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Volumetric imaging of fast cellular dynamics with
deep learning enhanced bioluminescence
microscopy
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Bioluminescence microscopy is an appealing alternative to fluorescence microscopy, because

it does not depend on external illumination, and consequently does neither produce spurious

background autofluorescence, nor perturb intrinsically photosensitive processes in living cells

and animals. The low photon emission of known luciferases, however, demands long expo-

sure times that are prohibitive for imaging fast biological dynamics. To increase the versatility

of bioluminescence microscopy, we present an improved low-light microscope in combina-

tion with deep learning methods to image extremely photon-starved samples enabling

subsecond exposures for timelapse and volumetric imaging. We apply our method to image

subcellular dynamics in mouse embryonic stem cells, epithelial morphology during zebrafish

development, and DAF-16 FoxO transcription factor shuttling from the cytoplasm to the

nucleus under external stress. Finally, we concatenate neural networks for denoising and

light-field deconvolution to resolve intracellular calcium dynamics in three dimensions of

freely moving Caenorhabditis elegans.
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F luorescence microscopy has enabled unprecedented dis-
coveries and became the major imaging modality in mole-
cular and cellular bioscience. However, strong

autofluorescence of the native tissues1 often obscures and blurs
the signal from specific labels in biological samples2, while
intrinsic photosensitivity of cells and animals, such as Cae-
norhabditis elegans3, planaria4, or mouse preimplantation
embryos5, interferes with imaging experiments that require an
excitation light source. In addition, the incompatibility in exci-
tation and emission profiles of some fluorescent proteins can
make it difficult to simultaneously image multiple fluorophores,
e.g., CFP and GFP cannot be imaged at the same time with a
single filtercube, fluorescence imaging is also limited if the exci-
tation spectrum of the chromophore overlaps with that of a
photosensitizer (e.g., 470 nm for Channelrhodopsin6 and
Tulips7). Further, the high excitation intensities that are necessary
to obtain fluorescent images with extreme photon-starved sam-
ples render fluorescence microscopy potentially phototoxic and
limit the lifetime of the fluorescent probe8. These drawbacks can
be overcome by implementing bioluminescent probes as contrast
labels, since they can be genetically encoded to tag any protein of
interest, and do not need an external excitation light source.

However, several factors have limited bioluminescent micro-
scopy as a mainstream technique in a cell biological or phar-
macological laboratory. First, bioluminescent enzymes require a
chemical co-factor, e.g., luciferin, coelenterazine, or furimazine
and their derivatives, as a photon source, which becomes oxidized
prior to photon emission. Many of these cofactors are poorly
soluble in water, have poor membrane permeability which
reduces diffusion across cells thus lowering the bioavailability
inside tissues and animals9,10. In addition, luciferases have a slow
catalytic turnover11, determined by enzyme affinity for the sub-
strate, or the quantum yield which is defined as the probability of
emitting a photon per enzymatic reaction12. The optimization of
these cofactors and the enzymes through chemical and bioengi-
neering is an active research field and have greatly improved the
versatility and photon emission characteristics. Engineered luci-
ferases based on deep sea shrimp, termed Nanolanterns13,14, in
which the luciferase moiety is fused to a fluorescent protein, have
among the highest quantum yield and catalytic turnover and bear
the potential to select the emission wavelength12. Thus, a whole
spectrum of light-emitting proteins can be tailored to a specific
need15. Even with these optimizations and cofactors, at saturated
conditions in vitro where chemical delivery is not limiting, these
enzymes only produce ≈ 10 photons per second, as compared to
3000 photons per millisecond for conventional fluorescence
microscopy16, which greatly limits the number of emitted pho-
tons per time interval and concomitant signal-to-noise ratio
(SNR). Thus, to obtain high-SNR images calls for long exposure
times in the seconds or even tens of seconds scale, even with
state-of-the-art EMCCD cameras, which is incompatible with fast
biological dynamics. Even when the sample is immobile, long
exposure times greatly limit the image acquisition and experi-
mental throughput, e.g., for pharmacological studies and bio-
sensor application during drug screening and cancer research17.
As a consequence, the resultant images are often noisy, with low
resolution and limited to static images without temporal and
three-dimensional resolution. Frequently, one wants to post-
process these noisy images to obtain a clear pictures at optimal
resolution; however, because noise, and many image features such
as edges and texture share high frequency components, proce-
dures that reduce noise often introduce artefacts. In general, the
image after a denoising operation should contain smooth flat
areas, unblurred edges while preserving resolution and avoid the
generation of artefacts. Thus, recovering meaningful information
is mathematically complex and solutions are not unique18.

Several methods have been deployed previously to increase sen-
sitivity and reduce noise in ultra-photon-starved images. Early
attempts to clean bioluminescent images through blind decon-
volution produced modest improvements19,20.

Convolutional neural networks (CNN) have been shown to
outperform classical algorithms in different tasks including
denoising21–23, 3D reconstruction methods24–26, and super-
resolution imaging27–29. In order to leverage the machine learn-
ing models like neural networks, it is necessary to build a training
pipeline and an inference pipeline. For supervised learning (SL)
workflows, the training pipeline includes steps to preprocess the
data, train models on input data and their corresponding target
data, and validate their results. The inference pipeline uses the
optimal model from the training pipeline to generate predictions
on unseen input data.

The goal of a denoising model is to obtain a high-SNR image
from a low-SNR image without losing image feature and reso-
lution. This requires training a model on degraded images xi and
their corresponding high-quality target images yi, which are
usually acquired using fluorescence microscopy. A popular
approach is content-aware image restoration (CARE), which
takes advantage of the knowledge of the underlying sample
structure. In microscopy, these are usually clean model images,
acquired at imaging condition that would result in sharp and low
noise images without necessarily preserving physiological activity
(e.g., fixed and stained cells). CARE consists of a set of U-Net type
architectures to perform common restoration tasks, such as image
denoising, surface projection and restoration of isotropic resolu-
tion using supervised learning. It has been able to achieve
impressive results with extremely photon-starved fluorescent
samples, such as images derived from intrinsically photo-sensitive
planaria21. CARE is compatible with image acquisition at low
laser power for fluorescence microscopy, which is important for
light-sensitive specimen and to reduce photo-toxicity. By exten-
sion, CARE pipelines are also uniquely poised to overcome noise
problems in bioluminescence microscopy.

Due to the long exposure times necessary to acquire high-SNR
images with current setups designed for bioluminescent micro-
scopy, and the risk of sample movement, three-dimensional
bioluminescence imaging has remained elusive. Light Field
microscopy (LFM) has become the standard imaging choice for
instantaneous volumetric imaging30 using a single exposure, and
thus promises to reduce the volumetric imaging rate. Instead of
acquiring a volume with n steps, only a single exposure is needed
to capture the whole 3D representation of the scene. Before any
useful information can be extracted from a raw 2D light field (LF)
image, it needs to be deconvolved30. However, the analytical
deconvolution based on a known point-spread function is very
time-consuming and requires high amounts of computational
resources due to the iterative nature of the algorithms to perform
the light field deconvolution31,32. With the aim to reduce the
temporal cost in the deconvolution process, several CNN models
were proposed24–26. LFMNet reconstructs LF images trained with
experimental light field images and their corresponding confocal
scans26. However, since the GT and the input must be aligned due
to the wise-pixel correlation during the supervised training, LF
images and the corresponding confocal stacks must be registered
before the training takes place. Therefore, for proper registration,
the method required a light field deconvolution procedure to
prepare the training dataset which, as mentioned above, is time
consuming and prone to artifacts. Often, deep-learning models
memorize instrument-specific features of the images they have
been trained, which limits their transferability. To generalize the
performance of the models on various microscopy setups,
HyLFM-Net25 leverages a transfer-learning approach to con-
tinuously verify and validate the accuracy in the reconstruction

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04292-x

2 COMMUNICATIONS BIOLOGY |          (2022) 5:1330 | https://doi.org/10.1038/s42003-022-04292-x | www.nature.com/commsbio

www.nature.com/commsbio


performance of high-resolution LF images and ground-truth
images acquired on different microscopy setups. Transfer-
learning approaches are particular useful to generalize specific
deep-learning model for wider applicability and especially in
cases where training data are difficult and expensive to collect.
Wang et al.24 introduced a view channel depth (VCD) neural
network to overcome the non-uniform angular resolution and
avoid the reconstruction of artifacts in the network inference.
They generated synthetic light field data by performing a forward
projection between 3D high-resolution images and a simulated
light field PSF of the system. Trained networks were able to
perform calcium imaging of C. elegans and predicted the blood
flow movement in the heart of a zebrafish. This technique has
proven to be superior due to its easy implementation on account
of relying solely on synthetic data and its independence from
other imaging techniques.

Here, we overcome several prohibitive challenges, and
demonstrate the use of bioluminescence as an imaging modality
in the millisecond range. We constructed a new microscope with
a shortened, optimized optical path, light field detection and
single photon resolution in combination with machine learning to
maximally reduce camera exposure time. Because accurate
inference requires high-quality training data of biological sam-
ples, we built training and inference pipelines for our deep-
learning models using two concatenated neural networks and a
transfer-learning approach with the aim to increase the signal-
noise ratio and reconstruct four dimensional information from a
time series of 2D images. We demonstrate this approach to image
nuclear dynamics in mouse embryonic stem cells, 3D imaging of
zebrafish epithelial tissues and whole-body calcium imaging in
muscles of freely moving Caenorhabditis elegans. Thus, biolu-
minescence microscopy could mature into an essential tool for
synthetic biology33, in approaches that harness endogenous
light generation with luciferases that are not limited to
microscopy approaches but also functional bioluminescence
optogenetics34–37.

Results
LowLiteScope. Due to the low quantum yield of luciferases,
standard optical microscopes are poorly suitable to produce
bioluminescent images and dedicated instruments are commonly
used38. Indeed, we only observed a weak signal from Nano-
lanterns transfected into HeLa cells or transgenic C. elegans on a
commercial compound microscope at the maximum exposure
time of our camera (Supplementary Fig. 1). To increase the
photon collection efficiency, we thus conceived a microscope with

an ultra-compact optical axis, and with a single photon-resolving,
quantitative, qCMOS camera (Fig. 1a). With this new setup, we
were able to obtain high-SNR images for cells transfected with
Nanolantern fusions to clathrin, actin and the plasma membrane
marker lyn14 and supplemented with the co-factor Hikarazine
(see Methods39) for exposure times down to 2s (Fig. 1b, i).
Importantly, even without any further treatment, these images
were comparable to fluorescence images acquired at a similar
exposure time at higher magnification (Fig. 1b, ii) on a conven-
tional, epifluorescence microscope. As expected, no auto-
fluorescence was observed in the luminescence images due to the
absence of an external excitation light source, in contrast to the
fluorescence images (Fig. 1b). We next established that the
optimized bioluminescence imaging protocol enhances the pho-
ton collection efficiency in living animals. We created a transgenic
C. elegans line that expresses a turquoise Nanolantern in their
body wall muscles34 and immobilized individual animals for
imaging on an agar pad in presence of the luciferin. In agreement
with our results from tissue culture cells, we observed a strong
specific signal at longer exposure time and even for exposure
times down to 50 ms (Fig. 1c). Taken together, these technical
improvements dramatically augmented the quantity of photons
detected allowing us to reduce the exposure time without addi-
tional post-processing. Capturing the ability to record ultra-
photon-starved samples, we refer to our setup as ‘LowLiteScope’.

Transcription factor dynamics under external stress. Photo-
bleaching during fluorescence microscopy is a well-known indi-
cator for potential photo damage to the cell8, especially at lower
wavelengths commonly used for one photon excitation live-cell
imaging. Without the requirement of an excitation light source,
bioluminescence has the advantage to circumvent potentially
phototoxic effects40. To understand to what extent biolumines-
cent and fluorescent excitation induces a cellular stress response,
we generated transgenic animals expressing mNeonGreen-
NanoLantern fused to DAF-16 (Fig. 2a), the C. elegans ortholog
of FoxO transcription factors which promotes longevity41 and
acts as a reporter for various stresses, including reactive oxygen
species42 but also heat43. Importantly, this stress reporter can be
detected by direct excitation of the mNG using fluorescence
microscopy, or independent of external excitation light through
the bioluminescence of its NanoLantern. In its inactive state,
DAF-16 resides in the cytoplasm, but translocates rapidly into the
nucleus, where it induces the transcription of stress protective
genes, when the animal is exposed to cytotoxic insults43 (Fig. 2a).
We first verified that the indicator is functional and has the ability
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Fig. 1 Optimized bioluminescence microscopy. a Photograph of the optimized LowLiteScope. b Bioluminescent (i, ×20 magnification) and epifluorescent
(ii, ×63 magnification) images of cell expressing the indicated marker taken on the LowLiteScope (i) or a commercial epifluorescence (ii) microscope,
respectively. Exposure times indicated in the top left of each image. Scale bar= 20 μm. c Bioluminescent images of an immobilized worm expressing a
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the image. Scale bar= 50 μm.
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to report the animal’s exposure to stresses, and imaged cyto-
plasmic/nuclear shuttling during the application of a heat shock.
As expected, DAF-16 rapidly translocated into the nucleus
immediately after the onset of the heat shock independent of
whether fluorescence (Fig. 2b) or bioluminescence is used
(Fig. 2c; Supplementary Movie 1). Unexpectedly, the nuclear/
cytoplasmic intensity ratio of the bioluminescent reporter was
higher than that of the fluorescent reporter, presumably due to
the absence of autofluorescent background in the bioluminescent
images which provided a higher dynamic range (Fig. 2d).

We then used these transgenic animals and compared the
response of DAF-16 during fluorescence and bioluminescence
imaging at room temperature. Importantly, the transgenic animals
that were recorded with fluorescence microscopy showed a
significant increase in nuclear DAF-16 localization with time
(Fig. 2b inset, f; R= 0.95, p < 1e-15). In contrast, DAF-16
remained largely inactive during bioluminescent microscopy
(Fig. 2c, d; R= 0.56, p= 1e-5). We thus speculated that the
nuclear translocation of DAF-16 might be activated by the reactive
oxygen species that were generated during the fluorescence
illumination8,44. Even though this effect is subtle, it is noticeable
and might confound the effect of other stresses. This analysis also
provided the important insight that the exposure of the animal to
the luciferase co-factor does not activate DAF-16 FoxO pathways
and thus is itself not cytotoxic. Taken together, the application of
bioluminescent reporters offers a higher dynamic range due to the
absence of background autofluorescence and could possibly guide
the discovery of stress pathways that would otherwise be obscured
by the cellular response to external light.

Content-aware restoration of photon-starved bioluminescent
images. In absence of background ‘signal’ (bleedthrough, uneven
illumination, autofluorescence) in bioluminescent samples, we

reasoned that prior knowledge of the underlying sample structure
should facilitate image reconstruction of shot-noise limited bio-
luminescence microscopy using deep-learning-based content-
aware image restoration (CARE) algorithms21. To clean up these
images and increase the SNR, we combined these bioluminescent
microscopy with a convolutional neural network model pipeline
that transforms a degraded image to a desired high-quality
target21. Because CARE models for C. elegans and biolumines-
cence are non-existent, we first developed a generalizable training
pipeline to predict high quality, ground-truth images from noisy
input. We thus collected image pairs derived from fluorescence
microscopy acquired at extremely low exposure times reflecting
the noisy input with poor SNR and used high-SNR images from
long exposure times as the ground-truth target (Fig. 3a). The
training dataset consisted of animals transgenic for mTurquoise
expressed in body wall muscles, which showed highly specific
signal that was much stronger than the autofluorescence within
the region of interest which remained undetectable. To generalize
and achieve a high variety of body postures and thus 2D intensity
distributions, we recorded the fluorescence signal from the body
wall muscles in freely moving animals. After data collection and
preprocessing, we varied the hyperparameters to find the optimal
network configuration21,45 specific for our training dataset
(Fig. 3b, Supplementary Fig. 2), and evaluated its out-of-sample
performance on unseen noisy images using the structural simi-
larity (SSIM) and Normalized Root Mean Squared Error
(NRMSE) metrics for training quality (Fig. 3c, Supplementary
Fig. 2 and Methods). We then built an inference pipeline with the
model showing the highest confidence and lowest error to predict
the ground truth from the noisy bioluminescent images which
turned out to be completely clean and devoid of artifacts (Fig. 3d).
In agreement with previous results, we found that the perfor-
mance of the supervised learning procedure is superior to the self-
supervised method46.
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We next determined the impact of the deep-learning restora-
tion on the spatial resolution of the images. Typically, resolution
is estimated from the classical Rayleigh limit or measured directly
from the intensity profile of subresolved image features, e.g., Full
Width Half Maximum (FWHM). To estimate the smallest
resolvable feature detectable in our images, we apply a fast
Fourier transform (FFT) on the image of interest and measure the
spatial frequency distribution. The largest frequencies can either
be used to estimate the FWHM of the point-spread function (see
refs. 47,48 and Methods) or assess the quality of the resulting
images49,50. To estimate whether CARE improves the resolution
of the noisy images, we first applied an FFT, calculated the radial
average of the resulting power spectrum and fitted to a
rationalized equation based on a Gaussian point-spread function
to extract dmin, the minimally resolvable distance49. We then
compared fluorescent input images with large noise contribution
to the ground-truth images used for the training process and
found, not surprisingly, that the presence of noise degenerated the
image resolution (Fig. 3e). We then applied the same procedure
to the images derived from the CARE pipeline after denoising and
were able to recover the high frequencies seen in the ground-truth
images (Fig. 3e ii). With this procedure in hand, we then applied
the method to the noisy bioluminescence images and their CARE
predictions and found an impressive increase in resolution, only
slightly lower than the theoretical value (Fig. 3f). To further
characterize the performance of the deep-learning CARE

pipelines on bioluminescence image restoration, we determined
if there is a need for a minimal signal/noise ratio in the input
images such that these can be restored using our trained CARE
pipelines. Whereas we have not encountered strict limits for the
prediction, because we have successfully restored degraded
images with a SNR slightly above one, the reliability of the
restoration increased noticeably for input image with an SNR >
2.5. To quantify this, we plotted the SNR of the input images
against the obtained SSIM that describes the quality of the
restoration, and found that robust high-quality inferences are
routinely found when the input SNR is above a certain threshold
(Supplementary Fig. 3). Taken together, the combination of
optimized optical path, cofactors39,51 and dedicated machine
learning algorithms from the CARE family enabled the acquisi-
tion of high-SNR images at exposure times as low as 50 ms in
living animals.

Inspired by these positive results, we set out to test the
advantages of low-background autofluorescence recordings, and
established transgenic C. elegans animals that express a green
enhanced Nanolantern exclusively in the touch receptor neurons
(TRNs). High-resolution imaging of these neurons is often
precluded by the abundant autofluorescence that emanates from
the ubiquitous gut granules under epifluorescent illumination
(Fig. 4a). This is of particular concern in old animals52, in which
the signal of the autofluorescence can become more intense than
the specific label, which makes it difficult to distinguish between
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both. Indeed, the fluorescent images derived from animals
expressing GFP in TRNs on a standard epifluorescence micro-
scope showed extensive out of focus light due to background
autofluorescence of the gut (Fig. 4a). In contrast, living animals
that express the TRN::luciferase and were supplied with the
optimized co-factor, a single, specific signal is visible from the
monopolar neurites of these neurons, and no spurious auto-
fluorescence could be seen (Fig. 4b). However, because of the
small size of the TRNs, the obtained SNR is very low at exposure
times as short as 1s. When we applied our previously trained
CARE model to degraded bioluminescent images derived from
transgenic TRNs in aged animals, our model was able to
effectively enhance the SNR and cleanly visualize the neurons
for further inspection (Fig. 4c, see Discussion). Despite the low
SNR of the input image, the inference was astonishingly good. We
also established that this approach is not limited to a specific
neuron in C. elegans, and we have successfully enhanced the
degraded bioluminescent images acquired for ASH, PQR, and
vGLUT EAT-4 expressing neurons in the head (Fig. 4d).
Strikingly, we found satisfactory performance of the model with
exposure times as low as 200ms taken on ASH, a neuron in the
head of C. elegans with a diffraction-limited axon caliper in the
range below <500 nm53. Taken together, we showed that we could
achieve high-performance with a small, but diversified training
dataset composed of 2500 different image pairs, that resulted in a
generalizable and transferable model to infer noiseless images
from severely degraded inputs of different cellular structures in C.
elegans. Consequently, this allowed us to build our pipelines using
free cloud-computing resources, which are accessible to a
standard research laboratory45.

Combining CARE with various deep-learning methods. To
demonstrate that our combination of bioluminescent imaging
and deep-learning can be generalized to other animals and bio-
systems, we generated bioluminescent zebrafish embryos
expressing a membrane-bound red shifted Nanolantern and
mounted them for imaging in our LowLiteScope at 4 h post-
fertilization (hpf) to collect a series of conventional z-stacks (see
Methods). Even though the enveloping layer (EVL)—the outer-
most monolayer of cells surrounding the embryo in the blastula

stage—is clearly visible as a tessellated epithelial cell layer (Fig. 5a)
in the confocal scanning fluorescence microscope pictures, a
strong out-of-focus haze obscured the signal strength and SNR in
bioluminescence contrast. Despite this challenging condition, we
were still able to record a signal reminiscent of the cell junctions
after 100 ms exposure time (Fig. 5b, Supplementary Fig. 4);
however, post-processing such as segmentation proved difficult
due to the poor SNR between the specific membrane label and
unspecific background. Because this out-of-focus background is
absent in the fluorescent images due to the optical sectioning of
the confocal microscope, we reasoned that the blurred biolumi-
nescent images can be reconstructed using a neuronal network
trained on clean images derived from background-free confocal
microscopy. Unfortunately, due to tissue movements during the
acquisition time in the point scanning confocal microscope, we
were not able to collect paired image stacks (degraded vs ground
truth) to assemble a dedicated training pipeline from zebrafish
embryos. We thus wondered if the bioluminescent zebrafish
images can be restored with a pretrained CARE model, originally
established to restore information from low-SNR images of epi-
thelial monolayers in Drosophila wing discs21, a tissue with
similar tessellated morphology and signal distribution. We first
tested that the monolayer morphology of the zebrafish EVL is
similar to the wing disc. To formally approve the similarity, we
trained a Siamese neuronal network with images of zebrafish
epithelial cells (positive score) and random images (negative
score) and calculated the Euclidean distance δ between them. A
low δ means a high structural similarity between the two input
images. Once sufficiently trained, we compared the unseen Dro-
sophila wing disc image with the zebrafish dataset and found a
very low δ indicative for a high similarity between the images
(Supplementary Fig. 5). In contrast, images derived from C. ele-
gans or images from a dataset with labeled nuclei yielded a high δ,
indicative for a low structural similarity. We thus proceeded and
restored the SNR of zebrafish images with the Drosophila model.
Despite the challenging task due to the poor input SNR, we found
that this model was generalizable and fit our input extremely well,
being able to greatly improve the SNR (Fig. 5b, c) and remove
the blur that originated from out-of-focus. Alternative and
dedicated neural networks that learned to restore confocal data
from widefield images54, however, might even improve the
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reconstruction efficiency in future. Critically, these signal
restorations and improvements enabled the segmentation of
individual cells in the embryo (Fig. 5c) which may afford the
calculation of their perimeter and cell area and possibly increase
the optical sectioning capability of the bioluminescence micro-
scopy—a procedure that otherwise would not be possible.

We were next interested to demonstrate cellular dynamics in
mouse embryonic stem cells and generated a stably transgenic cell
line expressing a nuclear localized luciferase by fusing
mTurquoise-NL to histone (see Methods, Fig. 5d). After
optimization of the co-factor delivery (see Methods) we
performed timelapse imaging of individual cells in spheroids
from mESCs and recorded their nuclear dynamics (Fig. 5e,
Supplementary Movie 2). To improve visual quality and the
ability to quantify nuclear trajectories, we sequentially employed
two published convolutional neural networks. We first passed the
noisy images through a pretrained CARE neural network for
denoising nuclear morphologies21 and then performed nuclear
segmentation with the StarDist algorithm55 (Fig. 5e, f). This
approach allowed us to track the migratory path for each
individual nuclei within bioluminescent spheroids. Taken
together, these approaches demonstrate the possibility to image
subsecond dynamics of subcellular localized bioluminescent
probes in C. elegans, zebrafish and mouse embryonic stem cells.

Single-exposure volumetric calcium imaging in moving ani-
mals. Up to this point, the long exposure times in biolumines-
cence imaging have largely hindered the acquisition of three-
dimensional image stacks, especially in moving animals. Often, it
is desirable or even important to obtain the whole 3D repre-
sentation of a fast biological process, e.g., during calcium imaging
of neuron or muscle contraction. We thus sought to establish
single-exposure volumetric light field imaging30 to quantify cal-
cium dynamics in freely moving animals using bioluminescent
calcium indicators. To do so, we equipped our LowLiteScope with
a microlens array that is matched to the magnification and
numerical aperture of the imaging lens and projected the entire
light field onto the qCMOS sensor for plenoptic imaging in four
dimensions (Fig. 6a)56. To obtain the volumetric information
from a flat image, the light field needs to be deconvolved

computationally56,57. Traditionally, however, this process is
computationally very demanding and takes up to several minutes
for a single image31,32 amounting to many hours or even days
computing time for a whole time series, which makes the
recording of cellular dynamics unattainable. Several AI-based
algorithms have been proposed to speed up the deconvolution
and enhance performance24–26, that considerably outperform
traditional light field processing (see Introduction). To create a
neural network for the reconstruction of C. elegans expressing a
fluorescent calcium reporter in the body wall muscles, we first
trained a NN with synthetic light field data24 as the input and
experimental confocal stacks as the target (Fig. 6b). Both features
were derived from the same immobilized animal and each stack
was convolved with the light field point-spread-function (PSF) to
generate the synthetic input data (Fig. 6b, and Methods). As
described before24, this approach shortened the processing time
from 30min to 100 ms per full frame image as compared to
traditional lightfield deconvolution algorithms, but provided
modest results with relatively high NRMSE and low SSIM indices
(Fig. 6c, Supplementary Fig. 6).

We then extended the model using transfer learning with
purely experimental data containing fluorescent light field images
and z-stacks taken from the same sample as just described
(Supplementary Fig. 7). This network knowledge expansion
allowed us to be more specific to the experimental images we got
from our setup, gave more flexibility to perform well for low and
high-SNR light field images, reduced the possibility to obtain
artifacts and improved the inference quality colorgreen (Fig. 6c,
Supplementary Figs. 6, 7). It turned out that the inference quality
was sensitive to the input SNR, as light field images that were
acquired with short exposure times and yielded an SNR < 3.6, the
light-field reconstructions were less reliable, as indicated by a low
structural similarity (Supplementary Fig. 8). We found that
exposure times of 5s in bioluminescence contrast are required to
obtain a clear representation of the scene, but with blurred
dynamics due to sample movement. In order to enable faster
frame rates to ‘freeze’ animal movement and capture the full
dynamics of the calcium dye, we applied the CARE pipeline for
denoising the low-SNR lightfield images obtained at low exposure
times prior to the light field deconvolution within a sequential
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application of two neural networks (Fig. 6e). To do so, we
connected the two networks after perspective extraction (Supple-
mentary Fig. 9). The denoising led to a striking increase in SNR of
the light field image, and with this approach, we were able to
obtain substantially better reconstructions than without (Supple-
mentary Fig. 10).

Using these improvements in training and network concatena-
tion, we were able to obtain three-dimensional calcium recordings
from whole animals with typically 200–500 ms exposure time per
light field image, which we reconstructed to create a full 3D stack
of the bioluminescent scene represented by 31 z-planes with a
spacing of 1.5 μm between sequential planes (Fig. 7a, Supple-
mentary Fig. 10). Critically, at an imaging speed of 5 volumes/
second, this is equivalent to 6.4 ms exposure per frame if it were
acquired with traditional volumetric imaging (e.g., sequential
planes in a confocal z-stacks). In these bioluminescent calcium
recordings, we observed higher intensity on the concave side of
the bend, consistent with high-calcium concentration during
muscle contraction (Supplementary Movie 3). Importantly, the
reconstructions preserved the relative intensity distribution
within the sample, as we did not find noticeable differences
between the reconstructed forward projection and the ground
truth (Supplementary Fig. 6). We also observed that most calcium
signal comes from equatorial region of the muscles and rapidly
drops off towards the lateral sides (Fig. 7b). This implies that the
contractile power is localized to the equatorial regions, where the
largest bending moment can be applied. Consistent with a high-
calcium concentration during muscle contraction, we observed

that the largest intensities mapped to positive body curvatures
(Fig. 7c).

Taken together, we have demonstrated the performance of an
improved bioluminescence microscope on living tissue culture
cells for subcellular labeling of actin and microtubules, zebrafish
epithelial cell organization and nuclear dynamics in mouse
embryonic stem cells. Lastly, we combined a sequential neuronal
network composed of content-aware image restoration pipelines
and light field reconstruction to enable high-speed, subsecond
volumetric imaging of a genetically encoded calcium sensor in
freely moving animals.

Discussion
Here, we have shown that a combination of an optimized optical
path and advanced computational tools substantially improves
the SNR of bioluminescence microscopy that rivals that of con-
ventional fluorescence microscopy to resolve fast biological
dynamics in three dimensions.

Despite the promise of deep-learning-based methods to com-
plement, assist and enhance bioluminescence microscopy, several
challenges and pitfalls are frequently encountered. Apart of the
common issues related to deep learning, which are outlined in
ref. 58, and concern training sample size, hyperparameter choice,
or network architecture, some specific points need to be observed
in excitation-free bioluminescence microscopy.

(1) The constitutive light emission of the luciferases in presence
of the co-factor lead to an extended source of light, which

C
C C C

Subpixel
Upsampling

Encoder Decoder

Encoder Decoder Convolution layer

Subpixel layer

Batch Normalization

ReLu

Maxpooling

Upsampling

Perspective Extraction

R
es

to
ra

tio
n

R
ec

on
st

ru
ct

io
n

C C C

z

y
x

1

n

forward
projection

training

testing

retrain z
y

x

1

n

input

target
input

output

b

e

c d

0.00

1.00

Training model

Similarity (SSIM)

0.10

0.30
Difference (NRMSE)

VCDne
t

Sim
+E

xp
(S

)

VCDne
t

Sim
+E

xp
(L)

VCDne
t

Exp VCDne
t

SIM

Training model
VCDne

t

Sim
+E

xp
(S

)

VCDne
t

Sim
+E

xp
(L)

VCDne
t

Exp VCDne
t

SIM

i) iii)

iv)

inference

*

*

ii)

I(x,y) I(x, y, φ�ϕ)

500ms

SNR = 2.47 SNR = 10.824

500ms + CARE

MLA ex
tra

ct

2

1

3

4

5

6

a

Fig. 6 Single-exposure, volumetric bioluminescence microscopy. a Schematic and photograph of the optimized Low-LightField microscope. (1) Sample,
(2) Objective, (3) Tube lens, (4) Microlens array, (5) Relay lens, (6) camera. b–d Training pipeline to obtain fast deconvolution of 2D experimental
lightfield data into 3D image stacks. b A 3D image stack was acquired on fluorescent samples representative of the bioluminescent signal in the final
experiment. The stack was convolved with the lightfield PSF, to obtain a synthetic lightfield image, which was subsequently used to map onto the 3D
ground-truth stack (see also Supplementary Fig. 7). The training quality of the individual models (c) was tested against unseen samples by calculating the
difference and similarity to the ground truth (N= 70 images/model). The best model (indicated with an asterisk, p < 1.2e-9 compared to the 2nd best
model, Wilcoxon test) with the lowest error and highest similarity was used to d reconstruct experimental bioluminescence images. Scale bars= 50 μm.
Blue dots in c indicated median ± 95% confidence interval. e Pipeline for bioluminescence reconstruction. An initial (i) CARE denoising step is used to
increase the SNR of (ii) noisy bioluminescent lightfield images. The individual layers are color coded according to their function. The clean images (iii) are
fed into the VCD network24 (iv) after perspective extraction to reconstruct the 3D information. Scale bar= 50 μm.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04292-x

8 COMMUNICATIONS BIOLOGY |          (2022) 5:1330 | https://doi.org/10.1038/s42003-022-04292-x | www.nature.com/commsbio

www.nature.com/commsbio


limits optical sectioning of thick samples. The consequence
is a higher out-of-focus background blur in samples that are
much thicker than the point-spread function of the
detection objective. Further, many modalities in fluores-
cence microscopy rely on point-spread function engineer-
ing (STED) of the excitation light beam or modulation of
the excitation intensity (SIM) and incident angles (TIRF,
light sheet microscopy). Due to the absence of an excitation
light beam in bioluminescence microscopy, fundamentally
different approaches need to be taken to break the
diffraction barrier59 or create optical sectioning54. The
combination of bioluminescence microscopy and neural
networks trained on fluorescent samples, as presented in
this study, might provide an entry point for further
improvement in spatiotemporal resolution.

(2) As stated in the introduction, the bioavailability and
distribution of the co-factor within animal tissues is a
limiting factor. In our experiments we noted these artefacts
in the stem cell spheroids, where we observed a pre-
dominantly cortical signal originating solely from the
superficial cells in the aggregate. Such effects will be more
pronounced in brain tissue of small animal models where
the blood-brain barrier hinders transport into neuronal
cells60. Likewise, the C. elegans skin is a permeability
barrier, and mutations that lead to less crosslinking without
affecting animal health, e.g., bus-1761, might facilitate the
bioavailability of the co-factor inside animal tissues.

(3) Despite the impressive performance of the CARE pipelines
on the presented test data, the input images require a
certain information density. If the input SNR of the test
images is too low, a restoration can be expected that might

not sufficiently satisfied pre-established criteria (Supple-
mentary Figs. 3 and 8). In that case, a higher exposure time
should be employed.

(4) The generalizability of the models needs to be determined a
priori. At best, for each biological structure, a dedicated
model is available. However, unwanted autofluorescence
often precluded the acquisition of a high-quality, artefact-
free training dataset, especially if fluorescence emission
from the specific label is weak and spatially overlaps with
autofluorescence. This complicated the construction of a
dedicated model for neuronal morphologies (see also
discussion below).

(5) 4D imaging of cellular dynamics. Due to the longer
exposure times, traditional 3D imaging of bioluminescent
samples using z-stacks is often slower than the underlying
biological dynamics, which leads to blurred out detailed and
motion artefacts. Thus, single exposure, bioluminescence
light field microscopy substantially increases the time
resolution and captures calcium dynamics in freely moving
animal.

Because the whole sample usually emits light, light field
microscopy is the perfect partner in crime with bioluminescence
to obtain a 3D representation of the sample with a single expo-
sure. Traditionally, the resolution of light field images is bound to
the point-spread function of the lenslet array, which, after
deconvolution gives access to micron sized image features. Deep-
learning models to reconstruct light field images, however, have
obtained far better resolution than what is expected from the
design of the lenslet array24. This is due to the training process,
which find a complex transfer function between a low-resolution
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light field image and a high-resolution ground-truth image stack
(Supplementary Fig. 11). Importantly, latter has the nominal
spatial resolution that is determined by the diffraction optics of a
standard optical microscope and can be up to 10 times higher
than the lenslet array employed in a light field microscope56.
Therefore, the neural network learns the how the pattern in the
lightfield images gives rise to a super-resolved 3D representation
(Supplementary Fig. 11b). Likewise, the deep-learning process
also is able to improve the angular resolution and angular field,
depending on the design and quality of the training data. With
these improvements, the deep-learning reconstruction approa-
ches the ground-truth images (after rectification). Still, since the
rectification involves a downsampling, it decreases the spatial
resolution compared to the raw fluorescence image stack (Sup-
plementary Fig. 11), leading to an overall degradation of the
imaging performance.

Supervised deep-learning methods invariable outperform self-
supervised methods—also for bioluminescence microscopy
restoration. Thus, unless a generalizable model is available, the
restoration of each specific structure requires different models—a
feat that is not always within reach. For example, due to the
abundant autofluorescence in C. elegans, we have not been able to
generate a suitable, dedicated training dataset composed of paired
noisy and ground-truth data of neurons (due to their low fluor-
ophore expression compared to muscles). Often though, properly
trained models are transferrable as long as the underlying sample
structure and intensity distribution is similar. How do I know if
the pretrained models accept my input data? To answer and guide
the choice, we have thus set up a classification procedure based on
Siamese neural networks (Supplementary Fig. 5) to formally
distinguish between images of a different classes62. For example,
StarDist algorithms for nuclear segmentation work perfectly
independent of whether the sample comes from mouse stem cell
or C. elegans nuclei. Likewise, given a similar morphology
between zebrafish EVL and Drosophila epithelia, existing models
might be transferable between these structures even though they
are from a different organism. We applied the same reasoning
and used a model trained on a dataset for muscular morphologies
to neurons. The comparison of representative input images
yielded a low Euclidean distance between the intensity distribu-
tion (Supplementary Fig. 5), predicting a similar performance of
the CARE algorithms. Indeed, the restoration proved to work well
in the majority, although we noted that the denoising of the
images depicting the neuronal morphologies appeared to broaden
the width of the axonal caliper. We attributed this effect to the
fact that we used a machine learning model trained on muscle
images that often contain wider intensity distributions. Unfor-
tunately, we were not able to establish a dedicated training
pipeline for neuronal morphologies. Due to the low signal
obtained from the transgenic animals with the neuronal fluor-
escent labels, the autofluorescence arising from other tissues had a
dramatic impact in the ground-truth images—the ground truth
was contaminated with unwanted background autofluorescence.
Thus, the neuronal network learned to recognize these auto-
fluorescent signal even in bioluminescent images, where they
were absent. In future, dedicated models63 will be needed to
assume perfect performance, that involve an automated dis-
criminator or ‘forgetting’ layers.

To unlock the full potential of bioluminescence microscopy,
novel luciferases and cofactors will be needed to obtain single-cell
resolution at high magnification in crowded tissues, e.g., orga-
noids or for whole brain luminescent calcium imaging. In the
future, spatiotemporal resolution and light-capturing ability could
further be improved through combinations of wavefront
coding64, tunable optics65, Fourier-lightfield microscopy66, and
new transformer networks that are trained to provide a spatially

super-resolved representation of the scene67. Our results pave
new avenues for excitation-free, noninvasive low-light imaging in
microscopy, diagnostics, and biomedicine.

Methods
C. elegans culture. Animals were maintained on Nematode Growth Medium
(NGM) plates seeded with Escherichia coli OP50 bacteria using standard
protocols68. Where indicated, age-synchronized animals were used and handled as
described69. The following strains have been used: MSB266[eat-4(ky5)III; hpIs166;
mirEx89[pNMSB26(sra-6p::sng-1::TeNL::unc-54 3’UTR)], MSB343[mirEx123(myo-
3p::TeNL::unc-54)], MSB426[mirSi16 II; eat-4(mir28)III; mirSi15 IV; lite-1(ce314)X,
mirEx168[pNMSB17(eat-4p::TeNL)], MSB557[mirEx218[pNMSB52([mec-
4p::GeNL::let-858 3’UTR)], MSB577[bus-17(br2)X; mirEx123[pNMSB40(myo-
3p::TeNL250::unc-54)]], MSB1041[bus-17(br2)X; mirIs92[pNMSB55(daf-16p::daf-
16::GeNL::unc-54)]

Molecular biology. All plasmids used for this study were constructed using the
Gibson assembly method. pNMSB17, pNMSB26, and pNMSB40 plasmids carrying
the mTurquoise2-enhanced Nanolantern (TeNL) have been described elsewhere34.
To generate pNMSB52 (TRN:GeNL) a mNeonGreen-enhanced NL (GeNL) gene
was cloned with primers 5’-atggtctccaagggagaggaggacaac-3’ and 5’-TTACGCGAG
GATACGCTCGCAGAGAC-3’ into a plasmid containing the mec-4 pro-
moter. pNMSB55 (daf-16GeNL) was constructed using primers 5’-gccaagctatgaat
tcaacttgagcatctctttttcttgg-3’ and 5’-gttgtcctcctctcccttggagaccatcaaatcaaaatgaatatg
ctgccctcc-3’ to amplify daf-16 promoter and ORF and clone then into a plasmid
containing GeNL.

Transgenic mouse embryonic stem cell line generation and maintenance. To
generate the transgenic mouse embryonic stem cell (mESC) line, 1 × 106 G4 cells70

were lipofected using Lipofectamine™ 3000 Transfection Reagent (Thermo Fisher
Scientific, L3000001) mixed with 0.625 μg of PX330 (Addgene, 98750) (sgRNA 5’-
ACTGGAGTTGCAGATCACGA-3’) and 1.875 μg of circular HDR template.
Lipofection was carried out using a PenStrep-free mESC medium (described
below). Cells were single-cell FACS-sorted for mTurquoise expression using a BD
Influx Cell Sorter (646500KZ, model Influx V7 Sorter, software BD FACS Sort-
ware). Individual clones were screened by PCR amplification.

mESCs were maintained and expanded on 0.2% gelatin-coated dishes in mESC
media composed of the following: Knock-Out DMEM (Thermo Fisher Scientific,
10829-018) supplemented with 15%Fetal Bovine Serum (FBS) (in-house mESC-
tested), 1000 U/ml Leukemia Inhibitory Factor (LIF, in-house generated), 1 mM
Sodium Pyruvate (Thermo Fisher Scientific, 11360070), 1× MEM Non-Essential
Amino Acids Solution (Thermo Fisher Scientific, 11140050), 50 U/ml penicillin/
streptomycin (Thermo Fisher Scientific, 15140-122) and 0.1mM 2-mercaptoethanol
(Thermo Fisher Scientific, 31350010). Cells were cultured at 37 °C with 5% CO2.
Medium was changed every day and cells were passaged using 0.05% Trypsin-EDTA
(Thermo Fisher Scientific, 25300054) and quenched 1:5 in DMEM supplemented
with 10%FBS (Life Technologies, 10270106). Cells were tested monthly for
mycoplasma contamination by PCR.

Tissue culture experiments. The luminescent markers clathrin:CeNL, acti-
n:YeNL, and the plasma membrane marker lyn::OeNL14 were transfected into
HeLa cells with Lipofectamine using standard procedure. Three days post trans-
fection, tissue culture cells were supplemented with Hikarazine co-factor (at 0.8 μg/
ml) and imaged in the LowLiteScope. CeNL-Clathrin_pEGFP, ReNL-
Actin_pcDNA3, and Lyn-OeNL_pcDNA3 was a gift from Takeharu Nagai
(Addgene plasmid # 89540, # 89531, # 89528).

Zebrafish. Zebrafish (Danio rerio) were maintained as previously described71.
Embryos were kept in E3 medium between 25 and 31 °C before experiments and
staged according to morphological criteria72 and hours post-fertilization (hpf). All
protocols used have been approved by the Institutional Animal Care and Use Ethic
Committee (PRBB-IACUEC) and implemented according to national and Eur-
opean regulations. All experiments were carried out in accordance with the prin-
ciples of the 3Rs (replacement, reduction, and refinement).

AB wild-type zebrafish embryos were micro-injected at 1-cell stage with 100 pg
GPI-GFP mRNA. mRNA was synthesized using the mMessage mMachine Kit SP6
Kit (Ambion AM1340M). Embryos were dechorionated at sphere stage (4 hfp) and
mounted in 1% low-melting point agarose in Danieauś solution (58 mM NaCl,
0.7 mM KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, 5 mM HEPES) on 35 mm glass
bottom dish (MatTek). Embryos were imaged with a ×20 glycerol-immersion
objective on Leica SP8 confocal microscope. Laser excitation of 488 nm and HyD
detector were used. Z-stacks of 0.2 μm spacing between z-slices were acquired.

Bioluminescence microscopy: instrument design. We redesigned a standard
widefield microscope and with a minimal set of components to minimize photon
loss. We used a ×40/1.25 silicon immersion lens (Olympus) as imaging objective,
and a 100 mm tube lens (ASI Imaging) to project the collected light onto a single
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photon-resolving camera (Hamamatsu Photonics Orca Quest, or Fusion). The
sample was mounted on a standard K-frame on top of a motorized Maerzhaeuser
stage and a tissue culture incubator for temperature and CO2 control. To keep the
sample in focus, an objective piezo-positioner was used (MIPOS 500, Jena Piezo-
systems), in conjunction with an autofocus system (CRISP, ASI Imaging). The
whole setup was controlled with PycroManager73, calling μManager out of Python.

For single-exposure volumetric imaging we added to the setup a microlens array
(200 × 200 lenses) with a pitch of 222 μm and focal length, a radius of curvature of
0.85 mm, a focal distance of 1.86 mm and a size of 11 × 11 × 1.5 mm (Okotech
APO-Q-P222-F1,86 (633)). We chose these specific properties to match the NA of
the described objective to ensure optimal spacing between the lenslets. To align the
focal plane of the microlens array with the image plane of the telescope, we used a
relay lens composed of two lenses of 100 mm focal length. We used a zoom housing
system to modify the distance between the CMOS sensor and the lenses in order to
calibrate the setup before the image acquisition.

Bioluminescence microscopy: image acquisition
Mouse embryonic stem cells (mESCs). Days prior to imaging, 106 transgenic mESCs
were plated on a 35 mm No. 1 glass bottom μ-Dish (Cellvis, D35-10-1-N) coated
with 0.1% gelatin (Stem Cell Technologies, 07903). Cells were 40–85% confluent
during imaging, providing variation in three-dimensional colony (spheroid)
volume and size. Cells were washed with PBS and new mESC media was added
immediately prior imaging to eliminate debris. To image bioluminescence, the
LowLiteScope was equipped with environmental control to maintain 37 °C and 5%
CO2 within a top stage incubator (LCI incubator system, Gas Mixer CA-10 and
temperature controller TP10) and a qCMOS Orca quest C15550-20UP camera.
2–4 μM fluorofurimazine (FFz, Promega) subtrate was perfused through the cell
culture dish, using a peristaltic pump, at a rate of 1 mL/min. Bioluminescence was
observed immediately following substrate perfusion. For timelapse imaging, fresh
substrate was added every 45–60 min. Z-stacks of 5 μm spacing were acquired every
5 min with an exposure time of 500 ms per slice.

Zebrafish. The membrane-bound orange enhanced Nanolantern was subcloned
from Lyn-OeNL_pcDNA3 (Addgene plasmid # 89528) into a GPI-anchor con-
taining plasmid. To generate bioluminescent Zebrafish embryos, 100 pg of
lyn::OeNL mRNA was injected in 1-cell stage embryos to visualize the plasma
membrane. Approximately two hours post-fertilization (2 hpf) at the 64-cell stage,
embryos were dechorionated manually using a pair of forceps74 and incubated in
400 μM fluorofurimazine (FFz, Promega) for 2 h. At sphere embryonic stage
(4 hpf), embryos were mounted in a 35 mm No. 1 glass bottom μ-Dish (Cellvis)
using 1% low melting point agarose (Promega) in Danieauś solution (58 mM NaCl,
0.7 mM KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, and 5 mM HEPES). Before
agarose polymerization, embryos were oriented with blastomere cells facing to the
glass. Bioluminescence imaging was performed with a ×40/1.25-NA silicon oil-
immersion objective, a 100 mm tube lens (ASI Imaging) and a Hamamatsu Orca-
Fusion camera (C14440-20UP) was used. Z-stack images of the embryo were taken
with 2 s or 0.5 s exposure time every 5 μm, resulting in a depth approximately of
155 μm.

C. elegans. Bioluminescence images were acquired on the optimized LowLiteScope
described above. If otherwise stated, L4 or young adult animals were mounted in a
1% agar pad and treated with citrate buffer (pH 6.5), 20% DMSO, 0.05% Triton
X-100, and 1.25% pluronic F128 and the chemical co-factor Hikarazine51 for the
generation of a bioluminescence signal.

Daf-16 in C. elegans. Bioluminescence DAF-16 dynamics were acquired on the
optimized LowLiteScope described above. Young adult animals were mounted in a
1% agar pad and 1 μL of 20 μM fluorofurimazine (FFz, Promega) was added
directly prior to imaging without preincubation time. We acquired the dynamics
with and without exposing the animal to a heat shock. We used a stage-top
incubator system T (LCI), to maintain a temperature of 37 °C during imaging.

Fluorescence DAF-16 dynamics were acquired on a Leica DMi8 inverted
fluorescence microscope with a Hamamatsu Orca Flash4.0 V3 sCMOS and a ×40/
1.1 water-immersion lens (Leica). Animals were mounted in a 1% agar pad. Same
as above, we acquired the dynamics with and without exposing the animal to a heat
shock. We used an incubator (Warner Instruments) to maintain a temperature of
37 °C during imaging. Animals were excited at 488 nm using a Lumencor SpectraX
LED illuminator guided through a triple band pass dichroic (FF459/526/596-Di01-
25x36, Semrock Co.) and images were taken every 30 s with a 100 ms
exposure time.

For final quantification, the intensity of an ROI drawn around the nucleus was
divided by the the intensity of the cytoplasm close by, except for the unstressed
bioluminescence animals where the nucleus was not visible. The nuclear/
cytoplasmic ratio was plotted in R and displayed in Fig. 2c.

Machine learning: content-aware restoration (CARE). CARE has proved that is
possible to effectively denoise fluorescence microscopy images under conditions of
low light or low exposure time21. One source of the distortions in low-SNR
fluorescence images is typically limitations of the camera readout noise, photon

noise or the resolution loss due to under-sampling. Image denoising is the process
of separating the signal s and the signal-degrading noise ν of a distorted image x.
The noisy image can be thought of being the result of a function x= f(y) applied to
the ground-truth (GT) image y. The inverse function, e.g., y= f−1(x) is typically
computationally demanding or intractable to describe mathematically. Instead of
calculating the real denoise function f−1, CARE learns to map an approximation of
this function by processing a large set of pairs (x, y) of noisy images x and their
corresponding true images y by using a CNN based on residual U-net
architectures21.

Denoising bioluminescent body wall muscle and neurons in C. elegans. For
training data acquisition, L4 transgenic C. elegans expressing mTurquoise fused to
nanolantern (MSB343) were imaged on a Leica DMi8 inverted fluorescence
microscope with a Hamamatsu Orca Flash4.0 V3 sCMOS using different camera
exposure times. For imaging, an epifluorescence illumination with a ×10/0.3-NA or
×25/0.95-NA (numerical aperture) water-immersion objective was used. Fluor-
escent animals were excited at 430-nm using a Lumencor SpectraX LED illumi-
nator guided through a triple band pass dichroic (FF459/526/596-Di01-25x36,
Semrock Co.). To obtain a low-SNR image representing the bioluminescent setup,
we used a low exposure time (4 ms), and to obtain a high-SNR image representing
the ‘ground truth’ and the desired inference quality of our model, we used a high
exposure time (100 ms). Both channels were acquired simultaneously through a
Hamamatsu Gemini W-View optical beamsplitter equipped with a CFP/Venus
emission filter set for the ground truth and degraded channel, respectively. The two
images were cropped and superpositioned in python as part of the preprocessing
pipeline prior to the training. Importantly, both channels were recorded at the
same time allowing us to use freely moving animals as training sample. To achieve
a high variety of postures, animals were mounted in a “pool" created with 1%
agarose pad and halocarbon oil 700 (Sigma–Aldrich) to capture different postures
of the worm, recapitulating crawling movement. This method enables dataset
diversification, permitting the model to generalize in freely moving animals. We
collected 2500 pairs of images of average size 1024 × 512, resulting in a mere ≈ 9
GB of training data.

From the 2500 images, we extracted subimages (patches) which were given to a
U-Net type architecture (Denoising CARE 2D topology) for training and
validation21. We tried different hyperparameters to optimize the configuration of
the model and consequently, improve the model performance, e.g., minimize the
loss function. After training we evaluated the models with 100 unseen images of C.
elegans at various positions. Please refer to Supplementary Fig. 1a for more details.
To validate the quality of the prediction, we compute the NRMSE and SSIM against
unseen GT images.

Denoising, segmentation, and tracking of mouse embryonic stem cell. To
restore the bioluminescence stem cell timelapse, we use the human U2OS cells
dataset stained with Hoechst 33342 markers and imaged with a camera exposure
range of 15–1000 ms provided by the authors of ref. 75. We followed21 training
protocol and inferred our embryonic stem cell data with the best model checkpoint
we obtained. We saw a considerable improvement after the processing of every
frame in our timelapse. Exploiting this, we further analyze processed the data by
using a pretrained Stardist segmentation algorithm55 and TrackMate tracking
algorithm76.

Denoising, projection, and segmentation of bioluminescent zebrafish embryo.
All zebrafish images presented in the article were acquired on transiently transgenic
embryos, ≈4 hpf, expressing membrane-bound Nanolantern as described above. To
restore the raw zebrafish bioluminescence images, we leveraged an existing training
dataset with a similar morphological characteristic as the zebrafish epithelia. We
cross verified the similarity of the input images and the training images using a
Siamese neuronal network (see below). Specifically, we use the D. melanogaster
with the membrane marker Ecad::GFP data provided by the authors of ref. 21. We
followed their training protocol and inferred our zebrafish luminescence data with
the best model checkpoint we obtained. After the projection using the neural
networks, we recovered most of the lost cellular membrane information allowing us
to perform further analysis such as cellular segmentation (Fig. 5). To do this, we
applied a morphological dilation filter with kernel size of 3 to join the small gaps
where the membrane is not fully complete. Next, we perform watershed segmen-
tation using the Fiji plugin MorphoLibJ to get single-cell segment distribution77.

Denoising light field images. To denoise light field images we collected a bio-
luminescent dataset using anesthetized transgenic C. elegans under 1 μl of leva-
misole 2.5 mM and treated with 1 μl, 20 μM of fluorofurimazine (FFz, Promega)
mounted in 1% of agar pads expressing mTurquoise fused to nanolantern at dif-
ferent developmental stages e.g., L3, L4, and young adults. All subsequent data
acquisition was done with the same animal and protocol. To diversify the input
distribution of the model, we acquired images with different camera exposure times
e.g., 200 ms, 500 ms, 1 sec, 5 sec, and 10 sec sequentially, using the same field of
view and pairing each image condition to the image with the highest exposure time
we collected. For each position and condition we acquired a stack to collect the
information of how the light changes through the lenslets over different z positions.
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For the 3D stacks we took 3 planes above and below the current position with a
step size of 1 μ, thereby disentangling the inference model quality from the z
position of the bioluminescent sample. For imaging, a bioluminescent light field
setup described above was used. We collected 2034 paired of images with a size of
934 × 976, resulting in ~7 GB. We employed the photon number resolving mode to
decrease the readout noise for both, training and testing datasets. Next, we
employed linear transformations to regularize and prevent overfitting. We used the
CARE 2D denoising training topology, extracting 508500 random subimages with a
size of 128 × 128 and a batch size of 64. The training took 15 h and 32 min in a
workstation equipped with Intel(R) Xeon(R) Gold 6248R CPU, 128 Gb of RAM
and Nvidia Quadro RTX8000 48GB. All subsequent light field denoising and
reconstruction training were done on the same setup. We evaluated the denoised
images by calculating the SSIM and NRMSE metrics in unseen long exposure
bioluminescent images (Supplementary Fig 5).

Machine learning: bioluminescence lightfield reconstruction. For biolumines-
cence light field reconstruction we use the neural network VCD-Net24. VCD-Net is
based on a U-Net topology composed of an encoder-decoder sampling. The views
extracted from the light field images (see Fig. 3) are transformed from perspectives
to channels intrinsically done by the computation of the convolutional layers. Same
as in the original U-Net architecture skip connections are defined between the
encoder and decoder to preserve unprocessed information for better fitting. The
network gradually transform the extracted views from the original light field image
into the conventional 3D stack. The number of filters or dimensionality of the
output space in the last convolutional layer is set to match the desired amount of
planes for the 3D reconstruction.

3D reconstruction with synthetic light field data. For the data acquisition for the
reconstruction of high-quality 3D data from synthetic light field images, we col-
lected high-quality 3D stacks, an epifluorescence microscope with ×40 × /1.1-NA
(numerical aperture) water-immersion objective and 488 nm excitation wavelength
were used. We captured 26 different 3D stacks (of size 1024 × 1024 × 31). Before
the generation of synthetic data, we performed linear transformations, e.g., flipping,
rotating, and inverting the z-axis to augment the dataset. Subsequently, we com-
pute the simulated PSF through the microlens-array using ref. 32 to perform a light
field projection to the acquired 3D stacks using ref. 24. This process generates the
synthetic light field images that correspond to the input in our neural network. Like
the CARE pipeline, the training was done by gradually varying the model coeffi-
cients in order to minimize the loss function. For training we extracted 7518 pairs
patches of size 176 × 176 × 31 pixels and 176 × 176 pixels for the 3D target and
input respectively. We trained for 100 epochs which represented a cost of 7.5 h in a
single graphical processing unit. To evaluate the model reconstruction and
demonstrate that the relative intensities are preserved, we calculated the SSIM and
NRMSE maps against unseen fluorescence stacks. Furthermore, we compare the
intensity profile on one edge of the worm to compare the intensity behavior
between the light field reconstruction and the ground truth (see Supplementary
Fig. 4).

3D reconstruction with experimental light field data via transfer learning. One
of the main weaknesses about training purely with synthetic data is the learning
limitation of experimental information that your setup might suffer, such as noise
or lens misalignment. Therefore, minor errors introduced in the input might
generate artifacts in the prediction. We thus set up a transfer-learning pipeline to
generate a more realistic representation of the experimentally derived biolumi-
nescence dataset. The overall procedure is displayed in Supplementary Fig. 7 and
described as follows. Because light field images and widefield stacks represent
optical information in different ways, performing registration between a couple of
images in the dataset usually fails. Therefore, the reconstruction of the light field
images needs to be made before proceeding to the registration26. As we previously
stated, the 3D reconstruction of light field images is extremely time consuming.
Hence, creating a dataset that consists solely on experimental data where it has
enough information to cover the 3D LF reconstruction manifold would represent a
gigantic effort. Therefore, we made use of the neural network trained purely with
simulated data. For the imaging we used the commercial epifluorescence micro-
scope Leica DMI8 with two available camera ports. In one port, we acquired light
field images where we mounted a microlens array of pitch 192 and an effective
focal length of 3.17 mm (APO-Q-P192-F3.17 (633)) in an sCMOS board level
camera C11440-62U (Hamamatsu Photonics). The second camera port was
dedicated to acquire the corresponding stacks with a CMOS ORCA-Fusion
C14440-20UP. An objective ×40/1.1 water-immersion lens (Leica) and a 488 nm
excitation were employed. We used four different exposure time imaging condi-
tions, e.g., 1, 10, 50, and 100 ms for both, stacks and light field images. The same
field of view was imaged using light field and epifluorescence sequentially. All
conditions were paired to the highest exposure time as GT. A rectification on the
ground-truth image stack was performed to ensure that the pixels in the light field
image and the pixels in the ground-truth stack match perfectly and contain the
same information. In other words, the 3D information for a given emitter in the
GT was thus matched to the positional information in the light field image. This
rectification lead to a resampling of the ground-truth images and the input light

field images that was accompanied with a loss of resolution (Supplementary
Fig. 11).

We first predicted the experimental light field images to get a rough
reconstruction of the structure and then apply an image registration with their
corresponding experimental stack. To do so, we used a scaled rotation, which
performs a translation, rotation and scaling of the images to find the correct
transformation matrix and optimize the alignment, implemented in pystackreg78.
By applying the same transformation to the experiment light field image, the
matching training pairs were obtained. In that way, we were able to generate an
experimental training dataset composed of ~11 GB in matter of hours. We then
loaded the weights of the pretrained network with synthetic images and trained
again with the well aligned images using the same hyperparameters as we discussed
in the previous section. To evaluate the training, we once again calculated the SSIM
and NRMSE metrics against a fluorescent target as our GT. We also compared the
reconstruction intensity profile against the GT (Supplementary Fig. 4).

Bioluminescence light field inference. The bioluminescence light field inferences
were made by rectifying the light field image (see below) and applying both
pipelines consecutively. In other words, aiming to obtain the 3D reconstruction of
the bioluminescence scene, the bioluminescence light field image needs to be
denoised, rectified and reconstructed respectively. First, the trained 2D denoising
CARE pipeline was applied on the raw bioluminescence image to improve the
quality and recover lost information due to the noise. Then, we used the open
source program LFDisplay30 to calibrate and locate the microlens array. Next, the
rectification process was done in the software provided by ref. 32 consisting in a
resampling operation to contain the 11 × 11 angular light field views per lenslet
(this number of angular points proved to work well and are used also in refs. 24,32).
It is used to make sure the perspective extraction is taking the pixel corresponding
for a specific lenslet. If this is not done, the perspective extraction would not work,
and would take shifted/blurred perspectives. Finally, the VCD-Net trained with
experimental data was used to generate the 3D bioluminescent scene.

Machine learning: normalization and quantification errors
Image normalization. Before training and predicting an image, it is important to
normalize it to have a comparable range of intensities. We used the widely used
percentile-base normalization21

Nðu; plow; phighÞ ¼
u� percðu; plowÞ

percðu; phighÞ � percðu; plowÞ
; ð1Þ

where perc(u, p) is the p-th percentile of all pixel values of u. This normalization is
done before feeding the images to the network either for training or inference.

Image quality evaluation. A common image quality metric to compare two images
it is mean squared error (MSE) which measures the average of the squares of the
errors;

MSE ¼ 1
n
∑
n

i¼1
ðyi � ~yiÞ2; ð2Þ

however, this metric cannot be used without normalize the images since the pre-
dicted image ~y, differ considerably compared to the ground-truth image y. To
overcome this, we use the normalized mean squared error NRMSE, (range 0–1,
lower is better), an image quality assessment defined by ref. 21. For this, we applied
equation (1) and parameterized the prediction with γð~yÞ ¼ α~y þ β to scale the
restored image and find the MSE metric where is minimal.

NRMSEðy;~yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMSEðγð~yÞ;Nðy; 0:1; 99:9ÞÞÞ

p ð3Þ

where

α; β ¼ argmin
α0 ;β0

MSEðNðy; 0:1; 99:9Þ; α0~y þ β0Þ: ð4Þ

To compare structural similarity, we use SSIM79, which is a measure of the
similarity between two images. It has a value of 1 if the images are identical and 0 if
they are completely different. We applied the same normalization procedure for the
SSIM calculation.

Machine learning: Siamese network training. A Siamese Neural Network (SNN)
is a class of neural network architectures that contain two or more identical sub-
networks. They have the same configuration with the same parameters and weights
and it is used to find the similarity of the input images by computing the difference
in their local intensity distributions.

While deep neural networks need a large volume of data to train on to classify
input images into a binary yes/no category, SNNs learn a similarity function. This
means that we can use an SNN to evaluate if two images belong to the same class.
This enables us to classify new unseen images and calculate a distance between
them and the training datasets.
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A siamese convolutional neural network was trained for the comparison of
different datasets, measuring the euclidean distance between the output vectors

dð u!; v!Þ ¼k u!� v!k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv1 � u1Þ2 þ ðv2 � u2Þ2 . .

. ðvn � unÞ2
r

: ð5Þ

The network is trained on pairs of images taken from datasets of different
samples. During the training, the loss function is being minimized when similar
morphology and signal distribution are found, e.g., both images belong to the same
category or same biological sample. On the other hand, the loss function is being
maximized if the images belong to different categories. For the training of the
siamese network, we used a normalized fluorescent dataset of mice stem cell, C.
elegans and Drosophila melanogaster with 15,000 images with a size of 64 × 64 for
each biological specimen. We prepared the training dataset by pairing these image
repositories of different biological models and setting a label of 1 for similar
morphology, e.g., images paired to the same biological specimen (belonging to the
same dataset) and 0 for images paired to a different specimen. During the training,
we used contrastive loss with margin as the loss function

LW ¼ YD2
W þ ð1� YÞfmaxð0;m� DW Þg2; ð6Þ

where Y is the target of the network, 0 for dissimilar pairs and 1 for similar pairs,
DW is the euclidean distance between the two inputs, and m is the margin equal to
1. After the training, we compute the distance of each dataset compared to the
zebrafish dataset. We saw a small distance (closer to 0) of the Drosophila
melanogaster dataset against the zebrafish dataset, meaning that there is a strong
correlation in the signal distribution. On the other hand, the distance between the
zebrafish images against the C. elegans and stem cells images is high, which means
a low similarity between these images (Supplementary Fig. 5).

Calculation of the Signal/Noise ratio (SNR). To prove the improvement of the
SNR after the restoration with the neural networks, we calculated the SNR of the
input and the processed image. Here, we define the SNR as the ratio of the mean of
the background subtracted signal intensity over the standard deviation of the
background noise,

SNR ¼
μSignal � μBackground

σBackground
: ð7Þ

To select what was considered as noise and what was considered as signal, we
sorted the intensities present in the image and calculate the gradient of the list of
intensities. The cutting point was selected where a high inflection gradient was
found in the distribution of intensities. The SNR computation only considered the
pixels above that inflection point as signal and the rest as background.

Quantifying spatial resolution. To quantify the spatial resolution on images that
were processed by a neural network, we employed a spatial resolution evaluator
software by Fourier analysis49. The method breaks up the image into weighted
sinusoidal functions, extracting the spatial frequency distribution of an image.
Next, the radial mean of the power spectrum is taken and fitted to a rationalized
function assuming a Gaussian point-spread function:

log½IðkÞ� ¼ A� Be�
ðk�k0 Þ2
2σ2 þ Ce�λjk�k0 j þ Djk� k0j; ð8Þ

where I(k) is the FT of the image, A, B, C, D, k0, and λ are constants that have been
adjusted depending on the input (please refer to ref. 49). The last three terms
describe the azimuth averaged spectral content (AASC), the broadening of the peak
function and the noise, respectively. This method is easy to use, and can be used to
estimate the resolution of the structures present in the images based on the highest
frequencies in the power spectrum. We performed the analysis on a distribution of
N= 10 images randomly taken from the CARE dataset before and after restoration.

To estimate the resolving power of the light field microscope, we performed the
same calculation after the deep-learning-based reconstruction and compared it to
the ground-truth dataset. The images randomly taken from the body wall muscle
and the daf-16 dataset. Strictly, because these images do not contain diffraction-
limited structures, the observation of the largest frequencies might not necessarily
describe the resolution limit of the technique. However, they provide a conceptual
comparison between the deep-learning-based image processing routines and the
unprocessed ground truth.

Statistics and reproducibility. We choose the training, validation and testing
datasets size to be representative of the variability seen across the timepoints. The
models were optimized by based on a random validation set taken from the main
dataset that had no overlap neither with the batch being processed for training nor
the batch for testing. All training procedures were reproduced at least three times.

No statistical methods were applied to estimate a priori sample size. Technical
replicates were defined as different images from the same treatment. Biological
replicates were defined as different animals/cells. The statistical relation between
normalized intensity and time in Fig. 2d was determined using R version 4.0.2
(2020-06-22). Statistical tests in Fig. 6c were performed in R, using a Wilcoxon test
on ranked data. For Supplementary Fig. S2, procedures as outlined in ref. 80 were
followed. In short, the effect sizes and CIs are reported above as: effect size [CI
width-lower bound; upper bound]. The compute the paired median distribution,

5000 bootstrap samples were taken; the confidence interval is bias-corrected and
accelerated. The P-value(s) reported are the likelihood(s) of observing the effect
size(s), if the null hypothesis of zero difference is true. For each permutation
P-value, 5000 reshuffles of the control and test labels were performed.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All training datasets generated during and/or analyzed during the current study are
available in the zenodo.org repository, https://doi.org/10.5281/zenodo.7018876. The
source data are available as Supplementary Data 1.

Code availability
The code of the training and inference pipelines and instructions to run it will be freely
available under https://gitlab.icfo.net/NMSB/efmicro.
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