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DrugnomeAI is an ensemble machine-learning
framework for predicting druggability of candidate
drug targets
Arwa Raies 1, Ewa Tulodziecka1, James Stainer1, Lawrence Middleton1, Ryan S. Dhindsa 2,3, Pamela Hill4,

Ola Engkvist 5, Andrew R. Harper1, Slavé Petrovski1,6 & Dimitrios Vitsios 1✉

The druggability of targets is a crucial consideration in drug target selection. Here, we adopt a

stochastic semi-supervised ML framework to develop DrugnomeAI, which estimates the

druggability likelihood for every protein-coding gene in the human exome. DrugnomeAI

integrates gene-level properties from 15 sources resulting in 324 features. The tool generates

exome-wide predictions based on labelled sets of known drug targets (median AUC: 0.97),

highlighting features from protein-protein interaction networks as top predictors. Drugno-

meAI provides generic as well as specialised models stratified by disease type or drug

therapeutic modality. The top-ranking DrugnomeAI genes were significantly enriched for

genes previously selected for clinical development programs (p value < 1 × 10−308) and for

genes achieving genome-wide significance in phenome-wide association studies of 450 K UK

Biobank exomes for binary (p value= 1.7 × 10−5) and quantitative traits (p value= 1.6 ×

10−7). We accompany our method with a web application (http://drugnomeai.public.cgr.

astrazeneca.com) to visualise the druggability predictions and the key features that define

gene druggability, per disease type and modality.
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Druggability (also known as tractability) is an important
concept in drug discovery that influences target identifi-
cation and may impact the clinical development success

rate. The concept of the “druggable genome” was first introduced
in 20021, and was then defined as the ability of a protein to bind a
modulator and provide a desired therapeutic effect. Estimates
suggest ~22% of genes in the human genome are druggable by
conventional small molecule and monoclonal antibodies2, with
only half of these demonstrating disease associations3. Whilst
prior druggability predictions were reliant on targets of approved
compounds and broad gene classifications, it is plausible that with
a wealth of large-scale gene- and systems biology-level data, such
as population-based intolerance metrics, tissue expression data
and protein structures, our ability to predict druggability may
have improved. This work aims to both expand our under-
standing of druggability, by illuminating gene properties that
influence their binding affinity, and facilitate the target identifi-
cation process, by highlighting genes that have similar drugg-
ability profiles to successful drug targets.

While the focus of this study is on druggability, it should be
noted that druggability differs from the related concept of
ligandability. The latter refers to the ability to develop a mod-
ulator (e.g. a small molecule) that can bind to a protein4, while
druggability focuses on the ability to elicit a therapeutic effect
because of activation or inhibition of the gene by a modulator and
the modulator’s ability to reach the protein (e.g. a modulator
passing the cell membrane in the case of intracellular targets).
Therefore, some genes may be ligandable but not necessarily
druggable. When there are two equally ligandable targets, the goal
is to prioritise the one that is more likely to be druggable.

Predicting druggable genes using standard machine learning
(ML) approaches has been historically challenging due to the
relatively small number of known druggable targets, high data
imbalance and lack of reliable negative samples5,6. To address
these issues, we developed DrugnomeAI, a ML framework for
ranking genes according to their predicted druggability scores.
This is based on mantis-ml7, an ML tool for gene prioritisation,
which addresses the aforementioned challenges by incorporating
a stochastic semi-supervised learning approach on positive-
unlabelled data. We integrated multiple data sources into the
framework resulting to 324 generic and druggability-specific
gene-level features, including protein-protein interaction and
pathway-based data, to elucidate the druggability problem at a
systems biology level. We developed multiple druggability models
to produce exome-wide druggability profiles with varying levels of
stringency, based on the underlying evidence provided by dif-
ferent historical labelled datasets of successful drug targets. The
end goal is to provide a holistic and unbiased view of the
druggability profile of each gene, as it is captured by multiple
models, each contributing to a different aspect of their drugg-
ability potential.

Several resources have been created for assessing target’s
druggability. Some databases, such as Open Targets8 and
TractaViewer9 provide curated tractability data that have been
integrated from various sources. In addition, computational tools
have been developed for predicting target druggability using
features derived from gene-level annotations, protein amino-acid
sequences and system-level data5,6. TargetDB10 provides a ran-
dom forest model for tractability prediction using integrated
gene-level annotations. DrugMiner11 employs a neural network
model for protein druggability prediction trained on protein
sequence composition features. Yu et al.12 utilised physiochemical
properties, protein sequence composition and conservation pro-
files to train a hybrid deep learning model consisting of a con-
volutional neural network (CNN) and a recurrent neural network
(RNN). A bagging ensemble of support vector machines is

developed by Lin et al.13 using protein sequence composition
features while Costa et al.14 constructed a decision tree-based
meta-classifier using topological features derived from system-
level gene interaction networks. In addition to the aforemen-
tioned generic target druggability approaches, some tools have
narrower scopes predicting targets druggability for specific dis-
eases or therapeutic areas such as oncology15, while other tools
are designed for predicting druggability for a specific type of
activation or inhibition (e.g. kinease-inhibitor16). In addition,
there are druggability prediction methods that focus on predict-
ing druggability at binding sites such as TRAPP17, BiteNet18,
eFindSite19 and TACTICS20.

Our work expands on previously published druggability pre-
diction methods by integrating a comprehensive set of
druggability-associated features and by providing disease-
agonistic and domain-specific models to highlight genes for
therapy areas and drug modalities. Specifically, we demonstrate
applications of DrugnomeAI in predicting gene druggability for
oncology and non-oncology diseases. Our drug modality-specific
models predict which genes have properties that make them
amenable to modulation by small molecules, monoclonal anti-
bodies and/or proteolysis-targeting chimeras (PROTACs), an
emerging drug modality that offers potential improvement over
the traditional small-molecule therapeutics and broadens the
exploration space for druggable targets.

To the best of our knowledge, this study provides the first ML
model for predicting druggability of genes for PROTAC-based
therapeutics. PROTACs are bifunctional molecules with two
heads: one head binds to the target protein and the other one
binds to E3 ubiquitin ligase, a cellular enzyme21. The two heads
are connected by a linker. PROTACs are protein degraders, i.e.
they degrade target proteins instead of inhibiting them, therefore,
potentially producing persistent therapeutic effects22. Unlike
small-molecules that require deep binding sites, PROTACs have a
unique ability in targeting proteins with shallow pockets or
lacking well-defined binding sites, therefore, targeting proteins
that may otherwise be undruggable by traditional approaches22.

Moreover, researchers can use the DrugnomeAI framework to
generate custom and additional disease-specific models by pro-
viding user-defined seed genes for training the models. We have
validated DrugnomeAI’s predictions against successful drug tar-
gets and top hits from a phenome-wide association study (Phe-
WAS) of 450 K participants from the UK Biobank (UKB)23. Our
analysis reveals that protein-protein interaction networks and
biological pathway insights are among the most predictive fea-
tures for binding affinity and therapeutic outcomes. All
DrugnomeAI predictions are available at a fully interactive web
application to facilitate exploring druggability profiles and
visualising key features (http://drugnomeai.public.cgr.astrazeneca.
com).

Results
We sought to infer gene druggability across the whole human
exome (19,846 genes) leveraging historical data from known
drug targets and other types of evidence around gene tract-
ability, all integrated within the DrugnomeAI ML framework
(Fig. 1a). We obtained lists of known or likely druggable genes
from the Pharos24 and Triage2 resources to train the Drugno-
meAI ML models (see Methods). We primarily used two
training datasets from Pharos: Tclin (610 genes), consisting of
genes that are targets of approved drugs with known mechan-
ism of action, and Tchem (1592 genes), consisting of genes that
are targets of compounds included in ChEMBL25 or
DrugCentral26. In addition, we used three training datasets
from the Triage resource: Tier1 (1411 genes), which comprises
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of genes with approved drugs and clinical-phase drug candi-
dates, Tier2 (658 genes), consisting of genes with known
bioactive drug-like small molecules and genes with high
sequence similarity with approved drug targets, and Tier 3 A
(845 genes), which consists of secreted or extracellular proteins
that have distant similarity to approved drug targets and gene

families not already included in Tier 1 or Tier 2. We trained
DrugnomeAI on each of these training sets and extracted
druggability predictions based on different types of evidence
provided by each labelled dataset.

We tested a range of different druggability and gene-level
annotation feature sets during DrugnomeAI training (Fig. 1b).
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Specifically, we explored four different feature sets, in increasing
order of number of features:

1. “InterPro”, comprising of the feature set extracted exclu-
sively from that resource;

2. “Pharos+ InterPro” referring to the druggability-specific
features only from the respective resources;

3. “All (druggability)” denoting all druggability-specific data
sources along with the generic ones inherited from mantis-
ml (namely ExAC and Essential Mouse genes data), and

4. “All+Mantis”, which in addition to the aforementioned
datasets, encompasses other sources utilised in mantis-ml,
such as gnomAD, Genic Intolerance, GWAS, and MGI
essential data (see Methods).

We evaluated and compared the performance of four classifiers
(Random Forest, Extra Trees, Support Vector Machine and
Gradient Boosting) across different combinations of labelled
datasets and feature sets employed for the predictions. We
observe that the Gradient Boosting model consistently out-
performed the rest of the classifiers across all configurations of
label sets (Supplementary Fig. 2b) and feature sets (Supplemen-
tary Fig. 1). Gradient Boosting’s hyperparameters were further
fine-tuned (see Methods) and it was selected as the default clas-
sifier for DrugnomeAI training.

Analysis of significant druggability-associated features with
ablation and Boruta. In order to select an optimal non-
redundant feature set we initially performed a basic ablation
analysis. Specifically, we trained DrugnomeAI using three dif-
ferent feature sets, employing more or less extended druggability-
associated features, and specifically the: “Pharos+ InterPro”, “All
(druggability)” and “All+Mantis” feature sets (already described
in the previous section). AUC scores achieved by the “Pharos+
InterPro” dataset were either identical or comparable with those
extracted by the more extended “All (druggability)” and “All+
Mantis” feature sets (Supplementary Fig. 1). Thus, we selected the
“Pharos+ InterPro” as the default feature set for DrugnomeAI to
eliminate any non-informative redundancy from the more
extended feature sets. Next, we performed feature importance
analysis with Boruta algorithm27 for the Tclin (Fig. 2c) and Tier 1
labelled datasets (Supplementary Fig. 2a). Boruta is an iterative
feature selection method to determine if a feature has a statisti-
cally robust predictive power. It compares the predictive power of
each feature against randomised versions of the original feature
set (called “shadow” features), using a Random Forest as the base
model for classification. Weak features (i.e. features proved sta-
tistically less relevant than the maximum of “shadow” features)
are removed. Once the model converges, a “confirmed” set of
features (i.e. features that are considered predictive) are identified,
and are ranked based on Z-scores representing importance scores
(see Methods).

For both models, the most important features were related to
protein-protein interactions based on the DGIdb28, InWeb29,
Reactome30 and STRING31 networks. This is consistent with
existing literature that has demonstrated that interaction partners

of druggable genes are also more likely to be druggable2. In
addition, protein-protein interactions are linked to biological and
pathological processes and, recently, protein-protein interactions
have gained increasing attention as drug targets due to their
potential for selectively modulating specific pathways32,33. Upon
performing principal component analysis (PCA; Supplementary
Fig. 3) of the Tclin and Tier 1 datasets, we observed that the first
principal components capture only ~4.5% of the variance,
indicating the presence of highly non-linear relationships between
the features (Supplementary Fig. 10).

After selecting the optimal feature set, we investigated its
performance across different classifiers for an array of labelling
variants. We provide detailed AUC score breakdown across the
various configurations (Supplementary Fig. 2b). The Gradient
Boosting classifier consistently and significantly outperformed the
other algorithms across all the examined configurations. Speci-
fically, we applied the DeLong test to compare the AUC scores
attained by the Gradient Boosting against the respective
performance from all other classifiers (Random Forest, Extra
Trees, Support Vector Classifier and Deep Neural Net) based on
the Tclin and Tier1 labelled datasets (Supplementary Fig. 24). We
observe that Gradient Boosting significantly outperforms all other
classifiers for both the Tclin and Tier1 labelled datasets (Tclin
dataset – DeLong test p values of Gradient Boosting vs Random
Forest: p= 4.34 × 10−18, Extra Trees: p= 1.01 × 10−18, SVC:
p= 2.44 × 10−10, DNN: p= 6.58 × 10−12; Tier1 dataset – DeLong
test p values of Gradient Boosting vs Random Forest:
p= 5.04 × 10−29, Extra Trees: p= 2.83 × 10−30, SVC:
p= 3.32 × 10−15, DNN: p= 1.71 × 10−10). Finally, Gradient
Boosting’s AUC score is characterised by the lowest variance
which means that a choice of a labelled set does not influence
noticeably the classifier performance (Fig. 2a). As for the labelled
dataset variants, the highest results were obtained using Tclin and
Tier 1 (AUC= 0.99 and 0.97, respectively; Fig. 2b).

Validation and exploration of DrugnomeAI top hits. Since the
best performance was achieved using a Gradient Boosting model
trained with the Tclin or Tier 1 label sets, we use these predictions
as our reference models for further analyses (referenced as
DrugnomeAI-Tclin and DrugnomeAI-Tier1, respectively). We
obtained the top 5% of genes ranked by DrugnomeAI-Tclin and
DrugnomeAI-Tier1, each consisting of 992 genes (Supplementary
Data 1). Notably, there is 63% (621 genes) overlap between the
two sets (Supplementary Data 2).

Top DrugnomeAI hits with clinical evidence. We conducted a
systematic review across all clinical development activities to
identify genes that have been implicated as targets in therapeutic
drug development (i.e. genes that have been selected for clinical
development; see Methods) among the top 5% of genes ranked by
the DrugnomeAI-Tclin and/or DrugnomeAI-Tier1. We grouped
these genes into 20 rank intervals, each containing ~992 genes.
We found that genes ranked in the top 5% by DrugnomeAI-Tclin
were significantly enriched among genes selected for clinical

Fig. 1 Overview of DrugnomeAI framework and integrated data. a Illustration of the DrugnomeAI model development workflow. The whole exome
(19,846 genes) is split into random balanced subsets of positive (i.e. druggable) and unlabelled (i.e. druggability is unknown) genes. An ensemble of
classifiers is generated such that multiple models are trained on each subset with stratified tenfold cross-validation. The process is repeated for L
stochastic iterations. The final druggability scores are obtained by averaging the prediction scores from out-of-bag sets across all stochastic iterations from
the ensemble models. b Data resources integrated in DrugnomeAI. i Feature integration from 15 data sources. m: number of GWAS-specific terms relevant
to a disease; k: number of MGI-specific terms relevant to a disease; n: number of tissues affected by a given disease. ii Data sources of genes druggability
labels for disease-agnostic models. iii Resources for gene labels used for the domain-specific models (detailed descriptions for each model available in
Table 4). *labels are extracted from PHAROS based on the input disease terms.
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development (Odds Ratio= 132.78, Fisher’s exact test
p < 1 × 10−308; Fig. 3b, Supplementary Data 3, Supplementary
Figs. 4, 5). 753 genes (63% of the interval) ranked in the top 5%
by DrugnomeAI-Tclin and 268 genes in the 5–10% rank interval
are supported by prior clinical development efforts (Fig. 3a). We
observe similar levels of strong enrichment among genes ranked
by DrugnomeAI-Tier1 (Fig. 3c, d). Remarkably, based on the
cumulative distribution function we observe that 25% of top
ranked genes by DrugnomeAI explain 95% of genes supported by
clinical evidence (Fig. 3e), and 80% of genes supported by clinical
evidence are ranked among the top 10% genes by DrugnomeAI.

We conducted further analysis of the top 5% genes ranked by
DrugnomeAI-Tclin and DrugnomeAI-Tier1. 76% and 61% of
genes in Tclin and Tier1-based predictions, respectively, have
been selected for clinical development. Furthermore, 627 (63%)
and 475 (48%) genes from the Tclin and Tier1-based predictions,
respectively, are targeted by small molecules. Of these genes, we

found clinical trials had progressed into phase IV for 501 (51%)
and 346 (35%) genes in Tclin and Tier1-based, respectively
(Fig. 4a, b). We also analysed the therapeutic areas that the top
5% genes ranked by DrugnomeAI models have been implicated
with, and observed that the majority of those genes have been
selected for clinical development for genetic diseases, cell
proliferation disorders (CPD), nervous system diseases and
immune system diseases targeted by small molecules or
monoclonal antibodies (Supplementary Fig. 11).

Genes with no prior evidence in clinical development. In the
previous section, we demonstrated that there are 239 and 387
targets among the top 5% predicted hits from the Tclin and
Tier1-based DrugnomeAI models, respectively, that do not have
any clinical trials data associated with them (Fig. 4a, b). These
genes are predicted by DrugnomeAI to be druggable but do not
yet have drugs in clinical development. We identified potential

Fig. 2 Analysis of DrugnomeAI models' predictive performance and top contributing features. a DrugnomeAI AUC score distribution across different
classifiers and labelling variants utilising the druggability-specific dataset (the statistical significance of Gradient Boosting outperforming the other
classifiers has been calculated using DeLong test, with the corresponding p values provided above each barplot). b AUC scores (with Gradient boosting)
across different labelling variants utilising the druggability-specific dataset. c List of druggability-associated features extracted by the Boruta feature
selection algorithm (as “Confirmed” features) on the Tclin dataset.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04245-4 ARTICLE

COMMUNICATIONS BIOLOGY | (2022)5:1291 | https://doi.org/10.1038/s42003-022-04245-4 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


Fig. 3 Validation of DrugnomeAI ranked genes using clinical evidence. Number of genes (n= 19,846) supported by clinical evidence per rank intervals
based on predictions of (a) DrugnomeAI-Tclin and (c) DrugnomeAI-Tier1. 0–5% consists of genes ranked in the top 5% whereas 95–100% contains genes
ranked in the bottom 5%. Enrichment of genes supported by clinical evidence in each rank interval based on predictions of (b) DrugnomeAI-Tclin and (d)
DrugnomeAI-Tier1. Larger odds ratio values indicate higher enrichment. e Cumulative distribution function (CDF) plot of genes supported by clinical
evidence per rank interval.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04245-4

6 COMMUNICATIONS BIOLOGY | (2022)5:1291 | https://doi.org/10.1038/s42003-022-04245-4 | www.nature.com/commsbio

www.nature.com/commsbio


Fig. 4 Clinical and non-clinical evidence for the top 5% of genes ranked by DrugnomeAI. Clinical evidence available for the top 5% genes (n= 992)
ranked by (a) DrugnomeAI-Tclin and (b) DrugnomeAI-Tier1. Each bar indicates the number of genes targeted by each molecule type per clinical trial
phase. c Number of genes among the top 5% DrugnomeAI Tclin-based and Tier1-based predictions satisfying each distinct type of non-clinical evidence.
d Number of genes among the top 5% DrugnomeAI Tclin-based and Tier1-based predictions satisfying multiple types (x= 1,2,..6) of non-clinical evidence.
Asterisks (*) denote that the respective gene sets are significantly enriched for each type or set of types of non-clinical evidence compared to 10 random
gene sets of equal size (the median p value is eventually used to assess significance in each case).
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associations between these genes and diseases using non-clinical
evidence (i.e. associations between genes and diseases that are not
supported by clinical trials). We used six types of non-clinical
evidence: genetic, animal models, somatic mutations, RNA
expression, pathways, and literature (Fig. 4c; Supplementary
Fig. 28. see Methods). We performed enrichment analyses for the
top-ranking genes from Tclin and Tier1 without clinical support,
against one or more types of support accompanying each of them,
performed via Fisher’s exact test against multiple random subsets
of genes (null subsets). For each enrichment analysis, we report
the median p value achieved across 10 iterations against random
(null) genes sets (Fig. 4d, Supplementary Fig. 27). We found all
239 (Tclin-based predictions) and 386 out of 387 (Tier1-based
predictions) genes to be associated with diseases and supported
by at least two types of non-clinical evidence (Tclin - Fisher’s
exact p= 1.5 × 10–08; Tier1 - Fisher’s exact p= 5.2 × 10–10;
Fig. 4d, Supplementary Fig. 27). Large proportions of the Tier1
and Tclin top ranking genes without clinical evidence are further
supported by three, four or even five types of support, and sig-
nificantly so compared to random gene sets (Fig. 4d, Supple-
mentary Fig. 27). Finally, there are 24 genes from Tclin-based
predictions (Fisher’s exact p= 2.4 × 10–3) and 26 genes from
Tier1-based predictions (Fisher’s exact p= 1.3 × 10–2) that are
supported by six types of evidence (Fig. 4d, Supplementary
Figs. 9, 27). While all levels of support are statistically significant,
we observe that for genes supported by six types of evidence,
Fisher’s exact test p value are relatively lower compared to the
other analyses. This is expected though due to the smaller number
of genes supported by all six types of non-clinical evidence.
Overall, it’s notable that the top hits predicted by DrugnomeAI
(without having prior clinical evidence) are highly and sig-
nificantly enriched for multiple types of non-clinical evidence,
suggesting that they are more likely to be biologically relevant
with regards to their druggability potential.

We then expanded the enrichment analysis for non-clinical
evidence across all genes ranked by the DrugnomeAI-Tclin and
DrugnomeAI-Tier1 models. Overall, top ranked genes by the two
models are significantly enriched among genes supported by
genetic evidence (DrugnomeAI-Tier1: Odds Ratio= 5.8, Fisher’s
test p value= 9.35 × 10−38 and DrugnomeAI-Tclin: Odds
Ratio= 4.6, Fisher’s test p value= 4.64 × 10−32). In addition,
there is high enrichment among genes supported by the other five
types of non-clinical evidence (Supplementary Data 4, Supple-
mentary Figs. 6, 7).

Next, we explored the features of genes not previously pursued
clinically to examine whether there are any identifiable traits that
would distinguish them from genes selected for clinical develop-
ment. We plot the kernel density estimate of the top 20 features
from Tclin and Tier1 and employ the Chi-squared statistical test
to compare the distribution of any of these features between genes
with or without clinical evidence (Supplementary Figs. 25, 26).
Top ranked features include monoclonal count, antibody count,
protein sequence length, and DGIdb interaction types (p value <
1 × 10−308) where we observe that genes without clinical
evidence have on average smaller values than genes that have
been selected for clinical development. Notably, the CTD
processes “decreases metabolic processing” and “increases
uptake” have non-zero distributions among the genes without
clinical evidence and are significantly different from the
distributions of genes with clinical support. This may suggest
that genes with no prior clinical evidence may be involved in
metabolic pathways which are highly complex or more challen-
ging to target. Other significant features include associated
pathways and interactions from the Comparative Toxicoge-
nomics Database (CTD). For example, we observe that “CTD
increased cleavage” is highly present among genes that have been

selected for clinical development but is depleted in genes without
clinical evidence. That is expected as cleavage is one of the most
established steps involved in drug mechanism of action, such as
antibody drug conjugates for treating treating tumours34, and
seems to have already been studied and covered extensively
among known drug targets (detailed explanation of all these
features is available in Supplementary Data 5).

Enrichment with significant gene hits from large-scale
PheWAS studies. We investigated the overlap between the top
5% DrugnomeAI predictions and the highly ranked genes from
large-scale phenome-wide association studies (PheWAS) for
binary and quantitative traits extracted from 450 K samples from
the UKB cohort23 (see Methods). We analysed the enrichment of
top 5% genes ranked by DrugnomeAI models and supported by
clinical evidence with genes achieving genome-wide significance
(p value < 5 × 10−8) from PheWAS in UKB (Fig. 5, Supplemen-
tary Fig. 8). We observe significant enrichment of top 5% genes
ranked by DrugnomeAI-Tclin among the top PheWAS for binary
traits (Odds Ratio= 2.9, Fisher’s exact test p value= 1.69 × 10−5)
and for quantitative traits (Odds Ratio= 2.5, Fisher’s exact test p
value= 1.56 × 10−7). Similarly, there is a significant enrichment
of highly ranked DrugnomeAI-Tier1 predictions among top
genes from PheWAS binary traits (Odds Ratio= 3.0, Fisher’s
exact test p value= 4.63 × 10−5) and PheWAS qualitative traits
(Odds Ratio= 3.0, Fisher’s exact test p value= 9.53 × 10−10).

Enrichment of top DrugnomeAI genes with OMIM disease
annotations. We then assessed how genes associated with
OMIM diseases are ranked by DrugnomeAI models (Supple-
mentary Fig. 23, Supplementary Data 6). We observe that genes
associated with OMIM diseases are also significantly enriched
among the top 5% ranked genes by DrugnomeAI-Tclin (Fisher’s
exact test p value= 6.05 × 10−110, Odds Ratio= 4.6) and
DrugnomeAI-Tier1 (Fisher’s exact test p value= 6.55 × 10−77,
Odds Ratio= 3.6). Specifically, 506 (51%) and 452 (45%) genes
ranked among the top 5% DrugnomeAI-Tclin and DrugnomeAI-
Tier1 hits, respectively, have been associated with OMIM dis-
eases. That suggests that a relatively large proportion of genes
predicted to be highly druggable may also have high likelihood to
be biologically relevant and carry out a disease-specific ther-
apeutic effect.

Benchmarking against other druggability prediction methods.
We sought to explore how DrugnomeAI compares with pub-
lished methods for druggability prediction, focusing on methods
that can perform disease-agnostic exome-wide druggability pre-
dictions. We selected three tools for this task, which provide
either pre-calculated prediction scores or a code repository for
reproducing their models: (1) TargetDB, a recently published tool
employing a random forest model for tractability prediction10, (2)
a recently published deep learning model by Yu et al.12 for pro-
tein druggability prediction, and (3) a decision tree-based meta
classifier by Costa et al.14 for genome-wide prediction of morbid
and druggable genes.

To assess the enrichment for top predictions from each model,
we employed two data sources for validation as independent
reference sets: the Open Targets tractability data for small
molecules and antibodies and a list of genes with approved drugs
from King et al.35. We investigated whether the top 5% genes (top
992 genes per model) from DrugnomeAI, TargetDB and the
models by Yu et al.12 and Costa et al.14 preferentially overlap with
each of the validation datasets. Remarkably, we observed that
DrugnomeAI-Tclin has the highest overlap with the validation
datasets. The top-ranked genes from DrugnomeAI-Tclin overlap

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04245-4

8 COMMUNICATIONS BIOLOGY | (2022)5:1291 | https://doi.org/10.1038/s42003-022-04245-4 | www.nature.com/commsbio

www.nature.com/commsbio


with the validation datasets by 35%, 29%, and 149% more than
the top-ranked hits from TargetDB, Costa et al. and Yu et al.,
respectively (Fig. 6). We also observe that the DrugnomeAI-Tclin
overlap with approved drug targets from King et al. is statistically
significant compared to the overlap from TargetDB (Fisher’s
exact test p value= 3.9 × 10−15, Odds Ratio= 2.3), Yu et al.
(Fisher’s exact test p value= 3.6 × 10−79, Odds Ratio= 17.2), and
Costa et al. (Fisher’s exact test p value= 2.3 × 10−10, Odds
Ratio= 1.9) with the same validation dataset (Supplementary
Data 7).

We also performed a stepwise hypergeometric test to assess the
enrichment of top predictions by DrugnomeAI, TargetDB, the
Costa et al.14 and Yu et al.12 models among the validation
datasets (Supplementary Fig. 12). To further quantify the
enrichment, we calculated the area under the hypergeometric
curve (AUC) of the enriched region (p value < 0.05) (Supple-
mentary Data 8). In three out of the seven test cases
(Supplementary Fig. 12), DrugnomeAI-Tclin demonstrated
higher enrichment than DrugnomeAI-Tier1, TargetDB, Costa
et al., or Yu et al. For genes targeted by small molecules, top

Fig. 5 Enrichment of top 5% genes (n= 992) ranked by DrugnomeAI-Tclin and DrugnomeAI-Tier1 and supported by clinical evidence among the top
UKB PheWAS hits for binary and quantitative traits. Genome-wide significant hits (p < 5 × 10−8) have been considered from the PheWAS analysis on
450 K samples from UKB. While the common top hits from DrugnomeAI and PheWAS are sorted by the number of significant hits in PheWAS for
visualisation purposes, it is expected that many of the associated phenotypes may be highly correlated.
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predictions by DrugnomeAI-Tclin were significantly enriched for
genes with approved drugs in Bucket 1 from Open Targets (AUC
was 23-fold higher than TargetDB and Costa et al.) and genes
selected for clinical development in Buckets 1–3 (AUC was 10-
fold and 13-fold higher than TargetDB and Costa et al.,
respectively). In addition, we observed significant enrichment
among genes with approved drugs in King et al. dataset (AUC
was 3-fold and 2-fold higher than TargetDB and Costa et al.,
respectively). For genes targeted by monoclonal antibodies,
DrugnomeAI-Tier1 top predictions are significantly enriched
for genes in Buckets 1–8 (area under curve was 372-fold higher
than TargetDB). Top predictions by TargetDB are more enriched
among genes in Buckets 1–8 targeted by small molecules (AUC is
3-fold higher than DrugnomeAI-Tclin and Costa et al.). Drugno-
meAI models exhibited lower enrichments for genes with
approved monoclonal antibodies in Bucket 1 and genes selected
for clinical development in Buckets 1–3. This could be due to the
small number of genes in these datasets that achieved significant
enrichment. In addition, the training sets (Tclin and Tier1) are
likely skewed towards genes targeted by small molecules. Finally,
the top hits by the Yu et al. model have low enrichment with zero
AUC scores in all cases.

Therapeutic modality-specific models. Apart from the generic
DrugnomeAI models, we developed models specific to three drug
modalities: small molecule, monoclonal antibody, and PROTAC,
which are trained on genes known to already be amenable by each
modality type, respectively. We selected these modalities since
small molecule and monoclonal antibody inhibitors are two of the
main types of targeted therapies, and PROTAC technology is an
emerging modality that can overcome some of the drawbacks of

small molecule-based therapies36. In addition, these molecules
tend to successfully target different types of proteins. For exam-
ple, small molecules are quite amenable to targeting intracellular
proteins while monoclonal antibodies can primarily target
extracellular proteins37. Therefore, obtaining granular drugg-
ability scores for each therapeutic modality could help prioritise
targets that are likely to be druggable by a specific drug modality.
However, our framework is generic in nature, and it can be
extended to other therapeutic modalities once a sufficient volume
of appropriate training data is available.

We tested four classifiers (gradient boosting, random forest,
SVC, and extra trees) per drug modality. Although the four
classifiers achieved comparable performance in target predict-
ability (AUC≥ 0.94), gradient boosting models outperformed
all other classifiers achieving AUC scores of 0.98, 0.99, and 0.97
for antibody, small molecule, and PROTAC modalities, respec-
tively (Supplementary Fig. 13). We also observed high correlation
of gene probability predictions across the four classifiers reaching
Pearson’s r scores of up to 0.93, 0.94, and 0.95 for small
molecules, monoclonal antibodies, and PROTACs modalities,
respectively (Supplementary Fig. 14).

Exploring the top 50 genes ranked per drug modality reveals
several novel genes (i.e. unlabelled genes with high rankings and
not among the seed genes in the model training). There were 17
and 16 novel genes among the top 50 genes ranked for antibody
and PROTAC modalities, respectively, while all the top 50 genes
by the small molecule model were known genes (Supplementary
Fig. 16). We also assessed whether the antibody-specific
DrugnomeAI predictions were preferentially under-represented
for intracellular proteins, which are difficult or impossible to be
accessed by this modality type. Specifically, we found that only

Fig. 6 Overlap between top 5% genes (n= 992) ranked by DrugnomeAI-Tclin, DrugnomeAI Tier1, TargetDB, Costa et al. and Yu et al. across three
validation datasets. Validation of the five models across three validation datasets: (a) Approved drug targets (King et al., 2019 dataset). b Open Targets
druggability dataset for monoclonal antibodies. c Open Targets druggability data for small molecules. DrugnomeAI has a significantly more enriched
overlap in the majority of pairwise comparisons (39 out of 42 comparisons). Coloured (with grey, yellow and green) asterisks indicate where DrugnomeAI
models achieves significantly higher enrichment with each known validation set compared to TargetDB, Costa et al., and Yu et al., respectively (see also
Supplementary Data 7).
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182 out of the 1181 positive DrugnomeAI predictions from the
antibody-specific model (probability score > 0.5) are found
exclusively in the intracellular space, which is significantly lower
than the overall representation of intracellular proteins in the rest
of the exome (Fisher’s exact test p= 3.1 × 10−139, Odds Ratio=
0.17), based on another 7544 intracellular proteins found in the
remaining 14,601 proteins of the exome with known information
about their cellular localisation (as derived from Open Targets8).
For reference, the training set for the antibody-specific Drugno-
meAI model (as derived from Open Targets), showed a similar
under-representation of intracellular proteins (22 out of the total
230) with information about their cellular localisation (Fisher’s
exact test p= 3.4 × 10−38, Odds Ratio= 0.11).

Schneider et al.38 describes a set of 1067 genes as potential
PROTAC targets, not previously described in literature, that are
also distinct from the genes we used for training our PROTAC-
based DrugnomeAI model. We explored how these genes are
ranked by the DrugnomeAI PROTAC model (Supplementary
Fig. 17) and, notably, observed high enrichment with 287 (27%)
of these genes being ranked in the top 5% (Fisher’s exact test p
value= 6.7 × 10−138, Odds Ratio= 9.5).

Oncology and non-oncology specific DrugnomeAI models.
Considering that targets for oncology diseases have different
regularity requirements for safety and efficacy, we examined
whether genes that have been selected for development in the
oncology space have distinct properties from genes targeted for
other disease areas. To this end, we explored genes previously
selected for development for CPD, which include cancerous and
pre-cancerous conditions as well as neoplastic diseases and
hyperplasia, as well as a narrower set consisting of only cancer-
related genes. Therefore, we investigated five scenarios: (1) “CPD-
sm” and (2) “CPD-ab”, which are trained on CPD genes targeted
by small molecules and antibodies, respectively; (3) “non-CPD-
sm” and (4) “non-CPD-ab”, which are trained using genes tar-
geted by small molecules and antibodies, respectively, and these
genes have not been selected for development for CPDs; and (5)
“cancer-sm” model using genes in cancer cell lines linked with
small molecules.

In all five scenarios, the classifiers that were tested achieved
high performance (AUC > 0.93) (Supplementary Fig. 18). Gra-
dient boosting again outperformed all other classifiers achieving
AUC scores of 0.99, 0.98, 0.98, 0.98, and 0.96 for cases (1)–(5),
respectively. Overall, there is high correlation of gene probability
predictions across the four classifiers reaching Pearson’s r
scores of up to 0.95 for the “cancer-sm” case and 0.93 for the
remaining cases (Supplementary Fig. 19), selecting again Gradient
Boosting as the default classifier. We then aimed to determine
whether there are any novel genes among the top 50 genes ranked
by DrugnomeAI in each case (Supplementary Fig. 20), identifying
22 and 30 novel genes for the CPD-ab and non-CPD-ab models,
respectively.

Significant features analysis of domain-specific DrugnomeAI
models. We sought to explore the most important features for
predicting druggable genes for each modality. Analysis of con-
firmed features by the Boruta algorithm shows that features
derived from protein-protein interaction networks (“seed genes
overlap hmean score”, “inferred seed genes overlap”, “experi-
mental seed genes overlap”, “Re seed genes overlap”, and
“StringDB protein genes overlap”) are high contributors for the
three modalities (Supplementary Fig. 15). These features repre-
sent the ratio of known druggable genes interacting with a can-
didate target from InWeb and StringDB (see Methods). In
addition, features derived from interaction data, such as DGIdb

interaction types (number of gene-drug interactions from DGIdb)
and CTD unique interactions (number of unique chemical-gene
interactions from CTD) as well as monoclonal count (number of
monoclonal antibodies for a target) are also high contributors for
all three drug modalities. These features indicate that the
druggability problem can better be addressed from a systems
biology point of view instead of pursuing each target individually.
Moreover, associated pathways from CTD is a top feature for
small molecule and antibody modalities, while protein-coding
sequence length is a top feature for the small molecule and
PROTAC modalities (detailed explanation of each feature is
available in Supplementary Data 5).

Similar to the modality-specific models, Boruta analysis
showed that features from protein-protein interaction networks,
associated pathways, unique interactions, monoclonal count, and
sequence length were among the top features for the oncology
and non-oncology specific DrugnomeAI models (Supplementary
Fig. 21). In addition, we observed features associated with
pathways from CTD (representing the presence or absence of a
gene in a given pathway) are top contributors for druggability
prediction. Specifically, CTD apoptosis is a high feature for
“CPD-sm” and CTD Phagosome is among the top features for
“CPD-ab” while CTD Metabolism is a top feature for both of the
oncology-related small molecule modalities (“CPD-sm” and
“cancer-sm”).

Discussion
Target selection is a crucial step in the drug discovery pipeline
and selecting the right targets early on in development has a huge
impact on the success rate of late-stage clinical trials. Here, we
introduce DrugnomeAI to support target selection process by
quantifying a probability score per gene that represents its like-
lihood as a good candidate target for small molecule, monoclonal
antibody, and PROTAC development. We demonstrate
DrugnomeAI’s high predictive power even when trained on a
small set of positive labelled genes. We have illustrated the tool’s
broad application scope using the disease-agnostic models in
addition to therapeutic area (oncology and non-oncology) and
therapeutic modality (small molecule, monoclonal antibody, and
PROTAC) stratified models. In addition, we provide a web-based
resource to facilitate exploring the generated druggability profiles
and corresponding key properties of druggable genes.

Our work demonstrates that gene properties at the systems
biology level derived from protein-protein interaction networks
are among the top contributors in predicting druggability. While
we have included features around kinase domains and ligand
binding from InterPro and CTDbase, respectively, these are not
selected among the top features. This may be due to the small
labelled dataset available to highlight this type of contribution.
Therefore, in this study, we capture the macroscopic signals at a
systems biology level around predicting targets druggability
rather than identifying the refined fundamental principles that
drive druggability.

Opportunities for future expansion involve integrating graph
CNNs39 or other graph embeddings approaches40 to capture
higher resolution information from protein-protein interaction
networks. Another possible expansion of our work involves tar-
geting pocket-level predictions by investigating druggability of
binding sites for small molecules, epitopes for antibody-based
therapies, or regulatory elements such as transcription factors.
This requires incorporating features specific to therapeutic
modalities and binding pockets.

Since the training sets mainly consist of genes that have
approved drugs or drugs in clinical trials, a major point of con-
cern was the possibility of overfitting the models to the
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characteristics of these genes. However, our analysis shows that
there are highly ranked genes that have not been selected for drug
development programs yet have strong associations with diseases.
These genes may have not been selected for drug developmental
programs so far either because they are associated with less
common mechanisms of disease or require different therapeutic
modulation approach.

A limitation of DrugnomeAI and of other data-driven
approaches is the tendency to overlook under-studied genes
since the feature set may not include rich annotations about those
genes. This leads to models prioritising genes that are similar to
previously known and well-studied drug targets and not neces-
sarily identify novel targets that act on different mechanisms.
While the goal of the study is to develop models that capture
existing knowledge of known drug targets, a notable point of
expansion for this work is identifying novel targets among under-
studied genes. This could be achieved by learning from sequence
data directly instead of an annotation-driven approach.

Druggability is not an innate property of a gene and a target’s
druggability can be disease- and drug-dependent. Druggability of
a gene is a complex property that is influenced by the pharma-
codynamics and pharmacokinetics in vivo along with safety,
commercial and regulatory considerations. Another important
factor affecting druggability is the direction of modulation, i.e.
whether a target must be inhibited or activated to change its
biological function and corresponding phenotypic effects.
Therefore, comprehensive profiling of targets’ druggability,
ligandability, inhibitability and activatability will further help us
expand our knowledge around the druggable genome and enable
us to discover novel targets.

Methods
Prediction model architecture. DrugnomeAI adopts the mantis-ml framework,
implementing stochastic semi-supervised learning by splitting the dataset into
balanced datasets consisting of positive and unlabelled genes (Fig. 1a). In each
stochastic iteration, an ensemble of models is trained on each of the balanced
datasets with 10-fold cross-validation. The final prediction score per gene is the
average score derived from all models and across all iterations (whenever each gene
was part of an out-of-bag test set). Detailed description of the architecture is
available in Vitsios et al.7 Similar to mantis-ml, DrugnomeAI consists of several
modules for data pre-processing, semi-supervised and unsupervised learning, fea-
ture analysis, and post processing7. DrugnomeAI extends on mantis-ml by
incorporating druggability specific-features (explained in the next subsection) and
support of an additional classifier (Naïve Bayes). Generic and disease-specific
resources used in DrugnomeAI have been derived from the original mantis-ml
framework. The main parameters of the framework (such as number of stochastic
iterations and balancing ratio of positive vs unlabelled data) have also been
inherited from mantis-ml, and are available at the DrugnomeAI repo: https://
github.com/astrazeneca-cgr-publications/DrugnomeAI-release/blob/master/
drugnome_ai/conf/.config. Gradient Boosting’s parameters have been specifically
optimised for the DrugnomeAI runs (see also “Sensitivity analysis of Gradient
Boosting hyperparameters” section in Methods). The parameters used in devel-
oping Random Forest, Extra Trees, SVC and DNN models are inherited from
mantis-ml, and are available here: https://github.com/astrazeneca-cgr-publications/
DrugnomeAI-release/blob/master/drugnome_ai/modules/supervised_learn/
classifiers/ensemble_lib.py.

Druggability-specific resources
Pharos. Pharos24 is a web interface to browse the Target Central Resource Database
(TCRD, http://juniper.health.unm.edu/tcrd) and is publicly available at https://
pharos.nih.gov. We integrate data from Pharos referencing information directly
from TCRD which constitutes an information source for the Druggable Genome
amassing data from a variety of resources on human drug targets (including the
Harmonizome41, Jensen Lab datasets, EBI data sets, the Drug Target Ontology).
For the purpose of DrugnomeAI we incorporate data on target antibodies, protein-
protein interactions, tissue specificity, sequence size retrieved from UniProt42,
interaction types and drug claims made around a gene being a target.

InWeb. InWeb_IM data29 is publicly available at: https://www.intomics.com/inbio/
map.html#downloads (‘inBio_Map_core_2016_09_12.zip’). We include a scored
human protein-protein interaction network named InWeb_InBioMap. From this

resource we retrieve scores regarding experimental and inferred interactions which
were yielded as the validation degree of each link recorded in the original analysis.
The data is subject to feature engineering eventually representing whether each
gene’s direct (1-hop) or indirect (2-hop) interactions are druggable based on the
experimental and inferred interaction scores (see also “Network feature engineer-
ing” section in Methods).

StringDB. Another integrated data source regarding protein-protein interactions is
STRING31, a database of known and predicted links spanning more than 24M
proteins and 5 K organisms. In DrugnomeAI we use data related to physical
(direct) and protein (indirect) associations which is subject to the same feature
engineering applied on the InWeb data (related to protein based and physical based
features, respectively). The dataset is publicly available at https://string-db.org.

Reactome. The Reactome Knowledgebase43 is publicly available at https://reactome.org.
We incorporate data from Reactome which provides information on molecules and their
relations organised into biological pathways and processes. In order to enhance
DrugnomeAI with additional information on protein-protein interactions, we capture all
gene-level associations (as presence or absence of an association) from Reactome’s full
network representation and pre-process it as described in the “Network feature engi-
neering” section of Methods.

DGIdb. The Drug-Gene Interaction Database (DGIdb)28 constitutes a resource
of information on drug-gene interactions and druggable genes gathered from
literature, databases, and other web-based sources and is publicly available at
www.dgidb.org. In DrugnomeAI we integrate information around the number of
interaction types each gene has, thus capturing the count of drug-gene interactions
per gene.

CTDbase. The CTD44 is publicly available at http://ctdbase.org. We leverage
information on chemical-gene interactions (CTD_chem_gene_ixns.csv.gz,
CTD_chem_gene_ixn_types.csv) which are characterised by their degree and type.
We process the information to retrieve the number of chemicals having certain
interaction types with a gene. Due to the large number of interaction variants and
the data sparsity for the least observed ones, we include only those types which are
at or above the 50th percentile of the frequency distribution of all interaction types
across the exome. Eventually, we use as features 65 chemical-gene interaction types,
the number of unique interactions recorded per gene and the count of chemicals
associated with interactions of the remaining variants (for those genes below the
50th percentile of the frequency distribution of interaction types). In addition, we
integrate data regarding gene-pathway associations (CTD_genes_pathways.csv.gz),
namely we select those pathways which are at or above the 90th percentile of their
frequency distribution across the exome and assign a boolean flag representing
whether a given pathway association exists for a gene. The selection criteria yielded
238 pathway associations that translate into 238 boolean features along with a
count of other pathway associations observed for a gene.

InterPro. The InterPro database45 is publicly available at https://www.ebi.ac.uk/
interpro. We integrate information on classification of protein sequences into
families, by assigning a boolean flag according to a gene’s protein membership to a
domain, family or super family, resulting in 97 features.

OMIM. Online Mendelian Inheritance in Man (OMIM) data is available subject to
licensing at: https://www.omim.org. From this resource we use information on
phenotype/disease associations with genes to extract the count of unique diseases
per gene. In order to reduce the redundancy among the disease terms associated
with each gene we employ a pre-trained nature language processing model, namely
BioWordVec46, to capture the semantic similarity between all pairs of disease
terms. For every disease term, we first query all articles freely available at PubMed
Central (PMC) with elastic search, returning the top 10 best matching documents
per disease. We then extract a set of words within a 200-word window, centred
around the matching disease term in each article extract and calculate their average
embeddings, as provided by BioWordVec. The word embeddings serve for calcu-
lating semantic distances with their total distribution being used to infer the count
of unique diseases associated with each gene. Specifically, the distinctness of disease
terms is determined based on a one sample t-test performed on all pairwise disease
distances, annotating a pair of diseases as distinct when p < 0.05.

Annotation of druggable genes. We employ two resources of documented drug
targets as seed genes for the DrugnomeAI supervised learning framework (Table 1).
The first one is Pharos (https://pharos.nih.gov/) which defines four tiers: Tclin,
approved drugs with known mechanism of action; Tchem, genes having activities in
ChEMBL or DrugCentral; Tbio, genes for which no known drug or small molecule
activities exist but annotations of a Gene Ontology Molecular Function or Biolo-
gical Process leaf term(s) with an Experimental Evidence code are recorded or else
a confirmed OMIM phenotype can be found; and lastly Tdark, genes where vir-
tually nothing around their druggability potential is known.
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The second resource that served to determine gene druggability potential is the
triage label system introduced in the druggable genome work2. Four tiers
characterise the gene druggability potential as follows: Tier 1, genes being targets of
approved small molecules and biotherapeutic drugs (as well as clinical-phase drug
candidates); Tier 2, gene targets with known bioactive drug-like small-molecule
binding partners as well as those with high sequence similarity with approved drug
targets; and Tier 3A, secreted or extracellular proteins that have only distant
similarity to approved drug targets, as well as Tier 3B, other members of key
druggable gene families not already included in Tier 1 or 2.

Data pre-processing. DrugnomeAI combines data from a variety of gene-
annotation sources being categorised into three groups according to their resulting
features: druggability-specific, disease-specific, and generic resources (i.e. disease
and/or tissue agnostic) that were originally included in mantis-ml. All the compiled
data subjected to feature extraction result in almost 500 gene-associated attributes.
Subsequently, DrugnomeAI applies automated pre-processing which comprises of
removing highly correlated/redundant features and handling missing data. By
default, when two features achieve a Pearson’s correlation coefficient above 0.8 we
retain only one of the highly correlated features. The same applies to the features
whose missing data percentage exceeds a certain threshold (parameter “eda_-
parameters -> missing_data_thres” in drugnome_ai/conf/.config; default value:
99% meaning that even sparse features having at least 1% non-missing data are
considered). The remaining features having missing data are imputed with either a
zero or the respective feature’s median, depending on the biological context of each
feature. Specifically, missing values in features representing a binary flag or a
biologically relevant signal derived from computational or experimental studies
performed only on a subset of genes, are imputed with zero. In the case of con-
tinuous variables, the choice of the median for imputation is governed by the fact
that these attributes are obtained from research using different global reference sets
of genes, therefore extrapolation of these values seems to be the most suitable
strategy. Features related to protein networks are assigned a zero when no inter-
action exists. Finally, the data is standardised such that each variable has a zero
mean and unit variance. In total, DrugnomeAI incorporates 324 features after pre-
processing is complete. The full list of features is provided in Supplementary Data 9
along with detailed description for each of them in Supplementary Data 5 and in
the DrugnomeAI portal (“Features/DrugnomeAI Feature Reference”).

Network feature engineering. To further elucidate the druggability potential of
genes we also integrate protein-protein interaction data which encompass common
pathways or mappings of existing interactions between human proteins. To tap
into the rich information captured in networks we pre-process all network/graph
type of data to derive structured features that capture most of the information
about the structure and connections of the original network. Specifically, for every
gene we calculate the ratio of interactions with positively labelled (known drug-
gable) genes to the total number of links associated with that gene (Supplementary
Fig. 22). We first capture each protein’s direct connections, i.e. those that are one
edge apart in relation to the target of origin. We also expand the same logic to
calculate the indirect connections that are two edges apart. As the number of edges
apart increases, the number of associated connections (unlike the number of
druggable pathways) grows exponentially, and thus, we limit the construction of
this scoring metric for the first (one edge apart) and second (two edges apart)
neighbours of each gene in the network.

Boruta feature selection algorithm. Boruta is an iterative feature selection
method, on top of a Random Forest classifier, to determine if a feature has any
statistically robust predictive power27. Features that are proved less statistically
significant are eliminated. Unlike other feature selection methods where features
are compared against each other, here, features are compared to “shadow” features.
Shadow features are randomised versions of the original features. In a nutshell, a
feature is considered significant if it is more significant than the most significant
shadow feature. A basic Boruta iteration goes as follows:

1. Create shadow features and append them to the original features matrix
2. Train a random forest model and calculate the importance of original and

shadow features
3. Identify s’: the most significant shadow feature
4. Identify hit features: all original features whose significance is higher than s’.

This iteration is repeated several times, then we obtain a binomial distribution
of the number of times a feature is determined as a ‘hit’. Three feature sets are
eventually extracted from this distribution: (1) “Confirmed” features: these are
features that are considered predictive and are located at the top (95th percentile)
of the distribution, (2) “Rejected” features: these are features that are considered
irrelevant and are located at the bottom (5th percentile) of the distribution, and (3)
“Tentative” features: falling in the middle of the distribution (5th–95th percentiles)
for which feature contribution is tentative.

Validation data resources
Clinical evidence. We employ the Open Targets Platform8 (February 2021 release)
for retrieving gene-level clinical evidence data. We extracted all genes supported by
“known_drug” evidence and all clinical trials data including phase, indication and
molecule type.

Non-clinical evidence. We have retrieved non-clinical evidence data that are
available across the exome (genetic, pathways, somatic mutation, animal models,
RNA expression and literature) from the Open Targets Platform (February 2021
release).

PheWAS dataset. We used an extended cohort of data from Wang et al.23 which
analysed nearly 450 K exomes from the UKB to identify relationships between rare
protein-coding variants and 17,361 binary and 1419 quantitative phenotypes. For
the enrichment analyses with top DrugnomeAI hits we focus on significant genes
(p < 5 × 10−8) from PheWAS (Table 2).

Comparison with other methods. We compared DrugnomeAI with three pub-
lished tools: (1) TargetDB10, which employs a random forest model, (2) a hybrid
deep learning model consisting of CNN, RNN with bi-directional long short term
memory and deep neural networks (DNN) developed by Yu et al.12, and (3) a
decision tree-based meta classifier developed by Costa et al.14. TargetDB provides a
pre-trained model, which we used to obtain the prediction scores for the 19,846
genes available in our dataset. Costa et al. provide druggability scores for 10,000
genes, which we used for the comparison analysis. Yu et al. provide the source code
and the training dataset. We trained the hybrid model with the dictionary encoding
of three feature sets (dipeptide composition, tripeptide composition and compo-
sition-transition-distribution) on their provided training data, and applied the
model to predict the druggability of 19,846 genes in our dataset. We obtained
amino-acid sequences from Uniport42 and used the Protr47 package in R for
generating the features.

We used two data sources for comparisons: Open Targets tractability data
(February 2021 release) for small molecules and antibodies and a list of genes with
approved drugs from King et al.35. In the Open Targets tractability data, genes are
grouped into several categories (also called buckets) of tractability depending on
supporting evidence. Genes in Buckets 1–3 are supported by clinical evidence,
while genes in the remaining buckets are supported by discovery precedence or
have been predicted as druggable with varying levels of confidence (more details
available at https://platform-docs.opentargets.org/target/tractability). To explore
the models’ behaviour in identifying genes with various strengths of supporting
evidence, we assessed the models using genes in bucket 1, buckets 1–3, and
remaining buckets as described in Table 3.

Specialised DrugnomeAI models. To train the therapeutic modality models, we
retrieved genes targeted by small molecules or monoclonal antibodies from the
Open Targets platform (February 2021 release) and PRTOACs targets published by
Schneider et al.38. To generate the oncology and non-oncology models, we
obtained the gene lists for CPD from the Open Targets platform for training CPD-
sm, CPD-ab, non-CPD-sm, and non-CPD-ab models, while the cancer-sm gene list
is obtained from the Cancer Therapeutics Response Portal (CTRP)48. Descriptions
for each specialised model is available in Table 4.

Integration of additional evidence from the open targets platform in the
DrugnomeAI web resource. We have integrated within the DrugnomeAI web
resource additional types of evidence for each gene around their druggability
profile (e.g. whether it has an approved drug, if it has been tested in clinical trials,
etc.), its cellular localisation, the existence of homologues in other model organisms
and its expression profile across multiple tissues. Even though some of these gene-
level properties have been used as part of the labelled dataset and/or feature set of
DrugnomeAI, we find it useful to accompany the DrugnomeAI results with this
extra information to facilitate the interpretability of the results. All data were
parsed from the Target dataset in the Open Targets platform downloads page
(https://platform.opentargets.org/downloads), focusing on the following fields/

Table 1 Resources for extracting labels around the
druggability potential of genes, based on varying levels of
supporting evidence.

Positively labelled data (known
drug targets)

Category Number of genes

Pharos Labels Tclin 610
Tchem 1592
Tbio 11,316

Triage/Tier Labels Tier 1 1411
Tier 2 658
Tier 3A 845
Tier 3B 1437
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columns: “subcellular locations”, “homologues”, “tractability” and “base-
lineExpression”. In more detail:

– For subcellular locations, only the Uniprot source was used. Then locations
were grouped into “membrane”, “intracellular”, and “secreted”. “Secreted” was
already defined as one of the localisation groups. For the “membrane” group
we aggregated all localisations containing the word “membrane” (case
insensitive) and not including the string “nucl” (to avoid the nuclear
membrane localisations). The “intracellular” group was then defined by
aggregating all remaining localisations.

– To define homologues, we only considered the “orthologue_one2one” type.
– For tractability, we extracted the following modality types: AB (antibody), SM

(small molecule), while we also extracted Protein degradation (PR). In
addition, we annotated whether the modalities fall in one of the following
subcategories: “Approved Drug”, “Advanced clinical”, or “Phase 1 clinical”.

– For “baselineExpression”, we extracted the “rna.z_score”, “rna.level” and
“protein.level” values from the corresponding tissues.

Fine-tuning of gradient boosting hyperparameters. Gradient Boosting (GB;
implementation provided by the sklearn49 Python module) outperformed all other
classifiers (Random Forest, Extra Trees and Support Vector Classifier) that were
tested as part of the supervised learning module of DrugnomeAI (Fig. 2a). We
sought to fine-tune GB’s default hyperparameters employed by DrugnomeAI,
which were originally inherited from mantis-ml: n_estimators: 500; max_features:

sqrt, max_depth: 20, min_samples_leaf: 4, min_samples_split: 5, learning_rate: 0.1.
We first optimised for “max depth”, to reduce the search space of hyperparameters.
Various “max depth” values were tested (1, 2, 3, 5) yielding best results (in terms of
average AUC) with max depth= 5, which was retained as the default value for the
rest of the analysis (we did not increase the parameter value any further to avoid
extreme overfitting of the gradient boosting trees to the training set). We then
performed gride-search for the “number of estimators”: [10, 50, 100, 200, 300, 400,
500] and “learning rate”: [0.001, 0.01, 0.1, 1] hyperparameters. The analysis was
performed using two different gene-annotation options (either Tclin or Tier 1) to
establish the consistency and robustness of the grid-search results across multiple
labelled datasets. We eventually found that learning rate of 0.1 yields the best AUC
results for both label sets. As for the “number of estimators” parameter, we
observed that the AUC score plateaus at 200 estimators, with further increment of
the estimators leading to overfitting and excessive skewness of the gene prob-
abilities, thus selecting 200 as the default number for this parameter.

Computational resource requirements. DrugnomeAI was run on a high per-
formance computing cluster requiring 200 GB memory and 4 cores provided by a
pool of Intel processors (Broadwell, Skylake, CascadeLake) and AMD Rome. The
running time was 2h40min and 3h12min for training DrugnomeAI-Tclin and
DrugnomeAI-Tier1, respectively.

Statistics and reproducibility. The details about sample sizes, parameters and
steps of statistical analysis are provided in relevant methods and results sections,

Table 4 Datasets for specialised models.

Dataset Description Number of genes for training
the model

Small Molecules (sm) Genes with approved small molecule drugs or clinical-phase small molecule drug
candidates

885

Antibody (ab) Genes with approved monoclonal antibody drugs or clinical-phase monoclonal antibody
drug candidates

251

PROTAC Genes targeted by PROTAC drug modality supported by clinical evidence in buckets 1–3 (2
genes) literature evidence (267 genes)

269

CPD-sm Genes with approved small molecule drugs or clinical-phase small molecule drug
candidates for oncology diseases

699

CPD-ab Genes with approved monoclonal antibody drugs or clinical-phase monoclonal antibody
drug candidates for oncology diseases

175

Non-CPD-sm Genes with approved small molecule drugs or clinical-phase small molecule drug
candidates for non-oncology diseases

186

Non-CPD-ab Genes with approved monoclonal antibody drugs or clinical-phase monoclonal antibody
drug candidates for non-oncology diseases

76

Cancer-sm Genes in cancer cell lines linked with small molecules from Cancer Therapeutics Response
Portal (CTRP)

322

Table 2 Significant PheWAS hits and overlap with top DrugnomeAI results.

Trait Genes with p values < 5 × 10−8a Overlap with top DrugnomeAI-Tclinb Overlap with top DrugnomeAI-Tier1b

PheWAS Binary 210 31 33
Quantitative 508 73 82

aTop genes from PheWAS statistics (genes with p value < 5 × 10−8).
bOverlap between top 5% ranked genes by DrugnomeAI-Tclin (or DrugnomeAI-Tier1) with top genes from PheWAS.

Table 3 Validation datasets.

Dataset Description Number of genes

King et al. 2019 – Genes with approved drugs 2201
Open Targets (Small Molecules) Bucket 1 Genes with drugs in phase IV trials 612

Buckets 1–3 Genes supported by data from clinical precedence 895
Buckets 1–8 Genes supported by data from clinical or discovery precedence, or predicted

tractable
5034

Open Targets (Antibody) Bucket 1 Genes with drugs in phase IV trials 63
Buckets 1–3 Genes supported by data from clinical precedence 331
Buckets 1–9 Genes supported by data from clinical precedence or predicted tractable 9988
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figure legends, and tables where applicable. All statistical analysis is performed in
Python.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Labelled gene lists from Pharos are available at: https://github.com/astrazeneca-cgr-
publications/DrugnomeAI-release/drugnome_ai/data/PHAROS/pharos_GF_wINDEX.
csv. Triage gene lists are available at: https://github.com/AstraZeneca-CGR/drugnomeAI/
blob/master/drugnome_ai/data/labels/gene_druggable_labels.csv. Labelled gene lists for
training specialised models are available at: https://github.com/astrazeneca-cgr-
publications/DrugnomeAI-release/misc/gene_lists. The data for generating the graphs
are provided in Supplementary Data and at the DrugnomeAI Github repository. The
data used in this study have been obtained from the following resources: PHAROS
(http://juniper.health.unm.edu/tcrd), InWeb (https://www.intomics.com/inbio/map.
html#downloads), StringDB (https://string-db.org), Reactome (https://reactome.org),
DGIdb (www.dgidb.org), CTDbase (http://ctdbase.org), InterPro (https://www.ebi.ac.uk/
interpro), OMIM (https://www.omim.org), Open Targets Platform (https://platform.
opentargets.org/downloads), and CTRP (https://portals.broadinstitute.org/ctrp.v2.1/?
page=#ctd2Target). Additionally, we used datasets from the following publications:
Finan et al. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321762/#SMtitle), King
et al. (https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008489#
sec018), Wang et al. (https://www.nature.com/articles/s41586-021-03855-y#data-
availability), Schneider et al. (https://www.nature.com/articles/s41573-021-00245-x#
Sec10), and Costa et al. (https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-
2164-11-S5-S9#additional-information).

Code availability
The DrugnomeAI package and code for reproducing validation analysis, along with the
training/validation datasets and instructions for installing and running the software are
available in the GitHub repository: https://github.com/astrazeneca-cgr-publications/
DrugnomeAI-release. The web application to visualise the DrugnomeAI predictions and
the key features around gene druggability, per disease type and modality are available
here: http://drugnomeai.public.cgr.astrazeneca.com.
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