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One-year-later spontaneous EEG features predict
visual exploratory human phenotypes
Miriam Celli1,2, Ilaria Mazzonetto3, Andrea Zangrossi 1, Alessandra Bertoldo1,3, Giorgia Cona 1,4,6 &

Maurizio Corbetta 1,2,5,6✉

During visual exploration, eye movements are controlled by multiple stimulus- and goal-

driven factors. We recently showed that the dynamics of eye movements –how/when the eye

move– during natural scenes’ free viewing were similar across individuals and identified two

viewing styles: static and dynamic, characterized respectively by longer or shorter fixations.

Interestingly, these styles could be revealed at rest, in the absence of any visual stimulus. This

result supports a role of intrinsic activity in eye movement dynamics. Here we hypothesize

that these two viewing styles correspond to different spontaneous patterns of brain activity.

One year after the behavioural experiments, static and dynamic viewers were called back to

the lab to record high density EEG activity during eyes open and eyes closed. Static viewers

show higher cortical inhibition, slower individual alpha frequency peak, and longer memory of

alpha oscillations. The opposite holds for dynamic viewers. We conclude that some prop-

erties of spontaneous activity predict exploratory eye movement dynamics during free

viewing.
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Neuroscience has traditionally examined the function of
neurons and brain regions using an outside-in approach.
Neural activity recorded during the presentation of sti-

muli or performance of behavioural tasks is correlated with sti-
mulus or task features. This is based on the idea that the brain
‘learns’ during development stimuli and tasks by entraining
neural activity out of random noise. However, neuron-to-
behaviour correlation strictly depends on the researcher’s
knowledge about the experimental paradigm. As recently
discussed1, other neurons in the brain without knowledge of the
experimental paradigm would have a hard time deciding if the
recorded pattern of neural activity has indeed anything to do with
the stimulus or task of interest, as compared to many other
patterns simultaneously present.

An alternative approach to studying the brain is inside-out. In
this framework, the brain comes with preconfigured and self-
organized dynamics that constrain how it views and acts on the
world. During development and individual experience, these
intrinsic or endogenous patterns organize themselves to induce
highly structured robust yet flexible patterns that statistically
match the environment and the body. Accordingly, patterns of
brain activity recorded in a data-driven manner both at rest and
during tasks can be used to classify, predict, or model stimuli or
behaviours. As more and more relationships are found, then it
should be possible to understand how ‘intrinsic’ brain signals
modulate during stimulus processing or behaviour of interest. In
this paper, we employ this inside-out strategy to test whether
electroencephalographic (EEG) spontaneous (resting state)
activity recorded one year later from the original experiment
distinguishes two types of observers (static, dynamic) during free
viewing exploration of naturalistic visual images.

We constantly explore the visual world using complex
sequences of eye movements that are driven by multiple factors:
low-level visual features2, contextual information3, and task
goals4. Eye movement features like latencies, accuracies, and
velocities, underlie individual differences5, which are stable across
time periods up to 2 years5–12. This observation is consistent with
fMRI data showing robust interindividual differences in func-
tional networks that are relatively independent of task states and
day-to-day variability (e.g. ref. 13).

Classic models of visual exploration have emphasized the
importance of salience, i.e. the relative sensory distinctiveness of
objects in the environment, in guiding exploratory eye
movements2. However, a recent study14 showed that various
stimulus-based visual exploration models account for just a small
portion of the variance in eye movement patterns (i.e., the best
model reaching 34% of maximum information gain). Vision also
relies on temporal strategies, and temporal neural codes to extract
and represent spatial information15. In other words, it is not only
important for ‘where’, but also for ‘how’ and ‘when’ to look.

In a recent study16, we measured inter-individual differences in
a free-viewing eye movement exploration paradigm. Observers
(n= 120, final sample N= 114) visually inspected a large number
(n= 185) of naturalistic pictures, some containing human or
man-made figures, and some outdoor/indoor visual scenes. The
dynamics of eye movements (e.g., fixation duration, number,
direction, and amplitude of saccade, etc.) across hundreds of
observers and pictures were low dimensional and were described
by three principal components accounting for ~60% of the
variability. The first component (PC1) separated two kinds of
viewers: ‘static’, characterized by longer fixations, and ‘dynamic’,
characterized by shorter fixations. Critically this latent variable
was independent of image saliency and semantics and was cor-
related with power law similarity of eye movements suggestive of
intrinsic biological constraints17. Notably, the two kinds of
observers could be also accurately classified from eye movements

recorded in the absence of any stimulus (blank screen) (see also
ref. 18). These findings suggested that intrinsic dynamics, rather
than stimulus content, controlled ‘how/when’ people looked at
images. In control analyses, we showed that the location of
fixations (‘where’ to look), in contrast, depended strongly on
stimulus information (saliency, semantics).

Given the dependency of eye movement dynamics on intrinsic
dynamics, here we test whether evidence for this latent variable
can be identified in spontaneous recordings of brain activity. To
this end, we recruited from the previous experiment16 43 parti-
cipants who were representative of the two viewing styles and
recorded high-density electroencephalographic (EEG) activity
during eyes open and closed in the absence of any task one year
after the original experiment. This activity can be considered
intrinsic, not task-dependent since it was recorded one year after
the behavioural session, and subjects were unaware of the purpose
of the EEG study. While we could have recorded EEG both
during task and rest, we opted for just recordings at rest to truly
look at spontaneous brain activity not confounded with task
activity or even instructions related to the task.

Subjects’ viewing style was operationalized based on the scores
of the first principal component (PC1) (in ref. 16) that sum-
marizes eye movement features stable over long periods of
time5–12. The two groups of subjects recorded in this experiment
showed extreme positive (static) or negative (dynamic) loadings
on the PC1 score.

Our hypothesis is based on the theory that spontaneous activity
plays a fundamental role in cognition by providing a generative
predictive model of spatiotemporal patterns of activity during
behavioural tasks19. Hence, we hypothesized that differences in
eye movement dynamics were related to stable individual differ-
ences in the brain’s intrinsic EEG oscillatory activity. Sponta-
neous brain activity is behaviourally relevant in different species,
and at different spatial and temporal scales (LFP20, EEG21,
fMRI22). Moreover, the well-known reciprocal influence of task-
related and spontaneous activity23, makes spontaneous activity
(resting state) a good candidate for the prediction of trait-like
behaviours (e.g. refs. 21,24).

We considered three EEG metrics shown to be good beha-
vioural predictors: resting-state frequency power25,26, individual
alpha-frequency27 and long-range temporal correlations28. The
resting state frequency power is thought to reflect the baseline
level of cortical activation (e.g. ref. 29). The individual alpha-
frequency (IAF) has an established relationship with inhibition
and speed of processing30 that could be related to the faster
saccadic dynamics of the dynamic viewing style. Finally, long-
range temporal correlations (LRTCs) measure the temporal
structure of oscillations and have been related to behavioural
fluctuations (e.g. ref. 28). Power-law form LRTCs have been
suggested to represent underlying biological constraints (e.g.
excitation/inhibition balance31), and were more representative in
the behavioural experiment of the more static viewing style.

This study highlights two resting state oscillation profiles which
predict different visual exploration phenotypes. These results
suggest a link between resting-state brain activity and oculomotor
behaviour.

Results
Spectral analysis. In the eyes open condition, alpha, beta, and
gamma bands showed significant differences between groups
(ANOVA alpha band: F1,38= 5.39, p= 0.04; beta band:
F1,38= 6.68, p= 0.04; gamma band: F1,38= 4.71, p= 0.04; FDR
corrected), thus all were subsequently compared at a scalp level
with a nonparametric permutation approach with cluster cor-
rection. In the eyes closed condition, the beta band showed a
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significant difference between groups (F1,38= 7.31, p= 0.03;
FDR corrected) (Fig. 1).

In the eyes open condition, a significant cluster of
electrodes, primarily located in the occipital regions, showed
significantly higher t-values in the alpha band (7.5–12 Hz) in

Static than in Dynamic Viewers (number of electrodes= 16,
p= 0.01, FDR corrected). A Spearman’s rank correlation
between global alpha power and PC1 values showed a positive
correlation in the significant cluster (r= 0.4919, p= 0.0014,
FDR corrected).

Fig. 1 Spectral analysis results. a Group scalp maps in eyes open condition for alpha (7.5–12 Hz), beta (12.5–32Hz) and gamma (32.5–45Hz) relative power
and t-value maps (where the comparison yielded significant results) for the cluster-based permutation analysis. Black dots index significance with cluster alpha
at p < 0.01 (two-tailed) and alpha p < 0.05 (two-tailed). The right panel shows the Spearman’s rank correlation between PC1 and averaged power in the
significant cluster of electrodes (with Spearman’s r, p-value and 95% CI). N= 40. b Group scalp maps in eyes closed condition for alpha (7.5–12 Hz), beta
(12.5–32Hz) and gamma (32.5–45Hz) relative power and t-value maps (where the comparison yielded significant results) for the cluster-based permutation
analysis. Black dots index significance with cluster alpha at p < 0.01 (two-tailed) and alpha p < 0.05 (two-tailed). The right panel shows the Spearman’s rank
correlation between PC1 and averaged power in the significant cluster of electrodes (with Spearman’s r, p-value and 95% CI). N= 40.
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In the eyes open condition, in the beta band (12.5–32 Hz), a
significant frontal cluster of electrodes showed significantly lower
t-values in Static Viewers than in Dynamic Viewers (number of
electrodes= 17, p= 0.01, FDR corrected). Again, we computed a
Spearman’s rank correlation between beta power in the significant
cluster and PC1. There was a negative correlation between global
beta power and PC1 value (r=−0.54, p= 0.0012, FDR
corrected).

In the eyes open condition, in the gamma band (32.5–45 Hz), a
significant cluster of electrodes, primarily located in occipital
electrodes, showed significantly lower t-values in Static Viewers
than in Dynamic Viewers (number of electrodes= 32, p= 0.01,
FDR corrected). The subsequent Spearman’s rank correlation
showed a negative correlation between global gamma power and
PC1 values in the significant cluster (r=−0.524, p= 0.0012, FDR
corrected).

In the eyes closed condition, in the beta band (12.5–32 Hz), a
significant cluster of electrodes showed significantly lower t-
values in Static Viewers than in Dynamic Viewers (number of
electrodes= 40, p= 0.01, FDR corrected). A Spearman’s rank
correlation between beta power in the significant cluster and PC1
was significant (r=−0.506, p= 0.0013, FDR corrected).

In summary, Static viewers were characterized by stronger
occipital alpha power, and weaker frontal beta and occipital gamma
power (the opposite for Dynamic viewers). PC1 values were
positively correlated with alpha power but negatively correlated
with beta (both eyes open and closed) and gamma power.

For effect sizes see Supplementary Tables 1 and 2 and
Supplementary Fig. 1.

The direction of the correlation was confirmed even when
static and dynamic viewers were considered as separate groups
(Supplementary Fig. 3).

Individual alpha frequency. Dynamic Viewers (i.e., subjects with
shorter fixations) showed a significantly higher IAF than Static
Viewers (i.e., subjects with longer fixations) (independent sample
t=−3.324; p= 0.003). The Spearman’s rank correlation between
IAF values and PC1 was negatively related (r=−0.452,
p= 0.003) in the direction that lower PC1 scores (i.e., shorter
fixations) corresponded to higher IAF (Fig. 2).

Long-range temporal correlations. To the best of our knowl-
edge, this measure has never been examined in eye movements.
As a first step, we computed a detrended fluctuation analysis
(DFA) on the eye-tracking time series to test the hypothesis that
the eye movement time series showed fractal properties. To fit
this hypothesis the exponents are expected to fall in the range
0.5–1. All DFA exponents extracted from the eye movement time

series fell in the range 0.5–1 demonstrating long memory and
LRTCs in the signal32,33.

The second hypothesis regarded the association between
behavioural DFA exponents and PC1. These two measures
partially overlap: they represent different aspects of fixation
timings (i.e., PC1 is a static measure, while DFA exponents
represent the temporal structure of fixations). The two measures
are expected to be strongly correlated, given the fact that they
represent different aspects of the same phenomenon. The two
measures were significantly correlated (Spearman’s rank correla-
tion, r= 0.465, p= 0.002).

The third step was to test the association between mean brain
and behavioural exponents across subjects. There was a positive
correlation between brain and behavioural exponents in the eyes
open condition alpha band (Spearman’s rank correlation,
r= 0.40, p= 0.009). To explore the scalp topography of the
effect, we computed Spearman’s rank correlation on an electrode-
to-electrode basis by using the nonparametric permutation
approach with cluster correction. A significant positive cluster
of electrodes was primarily located in occipital areas (number of
electrodes= 30, p= 0.007). Next, we computed a Spearman’s
rank correlation between alpha band DFA exponents in the
significant cluster and behavioural DFA exponents. There was a
positive correlation between alpha band DFA exponents and
behavioural DFA exponents (r= 0.519, p= 0.0006). Alpha band
exponents significantly differed between static and dynamic
viewers (t = 2.03, p = 0.04).

The correlation between alpha band DFA exponents and
behavioural DFA exponents was not present in the eyes closed
condition (Spearman’s rank correlation, r= 0.08, p= 0.61)
(Fig. 3).

Control analysis on global power. To rule out the possibility that
the observed differences in viewing styles were explained by dif-
ferences in arousal, we contrasted global alpha power with eyes
closed and the alpha reactivity index, respectively, a measure of
baseline arousal and a measure of arousal reactivity (see ref. 34).
There were no differences between the two groups of observers in
either measure (Supplementary Fig. 2).

Discussion
In a previous study16, we showed that eye movement exploration
dynamics (how/when we move the eyes) in 120 (final sample
N= 114) observers across 185 pictures were low dimensional.
Three linear components accounted for most of the variability
across pictures and subjects. The first component PC1 loaded on
the duration of fixation (among other features) identifying two
groups of observers: static viewers, characterized by longer fixation
duration statistics and a higher similarity of gaze steps (i.e., the
Euclidean distance between two consecutive gaze positions) to a
power-law distribution; and, dynamic viewers characterized by
shorter more frequent fixations and a lower similarity of gaze
steps with a power law distribution. Critically PC1 scores were not
explained by the saliency and semantic information of the objects
presented in each picture. Furthermore, the two viewing styles
during visual exploration were successfully classified based on the
eye movement features recorded when looking at a blank screen
(rest). These findings indicate that how/when we move the eyes
during visual exploration partly reflects intrinsic (endogenous)
dynamic mechanisms.

Based on the theory that spontaneous activity plays a funda-
mental role in cognition providing a generative model of spa-
tiotemporal patterns of activity employed during behavioural
tasks19, we tested whether these two patterns of eye movement
dynamics were related to intrinsic brain dynamics, as measured

Fig. 2 Individual alpha frequency results. a Individual alpha frequency
values by group (static n= 19, median= 9.5 Hz; dynamic n= 21,
median= 10.5 Hz). N= 40. b Spearman’s rank correlation between PC1
and Individual Alpha Frequency values (with Spearman’s r, p-value and
95% CI). N= 40.56.
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by properties of EEG oscillations at rest. Accordingly, we
recruited from the previous experiment16, 43 participants who
were representative of the two viewing styles (they had opposite
extreme PC1 scores) and recorded their resting state EEG one
year later.

We show that visual exploration styles have robust correlates in
spontaneous EEG oscillations recorded one year later. Three
different oscillatory EEG features correlated with dynamic eye
movement features (PC1 scores). Static viewers showed higher
alpha power and lower gamma power in occipital electrodes.
They also showed lower beta power in frontal electrodes. Static
viewers displayed a lower individual alpha frequency. Finally,
static viewers’ brain oscillations and eye movement time series
were endowed with stronger long-range temporal correlation
indicating a higher self-affinity and complexity.

In contrast, dynamic viewers’ oscillation profile was char-
acterized by lower alpha power and higher high-frequency power
(beta and gamma). Dynamic viewers also showed a higher indi-
vidual alpha frequency and weaker long-range temporal corre-
lations, thus a less complex signal (i.e., closer to white noise) both
in brain and eye fixation time series.

Our interpretation is that these intrinsic EEG features represent
a trait-like constraint on exploratory eye movement dynamic
features. We propose that this constraint on eye movement
dynamics depends on the timing of oscillations (i.e., IAF and
LRTCs) and baseline level of cortical activation, which has been
proposed to index the focus of attention (e.g. ref. 35). Herein we
discuss data relevant to this interpretation.

Resting-state frequency power may reflect the baseline level of
cortical activation (e.g. ref. 29). The interplay between activation

(i.e., high-frequency activity, typically observed in task-relevant
areas36) and inhibition (i.e., alpha activity, typically observed
at rest37 or in task-irrelevant areas36), has been proposed to
reflect the focus of attention, respectively directed externally to
environment stimuli or internally to memory, emotion, cognitive
information. For instance, in their seminal study, Ray and Cole38

found lower alpha power during external tasks, e.g. counting
words in a passage, and higher power during internal tasks, e.g.
mental arithmetics. Therefore, alpha rhythms may reflect a pos-
sible index of internal vs. external attention, with alpha power,
decreasing linked to externally directed attention35. In this line of
thought, then, a higher alpha power (i.e., the static viewer profile)
would index a heightened inhibition with regard to external
stimuli.

At the other end, dynamic viewers have lower inhibition
towards external stimuli and are more focused on external sti-
muli. Their EEG power profile is consistent with stimulus
processing39 and selective attention to stimuli40: occipital alpha
power decreases—alpha desynchronization36—and gamma power
increases40. This change in the balance of oscillatory power is
thought to reflect the release of inhibition in sensory and task-
relevant areas. According to this interpretation, dynamic viewers
start from a resting profile that is more similar to that seen during
stimulus processing and selective attention to stimuli36,40–42.
While the mutual relationship between inhibition and stimulus
processing is widely studied during tasks, recent studies also
found a correlation between alpha and beta band resting state
EEG activity and visual attention25,26.

In contrast to this interpretation of alpha inhibition/gamma
excitation stand the results on the frontal beta band power that was

Fig. 3 Procedure and results for DFA analysis.Workflow for DFA analysis. For eye-tracking data, after extracting fixations with a velocity-based algorithm,
a fixation timeseries is built (where 0= fixation; 1= saccade). EEG data are the first bandpass filtered in the frequency of interest (7.5–12 Hz, filter
order= 66), then the amplitude envelope is computed. For both timeseries, DFA analysis is performed. First, a correlation between eye-tracking exponents
and mean alpha band exponents (i.e., averaged across 256 channels) is computed. A significant positive correlation is found in the eyes open condition
(r= 0.405, p= 0.009). In this condition, Spearman’s rank correlation coefficients are computed in each electrode between alpha band DFA exponents and
eye-tracking DFA exponents. Null hypothesis testing is conducted by using the nonparametric permutation approach with cluster correction. Black dots
index significance with cluster alpha at p < 0.01 (two-tailed) and alpha p < 0.05 (two-tailed). Finally, a Spearman’s rank correlation is computed between
DFA exponents in eye movements and DFA exponents in alpha band in the significant cluster of electrodes (r= 0.455, p= 0.003). All the scatterplots
show Spearman’s r, p-value, and 95% CI. N= 40. LRTCs long-range temporal correlations, RMSE root-mean-square error.
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lower in static than dynamic viewers, both during eyes closed and
eyes open. Beta power is classically described as the inhibitory
rhythm of the motor cortex (e.g. ref. 43), and it becomes desyn-
chronized during movement planning44. This is like alpha occipital
power that is higher at rest but desynchronizes during visual pro-
cessing. However, a more recent interpretation is that beta rhythms
represent the status quo or maintenance of a specific task or motor
set45. This is based on evidence of increased beta synchronization
during tasks in which a set is maintained over time (e.g., a working
memory task). A related account is that beta rhythms in centrally
connected regions of the cortex (hubs) in multiple networks
maintain a prediction or prior about the temporal structure of
visual exploratory behaviour46. This is based on the similarity of
beta band power fluctuation temporal structure at rest and during
visual exploration. Our results suggest that static viewers maintain
at rest a more reactive motor cortex. The difference with dynamic
viewers supports the notion that spontaneous activity patterns
predict exploratory behaviour as in ref. 16.

Overall then the occipital power results indicate that static
viewers have a profile of baseline cortical activation biased toward
cortical inhibition and internal processing, while dynamic viewers
have a profile biased toward cortical excitation and external
processing. This is in line with the cognitive profiles of these two
types of subjects, with static observers showing a slightly stronger
visual working memory, and dynamic observers a weaker inhi-
bition to salient but irrelevant stimuli16.

In addition to power relationships, we found an association
between visual exploration timings (i.e., PC1 scores and fixations
time-series) and timing constraints of alpha oscillations (i.e., IAF
and LRTCs).

In the literature, the IAF has been correlated with speed of
processing, with a weak but significant relation between IAF
individual differences and reaction times27. A more general inter-
pretation is that the speed of information processing could be
related to the speed or frequency of the alpha pacemaker. A more
recent view30 explains IAF in terms of neural inhibition timings.
For instance, a higher IAF is linked to shorter P1 latencies47. This is
also consistent with the relationship between higher alpha power
and lower individual alpha frequency (e.g. ref. 48). In this view,
alpha band dynamics have an active role: the inhibition serves to
establish a highly selective activation pattern. Higher IAFs index
stronger intra-cortical inhibition and more highly specialized
activation patterns eventually resulting in faster task performance.
In line with these views, dynamic viewers endowed with a higher
IAF can disengage faster from fixation and generate a higher
number of fixations overall. The negative relationship between IAF
and PC1 scores indexing fixation duration is consistent with this
interpretation. These results predict that dynamic viewers shall be
faster in visual processing and attention tasks.

The final link between eye movement dynamics and brain
dynamics is the observation of LRTCs in both fixation sequences
and brain oscillations. Static viewers show stronger LRTCs both
in the occipital alpha band and eye movement time-series. Long-
range temporal correlations indicate that these signals maintain
memory over time. In contrast, the fixation and oscillatory
sequences of dynamic viewers were closer to white noise, i.e., they
have a less temporal structure in time resembling more a random
process. Power-law form LRTCs are thought to index intrinsic
systems constraints (e.g., structural constraints49, physiological
constraints50) that may cause recursive regularities in brain
signals51 and behaviour28. The stronger link between LRTC and
static viewers is highly consistent with a profile of activity and
dynamics that emphasizes internal processes.

In the setting of the review, several important issues were
raised that are worth discussing. One objection is whether
the distinction between static and dynamic viewers can be

considered stable one year later, at the time of EEG recordings.
In other words, is it possible that we are documenting brain
correlates of a ‘state’ recorded one year earlier not a stable
‘trait’, i.e., a true difference in viewing styles? The two groups
were called back for EEG recordings based on their extreme
(positive, negative) PC1 scores. PC1 scores were computed
based on eye movement features that in the literature are stable
over time5,7,9,10,52. Also in ref. 16, we carried out several con-
trols showing that PC1 scores were stable in different sub-
samples of even/odd images (i.e., all r values > 0.97); different
image categories (i.e., all r values= 0.97). In addition, PC1
features measured at rest when viewing a blank screen classified
with >80% accuracy static and dynamic viewers when looking at
natural images, and vice versa. Nonetheless, we recognize that
this is a relative limitation of the study.

Another point is that our findings may reflect differences in
overall arousal/motivation between groups (e.g. ref. 53). The
arousal theory of motivation states that each individual has its
own baseline level of arousal, with low-arousal subjects showing
less high-frequency power and more low-frequency power54,
higher eyes closed alpha power34, lower alpha reactivity55. These
features have been related to extraversion56 and sensation
seeking57.

In additional control analyses, we show that static and dynamic
viewers do not differ in eyes closed alpha power (t= 1.58,
p= 0.12), or alpha reactivity (t= 0.45, p= 0.65; eyes closed to
eyes open alpha power ratio; Supplementary Fig. 2). They also
show no differences in extraversion16, while static viewers, those
with longer fixation and higher alpha power, were more open to
new experiences16.

Taken together these results do not suggest a difference in
overall arousal/motivation. However, this experiment was not
designed to test this hypothesis and future work is needed to
clarify this issue.

An alternative hypothesis is that differences in brain rhythms,
specifically alpha, can modulate online eye movement behaviour58.
In other words, dynamically during a task, periods of lower alpha
power immediately follow saccades, while periods of fixation are
associated with increased alpha power. This would result in lower
overall alpha power in those individuals who show high oculo-
motor activity (i.e., more saccades) during the recording. This
interpretation is not inconsistent with our findings. Hebbian
plasticity59 predicts that repeated patterns of neural activation leave
a persistent trace in the brain, first in the form of synchronized
spontaneous activity, later on in the form of synaptic and structural
connectivity changes. Accordingly, subjects during development
and/or experience might have developed a more ‘static’ or
‘dynamic’ style of eye movements during visual exploration, which
has entrained in turn tonic differences in their spontaneous activity
recorded in this experiment. This idea suggests that genetic dif-
ferences may be partly responsible for the different developmental/
experience trajectories (as in ref. 60).

That a complex behaviour like eye movement visual exploration
can be summarized with a few dynamic features across many subjects
and pictures was surprising16. A growing behavioural literature
focused on the covariance across subjects is showing that many
apparently complex behaviour underlies a low dimensionality.
Apparently complicated hand movements61, human navigation in
cities62, and variability in reward inhibition63 can be all explained by a
small number of latent variables. There is also growing evidence for
low dimensionality of coding through correlated neuronal activity
across many neurons, as in the case of face perception64, hand
movements65, and exploratory face movements20. Even more unex-
pected, somehow, is that these dynamic eye movement features are
related to resting-state oscillatory properties of EEG signals recorded
one year later. We think that the results suggest that the timing of
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oscillations (IAF, LRTCs) and inhibition (alpha power) could be key
in controlling the duration of fixation and shifts thereof.

Given the high temporal resolution of both eye movement and
EEG recordings, it will be interesting in future studies to explore
jointly EEG signals and eye movement recordings and relate
resting to task dynamics.

A final consideration is the potential of eye movement and
resting-state EEG recordings as a diagnostic or prognostic tool for
pathologies in which structural, metabolic, or biological measures
are either too expensive or invasive. We are thinking of eye
movements66, as well as alterations in resting state EEG
metrics67,68 in high-impact pathologies like Alzheimer’s disease.

Methods
Participants. Participants for the resting-state EEG session (n= 43, mean age
24.11 years, SD= 2.41, 16 males) were recruited from the pool of subjects of a
previous study16. All participants signed informed consent before the experimental
session, and after it, they received a remuneration of 10€ for their participation.
The study was approved by the Ethical Committee of the University of Padova.

Participants were selected based on the PC1 scores from the previous study. The
PC1 is the first principal component extracted from a PCA on 59 eye-tracking
features computed on a free visual exploration task on 185 pictures and 120 (final
sample N= 114) subjects. Participants were chosen for this session based on PC1
values higher than 1 and lower than −1. These values represented the extremes of
the distribution identifying subjects who belonged to the static vs. dynamic group.
Eligibility in the previous study was based on the applicants being in good health,
having no history of neurological disease, and having no colour blindness. All
participants had normal or corrected-to-normal vision. This session took place
after a mean interval of 11 months (327 days ± 43). Three participants were
excluded due to the bad quality of the data, resulting in a final sample of 40
participants (19 static viewers and 21 dynamic viewers).

Stimuli and apparatus. EEG activity was recorded with a high-density EEG sys-
tem consisting of a 256-channel Hydrocel Geodesic Sensor Net, a high-impedance
amplifier Net Amp 400 and Net Station Software 4.3 (Electrical Geodesics Inc.).
Before testing, impedances were measured and adjusted until they were kept below
50 kΩ. Impedance of each channel was also measured and saved at the end of the
session. All electrodes were referenced online to the electrode placed over the
vertex (Cz in the 10/20 international system). EEG data were digitized with a
sampling rate of 500 Hz. During the registration, the participant sat in a chair in a
sound-shielded Faraday recording cage. A screen displaying a fixation cross was set
on the centre of a desk in front of the participant. Two resting-state EEG sessions
(eyes open and eyes closed) lasting 10 min each were collected. In the eyes open
condition, participants were asked to look at the fixation cross for the whole
duration of the task (i.e., eye movements were discouraged); in the eyes closed
condition, participants were asked to keep their eyes closed for the whole duration,
to relax and not to fall asleep.

Electrode positions were digitized by means of the Occipital 3D Structure
Sensor (Occipital Inc.) mounted on an iPad Pro69 at the end of the resting-state
EEG session. Structural MR T1w data (TR/TE: 7.20/3.29 ms; 165 sagittal slices;
voxel size: 0.53 × 0.53 × 1.1 mm; FA: 9°; acquisition matrix: 448 × 448) were
acquired in a separate session using a 3 T Ingenia Philips whole body scanner
(Philips Medical Systems, Best, The Netherlands) equipped with a 32-channel
head-coil, at the Neuroradiology Unit of the University Hospital of Padova, Italy.
Anatomical images were obtained for 34 participants out of 43 recruited for the
EEG session. Electrode positions and T1 structural images were acquired for a
future study and will not be used in this work.

EEG pre-processing. EEG data were pre-processed using Matlab (The Math-
Works, Inc, Natick, MA, USA) scripts based on functions from the EEGLAB
software (version 14.1.2b70). First, data were band-pass filtered (cut-off frequencies:
0.5–47 Hz) using two zero-phase Kaiser-windowed sinc FIR filters (high-pass:
transition bandwidth= 1 Hz, order= 1812, low-pass: transition bandwidth= 2,
order= 908) as suggested in Widmann et al.71 and resampled at the 250 Hz. Then,
automated detection of the noisy channels was performed and later confirmed by
visual inspection. The selection was based on the combination of the following five
criteria, whose thresholds were determined with a preliminary examination of the
dataset to optimize the detection: (i) impedance at the end of the acquisition above
100 kΩ; (ii) correlation to the surrounding channels less than 0.75, (iii) and (iv)
standard deviation bigger than 4 for the spectral and improbability tests; (v)
standard deviation bigger than 7 for the kurtosis test. Channels selected by the
criterium (i), (ii) or at least two of (iii)–(v) criteria were interpolated using spherical
splines72. Afterward, EEG data were re-referenced to the average of all electrodes.
Ocular, muscular and movement artefacts were removed by applying independent
component analysis (ICA) using a deflation-based fast fixed‐point ICA algorithm
(http://research.ics.aalto.fi/ica/fastica/) with the hyperbolic tangent as a cost func-
tion. Independent components (ICs) were classified into seven classes (brain,

muscle, eye, heart, channel noise, line noise, and other) using the ICLabel
toolbox73. All the components classified as brain or other (but with the brain as the
second highest probability) were kept. After this step, residual artefacts were cor-
rected using the artefact subspace reconstruction (ASR)74. Noisy data segments
were identified using a 1-s sliding-window principal component analysis (PCA). If
PCs exceeded 30 standard deviations of the cleanest part of the dataset, current
data was repaired using a mixing matrix computed on the cleanest portion of
the data.

Spectral analysis. The power spectral density was computed using Welch’s
overlapped segment averaging estimator using spectopo() function on EEGLAB70

to obtain a frequency resolution of 0.5 Hz. The power spectral density was
extracted for every channel and converted from dB to µV2/Hz. Each spectrum was
then normalized to the relative frequency power by dividing the spectrum by the
power computed in the whole spectrum via trapezoidal integration.

Individual alpha frequency peak. The individual alpha frequency peak was
defined as the highest absolute value in the 7–13 Hz range. The alpha peak was first
automatically detected based on this criterion. All spectra were then visually
checked to ensure the selected frequency was a true peak rather than the maximum
value at the boundaries of the predefined alpha range. The analysis was performed
on the average spectrum across occipital electrodes (cf. ref. 75) in an eyes-closed
condition, which is the most stable measure of IAF according to the literature—i.e.
it has the greater test–retest reliability76.

LRTCs computation. To assess long-range temporal correlations (LRTCs), we used
the detrended fluctuation analysis as described in ref. 33. Briefly, this technique
allows to extract a scale-free exponent which describes the temporal structure of
the signal in terms of self-similarity (i.e., scaling of a statistical property across
scales) and long memory. This is done by assessing the rate at which fluctuations
(i.e., mean-squared residuals) grow as a function of the scale (i.e., RMSE are
assessed at different scales and the relation between RMSE and window length in
double-log determines the DFA exponents).

Similarly to Palva28, here LRTCs are computed for both brain (i.e., alpha band
filtered EEG) and behavioural data (i.e., fixation timeseries). Brain exponents (i.e.,
the temporal structure of the alpha rhythm) and eye movements exponents (i.e.,
the temporal structure of eye movements) are then correlated. The DFA scaling
exponent is typically ranging between 0.5 and 1 in brain signals51 and eye
movements time-series77. While an exponent of 0.5 index an uncorrelated signal
(i.e., white noise), an exponent of 1 index has strong long-range temporal
correlations32,33.

A more detailed version of DFA computation can be found in Supplementary
Methods.

Statistical analysis (spectral analysis). The statistical analysis was implemented
in FieldTrip toolbox78.

Frequency power was first averaged into five frequency bands (delta 1–3 Hz,
theta 3.5–7 Hz, alpha 7.5–12 Hz, beta 12.5–32 Hz, gamma 32.5–45 Hz). Global
frequency power (i.e., averaged across all 256 channels) was then compared
between groups with a bin-by-bin one-way ANOVA in both conditions separately.
Null hypothesis testing was conducted comparing the results of each bin-by-bin
ANOVA against a null distribution of 1000 permuted datasets. All p-values were
FDR corrected79. For the frequency bands showing significance between groups'
differences, we conducted a comparison at the scalp level by using the
nonparametric permutation approach with cluster correction79. This analysis was
performed excluding face electrodes. We computed two-tailed independent
samples t-tests with 1000 resamples, two-sided 95% confidence intervals,
corresponding to an alpha level of 0.05 (two-tailed). Cluster threshold setting was
based on maximum cluster size, with an alpha level set to 0.01 (two-tailed).

To check the extent to which these differences were linked to visual exploration
styles, we also computed Spearman’s rank correlation between PC1 values and
frequency power in alpha, beta, and gamma only for the electrodes identified in the
previous contrast (FDR corrected). Spearman’s rank correlation was chosen due to
the distribution of PC1 values after a Shapiro–Wilk Normality test suggested a
non-gaussian distribution of the variable (p < 0.001).

Statistical analysis (individual alpha frequency). After testing for normality of
the distribution of the IAF values (Shapiro–Wilk Normality test; p= 0.459;
p= 0.051), null hypothesis testing was conducted comparing the results of the
independent sample t-test against a null distribution of 1000 permuted datasets.

Subsequently, we also tested for the association between Individual Alpha
Frequency and PC1 by computing Spearman’s rank correlation, to confirm that the
observed group difference was linearly related to the PC1 values. Spearman’s rank
correlation was chosen due to the non-Gaussianity of the PC1 distribution.

Statistical analysis (LRTCs). Brain exponents in the alpha band (7.5–12 Hz) were
averaged across all 256 electrodes (cf. ref. 29). According to the literature (see for
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example, ref. 28), alpha band at rest is the band showing a more remarkable
relationship with power-law-form LRTCs in behaviour.

In both eyes open and eyes closed conditions, the normality test of the
distribution of the DFA exponents of the alpha band amplitude time series
(Shapiro–Wilk Normality test) suggested evidence for a non-gaussian distribution
(p < 0.001; p < 0.001; p < 0.001; p < 0.001). As a consequence, we computed
Spearman’s rank correlation between brain and behavioural exponents.

In the eyes open condition only we computed the Spearman’s rank correlation
coefficients between alpha band DFA exponents in each electrode and behavioural
DFA exponents and conducted null hypothesis statistical significance testing by
using the nonparametric permutation approach with cluster correction80. We
computed 1000 resamples; two-sided 95% confidence intervals, corresponding to
an alpha level of 0.05. Cluster correction method: maximum cluster size. Cluster
threshold (non-parametric) was set to 0.01 (two-tailed). Finally, Spearman’s rank
correlation is computed between DFA behavioural exponents and DFA alpha
exponents only for the cluster of electrodes identified in the previous step.

Control analyses. To control for possible confounding effects on PC1, we con-
trasted between groups all available demographic information from Zangrossi
et al.16 and the current study (see Supplementary Table 3). After accounting for
multiple comparisons, Age is the only variable significantly different between the
two groups (W = 69; p corr. = 0.007). The significant difference in Age between
the two groups confirms what was already seen in the previous study with the full
sample16.

To rule out that the observed differences are not explained by differences in
arousal, we contrast global eyes closed alpha power and alpha reactivity index (eyes
open-eyes closed alpha power ratio55) between groups. The two measures are
respectively a measure of baseline arousal and a measure of arousal reactivity. For
further control analyses see Supplementary Information.

Statistics and reproducibility. R (v 4.1.0) and MATLAB (r2018b) software were
used to perform all analyses, the required tools and packages are cited in the
Methods section (see the sections “EEG pre-processing”, “Spectral analysis”, and
“Statistical analysis”). Preprocessing steps and statistical analyses are described in
the “Methods” section (see the sections “EEG pre-processing” and “Statistical
analysis”). All analyses are performed on the same sample (N= 40).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request. The source data used for the main figures are available at
https://osf.io/wnxkq/.
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