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Single-cell RNA-sequencing data analysis reveals a
highly correlated triphasic transcriptional response
to SARS-CoV-2 infection
Pablo A. Gutiérrez1,2✉ & Santiago F. Elena 2,3

Single-cell RNA sequencing (scRNA-seq) is currently one of the most powerful techniques

available to study the transcriptional response of thousands of cells to an external pertur-

bation. Here, we perform a pseudotime analysis of SARS-CoV-2 infection using publicly

available scRNA-seq data from human bronchial epithelial cells and colon and ileum orga-

noids. Our results reveal that, for most genes, the transcriptional response to SARS-CoV-2

infection follows a non-linear pattern characterized by an initial and a final down-regulatory

phase separated by an intermediate up-regulatory stage. A correlation analysis of tran-

scriptional profiles suggests a common mechanism regulating the mRNA levels of most

genes. Interestingly, genes encoded in the mitochondria or involved in translation exhibited

distinct pseudotime profiles. To explain our results, we propose a simple model where

nuclear export inhibition of nsp1-sensitive transcripts will be sufficient to explain the tran-

scriptional shutdown of SARS-CoV-2 infected cells.
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S ince the beginning of the SARS-CoV-2 pandemic in 2019,
an unprecedented global research effort has taken place to
elucidate the detailed molecular biology of this virus and its

effects within infected cells1–3. Among the vast amount of
information generated, single-cell RNA sequencing (scRNA-seq)
datasets are particularly interesting as they can provide a detailed
picture of the transcriptional state of individual cells at different
stages during the infection cycle4,5. This is possible because the
synthesis of cDNA libraries is performed on individualized cells
and each cDNA product is labeled with an identifier that provides
unique markers for each transcribed molecule6–8. Therefore,
instead of describing the average transcriptional state of thou-
sands to millions of cells, as in bulk RNA-seq, scRNA-seq cap-
tures a continuum of transcriptional states that can be used as a
proxy to reconstruct the chronological response of a cell popu-
lation to stimuli9–11.

In virology, scRNA-seq was first used to study the hetero-
geneity of hepatitis C virus quasispecies in liver cells12. Since then,
most virology scRNA-seq studies have focused on characterizing
the heterogeneity of host cells infected with a wide range of
viruses such as human papillomavirus, West Nile virus, yellow
fever virus, Zika virus, or human immunodeficiency virus type 1,
among others5,13,14. In addition, more recent studies have started
to address questions related to the transcriptional dynamics of
viruses and infected cells upon infection5,15,16. SARS-CoV-2 is
not an exception, and since the emergence of the COVID-19
pandemic, dozens of papers have been published addressing
different aspects of the molecular biology of this virus17–20.
Unfortunately, despite the large volume of available data, most
scRNA-seq investigations on SARS-CoV-2 have focused mostly
on characterizing cell tropisms or molecular mechanisms at
macroscopic timepoints along the infection cycle.

In this study, we present an analysis of the host cell response
during the progression of SARS-CoV-2 infection using virus
accumulation as a proxy of time. To obtain common features of
the SARS-CoV-2 response, we performed a meta-analysis of three
publicly available scRNA-seq datasets derived from in vitro
inoculation studies of human bronchial epithelial cells21, and
colon and ileum organoids22. Our results revealed that the
average transcriptional gene response to SARS-CoV-2 infection is
non-linear and cannot be described adequately using conven-
tional bulk RNA-seq analysis methods. For this reason, instead of
conventional two-group comparisons (i.e., infected vs non-
infected), our analyses involved pairwise comparisons of indivi-
dual transcriptional profiles and the average transcriptional
response to within-cell virus accumulation. Our results revealed
that about 90% of genes exhibited the same qualitative response
to infection, suggesting that the transcription of most genes is
modulated by a global mechanism. Additionally, a different but
highly correlated response was found among mitochondrial-
encoded genes and genes involved in protein translation. A
mechanism explaining the genome-wide transcriptional response
to SARS-CoV-2 infection is proposed.

Results
The global transcriptional response to SARS-CoV-2 exhibits a
wave-like pattern. First, we tried to understand the global tran-
scriptional response of infected cells by plotting the distribution
of log2 fold changes (log2FC) of transcripts as a function of the
log2 of SARS-CoV-2 levels (Fig. 1a and Supplementary Data 1).
This analysis indicated that the average transcriptional response
displays an oscillatory behavior that can be divided qualitatively
into three phases. The early phase occurs at low viral RNA levels
(≲1 TPT) and is characterized by a global shutdown of tran-
scription where 99.5% of genes in hBECs, 98.7% in colon, and

98.0% in ileum are downregulated. The intermediate phase occurs
at medium viral loads and is characterized by an increase in
expression levels with maximum fold changes between 1.4 and
4.1. Finally, the late phase corresponds to the highest SARS-CoV-
2 levels and was characterized by a second downregulation of
cellular transcripts.

As the oscillatory transcriptional response to SARS-CoV-2
might bias conventional bulk differential gene expression (DGE)
analyses, we tested the effect of selecting cells from different
phases as contrasting groups. In Fig. 1b, we show the volcano
plots that result from comparison with all the infected cells, in
addition to comparison involving early, intermediate, and late
phase cells (Fig. 1b). These results unveil that the classification of
genes as down- or up-regulated is highly dependent on how the
contrasting cell populations are selected. For example, in hBECs,
the bulk DGEs analysis revealed 9429 down- and 481 up-
regulated genes; and similar results were obtained using cells from
the early phase (9710 down- vs 200 up-regulated genes).
However, this trend is reversed when cells from the middle
phase are used: 263 down- vs 9647 up-regulated genes are now
observed. Finally, as expected from the distribution of log2FC
values, DGE trends are reversed again when cells from the late
phase are compared (9,810 down- vs 99 up-regulated genes).
Similar results were obtained in the analysis of infected colon and
ileum cells (Fig. 1b and Supplementary Data 3).

To better compare the global transcriptional response at
different stages of the viral infection cycle, we plotted the average
scaled gene expression values at different viral loads (Fig. 1c). To
do this, expression values at each log2 interval were transformed
into z-scores with respect to the mean and standard deviations of
uninfected cells. This correction removes biases in the mean
response patterns that might result from highly-expressed genes.
After this transformation, intervals of up- or down-regulation
correspond to positive and negative values, respectively. Data
ordered in this way can be interpreted as a pseudotime, which,
here, represents doublings in viral concentration9,11,23. In hBECs,
z-scores fluctuated between −1.2 and 0.9, and transitions between
phases occurred at pseudotimes of 3.5 (~10.3 TPT) and 6.2 (~72.5
TPT) (Fig. 1c). In colon- and ileum-organoids downregulation
during the early phase was less pronounced but exhibited a
stronger upregulatory response in the intermediate phase. In
these cases, z-scores fluctuated between −0.5 and 2.3 in the colon,
and −0.3 and 4.7 in the ileum. Transition points occurred at
pseudotimes of 4.9 (~28.9 TPT) and 11.4 (~2,701.3 TPT) in the
colon, and 4.0 (~15 TPT) and 12.7 (~6653 TPT) in the ileum
(Fig. 1c). To verify the specificity of the SARS-CoV-2 response,
we performed a similar analysis on ileum cells infected HAstV1
(Supplementary Fig. 3) which revealed a different profile
characterized by a rapid drop in transcription levels followed by
a steady increase at high virus accumulations. A strong wave-like
behavior was not observed in this case.

Classification of gene responses. Next, we proceeded to identify
genes with abnormal transcriptional profiles using two metrics:
the root-mean-square deviation (RMSD) to the average response
vector and the magnitude of the initial response (Δ0) (Fig. 2a).
The latter was used to give a stronger weight to datapoints at
earlier infection times and to select for genes where the initial
transcriptional response was either weaker or stronger than
expected. A transcriptional profile was considered an outlier
when either of these parameters was outside the intervals defined
by the 1.5×IQR rule. Our results indicate that most cellular
transcripts have a response pattern qualitatively similar to the
mean response vector, with only 7.2 to 10.1% of genes exhibiting
atypical transcriptional profiles (Fig. 2b and Supplementary

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04253-4

2 COMMUNICATIONS BIOLOGY |          (2022) 5:1302 | https://doi.org/10.1038/s42003-022-04253-4 | www.nature.com/commsbio

www.nature.com/commsbio


Data 3); 183 outliers were shared between the three cell types
(Fig. 2c). A gene ontology (GO) analysis of all the outliers from
the three cell types (Fig. 2d) revealed that this subset was enriched
in genes involved in immune response (e.g., GO:0030593,
GO:0031640, and GO:0061844), translation (e.g., GO:0042274,
GO:0000028, GO:000641, and GO:0002181), respiration (e.g.,
GO:0006120 and GO:0042776), and control of cellular pro-
liferation and death (e.g., GO:0001895). The subset was also
significantly depleted in genes involved in intracellular protein
transport (e.g., GO:0006886), protein phosphorylation (e.g.,

GO:0006468), and regulation of transcription (e.g., GO:0006355
and GO:0006357).

As the differential transcriptional response might be the result
of general regulatory mechanisms induced or inhibited by SARS-
CoV-2, we decided to interrogate the data to identify common
responses involving interferon signaling, transcription factors,
and RNA binding proteins.

Transcriptional response of IFN-stimulated genes. At early
infection times, SARS-CoV-2 downregulates the expression of

Fig. 1 Global transcriptional response to SARS-CoV-2 in human bronchial epithelial cells, colon- and ileum-organoids. a Distribution of log2FC values for
all genes plotted against SARS-CoV-2 reads using a log2 scale. Mean log2FC values at each interval are shown to the left of each histogram. b Volcano plot
analysis of infected cells with respect to noninfected cells using bulked cells, and subgroups comprising cells at early, middle, and intermediate phases of
infection. For clarity, corrected P values were removed from the ordinate axis. c Mean transcriptional response of each cell type. Each plot was calculated
from individual gene profiles scaled using z-scores with respect to the transcript levels observed in uninfected cells. These plots confirm the global
oscillatory transcriptional profile of genes at increasing SARS-CoV-2 levels.
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IFN-stimulated genes (ISGs) involved in antiviral defense24–27.
We then decided to investigate whether genes involved in the IFN
response follow an abnormal transcription pattern upon SARS-
CoV-2 infection. Firstly, we analyzed the transcriptional profiles
of genes encoding for MDA-5 and RIG-I, which are the main
intracellular sensors that recognize double-stranded RNAs and
trigger the innate immune response upon infection27–29. Analysis
of the transcriptional profiles of MDA-5 and RIG-I, encoded by
genes IFIH1 and DDX58, respectively, revealed that both have a
transcriptional response like the average response vector (Fig. 3a

upper panels and Supplementary Data 3). This result suggests
that the transcriptional shutdown of the IFN response induced by
MDA-5 and RIG-I is probably not specific, and results from a
more general mechanism affecting most genes in the infected cell.

We then proceeded to analyze the response of individual ISGs
in the three datasets. To do this, we selected genes using a recently
curated and validated dataset of ISGs30. A total of 238, 179, and
219 ISGs were identified in hBECs, colon, and ileum, respectively
(Supplementary Data 3). As expected, a GO analysis revealed that
most of the identified ISGs are involved in the defense response to

Fig. 2 Classification of genes based on their similarity to the mean response vector. a Examples of selected individual transcriptional profiles. Individual
transcriptional responses (blue) were compared to the mean response (gray) using the root-mean-square deviation (RMSD) and the magnitude of the
initial response (Δ0). The Pearson correlation (r) for each comparison is also provided. b A plot of RMSD and initial response values for all genes, allows
the identification of genes exhibiting abnormal transcriptional responses (outliers, red). c Venn diagrams illustrating the distribution of outliers among the
three datasets used in the analysis. d GO-enrichment analysis of outliers from the three datasets indicating that most outliers correspond to genes involved
in immune response, translation, and cellular respiration.
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viruses (Supplementary Fig. 3). Like the MDA-5 and RIG-I
receptors, 77–90% of ISGs exhibited an average transcriptional
response to SARS-CoV-2 indicating that the mRNA levels of
these genes are negatively regulated at the onset of infection and
their response is probably a consequence of the global transcrip-
tional shutdown (Fig. 3b). Examples of ISGs exhibiting different
response are shown in Fig. 3d. An analysis of abnormal
transcriptional responses identified 55 genes from hBECs, 18
from colon and 25 from ileum; six of them common to the three
datasets: heat shock protein HSP90α (HSP90AA1), interferon-
induced protein with tetratricopeptide repeats 2 (IFIT2),
interferon-induced protein with tetratricopeptide repeats 3
(IFIT3), heat shock cognate 71 kDa protein (HSPA8), normal
mucosa of esophagus-specific gene 1 protein (C15orf48), and
interferon alpha-inducible protein 27 (IFI27) (Fig. 3c).
HSP90AA1 and HSPA8 are chaperone proteins which are
typically required for viral replication31. In addition, HSPA8
has been shown to be an attachment factor for avian infectious

bronchitis coronavirus32. C15orf48 expression, on the other hand,
has been shown to be involved in the mitochondrial stress
response (MISTR) and is expressed by pathogenic macrophages
in severe COVID-1933,34. Interestingly, IFI27 and IFIT3 are also
involved with the mitochondrial processes; the former locates in
the nuclear inner membrane and is indispensable for mitochon-
drial function35, and the latter is a mediator of the mitochondrial
antiviral signaling (MAVS) complex triggered by the MDA-5 and
RIG-I signaling pathways36. However, a connection between
these genes and the global transcriptional profiles observed upon
SARS-CoV-2 infection does not seem obvious.

Transcriptional response of transcription factors. To further
understand the effect of SARS-CoV-2 on transcription factors
(TF), which could explain the initial transcriptional shutdown, we
investigated the effect of SARS-CoV-2 on individual transcription
factors from a curated collection of known and likely human
transcription factors37. Our analysis identified a total of 785, 448,

Fig. 3 Global transcriptional response of ISGs in human bronchial epithelial cells, colon-, and ileum-organoids. a The transcriptional response of the
cytoplasmic viral receptors MDA-4 and RIG-I correlated with the mean transcriptional response. Enrichment of GO terms associated with both signaling
pathways are indicated. b Distribution of RMSD and Δ0 profiles of ISGs. Genes considered to be outliers are shown in red. c Upset plots illustrating the
number of outlier ISGs shared among the three datasets. The first row corresponds to ISGs exhibiting an average response in the three datasets. The six
genes exhibiting a differential response to SARS-CoV-2 infections in the three cell types are indicated. d Representative examples of ISGs exhibiting
average (IRF9) and abnormal (HSP90AA1) transcriptional responses to SARS-CoV-2 infection.
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and 531 TFs in hBEC, colon, and ileum, respectively, with 409
TFs in common to the three datasets (Supplementary Data 3).
Again, most transcriptions factors behaved like the mean
response vector, and only 36 TFs in hBECs, 16 in colon, and 22 in
ileum were classified as outliers (Fig. 4a and Supplementary
Data 3). Three TFs were found to be differentially regulated in the
three datasets: the Y-box binding protein 1 (YBX1), and the
proto-oncogene TFs JUN and JUND (Fig. 4b and Supplementary
Data 3). YBX1 encodes a highly conserved cold shock domain
protein with DNA and RNA binding properties implicated in the
regulation of transcription and translation, pre-mRNA splicing,
DNA reparation, mRNA packaging, cell proliferation, stress
response, and apoptosis. It has been shown to be a component of
messenger ribonucleoprotein (mRNP) complexes with a role in
microRNA processing38,39. The product of gene JUN is a com-
ponent of the AP1 TF complex involved in oncogenic
transformation40 and is targeted to the nucleolus, where it seems
to modulate nucleolar architecture and ribosomal RNA
accumulation41. The expression profile of JUN stands out as its
transcriptional profile suggests transcriptional activation at later
infection times and its similar response in the three datasets
suggests that this gene might be a marker that induces apoptosis
in infected cells (Fig. 4c). JUND encodes a JUND proto-oncogene
that is a functional component of the AP1 TF complex and has
been proposed to protect cells from p53-dependent senescence
and apoptosis42. These results suggest that the transcriptional
response of most TFs is non-specific; however, exceptions

probably include TFs expressed after the initial transcriptional
shutdown induced after the activation of cell-death pathways at
late SARS-CoV-2 infection stages. Again, a connection between
JUN, JUND, or YBX1 and the global transcriptional response is
unclear.

RNA binding proteins. As levels of mRNA might be modulated
by their interaction with RNA binding proteins (RBPs), we
explored the transcriptional profiles of genes from a dataset of
canonical RBPs from the eukaryotic RBP database, EuRBPDB43.
More than a thousand RBPs were identified in each dataset
(Fig. 5a and Supplementary Data 3), of which ~10% exhibited
abnormal transcriptional profiles (Fig. 5b). Interestingly, 83
abnormal responding genes were shared between the three
datasets (Fig. 5b) which contrast with the analysis of ISGs and
TFs where only a handful of abnormal responding genes shared
among datasets. Figure 5c shows illustrative examples of repre-
sentative RBPs with average (SRPNP35) and abnormal (RPS5)
transcriptional responses. GO analysis of genes abnormal
responding genes revealed that these were enriched in terms
involved in the synthesis of proteins involved in translation
(Fig. 5d, lower panel). A detailed analysis of the outliers revealed
that the common response involved 41 large ribosomal subunit
proteins, 30 small ribosomal subunit proteins, four elongation
factors (EEF1A1, EEF1B2, EEF1G, and EEF2), the FAU ubiquitin-
like and ribosomal protein S30 fusion (FAU), the histidine triad
nucleotide-binding protein 1 (HINT1), the heterogeneous nuclear

Fig. 4 Global transcriptional response transcription factors. a Distribution of transcriptional responses of identified transcription factors from hBECs,
colon, and ileum datasets. Outliers are colored red. b Upset plots illustrating the number of outlier IFs shared among the three datasets. Most TFs (359)
were common to the three datasets and exhibited an average response. The three TFs exhibiting a differential response to SARS-CoV-2 infections in the
three cell types are indicated. c Representative examples of TFs exhibiting average (NFKB1) and abnormal (JUN) transcriptional responses.
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ribonucleoprotein A1 (HNRNPA1) involved in pre-mRNA pro-
cessing in the nucleus, nucleolin (NCL) involved in ribosome
processing, the ras-related nuclear protein (RAN) essential for the
translocation of RNA and proteins through the nuclear pore
complex, the signal recognition particle 14 (SRP14) involved in

protein targeting to ER, and the ubiquitin A-52 residue ribosomal
protein fusion product 1 (UBA52) involved in protein degrada-
tion by the 26S proteosome, and the YBX1 gene identified in the
previous TF analysis. Finally, a search in the STRING database,
revealed that most abnormal responding RBPs are part of a highly

Fig. 5 Transcriptional response of RNA binding proteins. a Distribution of transcriptional responses of RBPs identified in hBECs, colon, and ileum
datasets. Outliers are colored in red. b Upset plots illustrating the number of outlier RBPs shared among the three datasets. In contrast to ISGs and TFs, a
large number of RBP outliers were common to the three datasets (83). c Representative examples of RBPs with average (SRPNP35) and abnormal (RPS5)
transcriptional responses. d GO annotation of the 25 most common terms of RBPs with normal and abnormal transcriptional responses. e A STRING
database search of differentially regulated RBPs revealed a highly connected functional network suggesting that transcripts involved in translation are
regulated differently with respect to most genes.
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connected physical network, which suggests a distinct response to
SARS-CoV-2 infection of genes implicated in translation
(Fig. 5e).

Gene regulatory networks. As gene expression is often modular
and usually involves the coordinated expression of functionally
related genes9, we investigated the correlation of transcriptional
responses between pairs of genes in the three datasets. First, we
constructed individual correlation networks using the normalized
transcriptional profiles (Supplementary Data 2, 4). Then, we used
the individual networks to construct a general response network
comprising all the edges shared between the three individual
networks (Fig. 6a). The resulting network comprised 25 con-
nected components, the largest of which consisted of 348 genes
that exhibited transcriptional profiles similar to the mean
response vector (Fig. 6b). The second largest connected compo-
nent comprised 54 genes, and included mostly ribosomal protein

genes, and proteins involved in translation. In this case, all genes
within the network exhibited a qualitative behavior that was
characterized by weaker downregulation and upregulation of
transcription during the early and middle phases of infection as
compared to the mean response vector (Fig. 6b). Interestingly, the
third largest connected component was comprised exclusively of
mitochondrially encoded genes, suggesting that response of
mitochondrial genes upon SARS-CoV-2 infection follows a dif-
ferent mechanism from the global response and genes involved in
translation (Fig. 6b). The remaining connected components
comprised between two to three genes and some of them
exhibited transcriptional responses like those observed in the
largest components (Supplementary Data 4); they were no
included as part of the largest subnetworks as the some of the
edges failed to meet the filtering criteria. Previous studies have
suggested a role of the 5′ UTR of mRNAs in the ability to escape
the global suppression of translation induced by SARS-CoV-2

Fig. 6 Correlated responses to SARS-CoV-2 infection common to the three cell types. a The network was constructed by connected pairs of genes
exhibiting a significant correlation in their transcriptional profiles in the three datasets. This analysis resulted in a network with 25 connected components
comprising between 348 to 2 genes. Node size is scaled to represent the clustering coefficient. b The transcriptional profiles of the three largest connected
components revealed distinct response profiles associated with the mean response (component 1), genes involved in translation (component 2), and
mitochondria-encoded genes (component 3). In each example, profiles of individual genes are colored gray; the average transcriptional response of genes
within each module is shown in red. For comparison, the mean response profile is shown in blue. c Sequence logos of the 5′ UTRs reveal the presence of
characteristic sequence signatures for genes belonging to modules 1 and 2.
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and related coronaviruses44–46. To investigate the presence of
potential sequence motifs in transcripts from the largest con-
nected components, we generated a sequence logo using the first
20 nucleotides of reference sequences from these clusters. This
analysis suggests that transcripts from the first connected com-
ponent tend to have A, C, or G as the first nucleotide with equal
probability and higher GC content between positions 7–20
(Fig. 6c). In contrast, sequences from the second connected
component contain TOP-motifs in their 5′ UTRs, which is to be
expected for transcripts encoding ribosomal proteins and com-
ponents of the translation apparatus46,47. Interestingly, analysis of
protein translation in cells expressing SARS-CoV-2 protein Nsp1
revealed that the translation efficiency was slightly higher for
genes with lower GC content in their 5′ UTR46. Finally, an
analysis of the transcriptional profiles in cells infected with
HAstV1 did not reveal a distinct correlated response in genes
from modules 1, 2, and 3 (Supplementary Fig. 3), suggesting that
transcriptional clusters are probably specific to SARS-CoV-2.

Discussion
Our analysis indicates that the global transcriptional response to
SARS-CoV-2 infection exhibits a behavior characterized by three
phases: an initial downregulatory phase, a middle upregulatory
phase, and a late downregulatory phase. Clearly, this type of
response cannot be analyzed using the standard two-group
comparisons typically used in bulk RNA-seq methods (e.g., vol-
cano plots)48–50. This is of special concern in the case of viral
infection studies, as macroscopic timepoints (e.g., days or hours)
comprise a complex mixture of cellular states that must be dis-
entangled prior to running any biologically meaningful analysis.
Failure to do this can introduce biases in the selection of DGEs as
opposing regulatory trends in cells at different transcriptional
stages might cancel each other. Analysis of the viral infection
process should probably include other metrics, and as suggested
here, transcriptional profiles might be a better representation of
the response of individual genes along the infection timeline.
Standard filtering procedures of cells in scRNA-seq are also
another important source of bias, as is customary to discard cells
with a low number of mapped genes and/or a high proportion of
mitochondrial transcripts51–54. This filtering strategy might not
be adequate in studies of viral dynamics as, at late infection times,
cells are expected to be dominated by viral transcripts and the
diversity of transcribed genes is expected to be low, thus removing
cells that might provide valuable information on the molecular
events happening in the late stages of viral infection. In our
opinion, in single-cell virology studies, cells should be selected
with respect to the number of individual transcripts and not the
total number of mapped genes. A similar logic applies to the
removal of cells with high levels of mitochondrial-encoded
transcripts, as overexpression of mitochondrial genes might
represent a legitimate response to viral infection, as has been
shown for SARS-CoV-255–57.

Considering our observations, we wish to propose an updated
model of SARS-CoV-2 infection. A good model must be able to
explain: (i) the transcriptional downregulatory phase at early
infection times exhibited by about ~90% of genes, (ii) the selective
transcriptional modulation of mitochondrial-encoded genes and
genes involved translation, (iii) the global increase in host tran-
script levels observed at the middle of the infection cycle, and (iv)
the second downregulatory phase at late infection times. This
behavior seems to be a feature of SARS-CoV-2 infection as a
similar analysis performed on ileum cells infected with HAstV1
did not reveal a correlated response for most genes, and did not
exhibit an intermediate upregulatory phase (Supplementary Fig. 3
and Supplementary Data 6).

We believe that the multiprong strategy proposed by Finkel
et al.26, in combination with the known biology of the viral
nonstructural protein 1 (nsp1), can explain the results presented
here. The multiprong strategy explains the shutdown of host
protein synthesis induced by SARS-CoV-2 as a combination of
three effects: a global inhibition of protein translation, degrada-
tion of cytosolic cellular transcripts, and blockage of nuclear
mRNA export26. Additionally, it is also well-established that nsp1
is responsible for orchestrating the transcriptional and transla-
tional shutdown induced by SARS-CoV-2. First, nsp1 is a strong
inhibitor of translation, affecting translation of both host and
viral mRNA58 by docking its C-terminal domain to the mRNA
entry channel of the 40S ribosomal subunit25,59,60. Second, the
expression of nsp1 is sufficient to induce the global degradation of
host mRNAs26,44,61–63 by an unknown mechanism independent
of a viral encoded RNase and/or ribonuclease L62,64. Third,
immunoprecipitation and mass spectrometry studies have shown
that the N-terminal domain of nsp1 interacts with the mRNA
export receptor protein NFX1 preventing its binding to mRNA
export adapters that results in the accumulation of mRNA in the
nucleus65. Clearly, nsp1 is the key factor involved in shutting
down host protein expression.

The observed downregulatory phase is well-supported by many
studies that have shown that soon after infection, SARS-CoV-2
mRNA transport is stalled and there is a rapid degradation of
cytoplasmic mRNA26,44,61–63. Some believe that the inhibition of
nuclear mRNA export is a direct consequence of the widespread
mRNA degradation in the cytosol62. However, we believe the
opposite to be true and propose a mechanism where the down-
regulatory phase results from altering the natural steady-state
dynamics between mRNA degradation and export to the cyto-
plasm (Fig. 7). The levels of mRNAs in the cytoplasm are
determined by a steady-state equilibrium between the rates of
transcription, nuclear export, and natural RNA turnover in the
cytoplasm66, therefore, a global blockage of mRNA export will
compromise the input of newly synthesized mRNA into the
cytoplasm resulting in global decrease of cytoplasmic mRNA
levels and an increase in concentration in the nucleus (Fig. 7b). In
other words, expression of SARS-CoV-2 nsp1 leads to a cellular
state where mRNA is stalled at the nucleus and cannot replace the
mRNA being degraded in the cytoplasm by its natural turnover
rate (Fig. 7b). This is supported by RNA-seq data on infected cells
that revealed nuclear accumulation of mRNA and a reduction of
mRNAs in the cytoplasm and increased levels of intronic
reads26,67. Moreover, the mRNA export block precedes the
reduction in mRNA levels and only requires expression of nsp1;65

and a study of IFNB1 induction upon SARS-CoV-2 infection
found that soon after infection, transcribed mRNAs fail to dis-
seminate from transcriptional foci and are preferentially retained
in the nucleus62.

Inhibition of nuclear transport by nsp1 can also explain the
differential transcriptional response of transcripts involved in
translation and mitochondrial-encoded transcripts. Most nuclear-
encoded transcripts are exported into the cytoplasm by a
mechanism involving the heterodimeric export receptor
NXF1·NXT168 and it has been shown that nsp1 displaces NXF1
from the nuclear pore complex, impairing the docking of
mRNA65. However, some transcripts can be exported by alter-
native pathways, indeed, regulation of mRNA export is a
mechanism used to modulate several critical biological processes
such as DNA repair, stress response, and maintenance of
pluripotency68. We postulate that host transcripts can be classi-
fied into nsp1-sensitive and nps1-insensitive. In our view, nsp1-
sensitive transcripts correspond to transcriptionally active loci at
the time of infection that are blocked by the interaction of nsp1
with NXF1. These transcripts correspond to about 90% of the
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transcriptome, including genes involved in the interferon
response. This could explain the differential response of mRNAs
involved in translation. Interestingly, a selective nuclear export
mechanism of mRNAs related to translational function, including
ribosomal proteins, have been shown to exist involving protein
TDP-4369, an RNA binding protein involved in the regulation of
transport and translation of mature mRNA in the cytoplasm70.
The differential regulation of genes involved in translation has
been independently demonstrated by several studies, which
revealed that genes with 5′ terminal oligopyrimidine tracts tend to
escape the suppression of translation induced by SARS-CoV-246

and replacement of these sequences with purines results in
reduced translational efficiency46. However, we believe that pos-
sessing the TOP motif is not a sufficient condition for the
selective transport of translational mRNAs, as several TOP con-
taining sequences are part of the mean response subset (Supple-
mentary Data 3). Selective mRNA export inhibition also explains
the differential response of mitochondrial-encoded genes as these
genes do not require a nuclear export mechanism and should not
be affected by the nsp1 blockage. The differential regulation of
mitochondrial-encoded genes is also well-supported by experi-
mental evidence that showed that they are less affected by SARS-
CoV-2 infection than cellular transcripts26,46,56.

The upregulatory response observed during the middle phase
of SARS-CoV-2 infection is, to the best of our knowledge, an
unexpected observation that deserves additional discussion. If we
assume that nsp1 is degraded or inactivated after it has accom-
plished its function, then the stalled mRNA transcripts can be
finally exported to the nucleus in a rapid burst which would look
like an upregulatory event during the intermediate infection stage
(Fig. 7). This rapid burst of newly synthesized transcripts can also

explain the late but strong response of the interferon system
typical of COVID-19 disease63,71,72. It is also reasonable to
assume that, when the nuclear blockage stops, it is already too late
for the host cell to outcompete the replicating virus, which results
in the final downregulatory phase observed at high SARS-CoV-2
levels. Qualitatively, this behavior can be simulated with a simple
dynamical model where global mRNA export and transcription
act like switches (Fig. 7a). Expression of nsp1 acts like an off-
switch for nsp1-sensitive transcripts that results in their accu-
mulation in the nucleus while nsp1-insensitive transcripts can
transit normally to the cytoplasm. The middle phase corresponds
to the inactivation of the nsp1-induced blockage, which releases
the stalled transcript to the cytoplasm that results in the increased
transcription levels observed during the middle phase. Finally, the
late phase corresponds to a shutdown of transcription that also
results in a global decrease in transcript levels.

In summary, our analysis reveals a complex transcriptional
response to SARS-CoV-2 infection that can be easily explained
using the blockage of mRNA transport as the key molecular
event. We believe that this model provides a parsimonious
explanation of the host transcriptional and translational shut-
down induced by SARS-CoV-2 and suggests that targeting the
nsp1 ability to disrupt nuclear export might be the key to
counteract the effect of this virus within infected cells.

Methods
Data. Raw sequencing files were downloaded from the Sequence Read Archive
(SRA) at NCBI using the SRA toolkit 2.11.1 (https://www.ncbi.nlm.nih.gov/sra/)
and included previously published scRNA-seq data on SARS-CoV-2 infection of
human bronchial epithelial cells (hBECs)21 and human intestinal epithelial cells
(hIECs)22. The hBECs data comprised transcripts from a mock infection, and cells
at 1-, 2-, and 3-days post-infection (dpi) with SARS-CoV-2 isolate USA/USA-

Fig. 7 Proposed model to explain the transcriptional response of infected cells to SARS-CoV-2 infection. a Selective nuclear export of nsp1-sensitive
transcripts will result in the degradation of cytoplasmic mRNAs and their accumulation in the nucleus. Once the blockage is removed, retained transcripts
are released, resulting in a rapid increase in cytoplasmic mRNA levels. A shutdown of transcription during the late infection stage will result in a global
decrease of host mRNAs. b A simplified dynamical model simulating nuclear mRNA export and transcription as on/off switches is enough to model the
mean transcriptional profile. c Reinterpretation of the mean transcriptional profile of hBECs. In contrast to the on-off switch model presented in panel b, it is
most likely that the shutdown of transcription and nuclear export occurs gradually, as shown in the upper panel. The dotted lines represent early infection
states that could not be detected in the present study.
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WA1/202021. The hIECs data was produced from colon- and ileum-derived
organoids infected with SARS-CoV-2 isolate strain Germany/BavPat1/202022, and
comprised transcripts from a mock infection, and infected cells at 12- and 24-hours
post-infection (hpi). In both studies, gel bead-in emulsions (GEMs) were prepared
from single-cell suspensions using the 10× Genomics Single Cell 3′ Library Kit
NextGem V3.1 (10× Genomics, USA). hBECs libraries were sequenced on a
NovaSeq600 system21 and hIECs using a HiSeq4000 system22. In addition, a
dataset involving infection of ileum organoids with human astrovirus 1 (HAstV1),
and studied under similar conditions, was used as a control73.

Data processing. Datasets were processed using custom Python scripts. Only
sequences with a perfect match to the 10× genomics whitelist (3M-February-
2018.txt.gz) and no ambiguous nucleotide calls in the UMI portion were used in the
analysis. Selected sequences were mapped to a custom database comprising the
complete set of reference human messenger RNAs available at NCBI, mitochondrial-
encoded transcripts from the human reference mitochondrial genome (NC_012920),
and SARS-CoV-2 genomes corresponding to the reference sequence Wuhan-Hu-1
(NC_045512) and isolate USA/USA-WA1/2020 (MW811435) and Germany/BavPat1/
2020 (MZ558051) used for infection in both datasets (Supplementary Data 1). Read
mapping was performed with MagicBLAST74. Only sequences that mapped unam-
biguously to a single gene with more than 95% coverage and a single UMI were
included in this analysis. In contrast to the originally published analyses21,22, we
selected GEMs with respect to the total number of transcripts (UMIs) instead of the
total number of transcribed genes. Empty GEMs and multiplets were removed from
the datasets using a custom Python script that ordered GEMs with respect to the
number of transcripts transformed using a log10 scale; then the local standard deviation
of the ordered data was calculated using a window size of five datapoints. Upper and
lower thresholds delimiting multiplets and void beads were determined using the
1.5×IQR rule (Supplementary Table 1 and Supplementary Fig. 1). Mapping infor-
mation from the selected cells was then transformed into a matrix of counts which
included genes detected in at least one hundred cells (Supplementary Data 1 and
Supplementary Fig. 2). Furthermore, in contrast to the original analysis of these
datasets, we did not discard cells with a high percentage of transcribed mitochondrial
genes as overexpression of mitochondrial genes could be a legitimate response to
SARS-CoV-2 infection52,56.

Estimation of gene frequencies. The probability of detecting n transcripts from a
gene in a cell depends on its relative frequency and the total number of sampled
transcripts. Therefore, as cDNA amplification of cellular transcripts represents only
10 to 20% of the total mRNA content6,75,76, gene count data from scRNA-seq
contains many missing values, or dropouts, that result from the Poisson sampling
of low abundance transcripts in cells with few sequenced transcripts9,76. The
probability of observing ngi read counts for a given gene g ∈ {1, 2,…, G} across cells
i ∈ {1, 2,…, I} can be modeled using a Poisson distribution where the likelihood of
observing ngi counts given a particular transcript abundance θ gi is given by:

LðθgiÞ ¼ pθgi ðngi;NiÞ ¼
ðθgiNiÞngi e�θNi

ngi!
; 0 ≤ θgi ≤ 1 ð1Þ

withNi ¼ ∑
G

g¼1
ngi

In this work, gene abundances were calculated as the weighted average of gene
frequencies (θ) with respect to the normalized likelihood function ðL̂Þ and
multiplied by a scaling factor of 104 (transcripts per ten thousand or TPT):

TPTgi ¼ 104 ∑
1

θ¼0
θgiL̂ðθgiÞ ð2Þ

with L̂ðθgiÞ ¼
LðθgiÞ

∑I
i¼1 Lðθg Þ

:

An uncorrected normalized matrix was also calculated. Corrected and
uncorrected frequency matrices are available in Supplementary Data 2.

Volcano plot analysis. Basal levels of expression for each gene were determined
using the average expected TPT values from mock cells with at least one gene count
per gene of interest. Infected cells, on the other hand, were binned with respect to
viral loads using a log2(TPTSARS-CoV-2+ 1) scale. Only cells with at least one count
for SARS-CoV-2 and the target gene were used. P values were calculated using a
two-tailed Mann–Whitney U-test and corrected using the Benjamini–Hochberg
method77 using a significance threshold of 0.01. Differential expression analysis
results are provided in Supplementary Data 3.

Z-score profiles and analysis. Normalized transcriptional responses were calculated
using a z-score of the transcription levels observed at each log2(TPTSARS-CoV-2+ 1)
corrected by the levels and standard deviation observed in the uninfected cells. For each
cell type, a mean response vector was calculated by averaging the normalized response
of all genes. Pairwise comparisons between individual transcriptional profiles and the
mean response vector were performed using a root-mean-square deviation (RMSD)

metric and the magnitude of the initial response (Δ0) was measured as the average z-
score of the first five datapoints. A transcriptional response was considered an outlier
when either the RMSD or Δ0 was outside the intervals defined by the 1.5×IQR rule.

Gene ontology (GO) analysis. Analysis of biological functions was performed
using a custom database of high-quality GO terms of human proteins downloaded
from the Uniprot database (UniProt Consortium, 2015; Supplementary Data 3).
Quantification of the most abundant GO terms was performed using custom
scripts that mapped selected genes to a dictionary of GO annotations. GO-
enrichment analysis was performed by comparison of gene subsets to the list of
mapped genes as background. P values were calculated using Fisher’s exact test and
corrected Benjamini–Hochberg method (with a threshold significance of 0.01).

Construction of correlation networks. Undirected correlation networks were
built using the normalized transcription profiles. A link between two genes was
established when the two-sample Kolmogorov–Smirnov test indicated that both z-
score distributions followed the same distribution (P ≤ 0.01) and the corrected
Pearson correlation coefficient between expression profiles was r ≥ 0.9. In both
instances, P values were corrected using the Benjamini–Hochberg method77. Only
those genes which had at least 50 measurements in common were included in the
analysis (Supplementary Data 5). Network properties were characterized with the
Python networkX package78 and visualized with Gephi79.

Statistics and reproducibility. Details about the statistical analyses used in this
study are described in the corresponding methods section. For volcano plots, the
statistical significance was calculated using a two-tailed Mann–Whitney U-test.
Transcriptional responses were classified as outliers when their RMSD or initial
response (Δ0) was outside the intervals defined by the 1.5×IQR rule. For GO-
enrichment analyses, P values were calculated using Fisher’s exact test. In the
construction of the correlation network, correlations were measured using the two-
sample Kolmogorov–Smirnov test on the Z-score distributions (P ≤ 0.01) and the
corrected Pearson correlation coefficient between expression profiles (r ≥ 0.9). In all
these cases, P values were corrected using the Benjamini–Hochberg method77.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The original datasets used in the analysis can be accessed at NCBI archived under
BioProject accession codes PRJNA701930, PRJNA658984, and PRJNA720321. All data
generated or analyzed during this study are included in this article and its supplementary
information files. The Tables and processed datasets that support the findings of this
study are available at the Zenodo repository (https://zenodo.org/) under the identifier
(https://doi.org/10.5281/zenodo.7198900).

Code availability
Codes that support the findings of this research are available at GitHub (https://github.
com/paguties/SARS-CoV-2_scRNAseq.git).
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