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Enhanced hexamerization of insulin via assembly
pathway rerouting revealed by single particle
studies
Freja Bohr 1,2, Søren S. -R. Bohr 1,2, Narendra Kumar Mishra1,5, Nicolás Sebastian González-Foutel3,5,

Henrik Dahl Pinholt1,2,4, Shunliang Wu1, Emilie Milan Nielsen1,2, Min Zhang 1,2, Magnus Kjaergaard3,

Knud J. Jensen 1✉ & Nikos S. Hatzakis 1,2✉

Insulin formulations with diverse oligomerization states are the hallmark of interventions for

the treatment of diabetes. Here using single-molecule recordings we firstly reveal that insulin

oligomerization can operate via monomeric additions and secondly quantify the existence,

abundance and kinetic characterization of diverse insulin assembly and disassembly path-

ways involving addition of monomeric, dimeric or tetrameric insulin species. We propose and

experimentally validate a model where the insulin self-assembly pathway is rerouted, favoring

monomeric or oligomeric assembly, by solution concentration, additives and formulations.

Combining our practically complete kinetic characterization with rate simulations, we cal-

culate the abundance of each oligomeric species from nM to mM offering mechanistic

insights and the relative abundance of all oligomeric forms at concentrations relevant both for

secreted and administrated insulin. These reveal a high abundance of all oligomers and a

significant fraction of hexamer resulting in practically halved bioavailable monomer con-

centration. In addition to providing fundamental new insights, the results and toolbox pre-

sented here can be universally applied, contributing to the development of optimal insulin

formulations and the deciphering of oligomerization mechanisms for additional proteins.
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Insulin is a small protein produced by the β-cells of the pan-
creas that is crucial for regulating the blood glucose level in all
animals1. Since 1922, insulin administration constitutes the

hallmark of therapeutic intervention for diabetes and research has
focused on the development of insulin analogs and formulations
that act in either a rapid or protracted fashion2–6. Based primarily
on ensemble recordings at the μM concentrations, the commonly
accepted model for insulin self-assembly is a monomer-dimer-
hexamer or monomer-dimer-tetramer-hexamer equilibrium7–9.
These studies also showed the assembly process to be further
stabilized by ions and excipients: The tetramer is stabilized by
Zn2+ and Ca2+ via chelating to HisB10 and GluB13, respectively,
while the hexamer is stabilized by the coordination of two Zn2+

ions to HisB10 of three insulin dimers forming a toroidal
hexamer10–14. The hexameric assembly is proposed to be further
stabilized by phenolic ligands by inducing a conformational
change from the T-state (tense) to the R-state (relaxed) forming
the markedly more stable T3R3

15–21. Understanding the abun-
dance of each insulin oligomer and the mechanisms underlying
the self-assembly properties of insulin and its analogs are essential
for interpreting how native insulin is secreted from the pancreas
and tailoring the properties of therapeutic insulin for fast or
protracted action4,22.

Insulin oligomerization studies have been impeded by experi-
mental difficulties in directly observing all of the individual oli-
gomers of the assembly process, challenges in reliable recordings
at biologically relevant nM concentrations and discouraged by
oversimplified models that fit these recordings. Ensemble meth-
odologies correlate changes in a macroscopic property with the
average oligomerization state (e.g., sedimentation equilibrium,
stopped-flow, temperature jump kinetics, circular dichroism, and
dynamic light scattering)7,9. Because bulk kinetics cannot directly
measure the existence of all intermediates, researchers have relied
on fitting the experimental observations with models intuitively
assuming, albeit not directly observing, the addition of dimeric
and tetrameric species, the first being consistent with structural
evidence10,23. Assuming a three- or four-state equilibrium,
reduces the number of unique transitions from 30, if all possible
transitions occur, to 4 or 6 depending on the model used. This
simplifies the analysis and allows extraction of equilibrium rate
constants, but not the kinetic constants, from bulk data. The low
sensitivity of these methodologies confines reliable readouts to the
μM range, which is similar to the administrated insulin con-
centrations, but not the insulin concentration in the blood24,25.
The considerable challenges these approaches impose are high-
lighted by the fact that, depending on the experimental condition
and model, the calculated hexamerization constants KMD and
KDH (KMD: from monomer to dimer, KDH: dimer to hexamer)
vary by ~2 orders of magnitude, ranging from KMD= 103M−1 to
KMD= 105M−1 and KDH= 108M−2 to KDH= 109M−27–9. Pre-
cise knowledge of the effective concentration of each type of
oligomeric species is key for the development of optimal insulin
formulations. The existence of additional oligomeric forms26 or
oligomerization pathways involving monomeric additions would
have a profound impact on the extracted average oligomeric
form, association rates and equilibrium constants and their
dependence on additives and insulin formulations; all of which
are crucial for the development of optimal insulin formulations.

Here, using single-molecule studies, we directly observed the
existence, abundance, and pathway organization of all inter-
mediates of the self-assembly and disassembly process of insulin
hexamers in equilibrium. We quantified the rate constants of
association and dissociation that to the best of our knowledge has
not been done before. While ensemble techniques require µM-
mM insulin concentrations, similar to those found in formula-
tions for pharmaceutical use, single-molecule techniques can

directly observe phenomena in a concentration range similar to
the pM physiological insulin concentration27. In this concentra-
tion range, our direct observations revealed previously unac-
counted for monomeric additions occurring in all types of
assemblies, thus prompting the revision of existing models that
considered it to be negligible. The model-free analysis offered a
comprehensive kinetic characterization of all possible pairs of
monomeric, dimeric, and tetrameric assembly and disassembly
and their dependence on excipients (Zn2+ and phenol). Com-
bined with rate simulations these data elucidated the relative
abundance of each of the types of oligomer species across six
orders of magnitude and their dependence on excipients. Our
direct recording in the nM regime revealed a higher abundance of
oligomers and subsequently a lower effective monomer con-
centration than previously reported7. We found hexamerization
enhancement by additives to operate via re-routing the self-
assembly pathway to favor dimeric or tetrameric addition.

Results
Direct observation of individual steps of the insulin self-
assembly process. We used Total Internal Reflection Fluorescence
(TIRF) microscopy to directly observe the dynamic assembly and
disassembly events of individual fluorescently labeled insulin
monomers en route to hexamer formation. We chemically
attached the fluorophore ATTO655 to LysB28 on human insulin
(in the following abbreviated HI655) since it is well established not
to interfere with insulin self-assembly (Fig. 1a, b)28,29 (see Sup-
plementary Fig. 1). In a typical experiment, 10 nM of HI655 was
allowed to equilibrate on a passivated microscopy surface (see
Methods), resulting in its immobilization on the surface followed
by stochastic binding and unbinding of species in solution. We
acquired time series of TIRF images with hundreds of immobi-
lized insulin molecules present in each field of view. Imaging with
a low penetration depth allowed recordings of the dynamic
assembly events on the microscopy surface with high signal-to-
noise ratio, while particles in solution are not detected (see
Fig. 1a). Using quantitative image analysis, we determined the x-y
coordinates of each insulin particle with sub-pixel resolution30–35

(Fig. 1c, d). We recorded time-dependent intensity fluctuations
for each particle by integrating the intensity of each diffraction-
limited spot36. The intensity changed in a stepwise manner
(Fig. 1e, f, Supplementary Data 1) between several discrete levels,
with a stochastically varying dwell time (residence time of each
individual oligomeric species) and transition order. We, and
others, have shown that such fluctuations directly correlate with
the assembly and disassembly events for other fluorescently tag-
ged proteins30,33,37–39.

We performed several control experiments to establish that the
distinct intensity shifts corresponded to binding and unbinding of
insulin species and to confirm the validity of our readouts. High
labeling efficiency and purity (Supplementary Figs. 2–10, Supple-
mentary Scheme 1 and Supplementary Tables 1–6) minimized the
potential bias of kinetics from unlabeled species. Fluorophore
addition did not affect the kinetics or equilibrium29 as shown by
the recording of self-assembly for a 1:1 mixture of HI655 and
unmodified HI (Supplementary Fig. 11) as well as DLS
measurements of unmodified HI and HI655 (Supplementary
Fig. 1). Similarly, fluorophore bleaching and blinking was
quantified with immobilized monomeric biotin-labeled HI
(HI655-Biotin) (See Supplementary Figs. 12, 13 and Methods),
which confirmed that fluorophore photophysics do not bias our
readouts. Correction for the effects of fluorescent particles in
solution, transient surface-docking, and fluctuations and uneven-
ness of the laser excitation (Supplementary Fig. 14a–c) are
described in Methods. Direct conversion of diffraction-limited
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fluorescent readouts to photons (see Methods and Supplementary
Fig. 14d–f) allowed interoperability across images and
conditions30,31,33,40 offering future comparisons to similar
experiments with different experimental setups41. Consequently,
these controls and calibrations ensured that the extracted
intensity shifts correspond to binding and unbinding of insulin
monomers and oligomers from the solution to immobilized
insulin (see Fig. 1f, Supplementary Data 1 and Supplementary
Fig. 15). We note that the reversible protein self-assembly events
recorded here, are distinct from the irreversible, potentially toxic
insulin aggregation42,43. We indeed have provided new super-
resolution recordings revealing their abundance heterogeneous
growth and kinetics44,45. The methodology allows the recordings
of hundreds of individual insulin oligomerization processes and
∼15,000 assembly or disassembly processes in a single experi-
ment, providing the first real-time observation of individual
insulin self-assembly events at the single-molecule level.

Quantification of the abundance of oligomeric states and the
kinetics of transitions between them. The complexity of the self-
assembly events is highlighted by the trace in Fig. 2a. At 10 nM,
we found each trace to stochastically sample ~20 discrete tran-
sitions (Supplementary Figs. 15, 16). These events would be
averaged out by bulk readouts, but are directly observed by the
single-molecule recordings here. To classify the nature of the
oligomeric species and extract the abundance and kinetics of all
assembly and disassembly events, we used Hidden Markov Model

(HMM) analysis. We used a seven-state model representing the
background and monomer through hexamer, which was fit to
accurately describe transitions between all oligomeric states (see
Methods for detailed description and Supplementary Figs. 17–20
and Supplementary Table 7). The horizontal red lines in Fig. 2a
(Supplementary Data 2) represent a specific oligomeric state with
a dwell time τ and vertical lines depict transitions between oli-
gomeric states. The residuals between trajectory (gray) and HMM
prediction (red) follow a Gaussian distribution around zero and
thus indicate no systematic errors, confirming the accuracy of our
seven-state model (Fig. 2a, bottom, Supplementary Data 2 and
Supplementary Figs. 17c, 18, 19b, 20b, 21b). Calibration of pho-
ton to fluorophore ratio by immobilizing monomeric biotin-
labeled HI (HI655-Biotin) revealed 46 photons per labeled
monomeric insulin (Fig. 2b, Supplementary Data 3, see Methods
for details and Supplementary Figs. 12, 13, 17). Our direct
recordings here surprisingly revealed that the assembly and dis-
assembly of insulin primarily operates via association and dis-
sociation of monomers, and to a lesser extent via higher-order
oligomers in the nM concentration range (Fig. 2c, Supplementary
Data 4, and Supplementary Fig. 17). This hitherto unaccounted
for monomeric assembly and disassembly are masked in bulk
assays averaging the behavior of a large ensemble of unsynchro-
nized molecules extensively discussed7–10,12,20. They are also
reproduced here confirming that increasing concentration increa-
ses the average size, albeit not resolve individual oligomeric forms
(see also Supplementary Fig. 1 and Supplementary Figs. 22, 23).

Fig. 1 Experimental set up to observe oligomerization events of insulin using TIRF microscopy. a Representation (not to scale) of the experimental setup.
ATTO655 labeled Human Insulin (HI655, see structure in b), are detected upon binding to the passivated microscopy surface for hexamerization. The
evanescence field decays rapidly with the distance from the surface and ensures that the particles in solution are not detected (shaded red). This method
allows for the direct observation of all types of oligomeric species addition. c Typical time series of micrographs recording the assembly of hundreds of
surface-bound HI655 in parallel (black spots) (scale bar 10 μm). d Close up, showing multiple insulin particles with varying intensity indicative of different
oligomeric states (scale bar 1 μm). e The intensity of the spots resemble the point spread function (PSF) of a diffraction-limited spot suggesting they
correspond to time-dependent intensity variations corresponding to single oligomerization events. f Typical single-molecule trajectory derived from
e displaying discrete steps, the hallmark of single oligomerization events. Numerical Data for Fig. 1f can be found in Supplementary Data 1.
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Fig. 2 Single-molecule recordings of individual insulin hexamerization events allow for extraction of kinetic parameters. a Representative trace showing
discrete step-wise behavior (gray) corresponding to stochastic binding and unbinding of insulin during the hexamerization process in the absence of Zn2+

and phenol. Hidden Markov Model (HMM) analysis using a seven-state model provides the idealized trajectory (red) and the extraction of the
corresponding dwell times τ for each oligomeric state. Bottom: Residuals between the trajectory and idealized trajectory follow a normal distribution
(μ= 0.0, σ= 14.0) confirming unbiased fitting. b Monomeric HI655 was imaged to calibrate the number of photons per monomer. A Gaussian fit (red line)
of the intensity distribution of surface passivated HI655 monomers revealed a mean photon value of 46 photons for a single insulin monomer (σ= 16.0)
(nvideos= 12, Nparticles= 1096). c Transition plot of idealized photon count found from HMM before and after a transition for 10 nM HI655 (nvideos = 4,
Nparticles= 2321, Ntransitions= 48506). Each cluster represents a specific transition separated by a grid (–black lines). The grid allows for the separation of
transitions from one specific state to another. Purple denotes a transition from monomer to dimer (S1–S2), while orange is a transition from a dimer to a
tetramer (S2–S4). d Dwell time distribution extracted from each cluster in c is fitted with a single exponential distribution (red dotted line) to obtain overall
dwell time rate decay (τ) (that is converted to rate constant (k)) and density for that specific transition. Data shown for S12 corresponds to a transition
from monomer to dimer, (N= 14501), and S24 corresponds to a transition from dimer to tetramer, (N= 21). e CHESS (Complete HEatmap of State
transitionS) plot, displaying the densities of association and dissociation occupancies for each pair of possible transitions. The densities indicate that
oligomerization mainly happens via monomeric addition of insulin. The numbers within the squares correspond to transition densities. Gray squares are
transitions with no data points. A triangle indicates rate constants calculated using less than 10 transitions and thus a large error. fModel-free extraction of
rate constants for association [M−1 s−1] and dissociation [s−1] with HMM analysis for 10 nM HI655 plotted for all observed oligomerization pathways.
Notice the trend: the higher the association rate constant, the higher the dissociation constant for transitions involving higher-order oligomers. Numerical
Data for Fig. 2a–d can be found in Supplementary Data 2, 3, 4, 5.
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They however can have profound implications on existing models
assuming dimeric additions as well as the effective insulin con-
centration in the blood.

To extend beyond the qualitative observation of monomeric
assembly events, we determined the kinetic rate constants of each
event. We used HMM to extract initial and final oligomeric state,
their dwell times and transition densities as we have shown in the
past30,33,34 (Fig. 2c, Supplementary Data 4, and Supplementary
Fig. 24). Each cluster of unique transitions contained up to
~15,000 transitions (see Fig. 2c, Supplementary Data 4, and
Methods), which allowed us to extract the rates for each specific
transition from the distribution of dwell times. This is shown for
transitions from dimer to tetramer (Fig. 2c orange and Fig. 2d
top, Supplementary Data 4, 5) and monomer to dimer (Fig. 2c
purple and Fig. 2d, bottom, Supplementary Data 4–5, see
Supplementary Figs. 25–28 and Supplementary Tables 8–11 for
all transitions). For the dissociation processes, the unimolecular
rate constant is directly extracted by the dwell time distribution.
For the association processes, the corresponding biomolecular
rate constant can be calculated by dividing by the solution
concentration of the added species (see Methods). To estimate the
solution concentration of each oligomeric species in these
experimental conditions we fitted the histogram of all recorded
assembly transitions with five Gaussian distributions (see
Methods and Supplementary Figs. 17d, 18c, 19c, 20c, 21c). Τhe
association and dissociation rate constants and density for each
unique transition from one state (x-axis) to another (y-axis) are
summarized in the CHESS (Complete HEatmap of State
transitionS) (Fig. 2e, see Methods for a detailed description). To
the best of our knowledge this is the first direct and detailed
extraction of rates constants for all intermediates of insulin
hexamerization.

Monomeric assembly and disassembly pathway for HI at nM
concentration in the absence of additives. The direct observa-
tion of self-assembly events combined with detailed, model-free
analysis46, allowed the extraction of the kinetic rate constants for
17 of the possible transitions involved in hexamer assembly and
disassembly (Figs. 2f, 3a). Consistent with earlier studies, asso-
ciation rate constant were found to increase for transitions
involving higher-order oligomeric states (e.g., k34= 8.1 ± 0.3 ×
106M−1 s−1 is 1.4-fold larger than k23= 5.7 ± 0.1 × 106M−1 s−1)
while the largest monomer addition rate constant observed for HI
corresponds to a transition from pentamer to hexamer
(k56= 1.3 ± 0.1 × 107M−1 s−1, see Supplementary Table 12 for all
data). Previously published monomer-to-dimer transition rates
vary up to 20-fold depending on the experimental techniques
used. The rate constants extracted here are a good match, though
faster, to the literature values7,8. The single-particle sensitivity of
the method allowed for the recording of monomeric additions
(Fig. 2e and Supplementary Fig. 24) that would be averaged out
by conventional assays focusing on dimeric additions (either
monomer -> dimer -> hexamer or monomer -> dimer -> tetra-
mer -> hexamer)7,8,47. Monomer assembly and disassembly
represent the bulk of transitions observed (more than 99%,
Fig. 2e), in contrast to previous studies that assume dimer
assemblies and subassemblies (Supplementary Tables 12–15 and
Supplementary Fig. 29b).

The high sensitivity of the TIRF assay allowed the recording of
the often elusive dimer to tetramer transition and furthermore
allowed for extracting the kon rate (k24= 3.0 ± 0.6 · 108M−1 s−1).
k24 is 50-fold larger than k23 (k23= 5.7 ± 0.1 × 106M−1 s−1).
Besides verifying the presence of dimers and hexamer in nM
contraction it shows that the transition from dimer to a tetramer
is kinetically favored over transition to trimers. This is consistent

with the assumption underlying assembly models that emphasize
dimer addition. The transition from dimer to hexamer had too
low an abundance (6 events out of 48,506 total transitions and
2321 trajectories, Fig. 4d, Supplementary Data 9, Supplementary
Fig. 24a, and Supplementary Table 8) at this concentration. This
supports HI oligomerization to mainly operate via monomeric
addition, although the monomer-dimer-tetramer-hexamer equi-
librium appears to be kinetically favored. Interestingly, while the
community almost exclusively finds insulin monomers in nM
concentration, we observe a diverse range of all oligomers and a
relatively higher abundance of hexamers compared to literature
(Fig. 2e, Supplementary Fig. 17 and Supplementary Table 7),
drastically lowering the effective monomer concentration. This
urges revision of current models on insulin hexamerization as
well as improved calculations for effective concentration of each
oligomeric form.

A crucial prediction from these rate constants is that the
pathway of insulin assembly changes with concentration. We
propose here a model where the self-assembly pathway of insulin
is reliant on concentration: At nM concentrations similar to the
secreted insulin concentrations used in the single-molecule
assays, monomer addition dominates as a higher rate constant
of dimer addition cannot compensate for the low population of
dimers. At higher concentrations resembling pharmaceutical
preparations and bulk experiments, the increasing dimer-to-
monomer ratio shifts the assembly pathway towards dimer
addition due to the intrinsically higher rate constant.

To test this model, we performed studies under otherwise
identical conditions on the fast-acting NovoRapid insulin
(Supplementary Figs. 21, 30), which has been altered to exhibit
reduced dimerization3,48,49. Our size exclusion chromatography
data showed the average size of NovoRapid to be less dependent
on concentration as compared to HI and to remain smaller than
HI in this concentration regime, supporting NovoRapid to
primarily exist in monomeric form (see Supplementary Fig. 22
for SEC and Supplementary Figs. 1, 23 for DLS in agreement with
SEC). While averaging techniques are unable to extract each
individual intermediate the single particle results here revealed,
the association rates involving dimer addition or higher-order
oligomers and that they were reduced (e.g., k24= 2.0 ± 0.3 ×
108M−1 s−1 compared to k24= 3.0 ± 0.6 × 108M−1 s−1 for
HI655) supporting and extending current understanding. Inter-
estingly, we found NovoRapid to display increased dissociation
kinetics as compared to HI655 (e.g., k31= 0.037 ± 0.007 s−1 for
HI655, and k31= 0.062 ± 0.009 s−1 for NovoRapid), suggesting
NovoRapid has a different assembly and disassembly pathway
than HI655.

Zn2+ stabilizes the insulin hexamer and increases dimer
additions. To further evaluate our model, we used additives that
are known to stabilize insulin hexamers in vivo such as Zn2+ ions
and the combination of Zn2+ and phenol that are used in
pharmaceutical formulations. Zn2+ is expected to enhance the
dimer-to-hexamer transition11,12. We quantified the effect of
Zn2+ by the addition of 100 μM Zn2+, an excess amount of Zn2+

in solution compared to HI. As expected, the addition of Zn2+

resulted in an overall increase in association rate constants (see
Figs. 3a, b, 4a, Supplementary Data 6, and Supplementary
Figs. 18, 16, 29 and Supplementary Table 13). The rate constant
for the dimer to tetramer transition increased 2.5-fold as com-
pared to the Zn2+ free condition (p-value= 0.009,
k24= 3.0 ± 0.6 × 108 M−1 s−1 to k24= 1.0 ± 0.4 × 109M−1 s−1),
resulting in increased likelihood of forming a tetramer from
dimer, rather than a trimer (See Fig. 3a, b and Fig. 4a, c, Sup-
plementary Data 6, 8). Combined with the 1.2-fold increase in the
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rate constant of monomer addition to trimers k34
(k34= 8.1 ± 0.3 × 106M−1 s−1 to k34= 9.7 ± 0.2 · 106M−1 s−1)
after the addition of Zn2+, this results in an overall increase in
tetramer density in the presence of Zn2+ (see Fig. 4b, Supple-
mentary Data 7, Supplementary Fig. 18a+ 31a, b and Supple-
mentary Table 7). The overall equilibrium shift to a hexamer is
further compounded by the high transition rate from a tetramer
to a hexamer (k46= 2.1 ± 1.2 × 109M−1 s−1), a transition that is
practically not observed in the absence of Zn2+ (see Fig. 3a, b,
and Supplementary Tables 8–11). To substantiate this further we
calculated the relevant equilibrium constants. K56 increased from
0.96 ± 0.01 × 108M−1 to 1.95 ± 0.15 · 108M−1 (p value =
4.6 × 10−5, see Fig. 4c, Supplementary Data 8). The overall
reported earlier7,16 700-fold enhanced hexamerization of insulin
by Zn2+ appears to operate via accessing the rapid tetramer to
hexamer transition. Similarly, the transition from dimer to hex-
amer is not observed (see Fig. 3b+ 4d, Supplementary Data 9,
and Supplementary Table 10) suggesting that in the presence of
Zn2+ insulin has an alternative favored hexamerization route that
operates via monomer-dimer-tetramer-hexamer equilibrium.

Phenol stabilizes the insulin hexamer and has no effect on
dimer additions. We then tested the effect of phenol, also known
to stabilize the hexamer, via a conformational change from T6 to
the more stable R6, and it is expected to do so without enhancing
dimer association50. Indeed the addition of 25 μM phenol dis-
played no effect on dimer addition as compared to HI655

(p value= 0.24, k24= 3.0 ± 0.6 × 108M−1 s−1 to k24= 2.4 ± 0.8 ×
108M−1 s−1) (Figs. 3a, c, 4c, Supplementary Data 8, Supple-
mentary Fig. 27 and Supplementary Table 14). Similarly, the
transition from tetramer to hexamer had a very low abundance (2
out of 60,176 transitions, Fig. 4d, Supplementary Data 9, and
Supplementary Table 9). However, phenol shifted the equilibrium
constant for the pentamer to hexamer transition by 55% to
K56= 1.49 ± 0.09 × 108 (p value = 1.4 × 10−5, Fig. 3c+ 4c, Sup-
plementary Data 8). This appears to primarily originate from
reducing the hexamer dissociation to pentamer (k65= 0.10 ±
0.004 s−1 with phenol compared to k65= 0.13 ± 0.01 s−1 without,
p value= 0.0001), supporting the stable formation of hexamer.
Besides being consistent with the proposed role of phenol
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Fig. 3 Additives stabilize the addition of dimeric and tetrameric species in insulin self-assembly. CHESS plots displaying the extracted association
[M−1 s−1] and dissociation rate constants [s−1] for each specific transition for the tested conditions: a 10 nM HI655 (nvideos= 4, Nparticles= 2321), b 10 nM
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Supplementary Tables 8–11 for the number of transitions in each square.
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stabilizing the hexamer by a conformational change from T6 to
R6, these data further confirm the pathway rerouting we propose.

Rerouting of the oligomerization pathway by the combination
of Zn2+ and phenol additives. The combined effect of Zn2+ and
phenol offers a remarkable increase in the addition of dimeric and
tetrameric species (Figs. 3d, 4c, Supplementary Data 8) as well as
a significant equilibrium shift toward hexamer (Fig. 4b, Supple-
mentary Data 7, Supplementary Fig. 31d and Supplementary
Table 15). It results in 45-fold more favorable transition from a
dimer to tetramer as compared to a transition to a trimer (p
value= 3.2 × 10−8, k23= 8.9 ± 0.07 × 106M−1 s−1 to k24=
4.0 ± 0.4 × 108M−1 s−1, Fig. 4c, Supplementary Data 8). Similarly,
the rate constant of hexamer formation directly from a tetramer is

120 times faster (p value= 3.3 × 10−5, k45= 1.5 ± 0.01 × 107M−1

s−1 to k46= 1.8 ± 0.5 × 109M−1 s−1). The high fidelity of the
method allowed a direct observation of the transition from a
dimer to a hexamer, a transition only sampled with enough sta-
tistics, when both additives are present (Fig. 4d, Supplementary
Data 9, and Supplementary Fig. 28). The standard model of
insulin hexamerization often accepts dimer to hexamer transi-
tions to operate as a tri-molecular reaction involving three
dimers7,9. Our measurements here also directly recorded a
bimolecular reaction of the addition of tetrameric species to the
insulin dimer on the surface, under the assumption that the
concerted addition of two dimers does not occur rapidly com-
pared to the 50 ms temporal resolution. The rate constant of
transiting from dimer to hexamer is 480 times higher than

Fig. 4 Insulin oligomerization pathway and its dependence on Zn2+ and phenol. a Rate constants for transitions involved in monomeric, dimeric, and
tetrameric addition for all experimental conditions. The rate constant of the dimer to tetramer transition is two orders of magnitude faster than monomeric
addition. b State occupancies for all conditions, showing that Zn2+ and phenol increase the abundance of hexamers (see Methods). c Rate constant ratio
between significant transitions. Rate constant ratio dimer/tetramer (k24) or dimer/hexamer (k26) and dimer/trimer transition (k23). The increase in ratio
suggests that the addition of Zn2+ favors the addition of dimers via the tetramer over the addition of monomers, while phenol has no effect. No effect on
k24/k23 is observed with both phenol and Zn2+, suggesting that the hexamerization operates via a different route that involves the addition of tetrameric
insulin species from solution, namely via k26. The equilibrium constant (K56= k56/k65) between pentamer and hexamer is increased by both phenol, Zn2+

and a combination of the two. The effect of Zn2+ and phenol is even bigger for K26 (k26/k62) (not observed for other conditions). d Abundance of
transitions related to the dimeric additions (S24, S26 and S46) for all conditions. Triangle denotes if the transition was observed too rarely to extract
accurate rate constants. Errors are estimated as the square root of the number. NS24= (21, 7, 13, 89), NS26= (6, 3, 2, 33), NS46= (2, 3, 2, 14),
Nparticles= (2321, 2078, 3212, 2473), nvideos= (4, 4, 7, 5). Error bars for the rate constants are fit errors (of 4–7 measurements). The level of significance is
determined by a Welch’s t-test (*p value < 0.05; **p value < 0.01; ***p value < 0.001; see SI/Methods for details). Numerical Data for Fig. 4a–d can be
found in Supplementary Data 6, 7, 8, and 9.
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transiting to a trimer (p value= 1.3 × 10−6, k26= 4.3 ± 0.7 ×
109M−1 s−1 to k23= 8.9 ± 0.07 × 106M−1 s−1, Figs. 3d, 4c, Sup-
plementary Data 8). The calculated rate constant for a transition
from a dimer to hexamer (k26= 4.3 ± 0.7 × 109M−1 s−1) and
tetramer to hexamer (k46= 1.8 ± 0.5 · 109M−1 s−1) are similar
(Fig. 3d and Supplementary Table 15) as one would expect to
occur in solution, supporting that the surface immobilization is
not biasing the readout. The equilibrium constant of tetrameric
addition is K26= 4.8 ± 2.1 × 1010M−1, more than 100 times larger
than the equilibrium constant K56 (Fig. 4c, Supplementary Data 8,
p value= 0.002). The existing monomeric and dimeric pathways
will have a small contribution to hexamerization. The overall
increased hexameric form of insulin in the presence of both Zn2+

and phenol appears to operate via selection of an alternative,
faster oligomerization pathway, that of monomer-dimer-hexamer
equilibrium.

Bridging classical ensemble studies and single molecule
approach. The comprehensive extraction of multiple rate con-
stants allowed us to simulate the time course of insulin assembly
for initial concentrations varying by six orders of magnitude,
from 1 nM to the mM range. This offered extraction of abun-
dance of all oligomeric species in concentration ranges that are
not always experimentally accessible with current published
methodologies reporting the average behavior of a large ensemble
of molecules, and we reproduced that here (Fig. 5 Supplementary
Data 10–11, and Supplementary Figs. 1, 22, 23 and 32–35). We
simulated the time evolution of each oligomeric species (S1–S6)
using a reaction scheme with association and dissociation of
monomers, dimers and tetramers (Supplementary Fig. 36), since
these transitions are dominating the experimental observations.

The influence of Zn2+ and phenol are not explicitly modeled but
are implicitly considered in the rate constants. We simulated the
four different initial conditions recorded in this study (HI655,
HI655+ Zn2+, HI655+ phenol and the combination of Zn2+ and
phenol) using experimental rate constants as input (Supplemen-
tary Tables 17–20). In all simulations, kinetic equilibrium was
reached within ~30 s, where the different oligomeric species sta-
bilize at different levels depending on the presence of additives
and the initial concentrations of HI (Supplementary Figs. 32–35).
As our experiments do not consider the time evolution, we
focused the analysis on the fraction of oligomers at the end point.
Extrapolation of the fraction of oligomeric species for different
concentrations displays the overall sigmoidal curve reported from
modeling a monomer-dimer-(tetramer)-hexamer equilibrium7,
shifted to lower concentrations. In the absence of oligomer sta-
bilizers, the predominant oligomeric species of insulin is the
hexamer for initial concentrations above 1 μM. However, as
unstabilized hexamers rapidly shed monomers and dimers, there
are also considerable populations of tetramers and pentamers but
also lower oligomers that are in general not accounted for by
conventional analysis assuming equilibrium between three or four
oligomeric species (Fig. 5a, Supplementary Data 10). Our results
reveal a higher abundance of oligomers and hexamers in the nM-
μM concentration range compared to literature that reports
almost exclusively monomers and a small fraction of dimers, but
no hexamers below μM7. In fact the abundance of hexamers for
10 nM initial concentration is 1% for HI655 (Fig. 5a, Supple-
mentary Data 10) and up to 13% with additives (Fig. 5d, Sup-
plementary Data 10). This reduces the effective insulin monomer
concentration by ~40% of what is currently expected7 in the nM
regime (Fig. 5a–d, Supplementary Data 10). Besides questioning

Fig. 5 Extrapolation of the fraction of oligomerization species at varying initial insulin concentrations for each type of stabilizing additive. a–d Stacked
plots of the fraction of oligomeric species reached at numerically simulated equilibrium for different initial HI concentrations in solution (ranging from 1 nM
to 1 mM) under the addition of different additives. Initial concentration represents the initial input monomer concentration before simulation has been
started. (*) corresponds to the experimental conditions here of 10 nM HI655. The color code represents different oligomeric species. For each initial
concentration, the mean oligomeric state (see Methods) is displayed as a dotted line, directly representing the ensemble averaging readout. The method
allows deconvolution of all individual species. e Fit of the hexamer fraction (dark purple bar in a–d) for each experimental condition. See Methods and
Supplementary Table 16 for the fitting details. Numerical Data for Fig. 5a–e can be found in Supplementary Data 10, 11.
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current insulin assembly models, this reduction in effective
insulin monomer concentration, would have profound implica-
tions in the amount of bioavailable subcutaneously administrated
insulin.

To compare with bulk experiments, we fitted the hexameric
fraction increase with the Hill equation (Fig. 5e, Supplementary
Data 11) for each experimental condition. This provides apparent
affinity akin to what one would measure by bulk readouts and
modeling with a three- or four-state equilibrium, (e.g., monomer-
dimer-hexamer), but now derived from the high fidelity single-
molecule recordings. The extracted Hill coefficient is consistent
with reports on binding to multiple sites with different affinity
(apparent Hill coefficient nh is <1)51 (see Methods and
Supplementary Table 16). In the presence of stabilizers, the
transition from monomer to oligomers occurs at slightly lower HI
concentrations reflected by changes in the apparent hexamer
affinity (see Methods). The extracted apparent affinity is lower
than the one calculated by bulk readouts. Consistent with earlier
studies, the addition of Zn2+ shifts the apparent affinity by ~3-
fold (from 2.6 μM to 0.87 μM, while phenol has a more moderate
effect resulting in 50% of the initial value. The combination of
Zn2+ and phenol has a remarkable reduction of 14-fold in the
apparent affinity. Our results are, in general, consistent with
previous studies that preferentially observed hexamers in the µM
to mM range50 and further hexamer stabilization by Zn2+ and
phenol but provide a mechanistic insight for this stabilization and
self-assembly pathway rerouting.

Discussion
The widely accepted model for insulin hexamerization is mono-
mer-dimer-hexamer, while an additional tetrameric intermediate
is sometimes also considered. In both cases, the hexamer for-
mation is promoted by complexation with two Zn2+ ions. These
mechanisms are supported by bulk studies that correlate changes
in a macroscopic property with the average oligomerization state
and fitting the experimental observations with models assuming,
albeit not directly observing, only dimeric and tetrameric addi-
tions. The relatively low sensitivity on the methods requires
recording at the μM range, which is relevant to the administrated
insulin concentrations, but not the insulin concentration in the
blood24,25.

We directly observed insulin self-assembly events to be more
complex than accounted for in any of the current models. We
detect all oligomeric species between monomer and hexamers and
observe stochastic transitions between them via monomeric and
dimeric assembly and disassembly. This complexity imposes
considerable challenges in current understanding, as it will be
masked by conventional bulk readouts that average the behavior
of a large ensemble of molecules. Indeed, to the best of our
knowledge to date there is no experimental data, theory or
simulation, supporting the existence of sequential assembly or

disassembly of monomeric insulin along the entire pathway.
These results constitute the first direct validation that, contrary to
current models, monomeric additions could occur to all types of
oligomeric states, thus prompting a revision of existing models
that intuitively assume insulin self-assembly to operate via the
addition of dimers or tetramers.

The single-molecule recordings here transformed the stochastic
nature of insulin assembly from an inaccessible problem in bulk
assays to an experimental asset and offered the parallelized
recording of the existence, abundance and dwell time of thou-
sands of individual assembly and disassembly events of all types
of insulin oligomeric species. This resulted in the model-free
extraction of 17–25 kinetic rate constants for these transitions,
which to the best of our knowledge has not been achieved before.
The directly extracted rate constants here are faster than the rates
calculated by previous studies based on fitting a three- or four-
state equilibrium7–9,52,53 and one cannot exclude that single-
molecule readout on surface-immobilized molecules can have an
effect. The wealth of control experiments compounded with the
fact that they capture the proposed general trends, is consistent
with no artifacts of the method. Notably, the rate constants of
some transitions involving higher-order oligomers are close to
what is considered the diffusion limit, where most collisions lead
to binding. This is especially important for k26 in the presence of
Zn2+ and phenol, further supporting that at sufficient con-
centrations a transition from a dimer to hexamer is the dominant
mechanism.

We proposed here a model where the self-assembly pathway of
insulin is rerouted by concentration, additives, and formulations
(see Fig. 6 and Supplementary Fig. 37). At nM concentrations
relevant for insulin secretion, monomer addition dominates. At
higher concentrations resembling pharmaceutical preparations,
the increasing dimer-to-monomer ratio shifts the assembly
pathway toward dimer addition due to the intrinsically higher
rate constant. Additives such as Zn2+ and phenol may promote
the addition of dimers. The combination of Zn2+ and phenol, on
the other hand, reroutes the hexamerization pathway, enhancing
the direct transition from dimer to hexamer, a pathway rarely
sampled by insulin alone. The fact that the presented method not
only confirms the current theory of insulin oligomerization but
also simultaneously captures each individual formation step with
single-molecule resolution directly highlights the robustness of
the analysis.

Insulin is believed to be secreted in hexameric form in vivo and
to rapidly dissociate to monomers. Quantification of the dis-
sociation of hexamers is therefore a key design parameter for
pharmaceutical insulin formulations. The concentration range
directly recorded here is relatively close to the insulin con-
centration under physiological conditions27. Our extraction of
dissociation rates reveals dimeric dissociation to operate twice as
fast as monomeric, a layer of information that is crucial for
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Fig. 6 Model of pathway rerouting for insulin formulations by additives and its dependence on concentrations. Understanding the mechanistic of
pathway rerouting by additives and concentration enables emulation of the desired conditions or behavior that may be crucial for specific pharmaceutical
targets.
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understanding secreted insulin levels in blood and how the extent
of oligomerization is regulated by Zn2+ and phenol. Surprisingly,
we found oligomers and hexamers present at nM concentrations
relevant for subcutaneously administrated insulin as well as
pancreatic insulin release, despite what current research
states7,24,25, effectively lowering the monomer concentration
drastically with more than 40%. These findings together with the
capacity of extrapolating behavior at higher concentrations for
each type of formulation is crucially important for understanding
and tailoring formulations for subcutaneous injection as well as
understanding the metabolic processes of subcutaneously admi-
nistered insulin.

These experimental observations support and augment exist-
ing knowledge, offering mechanistic insights into self-assembly
pathway rerouting as a decisive element in enhanced hexamer
formation by additives. Quantitative understanding of the pro-
cesses and pathways that drive the association and dissociation of
insulin and how they are remodeled by formulations and
environmental conditions can aid both the optimized use of
existing insulin formulations, the development of new novel
formulations for optimized treatment of diabetes, and help guide
the development of glucose-responsive insulins54. Besides deci-
phering the mechanism of insulin self-assembly regulation by
additives, the work presented here establishes a universal
methodological foundation for advancing our understanding of
the regulation of the self-assembly process of additional bio-
molecular entities.

Methods
Materials. All chemicals are of analytical grade and purchased from Sigma-Aldrich
Denmark, unless otherwise stated. ATTO655-NHS ester was purchased from
ATTO-TEC. Recombinant human insulin was purchased from Thermo Fisher USA.
MilliQ water was used for aqueous preparations. The buffer used for all experiments
was made from 10mM Na2HPO4, 10mM NaH2PO4, 5 mM NaCl, pH = 7.32.

Insulin synthesis and labeling with chromophores (ATTO655)
General. High-resolution mass spectrometry was obtained on an UHPLC-MS with
a QTOF Impact HD (Bruker) and Dionex UltiMate 3000 (Thermo) system
equipped with a Kinetex® 2.6 μm EVO C18 100 Å column (50 × 2.1 mm, Phe-
nomenex). Purification of conjugates was done on a Biotage-Isolera HPFC
300 system with a C18 column (SNAP Ultra, C18, 30 g). CH3CN−H2O (0.1%
HCOOH) was used as an eluent with a flow of 25 mL/min.

Synthesis of ATTO655-human insulin. Human insulin (21 mg, 0.0036 mmol, 3
equivalents) was suspended in 0.1 M tris buffer (0.2 mL), the pH was adjusted to
10.5 to dissolve it completely, ATTO655-NHS ester (1.0 mg, 0.00122 mmol, 1.0
equivalent) was dissolved in DMF (0.3 mL), added dropwise over 5 min to the
stirring solution of Human insulin, and allowed the reaction mixture to stir for
15.0 min. The reaction was monitored by LCMS. Then the reaction mixture was
diluted with 2.0 mL of H2O and pH was adjusted to pH 7.8. The product was
isolated using RP-HPLC, on a Biotage SNAP ultra-column (C18, 30 g, 25 μm).
CH3CN/H2O mixed with 0.1% formic acid was used as eluents at a linear gradient
of 5–50% CH3CN over 20 min, and a flow rate of 25 mL/min. Each fraction was
analyzed through LCMS. Monosubstituted products were collected separately,
CH3CN was removed at reduced pressure using rotary evaporator, followed by
lyophilized to give product as a dark green (or blackish green) powder (HI655-
Yield: 5.6 mg, 79%).

Synthesis of Di-Fmoc-human insulin. To the stirred solution of human insulin
(300 mg, 0.0516 mmol) in tris buffer (100 mM, 4.0 mL) at pH 10.5, Fmoc-OSu
(25 mg) dissolved in DMF (4.0 mL) was added, and the reaction mixture was
stirred for 20 min at RT. LCMS analysis confirmed the completion of the reaction.
The reaction mixture was diluted with water and pH of the reaction was adjusted
from pH 10.5 to pH 7.8. The reaction mixture was purified on RP-HPFC (Isolera)
using Biotage SNAP ultra-column C18, 60 g. The different fractions were analyzed
by LCMS. The pure fractions were collected, concentrated, and then lyophilized to
obtain the product GlyA1Fmoc-LysB29Fmoc-HI as a solid fluffy white powder
(GlyA1Fmoc-LysB29Fmoc-HI, Yield 139 mg: 43%).

Synthesis of Di-Fmoc-PheB1-Biotin-PEG3-HI. GlyA1Fmoc-LysB29Fmoc-HI (135.0mg,
0.022mmol) was dissolved in tris buffer at pH 10.5 (100mM, 2.5mL) and the pH of
the solution reduced to 7.2. Biotin-PEG3-NHS-ester (14.0 mg, 0.024mmol) dissolved

in DMF (2.5 mL) was added portion wise over 5 min, the pH was further reduced to
7.0 and the reaction mixture stirred for 40min at RT. The reaction was monitored by
LCMS at defined time intervals, which confirmed completion of reaction after 40min.
Then, the reaction mixture was diluted with water (5.0 mL) and the pH was adjusted
to 7.8. The reaction mixture was purified by RP-HPFC using Biotage SNAP ultra-
column (C18, 60 g, 25 µm), using CH3CN/H2O mixed with 0.1% formic acid with
linear gradient of acetonitrile of 5–50%. Different fractions were separately analyzed
by LCMS. Pure fractions were collected and freeze-dried to provide GlyA1Fmoc-
LysB29Fmoc-PheB1Biotin-PEG3-HI as a solid fluffy white powder (Yield 92mg,
62.0%).

Synthesis of PheB1Biotin-PEG3-HI. GlyA1Fmoc-LysB29Fmoc-PheB1Biotin-PEG3-HI
(90.0 mg, 0.013 mmol) was dissolved in DMSO (2.0 mL) over the stirring of 5 min
at RT. 5% Piperidine in DMF (0.3 mL) was added to the stirred solution of
GlyA1Fmoc-LysB29Fmoc-PheB1Biotin-PEG4-HI and allowed the reaction mixture to
stir for 10 min. Formation of product is confirmed by LCMS. Reaction mixture was
further purified with RP-HPFC Isolera using Biotage SNAP ultra-column (C18,
60 g, 25 µm). CH3CN/H2O mixed with 0.1% formic acid were used as eluents at a
linear gradient of 5–60% CH3CN over 20 min, and a flow rate of 50 mL/min.
Different fractions were separately analyzed through LCMS. Pure fractions were
collected and freeze dried to get product PheB1Biotin-PEG3-HI as a solid fluffy
white powder (Yield 60.0 mg, 72%).

Synthesis of PheB1Biotin-PEG3-LysB29Atto655-HI. To the stirred solution of PheB1-
Biotin-PEG3-HI (25 mg, 0.0037 mmol) in tris buffer (100 mM, 1.5 mL) at pH 10.5,
Atto-655-NHS-ester dissolved (1.2 mg, 0.0019 mmol) in DMF (1.5 mL) was added,
and the reaction mixture was stirred for 15 min at RT. After 15 min, LCMS
analysis confirmed that the reaction was completed. The reaction mixture was
then diluted with water and the pH was adjusted from 10.5 to 7.8. The reaction
mixture was passed through a Biotage Snap BioC4 (300 Å, 10 g, C4, 20 µm) col-
umn with a flow rate of 12 mL/min with a gradient of 5–40% acetonitrile. Dif-
ferent fractions were separately analyzed by LCMS with a gradient of acetonitrile/
water with 0.1% formic acid. Pure fractions were collected and freeze dried to
provide PheB1-Biotin-PEG3-LysB29Atto655-HI as a dark green fluffy solid as a
product (4.0 mg, Yield 31%).

V8 Enzymatic analysis of PheB1Biotin-PEG3-LysB29Atto655-HI. To verify the sub-
stitution pattern, PheB1-Biotin-PEG3-LysB29Atto655-HI was subjected to enzymatic
digestion by treatment with endoproteinase Glu-C from Staphylococcus. Analysis
of the fragments confirmed that Atto655 was covalently attached at LysB29 and
Biotin-PEG3 substituted at PheB1 position, respectively:

● GlyA1-GluA4 (C18H32N4O7) Calculated: 416.22, Observed: 417.213
● AsnA18-AsnA21+AlaB14-GluB21 (C59H88N14O20S2), Calculated [M+ 2H]

2+: 689.29, Observed: 689.27
● ArgB22-LysB29Atto-655-ThrB30 (C82H111N16O15), Calculated [M+ 2H]2+:

813.39, Observed [M+ 2H]2+: 813.37.
● GlnA5-GluA17+ PheB1-Biotin-PEG3-GluB13(C147H229N37O48S5) Calculated

[M+ 2H]2+: 1722.271, Observed: 1722.25.

Synthesis of LysB29Atto655-insulin aspart. Freshly purified insulin aspart (NovoR-
apid) (21 mg, 0.0036 mmol, 3 equivalents) was suspended in 0.1 M tris buffer
(0.2 mL), and the pH was adjusted to 10.5 to dissolve it completely. ATTO-655-
NHS ester (1.0 mg, 0.00122 mmol, 1.0 equivalent) was dissolved in DMF (0.3 mL)
and added dropwise over 5 min to the stirred solution of insulin aspart, whereafter
and allowed the reaction mixture to stir for 15.0 min. The reaction was monitored
by LCMS29,55,56. Then the reaction mixture was diluted with H2O (2.0 mL) and the
pH was adjusted to pH 7.8. The product was isolated using HPFC using a SNAP
ultra-column (C18, 30 g, 25 um). CH3CN/H2O mixed with 0.1% formic acid was
used as eluents with a linear gradient of 5–50% CH3CN over 20 min, and a flow
rate of 25 mL/min. Each fraction was analyzed by LCMS. Monosubstituted pro-
ducts were collected separately, CH3CN was removed at reduced pressure on a
rotatory evaporator, followed by lyophilization to provide the desired product as a
dark green (or blackish green) powder (LysB29Atto-655-NovoRapid-HI-Yield:
5.6 mg, 79%).

V8 enzymatic analysis of LysB29Atto655-insulin aspart. To verify the substitution
pattern, LysB29Atto655-insulin aspart was subjected to enzymatic digestion by
treatment with endoproteinase Glu-C from Staphylococcus. Analysis of the frag-
ments confirmed that Atto655 was covalently attached to LysB29:

● GlyA1-GluA4 (C18H32N4O7) Calculated: 416.22, Observed: 417.213
● AsnA18-AsnA21+AlaB14-GluB21 (C59H88N14O20S2), Calculated [M+ 2H]2+:

689.29, Observed: 689.27
● ArgB22-LysB29Atto-655-ThrB30 (C80H107N16O20S), Calculated [M+ 2H]2+:

822.38, Observed: [M+ 2H]2+: 822.36.
● GlnA5-GluA17+ PheB1-GluB13(C126H197N34O41S4), Calculated [M+ 3H]3+:

990.442, Observed: 990.422, Calculated [M+ 4H]4+: 743.084, Observed:
743.084.
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Sample preparation. Degassed MilliQ H2O (1 mL) was added to HI655, HI655-
Biotin, and NovoRapid655 (1.0 mg of dry powder) and shaken gently for 2–3 min,
at which time it appeared as a suspension. The pH of the solution was increased to
pH 10.0 by addition of 0.5 M NaOH (added 1–2 μL for 2–3 times to reach the pH
of 10.0 to dissolve it completely as a transparent solution. Further pH was lowered
with 0.5 M HCl and shaken gently so that cloudy insulin dissolved, and the solution
appeared transparent. Afterwards, the pH of the solution was adjusted 7.4–7.5
using 0.2 M HCl. The solution was further filtered into another Eppendorf tube
through 0.2 μm syringe filters in order to remove any precipitate/aggregates. The
concentration of insulin was further determined on a Nanodrop instrument. The
molar absorption coefficient value for Atto655 is 1.25 × 105 M−1 cm−1. After
determination of concentration, stock solutions were utilized for further
experiments.

Dynamic light scattering. DLS measurement was carried out on a Malvern
Zetasizer (Malvern, United Kingdom) μV instrument at 25 °C using a 2 μl Quartz
cuvette with 1.25 mm light path length. Hydrodynamic radius was calculated using
a standard equation with dynamic viscosity of water at 25 °C which is embedded in
Malvern program. Sample was measured at varying concentrations of 50 and
40 µM insulin in 10 mM Na2HPO4, 10 mM Na2HPO4, 10 mM NaH2PO4, and
5 mM NaCl at pH 7.5. The mean hydrodynamic radius for each condition was
found with a log-normal fit to the data.

Size exclusion chromatography (SEC). The samples (200 µL) were separated by
size on a fast protein liquid chromatography system (GE ÄKTA Purifier 10 System
with Monitor UV-900 and Sample Pump P-900). The SEC was carried on a cali-
brated Superdex 75 Increase 10/300 GL column at room temperature with a flow of
0.5 mL/min PBS buffer at pH 7.5 over 1.5 column volumes (CVs). The column was
equilibrated over 2 CVs (1 CV= 24 mL) of running buffer before the sample
injection with monitoring at 215, 280, and 663 nm. The molecular weight of each
sample was calculated using a linear calibration curve of partition coefficient Kav

Kav ¼
retention volume� Void volume
Column volume� Void volume

� �
ð1Þ

versus log(MW) generated by standard proteins; Conalbumin (75 kDa),
Ovalbumin (43 kDa), Carbonic Anhydrase (29 kDa), Ribonuclear (13.7 kDa), and
Aprotinin (6.5 kDa) (Fig. 1). The Stoke’s radius (Rs) of each sample was calculated
using a linear calibration curve of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� logðKavÞ
p

versus Rs of standard proteins;
Conalbumin (36.4 Å), Ovalbumin (30.5 Å), Carbonic Anhydrase (23 Å),
Ribonuclear (16.4 Å), and Aprotinin (13.5 Å) (Supplementary Fig. 22d).

Microscopy surface preparation and surface passivation. Microscope coverslips
were cleaned thoroughly by sonication in 3 × 2% MilliQ Hellmanex solution,
3 ×MilliQ and 1 ×methanol for 15 min each. In between each round of sonication,
the coverslips were rinsed with MilliQ. The clean coverslips were stored in
methanol solution until usage. Clean coverslips were dried under a nitrogen flow
and plasma cleaned for at least 4 min before attaching a sticky slide to it. Surfaces
were passivated with 80 μL 100:1 mixture of 1 g/L PLL-PEG/PLL-PEG-biotin that
incubated for at least 2 h. After incubation, the wells were thoroughly rinsed with
MilliQ and functionalized with 80 μL 0.1 g/L neutravidin30,39. After functionali-
zation the wells were again thoroughly rinsed and the surfaces were stored in
MilliQ until insulin addition.

Total internal reflection fluorescence microscopy (TIRFm) imaging. Before
imaging a video of an empty surface with only buffer was acquired for subsequent
background correction. 350 μL insulin solution (10 nM HI655) in buffer was flushed
into the chamber, and imaging was started immediately. All experiments were
carried out in buffer at room temperature with Zn2+ and phenol in excess amounts
(100 and 25 μM). Data from at least four measurements were combined in all
figures.

For HI655-Biotin control experiment, 350 μL 1 pM insulin was flushed into the
chamber and immediately flushed extensively with buffer to remove any non-
bound insulin. A total of 12 videos at different positions on the surface were
recorded in a single chamber.

All experiments were conducted at a TIRF microscope (TIRFm, IX 83,
Olympus) equipped with one EMCCD camera (Hamamatsu) and an oil immersion
100× objective (UAPON 100XOTIRF, Olympus). ATTO655 fluorophores were
excited using a 640 nm solid-state laser line. Imaging was performed with 10% laser
power (200 μW), 50 ms exposure time (followed 100 ms waiting time between
frames resulting in a frame rate of 6.7 s−1), 100 nm penetration depth and 300 EM
gain. Imaging was done for a total of 4000 frames per video, resulting in a total
imaging time of ~10 min.

Image analysis. Quantitative image analysis was performed using an in-house
software57 based on previous publications30,31,58,59 and outlined in the following
paragraphs. Traces were sorted based on different criteria, e.g., signal/background
ratio, noisiness, and whether the traces displayed a clear stepwise behavior.

EMCCD calibration. Prior to the addition of particles, a control movie—with
identical acquisition parameters to the subsequent measurement—was recorded on
an empty sample for camera calibration (Supplementary Fig. 14d, Supplementary
Fig. 14e shows a movie with particles for comparison). The calibration allowed
conversion of intensity values into photons counts for subsequent measurements.

400 random pixels were selected from the control movie, forming 400
histograms of intensity values for each. Assuming a constant mean pixel value for
such arrays, fluctuations are expected to arise only through EMCCD measurement
noise. The noise is well described by the convolution of a Poisson distribution and
an Erlang distribution. With the Poisson distribution modeling effects of shot noise
and the Erlang distribution modeling the birth-death processes in the EM-gain.
The resulting three-parameter distribution for pixel intensity is

pðsjs0; γ; EÞ ¼ δðs� s0Þe�E þ
ffiffiffiffiffi
γE
s

r
e�γs�EI1ð2

ffiffiffiffiffiffiffi
γEs

p
Þ ð2Þ

where s is the pixel intensity and I1is the modified Bessel function of the first kind.
The three parameters are s0, a factory-set offset to the observed camera intensity, γ,
the inverse gain of the camera, and E, the expected photon count from the pixel
array41,60,61. Each of the 400 pixel arrays were fit with Eq. (2) using a chi-2 fit
(Supplementary Fig. 14f). The average of all parameters with a p-value greater than
1% were then used to estimate the mean photon counts in pixels of subsequently
acquired movies. This was done by simply offsetting and scaling the observed
intensities

n ¼ ðs� < s0>Þ< γ> ð3Þ
Illumination profile correction. To confidently compare photon counts across the
images with fluorescent particles, a correction from the Gaussian illumination
profile had to be performed (Supplementary Fig. 14a–c). The time-average of each
movie was convolved with a Gaussian (σ = 30 pixels) to estimate the background
illumination profile (Supplementary Fig. 14b). Each movie was then divided with
its estimated background illumination profile to get the corrected set of movies
(Supplementary Fig. 14c). Finally, to improve image contrast for subsequent par-
ticle identification, the movies were convolved with a Gaussian along the time axis
(σ = 3 frames).

Particle localization and signal extraction. Localization of each particle was per-
formed on an average representation of the time series since the particles are not
moving. The x-y position of each fluorescent particle was determined by locating
Gaussian-shaped peaks of fluorescence on the darker background using the python
plugin Trackpy30,31,58,59. The specific parameters used for localizing particles in
Trackpy were set as diameter = 11 pixels, sep = 6 pixels while minmass is cal-
culated as minmass=meanavgvideo · 0.4, where meanavgvideo is the mean average
pixel value of the Gaussian and illumination corrected movie.

Subsequently, the exact position is refined using a 2D Gaussian fit to the PSF.
The baseline (called b) for the 2D Gaussian fit was used for background correction.
After localization, the signal was integrated with a roi (region of interest) of 9 pixels
in diameter in all 4000 frames and lastly corrected for local background variations
by subtracting the background value found from Gaussian fitting to obtain a single
background corrected trajectory as:

f ¼ ∑Npixels
s� b � Npixels ð4Þ

where s is the pixel intensity, b is the baseline from 2D Gaussian fit and Npixels

represents the number of pixels within a roi (region of interest).

Intensity calibration to number of insulin monomers. Photon to fluorophore cali-
bration allowed conversion of intensity shifts to discrete oligomeric state assembly
and disassembly. Visual inspection of the trajectory displayed in Fig. 2a (Supple-
mentary Data 2) suggests that insulin assembly and disassembly events primarily
result in a signal change in integers of ~50 photons. To validate this, we directly
converted the diffraction-limited fluorescent readouts to photons from 12 experi-
ments with a surface-passivated biotinylated monomeric insulin (HI655-Biotin,
N= 1096 particles) (Fig. 2b, Supplementary Data 3). Trajectories arising from
aggregates were discarded. The methodology allows interoperability across
experimental conditions and setups41. Analysis revealed an excellent agreement
between both visual inspection, model prediction and Gaussian fit (μ= 46 photons,
σ= 16 photons) to monomeric insulin (Supplementary Fig. 12a, b). We excluded
artifactual monomeric addition events by ensuring minimal bias from the sur-
rounding via a roundness parameter allowing us to exclude incidents where par-
ticles were localized in the same pixel. The width of the distribution is similar to the
width of the residual (Fig. 2a, bottom, Supplementary Data 2) further supporting
the validity of the assay (σ= 14.0 compared to σ= 16.0, Fig. 2b, Supplementary
Data 3).

Similar analysis was performed under addition of phenol, to ensure minimum
bias from phenol on fluorescent readout (N= 781). As expected, no effect was
found (μ= 41 photons, σ= 14 photons) (Supplementary Fig. 13a).

Bleaching and blinking control experiment. Experiments with HI655-Biotin were
used to quantify bleaching and blinking. Trajectories arising from aggregates were
discarded. Bleaching analysis was made in increments of 400 frames. If the mean
photon count for a specific particle was equal to or less than 30 photons in an
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increment, it was denoted as bleached. Blinking analysis was performed on tra-
jectories from frame 100 to frame 1000 to remove any bias from bleaching. If the
residual (photon count in a specific frame) was bigger than or equal to 3 standard
deviations of the trajectory it was denoted as a dark state, i.e., the fluorophore is
blinking (Supplementary Fig. 12c–e). Similar analysis was performed under addi-
tion of phenol, to ensure minimum bias from phenol on fluorescent readout. As
expected, no effect was found (Supplementary Fig. 13c).

Insulin oligomerization experiment. Experiments with HI655 nonspecifically
binding to the surface were used to observe and quantify single oligomerization
events. The traces for the same conditions (insulin-, Zn2+ and phenol con-
centration) from different surfaces were merged for later use. The summed photon
histogram for all trajectories for 10 nM HI655 followed a Gaussian mixture model
of seven Gaussian consistent with a seven-state model accounting for the six steps
of hexamerization plus background (essentially no particles observed) (Supple-
mentary Fig. 17a). Thorough investigation into the fit revealed that the best seven
distributions were found to be as listed in Table 1 and were applied to the HMM
analysis. A hard threshold for photon count was set to be 500 photons, and traces
containing higher photon count than this were discarded before the HMM analysis
as they were higher-order aggregates.

For 10 nM NovoRapid655 the signal to noise was lower than for experiments
with HI655. For this reason, we used Gaussian smoothing with a width of σ= 5, on
the raw trajectories for 10 nM NovoRapid655 to obtain comparable signal to noise
(Supplementary Fig. 17c and Supplementary Fig. 21b).

Hidden Markov Model analysis. The HMM data analysis was implemented using
the Pomegranate package for Python similar to published methodologies30,33,62.
Due to the low occupancy of the higher order oligomers of the insulin (tetramer,
pentamer, and hexamer, Supplementary Table 7), the state values had to be frozen
in order for the HMM to fit the entire dataset. For each trace, a model with 7 states
(as defined in Table 1) was fitted. The idealized photon histogram was fitted with a
mixture of seven Gaussians to extract state occupancies (Supplementary Figs. 17b,
18a, 19a, 20a, 21a). To determine the error, we employed a parametric boot-
strapping approach, where the fit was reinitiated ten times to generate a bootstrap
distribution of fit parameters estimates. From each parameter distribution, the
mean and error were determined.

Although fluorescent intensity values are not technically Gaussian distributed, it
has in practice been shown to be a robust method with little discrepancy when the
values are distributed far away from 0 due to central limit theorem. Also, the HMM
fit was evaluated by plotting the residuals that showed no systematic error of HMM
fit for all conditions (Supplementary Figs. 19c, 18b, 19b, 20b, 21b).

Determination of transition rate constants. The idealized traces were further
investigated by plotting all transitions in a Transition Density Plot as this is the
current established method. Extraction of specific transitions is classically per-
formed using fitting (e.g., k means clustering30,33) for simpler systems with fewer
transitions, to reliably identify up to 64 clusters in total for all conditions. However,
this method was not optimal for this data due to the many transitions possible and
low sampling of higher-order transitions/states. This is despite very thorough
examination of the data and extensive optimization of initial guesses for x-y
positions of each cluster.

Here we applied a series of thresholds that can be subjected to extensive analysis
to extract kinetic and thermodynamic insights. The grid thresholds were made in
agreement with the HMM input, so that a specific state or transition found by the
HMM, would be correctly separated by the grid. This allowed for a total theoretical
number of 42 separable clusters (excluding those involved with S0). The TDP plots
showcase insulin association and dissociation at 10 nM concentration regime to
operate primarily from monomeric additions and to lesser extent via dimer or
higher order oligomer addition (Supplementary Fig. 24 and Supplementary
Tables 8–11).

Transition rate constants were found by fitting the dwell times contained in
every cluster with a single exponential decay using a maximum likelihood fitting
scheme (Supplementary Figs. 25–28 and Supplementary Fig. 30). Dwell times
above 75 s were not fitted to avoid long-lived outliers that do not follow a single
exponential decay (less than 5% of observable dwell times)63. The occupancy for
each transition represents how many times the transition was observed.

Because dissociation of oligomers is unimolecular and association a bi-molecular
reaction and thus oligomer concentration dependent, the decay rate for association
was converted to rate constant by dividing with oligomer concentration in solution.
Solution concentration can ideally be measured by the density of each oligomer
landing directly on the surface. In order to get statistical significance, we estimated
the oligomer concentration in solution by fitting the histogram of assembly

transitions with five Gaussian distributions (representing monomer, dimer, trimer,
tetramer and pentamer addition). In short, the histogram revealed 5 distributions
corresponding to monomer, dimer, trimer, tetramer, and pentamer addition,
respectively, and the weight from each distribution denotes the percentage of free
soluble oligomers (See Supplementary Figs. 17d, 18c, 19c, 20c, 21c).

The found rate constant for association and dissociation can be found in
Supplementary Tables 12–15, Supplementary Figs. 25–28 and Supplementary
Fig. 30).

CHESS plot. We constructed CHESS (Complete HEatmap of State transitionS) for
a transparent and convenient way of inspecting the multidimensional kinetic and
thermodynamic information (Fig. 2e, Fig. 3, Supplementary Fig. 31). The x-axis
shows the state before a transition, while the y-axis shows the state after a tran-
sition. Each square denotes one transition, the kinetic (rate constant) and/or
thermodynamic (transition density) parameter written as the number in the square.
The color code of each square represents the value written inside. Shown in Fig. 2e
with transition densities for association and dissociation for all quantified transi-
tions for 10 nM HI655.

Calculation of free energies. Free energies were calculated based on transition
state theory, where the monomer state was considered a ground state with relative
energy 0 kJ/mol63. The relative free energy difference between states are

ΔG ¼ �RTlnðKeqÞ ð5Þ

where R is the gas constant and T= 298 K. Equilibrium constant Keq is given by

Keq ¼
kij
kji

ð6Þ

where kij and kji are transition rates between two states Si and Sj. The Gibbs energy
of activation (energy barrier) for each transition is given as:

ΔGz ¼ �RTln
hkij
kBT

� �
ð7Þ

Statistics and reproducibilty. All values reported are the average at minimum of
four independent replicates from separate experiments. Error bars represent SD as
indicated in the corresponding figure legends, unless otherwise stated.

Level of significance is determined by a Welch’s t-test (*p value < 0.05; **p
value < 0.01; ***p value < 0.001) if not stated otherwise in the text.

Simulations. Simulations of the time course evolution of oligomeric species con-
centration were performed using KinTek Global Kinetic Explorer software64 based
on a kinetic model where the oligomeric species (S2 to S6) resulted from monomer
and dimer association and dissociation steps as described in Supplementary
Fig. 36a. As input for the simulations, we used experimentally obtained association
rate constants (k12, k23, k34, k45, k56, k24, k26 in µM−1 s−1) and dissociation rate
constants (k21, k32, k42, k43, k54, k62, k65 in s−1) for each of the four experimental
setups (Supplementary Tables 17–20). The only constant missing from all
experimental data sets is dimer dissociation rate, k64. This value was too rare to be
quantified, which suggests that the value is low in all cases. We can thus assign an
upper bound based on the number of events that would be observable. For k64, we
used a value of 0.01 s−1 which is an order of magnitude slower than the monomer
dissociation from the hexamer. The rate k42 could only be reliably extracted for the
experiments containing phenol and Zn2+ + phenol and the experimental value
from phenol was extended to the other conditions (HI and HI+ Zn2+). The
missing dissociation rate constants were supplied as follows: k64 was arbitrarily set
to an upper limit value of 0.01 s−1 for the four conditions. k42, obtained from the
experiment with phenol, was used to perform simulations in the presence of Zn2+

and in absence of oligomer stabilizers. k26 and k62 were only observed for the
combination of Zn2+ and phenol, and were set as zero in other conditions. The
reactions were simulated using a default sigma value of 0.001 in 200 steps for a
reaction time of 300 s with HI655 (S1) initial concentration varying from 10 nM to
100 mM. The oligomer fractions were then calculated considering 1 the sum of the
endpoint concentrations of each oligomeric species (Supplementary Figs. 32–35).

The mean oligomeric state was calculated as

μ ¼ 1 � S1 þ 2 � S2 þ 3 � S3 þ 4 � S4 þ 5 � S5þ 6 � S6 ð8Þ
where S1–S6 represent the fractions of monomers to hexamers displayed in bars in
Fig. 5A–D.

Table 1 Hidden Markov Model input as initial guesses.

Distribution: S0 S1 S2 S3 S4 S5 S6

Input [photons]: 20 ± 25 50 ± 25 100 ± 35 150 ± 35 200 ± 35 250 ± 35 300 ± 35
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Evolution of hexamers in Fig. 5A–D (Supplementary Data 10) have been fitted
with the Hill equation to find apparent affinity K:

f ðxÞ ¼ Bmax � xnh
Knh þ xnh

ð9Þ

where K is the concentration needed for half-maximum hexamer formation. nh is
the hill coefficient, and Bmax is the maximum hexamer fraction51,65.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary information files. Source data behind Figs. 1–5
are available as Supplementary Data 1–11. Additional and relevant data are available
from the corresponding authors on reasonable request. All data are available at ERDA
repository of University of Copenhagen at https://sid.erda.dk/sharelink/dc8HiWatpL66.

Code availability
Codes used for localization, extraction of single-molecule trajectories, and HMM fitting
can be found at https://doi.org/10.5281/zenodo.7341165.
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