of Hainan Medical University.

Immunohistochemistry (IHC). IHC was performed as previously described44.
Briefly, tissue samples were fixed in 10% PFA and embedded in paraffin. Sections
(4 mm) were treated with 3% hydrogen peroxide and 0.05 mol/l Tris-EDTA
solution (PH 9.0) to retrieve antigen after deparaffinization and rehydration. Then
incubated with bovine serum albumin (BSA) at 37 ˚C for 1 h. Samples were then
either incubated with a rabbit anti-human HNRNPK (1:200 dilution, LSBio, USA),
anti-Ki67 (1:200 dilution, Abcam, UK), anti-MYC (1:100 dilution, ab32072,
Abcam, UK) or the BSA (as a negative control) at 4 ˚C for overnight. Next, tissue
samples were incubated with a goat anti-rabbit secondary antibody (Abcam,
Cambridge, UK) for 15 min at 37 ˚C. After washing in PBS, samples were stained

with 3,5-diaminobenzidine (DAB) for 2 min. The sections were counterstained
with hematoxylin and mounted with neutral gum sealant.

scRNA-Seq and bulk transcriptome across cancers. Single-cell gene expression
profiles across four cancer types were obtained from one of the recent studies45. We
processed the raw gene expression matrices similar as the original study by Seurat
package46. First, gene expression matrices of individual sample were merged. Cells
with <401 UMIs, <201 expressed genes, >6000 expressed genes or >25% of reads
mapping to mitochondrial RNAs were removed. Genes were filtered following the
SCENIC. Genes with the total number of reads < 3 UMI count multiplied by 1% of
the number of cells and expressed in <1% of cells were removed. The gene
expression profiles were normalized and we selected the variable genes based on the
same parameters of the original study45. The variable genes were used to cluster the
cells and clusters were identified by the FindClusters function and visualized by the
t-SNE dimensional reduction method47. Cells were annotated based on the
expression of marker genes. Moreover, we obtained the genome-wide bulk tran-
scriptome and clinical information of lung cancer patients from the The Cancer
Genome Atlas (TCGA) project48.

RNA binding proteins and motifs. We obtained the available RBPs and motifs
from the ATtRACT database (http://attract.cnic.es)49. The position weight matrix
(PWM) of RBP motifs were downloaded and transformed to the format of MEME
required format17,50. There were 3,256 PWMs for 160 RBPs analysed in this study.

Collection of mRNA sequences. Genome-wide coordinates of protein coding
genes were obtained from GENCODE (v35)51. Next, the genomic sequences of
protein coding genes were downloaded from the UCSC Genome Browser database
(https://genome.ucsc.edu)52. In total, 19,954 genomic sequences of coding genes
were collected.

Identification of RBP regulators across cell types. To identify the RBP reg-
ulators of a cell type of interest, we proposed a computational method RBPreg
(Fig. 1A). This method was motivated by the SECNIC pipeline14 and there were
three main steps in this method. First, we implemented the FIMO algorithm in
MEME suite to find the motifs that match in the mRNA sequences. MEME takes
advantages of the Expectation Maximization (EM) algorithm to scan the motifs in
the sequences53. The p-value was calculated based on a bootstrap procedure where
random sequences with the same length of genes were selected. The RBP motifs
with p < 1.0E-3 were considered as significant events in the scan. Next, for each
motif of RBP, genes were ranked based on the p-values. If one mRNA has multiple
locations for one motif, we used the most significant one to rank genes. The motifs
were classified into two groups based on the affinity between RBP and binding
sites. The motifs with significant affinity were considered as directAnnotation, and
others were considered as inferredByOrthology.

Moreover, we calculated the spearman correlation coefficient (SCC) between
two genes similar as SCENIC and obtained the weight matrices based on
GENIE316. The weight represents the RBP has in the prediction of the target. We
explored several ways that were also used in SECNIC to determine the threshold
and finally obtained the opted targets for each RBP. The first type was taking the 50
genes with highest importance measure (IM) for each RBP (defined as top50). The
second one was setting the IM thresholds and IM > 0.001 or IM > 0.005 (defined as
w001 and w005). The third type was keeping only the top 5, 10, 50 RBPs for each
gene (defined as top5perTarget, top10perTarget, and top50perTarget). In all cases,
only the RBP-gene links with IM > 0.001 were considered. Gene sets were split into
positive- and negative-correlated targets based on the SCC. Finally, positive gene
sets (RBP coexpression modules) with high IMs were remained for further analysis.

Next, we performed the motif enrichment framework and identified the direct
targets based on the idea of RcisTarget54. We identified the enriched RBP motifs
and candidate RBPs for the gene sets identified above. AUCell was used to identify
cells with active RBP regulatory networks in single-cell RNA-seq data14. The AUC
was used to estimate the proportion of genes in the gene-list that were highly
expressed in each cell. The cut-offs of AUC score for each gene set in each cell were
determined automatically with the ‘AUCell_exploreThresholds’ function. We
identified the RBP regulators, in which targets were with significant activities in the
cells of interest.

eCLIP-seq supported RBP-gene regulation. To validate the computationally
predicted RBP-gene regulation, we collected the eCLIP-seq data of two cell lines
(HepG2 and K562) from the ENCODE project55. We downloaded the peak files
and mapped the peaks to genes by BEDTools56. Genes with peaks were identified
as targets of corresponding RBPs. We next calculated the overlap of target genes for
RBPs identified from RBPreg and eCLIP-seq supported ones. Hypergeometric test
was used to evaluate the significance of the overlap.

Differential expression analysis. Differential gene expression analysis was per-
formed by DEsingle (V1.10.0)57 to identify the genes that were differentially
expressed in cell types. The expressions of genes in one cell type vs. all other cell
types were compared. Genes with adjusted p-values <0.05 were identified and
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classified into upregulated and downregulated based on the fold changes (FC).
Genes with FC > 1 were considered as upregulated.

Functional analysis of RBPs in cancer. To identify the potential pathways
regulated by RBPs, we performed hypergeometric test based on the targets of each
RBP prioritized in RBPreg. The cancer hallmark pathways were obtained from
MSigDB58. Pathways with adjusted p-values <0.001 were identified for each RBP
regulator. For plotting the circos figure of RBP-gene regulation, only genes
annotated in at least two pathways were considered. Moreover, we performed Gene
Set Enrichment Analysis (GSEA) for HNRNPK59. First, we calculated the SCC
between HNRNPK and targets. Next, all target genes were ranked based on SCC
and subjected into the GSEA pipeline.

HNRNPK regulation in cancer. CLIP-seq data of HNRNPK and IgG in HeLa cell
line were obtained from Gene Expression Omnibus (GEO) under the accession
number GSE12718860. Moreover, eCLIP-seq data of HNRNPK in HepG2 and
K562 cell lines were obtained from ENCODE61. The bigwig files were downloaded
and visualized by Integrative Genomics Viewer (IGV)62. To further identify the
potential targets of HNRNPK, we also downloaded the RNA sequencing data in
two cell lines after knockdown HNRNPK. Genes with fold changes > 2 or <0.5
between knockdown HNRNPK and control were identified.

Classifiers based on expressions of RBPs. To evaluate whether the expressions
of RBP regulons can be used for distinguishing different cell types, we constructed
the XGBoost classifiers. In each cancer type, the RBPs identified in each cell type
were used as features in the classifier. For example, the expressions of RBP regulons
identified in T cells were used as features for construction of classifiers for dis-
tinguishing T cells from other cell types. In addition, we used the RBPs identified in
cancer cells in a specific cancer type to construct the classifiers for distinguishing
the cancer cells in the specific cancer type verse other cancer types. The parameters
‘max_depth= 6, eta= 0.5, objective= ‘binary:logistic’, nround= 25’ were used.

Statistics and reproducibility. All the experiments were set up in triplicate. Sta-
tistical analysis was conducted using IBM SPSS Statistics 23.0. The data are
expressed as the mean ± SEM. Unpaired, two-tailed Student’s t-tests were used for
data comparison between two groups. Histograms were performed generated using
the GraphPad software. A value of P < 0.05 was considered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data generated in this study can be accessed from Supplementary Data 1–13,
source data for Figs. 3c, d, e, 4a, c, d, e, f, and 6g were provided in Supplementary
Data 13. The uncropped images of gel(s)/blot(s) in Fig. 6g were provided in
Supplementary Fig. S18.

Code availability
All the codes can be obtained from https://github.com/ComputationalEpigeneticsLab/
RBPreg and the web server of BRPreg can be accessed from http://bio-bigdata.hrbmu.
edu.cn/RBPreg/.
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