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High-content screening (HCS) uses microscopy images to generate phenotypic profiles of

cell morphological data in high-dimensional feature space. While HCS provides detailed

cytological information at single-cell resolution, these complex datasets are usually aggre-

gated into summary statistics that do not leverage patterns of biological variability within cell

populations. Here we present a broad-spectrum HCS analysis system that measures image-

based cell features from 10 cellular compartments across multiple assay panels. We intro-

duce quality control measures and statistical strategies to streamline and harmonize the data

analysis workflow, including positional and plate effect detection, biological replicates ana-

lysis and feature reduction. We also demonstrate that the Wasserstein distance metric is

superior over other measures to detect differences between cell feature distributions. With

this workflow, we define per-dose phenotypic fingerprints for 65 mechanistically diverse

compounds, provide phenotypic path visualizations for each compound and classify com-

pounds into different activity groups.
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H igh-content screening (HCS) is an easily automated and
cost-effective tool to generate rich image-based datasets
that capture a wide variety of cellular phenotypes. High-

dimensional numeric feature sets are then extracted from images
to generate phenotypic profiles that characterize cytological
responses to chemical or genetic perturbations. Image-based
cytological profiling has gained significant momentum over the
last two decades1–3 for gauging the phenotypic impact of different
treatments, inferring mechanism of action4–10, identifying sig-
natures of disease or toxicity, and characterizing cellular
heterogeneity11.

A central goal in HCS is to identify characteristic phenotypic
responses that can be used to classify compounds with different
cellular mechanisms of action (MOA). Best practices in experi-
mental design such as placement of control wells, mitigat-
ing spatial biases across the plate, and the use of statistical metrics
for phenotypic scoring have been discussed and reviewed12.
However, no community-wide consensus has yet been established
and the field is diverse in experimental design and choice of cell
lines, biomarker probes, and compound doses applied13–18. In
addition, published studies tend to use a limited set of probes
based on fluorescent dyes or antibodies, which are usually com-
bined into a single assay panel17,19–21. For example, the Cell
Painting protocol22 uses a single panel of six markers imaged in
five channels. This simplifies the staining procedure, but also
constrains the number and diversity of cellular features that can
be measured. Using multiple marker panels19,23 allows for sur-
veying a broader spectrum of features and can reduce the risk of
bleed-through between fluorescent channels depending on the
assay design. While this adds experimental complexity and
potential cost, an expandable set of cellular labels offers distinct
advantages, particularly when there is no a priori target pheno-
type of interest and could become routine with advances in high-
throughput imaging technology and analysis software24.

The sheer quantity of high-dimensional single-cell data gen-
erated from HCS presents challenges to efficient analysis and data
integration25,26, and thus much of the data produced remains
considerably underutilized. To date, ensemble measurements,
such as mean, median, percent of control and standardized
Z-scores tend to be the methods of choice for phenotypic pro-
filing. Whether such aggregate estimators are sufficient, or too
simplistic for characterizing phenotypic responses to perturba-
tions, is not yet established and may depend on the biological
system in question27. While the Z-score is commonly used to
quantify phenotypic differences between treatment and control
conditions23,28, it oversimplifies interpretation and will fail to
capture changes in the modality of population-level feature dis-
tributions or subpopulations with different responses11. As
single-cell features (e.g., intensity, shape, texture) may exhibit
diverse distributions, the exploration of alternative statistical
metrics that are sensitive to arbitrary shape and size could be
advantageous in detecting both subtle changes and skewed
distributions.

Here, we describe a broad-spectrum HCS assay designed to
maximize the range of detectable cellular phenotypes and used it
to survey the sensitivity landscape of cytological responses to a
small set of compounds with different reported mechanisms of
action (MOAs). Our data handling and statistical workflow
addressed several challenges of these data, with a focus on the
following themes: position and plate effect detection, cell-level
data standardization, statistical metric performance comparisons,
feature reduction and broad-spectrum compound profiling. We
further describe ways to characterize compounds based on cell
counts, cell cycle distribution, and phenotypic dose responses,
with practical visualizations of dose-dependent phenotypic tra-
jectories in a lower-dimensional latent space. Our analytical

framework enables the integration of feature measurements
derived from multiple marker panels and provides a more com-
prehensive phenotypic overview of chemical perturbation that
can be adapted to multiplexed HCS experiments with any set of
reporters.

Results
Overview of experimental design, data acquisition, and ana-
lysis workflows. In this study, we developed a broad-spectrum
assay system (Fig. 1a–c) and companion analysis workflow
(Fig. 1d–h) for high-content phenotypic profiling of mammalian
cells. The HCS assay system was designed to maximize the
number and diversity of cytological phenotypes that can be
measured in response to chemical or genetic perturbations. It
comprises commercially available fluorescent dyes and genetically
encoded reporters that label ten different cellular compartments
and molecular components, distributed across multiple fluor-
escent channels and assay panels: DNA, RNA, mitochondria,
plasma membrane and Golgi (PMG), lysosomes, peroxisomes,
lipid droplets, ER, actin, and tubulin (Fig. 1a, b).

Using automated high-throughput microscopy, images of each
well were acquired and 16 cytological features were measured for
individual cells for each marker in each of the four panels, for a
total of 174 texture, shape, count, and intensity features
(described in “Image acquisition and data extraction”). To
harmonize and systematically integrate feature data stemming
from multiple panels and different plates, the analysis pipeline
(Fig. 1d–h) first detects and adjusts for positional effects,
performs data standardization and statistical metric comparisons,
and identifies the most informative features, which are then used
to generate phenotypic profiles and visualize phenotypic
trajectories in a low-dimensional space.

We tested the performance of this system by applying it to
survey the bioactivity of 65 compounds with diverse MOAs and
low structural similarity at multiple concentrations in human
U2OS cells (Fig. 2a). Assays were performed in 384-well plates
using a layout (Fig. 2b) with a total of 55 control wells distributed
across all rows and columns (red) and a dilution series of each
compound at seven concentrations (blue). Three technical
replicates were performed for each of the 65 compounds, which
were distributed across two plates (32 and 33 compounds per
plate) per replicate (Fig. 2c). In addition to high-dimensional cell
morphological features, we also included cell counts as an
important measure to inform on cell stress, toxicity or
proliferation. Heatmaps of cell counts (Fig. 2c) can reveal
patterns among control wells that can serve as an indicator of
both position and plate effects, and scatter plots of cell counts
(Fig. 2d) can easily distinguish treatments with cytotoxic effects.

The value of using cell-level features, rather than simply well
means or medians, is illustrated by examining the distribution of
total DNA content, as measured by fluorescence intensity of the
DNA stain Hoechst 33342 (Fig. 2e–g). Total DNA intensity is an
indicator of cell cycle phase that is regularly measured in both
flow cytometry29 and HCS cell proliferation assays17. Under
control conditions, this feature follows a bimodal distribution
with peaks corresponding to 2n (G1 phase) and 4n (G2) genome
content, which can only be detected by looking at the full
distribution of DNA intensity (Fig. 2e). Comparisons of
distributions between standardized treatments and controls can
then be performed to detect defects in cell cycle transitions. For
example, cells treated with mitoxantrone (an antineoplastic
compound) elicited a dose-dependent phenotypic response, with
a progressive shift in the ratio of the G1 and G2 peaks with
increasing concentration (Fig. 2f). While the well medians of total
nucleus intensity would show a shift in this case, well-averaged
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Fig. 2 HCS experimental design and inspection of cell counts and cell cycle distributions. a A set of 65 compounds with diverse chemical structures and
a wide range of ChEMBL target classes were selected to examine the performance of the marker panels. Hierarchical clustering using the Tanimoto
distance metric shows pairwise chemical structure similarity. b The 384-well plate layout for chemical screening: control wells (DMSO treatment) are
placed in a diagonal pattern, and a dilution series of compounds arranged horizontally with high to low concentration (left to right). The outermost rows
and columns are excluded from scanning and analysis to mitigate edge effects due to evaporation. c Dilution series of 65 compounds and control wells
were spread over two plates, with three replicates for each condition. The heatmap shows well-level cell counts in different plates. d Scatter plot showing
cell counts in control (left panel) and treatment (right panel) wells, ordered by plate and replicate number (grey dashed lines correspond to min, max and
median of control cell count). e Hoechst 33342 (nuclear DNA) stain distribution showing density curves for individual control wells (red) and aggregated
control wells (global control, black, sample size: 265,638 cells). f Distribution of total nucleus intensity of cells after the treatment with increasing doses of
Mitoxantrone (sample sizes from low to high dosage (n0.078125 – n5): 711, 669, 559, 372, 325, 363, 363 cells). g Cells treated with different compounds and
concentrations (A= irinotecan 5 μM, B=monensin 0.3125 μM, C= rapamycin 10 μM, D= vincristine 10 μM) show a diverse distribution of total nucleus
intensity (sample size: Control = 265,638, nA= 1544, nB= 1817, nC= 1849, nD= 1173 cells).

Fig. 1 High-content screening (HCS) assay panels and data analysis workflow. a The high-content screening (HCS) assay system comprises fluorescent
stains and genetically encoded markers for ten cellular components, split across four panels. PMG: plasma membrane and Golgi, ER: endoplasmic
reticulum. b Sample images of U2OS-labeled cellular components. Scale bar: 20 µm. c-h Overview of analysis workflow. c Assays are performed in
384-well plates. Cytological features capturing information on texture, shape, count, and intensity are measured for each panel using high-throughput
microscopy. d Well- and cell-level data for each plate are adjusted and standardized for any positional (row or column) effects detected. e Assay
reproducibility is assessed according to consistency among replicates of the same treatment. Three statistical metrics are compared by their sensitivity in
detecting differences between replicates. f Consistent replicate data are aggregated and differences between treatments and controls are scored by
comparing feature distributions. g Redundant, noisy, and uninformative features are removed. h Fully processed data are used to generate normalized
phenotypic fingerprints, which are analyzed and visualized using hierarchical clustering and dimensional reduction.
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data is unable to distinguish whether the observed response is due
to a global shift in cellular feature distribution (Fig. 2g, sample B),
a stretch of a distribution tail (Fig. 2g, samples C and D) or some
other response (Fig. 2g, sample A). Therefore, we emphasize the
use of cell feature distributions rather than well-averaged
measures, since different treatments could lead to distinct
subpopulations of cells with different characteristic responses.

Below we describe each component of the analysis workflow.
We emphasize the importance of data preprocessing, describe
statistical strategies for data integration and provide a compre-
hensive overview of methods for estimating robust fingerprints
and broad-spectrum profiles across multiple staining panels and
concentrations.

Positional effects adjustment and data standardization. A
major issue when dealing with high-throughput data from tech-
nical replicates and different panels is distinguishing biological
from technical variation, and most importantly recognizing
meaningful treatment effects. Natural variability is inherent in
multi-well-based assays and presents itself as random noise. In
contrast, positional effects due to technical variability manifest as
distinct spatial patterns across the rows, columns and edges in
different plates, a common challenge in multi-well-based
assays30–33. An important consideration in experimental design
is the distribution of control wells across the plate. Placing con-
trols in all rows and columns will reveal non-uniform positional
effects that are easily detected by visual inspection of well-
averaged heatmaps (Fig. 3a) which can be used to correct for
technical artifacts. Our strategy was to automate the estimation of
positional dependencies on each plate by applying a two-way
ANOVA model for each individual feature on control wells
(using well medians). Two-way ANOVA is suitable in this con-
text since it examines the influence of two categorical variables
(row and column position) on one numerical dependent variable
(feature)34.

We found that overall, fluorescence intensity features exhibit
more positional effects than cell counts or morphological features
such as cell shape (Fig. 3b). Almost half (45%) of all intensity-
related features exhibited significant row or column dependency
(P < 0.0001), whereas only 6% of morphological features such as
spot, texture and shape, as well as cell counts, exhibited positional
dependencies (Supplementary Fig. 1a, b). Row effects were
detected more frequently (smaller P values) than column effects,
as seen in the ordered negative log of P-value plots (Supplemen-
tary Fig. 1a, b). This likely resulted from the way the automated
liquid handler dispenses reagents (using a 12-well pipettor) and
the sequence in which the HCS system scans 384-well plates row-
wise along the wells. When comparing the performance of
individual markers (Fig. 3b), intensity features derived from the
RNA stain (Syto14) and DNA (DRAQ5 channel) showed the
strongest positional dependency in all plates (Fig. 3b). Collec-
tively, this approach allows us to efficiently and systematically
assess the predisposition of different markers to positional effects
in the early stages of the analysis phase.

When significant positional effects are detected among the
control wells, the entire plate will be adjusted by the median
polish algorithm35, which utilizes the well medians to iteratively
calculate row and column effects for each control and treatment
well within each plate. Figure 3c shows an example of total
nucleus intensity, where one plate (plate 1, replicate 1) exhibits
clear row effects. The positional adjustment is displayed as the
difference between the median polish adjusted output and the raw
data. The B score, which is an analog of the Z-score, is then
calculated by dividing the residuals within each plate by their
median absolute deviation to account for plate-to-plate

changes30. This well-level adjustment and standardization yields
harmonized and comparable replicate plates.

After adjusting for plate position effects, the data are further
corrected at the cellular level to ensure that individual cell
populations within each well reflect the newly adjusted well
median by linearly scaling (adding or subtracting) the adjustment
amount (Fig. 3d). To account for plate-to-plate variation, the
cellular feature distributions are then standardizing to the control
cells within each plate36. Each cell (xijk) is standardized by
subtracting the median of control cells (numerator, Eq. (1)) and
dividing by the MAD (median absolute deviation) of controls per
plate (denominator, Eq. (1)), where letters (i, j, k) represent row,
column, and plate respectively.

BZijk ¼
xijk �med xcontrol;k

� �

mad xcontrol;k
� � ð1Þ

This two-level data normalization approach accounts for
within-plate position effects and plate-to-plate technical varia-
tion, while also coercing cell feature distributions to follow a
unitless score (which we call the per-cell BZ score, Eq. (1)). As
demonstrated using both control cells (Supplementary Fig. 1c,
i–k) and chemically perturbed cells (Supplementary Fig. 1d–h),
different features inevitably exhibit positional and plate-to-plate
variation, which without proper standardization would be carried
through as unintended noise during downstream data aggrega-
tion. This preprocessing step further facilitates cell feature
distribution comparisons when integrating datasets of multiple
panels across plates and batches. Plate layout is an important
design consideration for this step, as a poor plate layout (with
inadequate numbers and positions of control wells) could hinder
the proper identification of technical noise within a plate and lead
to subsequent confounding of technical noise with true
perturbations of biological signals.

Statistical metric performance comparison using replicates. All
feature distributions for both treatment and control wells have
been corrected and standardized across replicate plates based on
per-plate control cell distributions (Fig. 4a). Using cellular data
measured from 330 control wells and 455 chemical perturbations
(×3 replicates), we show how this data can be interrogated to
evaluate the performance of different statistical metrics for their
ability to assess reproducibility among experimental replicates.

We tested the performance of three statistical metrics that
can be used to detect differences between two feature
distributions: the robust Z-score, the Kolmogorov–Smirnov
(KS) test, and the Wasserstein distance. These rely on different
characteristics of the cell feature distributions being compared,
and each produces a different distribution of statistical scores
across all features. The robust Z-score is sensitive to shifts in
median, and commonly used as a normalization and strength of
perturbation value in the context of image-based phenotypic
profiling, but it has not been used for estimating replicate
dissimilarity, nor compared to other distance metrics12,30,37.
The KS test is a non-parametric test that measures the largest
vertical distance between two empirical cumulative distribution
functions (ECDFs) (Fig. 4b). The KS test detects shifts in
location and shape between two CDFs based on a single
measure of the maximal distance between them, and thus
does not quantify overall differences between two sample
distributions. The Wasserstein distance, also known as the earth
mover’s distance (EMD)38, is a measure of the distance between
two probability distributions on a given metric space. For
univariate distributions where the metric space is R1, EMD can
be approximated by the area obtained by integrating the
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Fig. 3 Adjustment of plate positional effects and data standardization across different plates. a For each feature, a two-way ANOVA model is applied to
detect non-uniformity among control wells due to row and column effects. Here total nucleus intensity is shown as an example, with the first replicate for
plate 1 (“plate1 rep1”) showing positional effects among control wells. All statistical output from two-way ANOVA analysis, including F-statistic and
corresponding P values for both row and column effects detection, is provided in Supplementary Data 1. b Summary of row effects, shown as negative log of
P values (y axis) for each feature across different plates (x axis), grouped by individual markers and cell counts. For example, the RNA marker shows a clear
separation of intensity (light green curves) from non-intensity features (dark-green curves). c Well-level positional effects adjustment and standardization:
when positional effects are detected (−log(P) >10) for a particular feature, median polish is applied. The B score standardizes well medians to per-plate
controls to account for plate-to-plate variation. d Cell-level adjustment and standardization: cell populations in each well are adjusted for positional effects
based on the adjustment amount calculated at well level. The adjusted cell-level data are further standardized to per-plate controls.
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absolute difference between two cumulative distribution func-
tions (CDFs)39 (described in Fig. 4b and Eq. (2)):

W1 F1; F2

� � ¼
Z 1

�1
F1 xð Þ � F2 xð Þ
�� ��dx ð2Þ

The EMD score is unbounded and sensitive to differences in
moments: shifts in mean, dispersion, skewness, and kurtosis.
Hence, EMD will outperform both KS and Z-score metrics when
distributions differ in one or more of these ways or show
anomalies such as heavy tails, a common characteristic we
observe in many cell feature distributions.

In order to assess the reproducibility of replicate assays, we used
these three statistical metrics to measure the pairwise dissimilarity
of individual feature distributions between replicate assays for both
controls and treatment wells. We then visualized the distributions
of the resulting scores among each of the 16 features measured for
each marker using boxplots (Supplementary Fig. 2a–c). Although
these metrics are bounded differently, as noted above, all three were
able to distinguish the most stable features (e.g., DNA (Hoechst
33342)) from the noisiest ones (e.g., RNA (Syto14)) based on total
variation overall and the presence of extreme outliers. However,
while Z-scores did a better job separating these than the KS scores,
both struggled to clearly distinguish the most variable features in
comparison with EMD scores (Supplementary Fig. 2d–f). There-
fore, EMD scores are better able to discriminate features with poor
replication consistency than other metrics.

We also compared the reproducibility of replicate assays for
controls versus treated samples to see whether they showed

similar levels of variability. We found that the distributions of
pairwise differences between replicates were similar for all
features in both datasets, regardless of the statistical metric used
(Fig. 4c). Features sorted by the mean pairwise EMD among
replicates revealed a subset of features that exhibited extreme
variability, which appear as outliers in comparison with the upper
IQR threshold (Fig. 4d, red line). Outliers primarily comprised
features that measure the number of puncta (“spots”) for the
lysosome, lipid, and RNA markers.

Collectively, this analysis indicates that in our dataset, control
and treatment samples showed similar levels of reproducibility
among replicates, and that the EMD is an effective means to
identify individual features that should be excluded from
downstream analyses due to their low reproducibility even
among the controls.

Phenotypic profiling using the EMD score. Since the common
practice of using well averages or ensemble scores of replicate
data is unable to inform on changes in the distributions of cell
populations, we sought an alternative approach to exploit more of
the phenotypic information in the HCS data. Above we illustrated
how replicates can be used to investigate feature reproducibility
(Fig. 4); however, some treatments result in reduced cell numbers,
which limits the statistical power when comparing cell population
distributions.

Here, we propose a more comprehensive approach, by merging
replicate samples to form a larger cell population once the
replicate data has been fully normalized. As an illustrative

Fig. 4 Statistical metric comparison and feature reproducibility. a Feature reproducibility is assessed by estimating statistical distance among all pairwise
replicates in both control samples (left) and treatment samples (right). b Hypothetical probability density (PDF) and cumulative density (CDF) curves for
two random samples of the same feature are illustrated to show how the Kolmogorov–Smirnov (KS) distance and Wasserstein metric (EMD) are
estimated. c Distributions of statistical scores measured by all pairwise differences between replicates are consistent among both treatments and controls,
with EMD score showing higher sensitivity in detecting discrepancies. A full summary of replicate pairwise differences is provided in Supplementary Data 2
which lists feature, treatment (compound_concentration), plate, well id, sample size (as cell count), KS score, EMD score, and Z-score. d Features are sorted
by their average EMD score between all replicates as an indicator of reproducibility. A high average EMD score indicates higher variation of a feature
among replicates (low reproducibility). Features with poor reproducibility (outliers) falling above the upper interquartile (IQR) threshold value of 0.65
(upper threshold value= 1.5 × IQR+ upper quartile) are highlighted in red.
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example, we use the area of the nucleus to establish the reference
distribution for each feature (using DMSO controls) and combine
all normalized control samples to form a global control
population (Fig. 5a, black curve). Upon treatment with 20 μM
Vincristine (a tubulin polymerization inhibitor), all normalized
replicates show a consistently strong phenotypic response in this

cell feature distribution compared to the global control distribu-
tion, indicative of an increase in nuclear area (Fig. 5a). This allows
population data from replicate samples to be combined (Fig. 5a,
orange curve, middle panel), from which the corresponding
cumulative distributions (CDFs) can be generated for comparison
(Fig. 5a, right panel).
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As demonstrated in our analysis of reproducibility among
replicates (Supplementary Fig. 2), since the EMD measures the
full difference in mass between probability density functions, it
has higher discriminatory power to detect differences between
distributions of arbitrary shape in comparison to other statistical
metrics. This principle can be applied to compare the global
control population with individual control samples in order to
assess overall technical variation after normalization (Fig. 5b). Of
greater interest, we can use this metric to measure phenotypic
responses of cell populations treated with different compounds at
multiple doses (Fig. 5c).

After profiling all control and treatment samples for each
feature, the full cytological profile can be summarized as a
heatmap with treatment profiles sorted according to (per
treatment) cell count (Supplementary Fig. 3). Incorporating cell
counts in this way highlights the association between (increasing)
strength of chemical perturbation (shades of blue in heatmap)
and decreasing cell count. The profiles of all control samples are
then used to generate a radial plot summarizing the variation
among individual control samples for each of the ten marked
cellular components, which we call a phenotypic “fingerprint”
(Supplementary Fig. 4a; full-feature fingerprint and Fig. 5d;
reduced feature fingerprint). For simplicity and ease of future
comparisons, each sample fingerprint is subtracted from the
control median to form new residual fingerprints (Supplementary
Fig. 4b; full-feature fingerprint and Fig. 5e; reduced feature
fingerprint). This approach preserves the variability within the
control profiles and ensures all treatment profiles (per-compound
and multiple concentrations) are thus standardized and visually
comparable to the control. Similar plots can be used to
summarize fingerprints using optimally reduced feature sets
measured for individual compounds across the range of seven
concentrations tested. For example, the anticancer therapeutic
Vincristine elicited strong responses in features associated with its
annotated cellular target, tubulin, as well as features for many
other markers (Fig. 5f). Secondary phenotypes likely reflect
indirect cellular responses to inhibition of tubulin polymerization,
which also blocks mitosis and eventually leads to apoptosis. The
phenotypic fingerprint did not change substantially with increas-
ing concentration, suggesting that cells are maximally sensitive to
even small doses of this compound.

Hierarchical clustering and dimension reduction. The reduced
feature profile (described in "Identification of informative features
and feature reduction") was then used for downstream explora-
tory data analysis and global comparison of phenotypic profiles.
We first performed similarity analysis by hierarchical clustering
using the set of 69 distinct features and found that the phenotypic
profiles clearly separate the control and treatment groups
(Fig. 6a). Clustering also revealed distinct groups of compounds
that exhibit low levels of phenotypic activity overall (Cluster 2),

high activity toward specific features (Cluster 3), or a broader
array of strong phenotypic responses (Cluster 4).

Visualization of the phenotypic profile in lower-dimensional
space by uniform manifold approximation (UMAP)40 similarly
identified distinct clusters roughly corresponding to the broad
classes identified above (Fig. 6a, b), and it additionally elucidated
dose-dependent phenotypic patterns or “trajectories” across the
different dimensions (Fig. 6b). The first and second UMAP
dimensions separated the control group from the majority of
treatment groups (Fig. 6b, inset). Plotting dimensions 2 and 3
further separated the controls from most of the Cluster 2
compounds, which we term the “low stress” cluster (Fig. 6b and
Supplementary Fig. 5a–c). Treatments in this group show low
toxicity, with no effect on cell counts and little overall effect on
cytological phenotypes.

UMAP dimension 3 discriminated phenotypically active and
toxic treatments from the low-activity and control groups and
separates treatments in Clusters 3 and 4 from both controls and
the low-activity group. Color coding each treatment by cell count
(percent of control) indicates that heightened phenotypic
response is associated with increasing toxicity (cell cycle arrest
or cell death), as indicated by the decrease in cell counts from top
to bottom (Fig. 6b). Cluster 3 treatments, which showed a range
of specific phenotypic responses, tended to show intermediate
effects on cell counts and segregate into smaller groups that are
distributed across a wide range of coordinates in dimensions 2
and 3 (Supplementary Fig. 5g–i). Cluster 4 treatments (Fig. 6b,
Toxic red zone; Supplementary Fig. 5j–l) were broadly active
phenotypically and were cytotoxic. We refer to this as a “high
stress” condition.

Thus, both hierarchical clustering and UMAPs provide a global
overview of phenotypic profiles and display complementary
information. While hierarchical clustering distinguishes broad
phenotypic classes with low vs. high activity and specific vs.
broad-spectrum cytological responses, UMAPs reveal treatment
subgroups with distinct phenotypic responses and dosage-
dependent phenotypic trajectories along a gradient of
cytotoxicity.

Phenotypic characterization of selected compounds. After
identifying broad phenotypic groups with global profiling
methods, we next examined dose-dependent cellular responses,
cell count and cell cycle distribution for representative com-
pounds with different annotated mechanisms of action
(Fig. 7a–c). Based on these criteria, each compound falls within
one of the following activity groups: low stress, active (dose-
insensitive), active (dose-responsive), and active (cytotoxic). We
chose one representative compound with a distinct annotated
MOA from each activity group to illustrate the major differ-
ences between the groups.

Fig. 5 Replicate aggregation and EMD profiling using global controls. a Replicates of treatment samples with sufficient reproducibility are merged to form
larger populations (orange curve) for subsequent EMD profiling relative to the global control (black curve). Shown is an example using the area of the
nucleus feature with a strong phenotypic response to treatment with 20 µM vincristine (sample sizes: nr1= 348, nr2= 386, nr3= 366, ncontrol= 265,638
cells). The empirical CDF (ECDF) curve shows a global right shift in the treatment condition, indicating an increase in global nuclear area. Inset: area
between distributions measured by EMD (gray). b, c PDFs and (insets) CDFs for normalized control (per well) cell populations (b) and replicate-merged
treatment populations (c). Differences between individual distributions relative to the global control are measured using the EMD metric and sample sizes
corresponding to each statistical difference are listed in Supplementary Data 3 for 330 control (nc-min= 419, nc-max= 990 cells) and 455 treatment
samples (nt-min= 52, nt-max= 2763 cells). d Radial plot of scaled EMD scores for 69 measured features among individual controls (gray lines). The EMD
profile is log-transformed and min-max scaled to [0,1]. The median score of all controls fluctuates between 0.16 and 0.46 (black dashed line). e Radial plot
of residual EMD scores of individual controls (gray lines) relative to the median score (black dashed line, zero). Residual score is defined as the difference
between the score of the individual control and the median of all controls. The residuals naturally fluctuate around median zero with values between
(−0.29, 0.45). The values have been offset by 0.5 to expand the plot for better visualization. f Radial plot of residual scores for Vincristine treatment at
multiple concentrations, relative to control median. d–f Feature labels are color-coded by their corresponding cellular components.
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Low stress. Tolfenamic acid (TA) elicits a minimal phenotypic
response; its phenotypic UMAP path shows little movement
within the low-activity cluster, and it affects neither cell counts
nor cell cycle distribution (Fig. 7a–c). TA is an inhibitor of the
enzyme cyclooxygenase (COX), also called prostaglandin-
endoperoxide synthase (PTGS), which is involved in the

conversion of fatty acids to prostaglandin41 and is targeted by a
variety of anti-inflammatory drugs42. While TA is reported to
exert anticancer activity in medulloblastoma43, colon cancer44,
and head and neck cancer45, there are no reports on the effects
of TA on U2OS cells. Since COX/PTGS enzymes are typically
induced in response to inflammation in vivo46 and are not

Fig. 6 Hierarchical clustering and dimension reduction. a Hierarchical clustering of EMD scores for control and treatment profiles shows four main
clusters: (1) control cluster, (2) “low stress” cluster, (3) active phenotypes, (4) broad phenotypic responses with cytotoxicity. b UMAP dimensional
reduction of phenotypic profiles based on EMD scores for all samples. Dimensions 1 and 2 separate most controls (triangles) from treatment samples;
dimension 3 additionally separates treatments by cell count. Light gray curves represent per-compound phenotypic trajectories along a concentration
gradient.

Fig. 7 Phenotypic characterization of selected compounds. a Phenotypic trajectories of selected compounds from different activity groups are highlighted
in the UMAP. Green: low stress; purple: active (dose-insensitive); blue: active (dose-responsive); red: active and toxic. b Raw cell counts across the dilution
series of representative compounds in each activity group. Each curve indicates a replicate; the dashed line represents the mean, and dotted lines the
maximum and minimum of control cell counts. c Cell cycle distributions (total nucleus intensity) across the compound dilution series for four
representative compounds from each activity group, color-coded as in (a). The full set of compounds as described in (a–c) are provided in Supplementary
Fig. 5. d Radial plot of fingerprints for representative compounds from (c) at each of the seven concentrations measured. Feature labels are color-coded by
their cytoplasmic component.
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found to be expressed in U2OS cells according to the Human
Protein Atlas database (https://www.proteinatlas.org/
ENSG00000095303-PTGS1/cell+line), this compound is not
expected to show strong and specific phenotypic responses in
this cell model (Fig. 7d).

Active (dose-insensitive). Methotrexate (MTX) is a chemother-
apeutic agent that inhibits DNA synthesis by targeting dihy-
drofolate reductase47, an enzyme needed for biosynthesis of nucleic
acid precursors and some amino acids. MTX elicits strong phe-
notypic effects that are relatively consistent across all seven doses
(Fig. 7a). MTX reduces cell counts by ~25% and induces a G1 arrest
phenotype, as revealed by the increased proportion of cells in G1
phase and corresponding decrease in G2/M (Fig. 7b, c). This
observation is consistent with its reported inhibition of DNA
synthesis during S phase48. The radial plot of the phenotypic fin-
gerprint shows major responses in nuclear, tubulin, and actin
features (Fig. 7d), as may be expected in response to a cell cycle
blocker.

Active (dose-responsive). Irinotecan (IRI) is a chemotherapeutic
agent that inhibits topoisomerase I activity, which in turn inhibits
both DNA replication and transcription49. IRI shows a pro-
nounced phenotypic dose response: its UMAP trajectory begins
in the low-stress region (top left) and travels downward along
dimension 3 (Fig. 7a, b). This reflects a progressive decrease in
cell counts with increasing concentration, although the com-
pound does not cause severe cytotoxicity at any of the con-
centrations tested. Notably, cell cycle phenotypes differed in a
dose-dependent manner: at low concentrations IRI induced a G2/
M block, which shifted toward a block at G1/S with increasing
concentration (Fig. 7c). A previous study also reported a sig-
nificant increase in cells at S and G2/M in human colorectal cell
lines upon IRI treatment50. Phenotypic fingerprints also showed
dose-dependent changes in actively responding cytological fea-
tures (Fig. 7d).

Active (cytotoxic). Tanespimycin binds to and inhibits heat shock
protein 90 (HSP90)51 and is known to be toxic in higher doses
(Fig. 7b). Its UMAP trajectory starts in the low-stress cluster, but
transitions to the cytotoxic zone at higher concentrations
(Fig. 7a). Lower concentrations show cell cycle distributions
similar to controls, with an abrupt G2/M arrest at 2.5 μM
(Fig. 7c). The phenotypic fingerprint displays a strong dose-
dependent response in a wide range of features, with extreme
phenotypic changes at the highest concentration due to cyto-
toxicity (Fig. 7d).

In summary, these examples highlight the benefits of incorpor-
ating cell cycle, cell counts and dose responsiveness in characteriz-
ing compound activity. Cell count is one of the simplest and easiest
measurements to interpret, as it reveals the level of cytotoxicity
induced by a chemical treatment perturbation. Cell cycle distribu-
tions are also highly informative, as many compounds interfere
with cell cycle progression through different routes. Examining
activity levels of each compound across a concentration range adds
another layer of information for distinguishing treatment profiles,
for instance IRI and Nocodazole (NOC) appear phenotypically
similar at low concentrations but then diverge at high concentra-
tions (Fig. 7a). Their similarity at lower concentrations could be
due to their mild response to treatment, which we observe in their
phenotypic fingerprints, biological images, and cell feature
distributions (Supplementary Fig. 6a, c–g). Each fingerprint at
their highest concentration, however, induces increased activity
(with larger discrepancies between the two compounds) in several
distinct feature channels (Supplementary Fig. 6b). The overall
trajectories reflect the different degree of dose-dependent effects of

these two compounds, which may be due to differing MOAs (IRI
directly targeting DNA processing via inhibition of topoisomerase I
vs. NOC interfering with microtubules).

Discussion
Since inferences drawn from raw measurements of cytological
features largely depend on how samples are prepared and how
experimental data are collected, processed and reported, devel-
oping robust strategies for data collection and analysis are key.
However, despite ongoing collaborative efforts, to date the HCS
community has not yet converged on a set of standard best
practices for handling such issues at any stage of the analysis.
Here, we present a high-content screening assay based on a
comprehensive set of cytological features, together with a robust
statistical analysis workflow, to profile broad-based cellular phe-
notypic responses to small molecules or genetic perturbations.
The workflow performs quality control and preprocessing of
image-based data, feature reduction, generation of phenotypic
fingerprints, and visualization of phenotypic responses. Our
combined experimental platform and analysis framework intro-
duces and outlines strategies to address a number of important
issues in HCS data collection, processing and analysis of high-
content cytological phenotypes.

First, positional effects (edge effects, row/column dependencies,
or gradient artifacts) are a persistent factor in multi-well assays
and microarray experiments30,31,52. Ideally, to mitigate such
effects samples should be randomly placed within the plate of
different replicates. However, this is impractical for high-content
screening projects with hundreds to thousands of compounds. To
control for positional artifacts, our strategy was to design a 384-
well plate layout with 55 control wells placed in a diagonal pat-
tern, so that each row and column has a sufficient number of
control samples. We demonstrated the benefits of spreading out
the controls as an alternative to the more common practice of
confining control samples to certain columns53 by showing that
this plate configuration can feasibly capture problematic spatial
patterns, in particular prominent row and column position
dependencies.

Second, although cellular features exhibit diverse distributions,
this information is rarely exploited in the analysis of HCS data,
which instead relies primarily on well-averaged data. We hypo-
thesized that quantifying feature variability in control populations
can both provide vital information at the quality control stage and
serve as a key element in each step of the data processing
workflow. The analysis framework we developed demonstrates
the benefits of incorporating variability among control wells as a
strategy to assess replicate reproducibility by comparing cell
populations among control and treatment replicates. Moreover,
incorporating variation of per-cell feature data has distinct
advantages for feature reduction and downstream phenotypic
profiling, which are essential for interpreting cytological respon-
ses to cellular perturbations.

One application of using feature distributions is to compare the
performance of different statistical metrics in detecting differ-
ences between populations of cells. The Z-score relies on averaged
well values and is sensitive to shifts in central tendency, whereas
the KS test and EMD measure statistical distances between cell
feature distributions based on maximum vertical distance and
total difference between empirical cumulative distribution
functions (ECDFs), respectively. Using these measures to com-
pare experimental replicates, we showed that EMD exhibits
higher sensitivity due to its ability to account for the area between
two ECDFs, which captures arbitrary differences in distribution
shape; in contrast, KS measures only a maximal difference in
height between CDFs and is insensitive to multimodal
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distributions. The EMD was originally conceived as a solution to
the transport problem from linear optimization54 but is regularly
applied in different fields including image processing, pattern
recognition (text processing), machine learning and flow cyto-
metry data55. Although the EMD offers advantages in detecting a
wide range of responses, one of its limitations is that it does not
take directional changes into account. Extending this method to
account for other forms of variation, including direction, could
further improve the performance of this metric in downstream
profile similarity analysis.

Screening and profiling of 65 compounds with diverse che-
mical structures and reported MOAs revealed broad
concentration-dependent patterns of global cellular responses to
chemical challenge. By combining cell count information with
dose-dependence of phenotypic responses, four major treatment
groups could be distinguished that we interpret as reflecting the
level of stress imposed by different chemical perturbations. The
“low stress” group showed minimal changes in both counts and
phenotypic profiles in comparison with controls. Two classes with
more pronounced phenotypic responses were associated with
moderate reductions in cell counts, indicating an escalating level
of stress on the cells. These phenotypically “active” groups dif-
fered in sensitivity to increasing compound dosage, showing
either no changes in responsiveness or a gradient of responses
that correlated with decreases in cell counts, which we interpret as
reflecting increasing levels of cell stress. A fourth group showed
strong cytotoxicity at one or more concentrations, reflected by
broad phenotypic changes and dramatic reduction in cell counts.

A major goal of HCS studies is to identify compounds with
similar MOAs based on phenotypic profiling. Because we chose a
diverse group of compounds with different annotated MOAs that
show little structural similarity, this particular dataset is not ideal
for compound similarity or classification based on shared MOA.
However, our observation that compounds with different MOAs
cluster together at some concentrations but not others suggests
that there is no straightforward way to perform mechanistic
annotation based on phenotypic profiles at single concentrations.
Most published HCS studies do not measure how cellular
responses change as a function of compound dosage, nor do they
treat cell count as an indicator of stress response14. While
screening at multiple concentrations incurs additional experi-
mental complexity and investment of time and resources, we
found that dose-dependent phenotypic trajectories can provide
additional layers of information that assist in discriminating
the activity of different compounds, reinforcing observations
from a previous study that sought to classify compound MOAs
based on dose-dependent trajectories21. Thus, we believe that the
concentration-dependent phenotypic trajectories revealed in the
UMAPs (Supplementary Fig. 7a, g, j, l) hold promise for
mechanistic discrimination, warranting a fuller characterization
in future studies.

In summary, HCS is an emerging field that is still evolving
rapidly in terms of experimental implementations and analytical
approaches. In addition, HCS is used to address many questions
in many different biological systems. Hence, the community has
not developed widely accepted common standards for experi-
mental and analytical workflows. These factors limit the ability to
compare data from different studies, as well as the potential for
data integration, which has proven to be very powerful in other
domains such as genome-wide molecular profiling. The goal of
our study was to contribute new methods that can help advance
developments in this field. First, the novel HCS screening plat-
form we introduce here offers a more comprehensive toolbox for
surveying cytological responses to chemical or genetic perturba-
tions by allowing the simultaneous measurement of phenotypic
features for ten cellular compartments and components. Applying

this expanded toolbox to screen diverse compounds at multiple
concentrations, we also developed a new statistical framework
and workflow for automated quality control, improved data
standardization and phenotypic profiling that exploits the varia-
tion in phenotypic feature distributions, a hitherto underutilized
source of information on cytological phenotypes. We believe that
these innovations offer useful contributions to the field, and we
hope that they may spark further interest and methodological
developments that may facilitate the standardization and har-
monization of HCS data from different labs.

Methods
Compound selection. All chemical compounds used in this study are from
the Selleckchem Bioactive Compound library (Cat. number: Catalog No.
L1700) and were selected to represent diverse MOAs and effects on different
cellular targets. Detailed information for each compound and the dilution series are
provided in Supplementary Data 4, including information on MOAs and/or known
biological targets, as well as specific functional annotations (e.g., topoisomerase,
mitochondrial enzymes, HDAC inhibitor).

Cell lines and cell culture. U-2 OS (ATCC® HTB-96™), U-2 OS-mOrange2-
Peroxisome and U2OS-LMNB1-TUBA1B-ACTB (Sigma Aldrich, Cat. number:
CLL1218) cell lines were cultured using McCoy’s 5A medium (Sigma Aldrich, Cat.
number: M9309) supplemented with 10% fetal bovine serum (FBS; Thermo Fisher
Scientific, Cat. number: 10082147) and 100 units of penicillin–streptomycin
solution (Sigma Aldrich, Cat. number: P0781), in a humidified incubator at 37 °C
with 5% CO2. U2OS-LMNB1-TUBA1B-ACTB are derived from the parental U-2
OS cell line (ATCC® HTB-96™) and were genetically modified to contain three
distinct fluorescently tagged proteins expressed from their endogenous loci: BFP-
LMNB1, GFP-TUBA1B and RFP ACTB.

To genetically label peroxisomes, 2 × 106 parental U-2 OS cells (ATCC® HTB-
96™) were seeded into two wells of a six-well plate and cultured under standard
conditions for 24 h before transfection with 1 µg of the mOrange2-Peroxisomes2
plasmid (Addgene, Cat. number: 54596) using X-tremeGENE™ HP DNA
transfection reagent (Sigma Aldrich, Cat. number: 6366244001) according to the
manufacturer’s instructions. After 24 h the transfection medium was replaced by
fresh cell culture medium, and cells were cultured for another 24 h. Subsequently,
transfected cells were seeded into 96-well plates at a density of ten cells per well and
selected for stably transfected cells using 300 μg/ml G418 (Sigma Aldrich, Cat.
number: A1720) for 2–3 weeks. Emerging cell clones were transferred into 24-well
plates and expanded until sufficient cells were yielded to prepare cryo stocks for
U-2 OS-mOrange2-Peroxisome cells.

Cell seeding for HCS experiments. All U-2 OS cells used in this study were grown
in T75 or T185 cell culture flasks (Thermo Fisher Scientific) until confluency
reached 70–80%. Cells were harvested by TrypLE (Thermo Fisher Scientific, Cat.
number: 12604013) and cell numbers were determined using EVE™ Automated
Cell Counter (NanoEnTek). Cells were seeded into 384-well plates (Greiner Bio-
One black µClear®, Cat. number: 781091) at a density of 1800 cells per well in 32 µl
of McCoy’s 5 A medium supplemented with 10% FBS and 100 unit of
penicillin–streptomycin using a Matrix WellMate liquid handling device (Thermo
Fisher Scientific) placed in a laminar flow hood. After seeding, plates were kept at
room temperature for 30 min and then transferred to an incubator with a rotating
plate hotel (Cytomat, Thermo Fisher Scientific). Compound treatment started 24 h
after cell seeding.

Compound treatment and plate layout. The source plates containing serial
dilutions of the compound and DMSO controls were prepared by combining
McCoy’s 5A medium (no FBS added) and various concentrations of test com-
pounds in 384-well plates (Corning, Cat. number: CLS3657), with a specific
diagonal pattern of controls (DMSO only). This configuration places multiple non-
adjacent control wells in each row and column, which allows for the identification
of plate positional effects. The source plates containing controls and serial dilutions
of compounds were prepared, sealed by aluminum foil, and spun briefly to collect
the solutions on the bottom of each well. Twenty-four hours after cell seeding, 8 µl
of compound dilutions and controls from control plates were added to each well of
replicate cell culture assay plates using a Bravo automated liquid handling platform
(Agilent) at a final maximum DMSO concentration of 1%. After compound
addition, plates were centrifuged for 1 min at 500 rpm and transferred to a Cytomat
incubator. Cells were subject to each treatment for 24 h before staining.

HCS staining panels. Four different cell-staining protocols (“panels”) were applied
to three sets of assay plates. The details of cytological markers, their cellular targets,
spectral properties, and suppliers are described in Table 1. All buffers and staining
reagents were added using a Matrix WellMate liquid handling device (Thermo
Fisher Scientific). After the addition of each reagent, plates were briefly spun in a
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centrifuge to collect liquids at the bottom of the wells. PBS, fixation solution
(paraformaldehyde) and permeabilization solution (Triton X-100) were freshly
prepared and filtered by a 0.2-µm membrane prior to use.

Panel A (nucleus–RNA/nucleoli–endomembrane system–mitochondria). Par-
ental U-2 OS cells were incubated with a solution of mitochondrial dye (0.22 μg/ml;
MitoTracker® DeepRed FM, Thermo Fisher Scientific) in cell culture medium
(including 2% FBS) for 35 min under standard cell culture conditions. For fixation,
the staining solution was removed and cells were incubated with 25 µl of para-
formaldehyde solution per well (4%; Sigma Aldrich) for 20 min at room tem-
perature. After removal of fixing solution cells were washed with 60 µl of filtered
PBS and permeabilized with a 0.1 % Triton X-100 solution (freshly prepared in
PBS; 25 µl per well) for 15 min at room temperature. Subsequently, cells were
washed three times with 60 µl of PBS and stained with Hoechst 33342 (1:10,000
dilution; Thermo Fisher Scientific) and wheat germ agglutinin (7.5 μg/ml; Wheat
Germ Agglutinin, Alexa Fluor® 555 Conjugate, Life Technologies, Thermo Fisher
Scientific) for 45 min at room temperature and protected from light. After one
washing step with 60 µl PBS a SYTO14 staining solution (2.5 μM; Thermo Fisher
Scientific) was added, plates were sealed, incubated for 30 min at room tempera-
ture, and finally transferred to a fridge for storage until image acquisition.

Panel B (nucleus–lysosomes–peroxisomes–lipids). U-2 OS-mOrange2-
Peroxisome cells were incubated with lysosomal dye (0.1 μM; LysoTracker Green
DND-26, Thermo Fisher Scientific) in pre-warmed cell culture medium for 35 min
under standard conditions. The staining solution was removed and cells were fixed
with 4% paraformaldehyde for 20 min at room temperature. After one washing
step with 60 µl of PBS cells were stained using 14 µl of the lipid staining reagent
(1:750 dilution of stock solution, LipidTOX™ HCS LipidTOX DeepRed, Thermo
Fisher Scientific) per well for 45 min. Finally, 25 µl of Hoechst 33342 nuclear
staining solution per well was added on top, and after incubation, for 30 min at
room temperature, the staining solution was removed and replaced by 70 µl of PBS.
Plates were sealed and transferred to a fridge for at least 6 h prior to imaging.

Panels C1 (nucleus–ER). U2OS-LMNB1-TUBA1B-ACTB cells were incubated
with an ER staining solution (1:1000 v/v dilution of stock solution, ER-Tracker™
Blue-White DPX, Thermo Fisher Scientific) in cell culture medium (including 2%
FBS) for 35 min under standard cell culture conditions. Next, the staining solution
was removed and cells were incubated with 25 µl of paraformaldehyde solution per
well (4%; Sigma Aldrich) for 20 min at room temperature. After a washing step
with 60 µl of PBS, cells were stained using 16 µl of the nuclear staining reagent
DRAQ5 (2.5 µM, DRAQ5™ Fluorescent Probe Solution, Thermo Fisher Scientific)
per well for 60 min. After removal of the staining solution 60 µl of PBS were added
per well, plates were sealed and kept in a fridge until imaging.

Panel C2 (nucleus–tubulin–actin). After the image acquisition step of U2OS-
LMNB1-TUBA1B-ACTB cells in panel C1, the solution in the plate was removed.
Cells were then re-stained with 25 µl of a solution prepared from Hoechst 33342
(1:10,000 dilution; Thermo Fisher Scientific) and phalloidin (Alexa Fluor™ 568
Phalloidin, Thermo Fisher Scientific) for 45 min at room temperature. Subse-
quently, cells were washed twice with 60 µl of PBS, plates were sealed and trans-
ferred to a fridge until the 2nd image acquisition step.

Image acquisition and data extraction. Images were acquired using the Cellomics
ArrayScan XTI platform (Thermo Fisher Scientific) equipped with a ×20 objective
(Zeiss Plan Neofluar, NA 0.3) and an LED light source for wide-field fluorescence
imaging. Fixed time exposure mode was used for each channel, and the exposure
time was experimentally determined at less than 30% pixel saturation. A total of 9
fields in each well of the 308 inner wells of the 384-well plate were imaged.

Image analysis was performed using the Compartmental Analysis Bio
Application package in the Cellomics software (Thermo Fisher Scientific). The
nuclei with Hoechst 33342/DRAQ5-staining were identified as primary objects
(Circ), and a simulated cytoplasm (Ring) was created according to nuclear shape
and neighboring cells. The compartment analysis performs fluorescent
quantification in both the nuclear (Circ) and the cytoplasmic (Ring) region of each
valid cell. A total of 174 texture, shape, count and intensity features across all four
panels were extracted with Cellomics software, which are listed in Supplementary
Data 5 (“full feature set”).

Identification of informative features and feature reduction. In our broad-
spectrum assay, we cast a wide net to expand and diversify the feature space. Since
high-dimensional datasets often contain some correlation structure, the number of
cell features is routinely reduced in order to identify uninformative features, avoid
redundancy and lower dimensionality for classification, visualization and inter-
pretation. To understand which marker features produce biologically informative
and non-redundant phenotypic signatures, we sought to eliminate irreproducible,
highly correlated and low-activity features, as well as those deemed to have little
biological relevance. Below we describe each of these steps, their rationale, and
specific examples.

Irreproducible features. First, we identified a set of 15 irreproducible features based
on their dissimilarity across replicates (Fig. 4d and Supplementary Data 5, “irre-
producible”). As noted previously (described in “Statistical metric performance
comparison using replicates”), many of the features measured for the lysosomal,
lipid and RNA markers tend to have high variation among controls and replicates.
Most of these tended to have questionable biological significance based on the
measurement type and location within the cell. For example, since lipid droplet and
lysosomal staining should be measured in the cytoplasm, nuclear signals for these
markers most likely represent background noise.

Biologically irrelevant features. All features for each marker are measured within
both the Nucleus (Circ) area and Cytoplasmic (Ring) area of the cell. However,
features measured in the cytoplasm are not expected to be meaningful for nuclear
markers (e.g., DNA), and likewise nuclear features are not expected to be mean-
ingful for markers of cytoplasmic structures (e.g., lysosome, peroxisome, lipid
droplet and tubulin). A total of 30 features were therefore removed by this filter
(Supplementary Data 5, “circ features”).

Redundant features. With high-dimensional data, it is desirable to reduce the
feature set by removing uninformative signals that contribute little additional
information. This can be done either by removing redundant features or using
dimensional reduction methods such as principal components analysis (PCA)13.
To preserve interpretability, we chose to first remove features with weaker or
noisier signals that are largely overlapping with stronger, more robust signals. For
example, lysosomal signals were very weak compared to those from the

Table 1 Cellular markers used in HCS panels.

Cellular target Dye/marker Excitation maxa Emission maxa Supplier/Cat. number

Panel A—cell line: Parental U-2 OS cells
Nucleus Hoechst 33342 350 453 Thermo Fisher Scientific/62249
RNA and nucleoli SYTO14 Green 505 524 Thermo Fisher Scientific/S7576
Plasma membranes and Golgi WGA Alexa Fluor® 555 Conjugate 555 568 Thermo Fisher Scientific/W32464
Mitochondria MitoTracker® DeepRed FM 641 662 Thermo Fisher Scientific/M22426

Panel B—cell line: U2OS-mOrange2-Peroxisome cells
Nucleus Hoechst 33342 350 453 Thermo Fisher Scientific/62249
Lysosomes LysoTracker Green DND-26 500 510 Thermo Fisher Scientific/L7526
Peroxisomes mOrange2 (genetically encoded) 548 562 Addgene/54596
Lipid droplet LipidTOX™ HCS LipidTOX DeepRed 634 652 Thermo Fisher Scientific/H34477

Panel C1—cell line: U2OS-LMNB1-TUBA1B-ACTB cells
Nucleus DRAQ5 596 696 Thermo Fisher Scientific/62251
ER ER-Tracker™ Blue-White DPX 371 557 Thermo Fisher Scientific/E12353

Panel C2—cell line: U2OS-LMNB1-TUBA1B-ACTB cells
Nucleus Hoechst 33342 350 453 Thermo Fisher Scientific/62249
Actin Alexa Fluor™ 568 Phalloidin 578 603 Thermo Fisher Scientific/A12380
Tubulin TUBA1B-GFP (genetically encoded) 489 509 NA

aAccording to Fluorescence Spectra Viewer (Thermo Fisher Scientific).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04343-3

12 COMMUNICATIONS BIOLOGY |          (2022) 5:1409 | https://doi.org/10.1038/s42003-022-04343-3 | www.nature.com/commsbio

www.nature.com/commsbio


peroxisomal marker, which is genetically encoded. Since these two compartments
are labeled in the same panel and their fluorescence emission spectra overlap to
some degree, weak signals in the lysosome channel that overlap peroxisomal fea-
tures tended to represent bleed-through from the peroxisome channel (Supple-
mentary Fig. 7a). Since lysosome and peroxisome features were highly correlated,
we chose to remove the weaker lysosome features (Supplementary Data 5, “lyso
features”).

However, due to the important roles of lysosomes in the degradation and
recycling of cellular waste, cellular signaling and energy metabolism, we remain
interested to learn more about the activity of chemical compounds on lysosomes
and to integrate this information with activities on other cellular markers. In future
studies a genetically encoded lysosomal marker (e.g., mKO2-LAMP1) or a different
chemical fluorophore with a stronger signal could replace the lysosomal marker
used in this study.

The remaining feature set (124 features) was further filtered by removing
weaker features from pairs of features with a Pearson correlation coefficient of 0.9
or above (Supplementary Fig. 7b and Supplementary Data 5, “correlated features”).
Using these criteria, a total of 37 features were removed.

Relative feature variance. Per-feature variance can indicate responsiveness to
chemical perturbations. Zero or low variance of a feature across the full range of
treatments suggests that it is relatively insensitive to perturbations and thus of little
value for tasks such as compound classification. However, without considering the
variance of that same feature among controls, conclusions could be misleading.
Thus, including both control and treatment samples within the EMD phenotypic
profile allows “low activity” features to be identified based on their variance in
treatment wells relative to controls. Given that control samples show differing
levels of variation among features, we sought to identify “active” features by
selecting those with treatment variance at least double the variance of their control
counterpart. This procedure resulted in the removal of 23 “inactive” features based
on their low relative variance (Supplementary Fig. 7c and Supplementary Data 5,
“low variance”).

In summary, the extracted cell features were reduced based on four criteria:
feature reproducibility among replicates, information content, biological relevance
and activity as judged by relative responsiveness to controls. These filtering steps
resulted in the reduction of 174 measured features from 11 fluorescent markers by
60% to a final set of 69 features spread across the four assay panels (Supplementary
Data 5, “active features”).

Comparison of cytological profiles. To assess the effectiveness of our data pro-
cessing and quality control approach (described in “Positional effects adjustment
and data standardization” and “Feature reduction”) and how the profile might
differ under alternative data preparation conditions, we compared the downstream
analysis of the profile to two alternative cases. First, we considered the raw
unprocessed full-feature data profiles to demonstrate the shortcomings of not
correcting for position and plate effects, nor reducing the feature space (Supple-
mentary Fig. 8a, b). For the case of raw unprocessed data, replicate feature dis-
tributions are still merged and EMD scores (chemical perturbations) are measured
relative to the global control (described in Fig. 5a–c). Second, we compared full-
feature profiles with the final reduced 69-feature profiles (Supplementary Fig. 8c) to
assess whether global phenotypic differences (i.e., control, low stress and toxic
regions) are as clearly revealed (Supplementary Fig. 8d).

The unprocessed data clustergram reveals several different control groups
mixed within the treatment clusters (Supplementary Fig. 8a). This suggests that
some changes between these treatments and the controls are masked by the
technical noise present within the raw data. For both the raw and processed full-
feature profiles, the UMAP strongly separates the Brefeldin-a cluster from all other
treatments (Supplementary Fig. 8b, c), causing other distinctions to be obscured.
The fully processed, feature-reduced profiles (Supplementary Fig. 8d) more clearly
separate the treatment groups from controls (particularly the low-stress cluster),
and the transitioning patterns of compounds from low to high concentration are
more clearly revealed in the UMAPs.

Statistics and reproducibility. All statistical analyses were performed using R
software56 and figures were produced using the package ggplot257. The rationale in
the data quality control steps was to make use of standard statistical methods to
detect and adjust for plate positional effects. Numerical feature data was modeled
as a function of two categorical variables (row and column position) using the two-
way ANOVA model to assess uniformity among the control wells on each plate35.
A full summary of the two-way ANOVA analysis including F-statistic and p-value
denoted by subscripts r (row) and c (column) is included in Supplementary Data 1.
For plates showing non-uniformity in any measured feature, median polish was
applied for full plate well-level adjustment34. Then individual cells were adjusted
for plate positional effects using the well-level adjustment amount. To account for
plate-to-plate variation, individual cells were further standardized to the control
cells on each plate, using the BZ score. Cell feature distribution plots showing pre-
and post- data adjustment and standardization are included in the main text
(Fig. 3d) as well as additional supporting figures displaying features under different
chemical perturbation conditions (Supplementary Fig. 1d–h).

After data normalization, we compared the sensitivity of three statistical metrics
in detecting dissimilarities between pairwise replicate cell populations (Fig. 4 and
Supplementary Fig. 2). Statistical tests were carried out by comparing each control
well in plate 1 (rep1, rep2, rep3) to its replicate with the same well id on plate 2
(rep1, rep2, rep3), with 9 total comparisons per control well. This resulted in 9
replicate comparisons of 174 feature distributions for each of the 55 control wells
using three different statistical metrics. Similarly, each treatment well was
compared to its replicate with the same well id on replicate plates (rep1, rep2,
rep3), with 3 total comparisons per treatment well, resulting in 3 replicate
comparisons of 174 feature distributions for each of the 65 compounds at 7
different concentrations (455 treatment wells). Output summary of replicate
reproducibility analysis, as well as metadata (including plate number, well id, and
sample size for each statistical test), are included in Supplementary Data 2.

The EMD score was used for profiling phenotypic changes of all treatments
(including all DMSO samples) relative to the global control population; raw full-
feature EMD profiles are included in (Supplementary Data 6, “raw profile”). The
EMD calculation in Fig. 5a (EMD= 2.06, right panel inset) is included in the
associated R script as described in Supplementary Table 1. Feature reduction was
performed using raw EMD profiles, treatment groups causing strong cell loss
within each panel (A, B, C1, and C2), with more than 70% cell reduction relative
to the control were identified. Profiles of those treatments (Supplementary
Data 6, “toxic treatments”) were excluded from the feature reduction analysis
steps. The reduced feature EMD profile was log-transformed and features were
min-max scaled to the range [0, 1] (Supplementary Data 6, “scaled EMD
profile”).

Similarity analysis by hierarchical clustering used Euclidean measure to obtain
the distance matrix and average linkage method for clustering. The four broad
clusters defined in Fig. 6a were identified based on the outermost branches of the
dendrogram connecting “similar” treatments (rows). Dimension reduction by
UMAP in Fig. 6b is generated using the R package “umap”; cell count (as percent of
control) is projected onto the UMAP for visualization and interpretation of
phenotypic stress across different dimensions. Phenotypic signatures for all 65
compounds at seven concentrations are provided in the form of radial plots in
Supplementary Fig. 9.

Data availability
All source data underlying the plots and visualizations in this manuscript are available in
the GitHub repository at https://github.com/GunsalusPiano/EMD. Data files specific to
each figure are summarized in Supplementary Table 1. Any additional supporting data
are available upon request.

Code availability
All R scripts used to generate the plots and visualizations in this manuscript are available
in the GitHub repository at https://github.com/GunsalusPiano/EMD. A summary of R
scripts used for each figure in the manuscript is available in Supplementary Table 1. Any
additional supporting code is available upon request.
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