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A cross-cohort replicable and heritable latent
dimension linking behaviour to multi-featured brain
structure
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Identifying associations between interindividual variability in brain structure and behaviour

requires large cohorts, multivariate methods, out-of-sample validation and, ideally, out-of-

cohort replication. Moreover, the influence of nature vs nurture on brain-behaviour asso-

ciations should be analysed. We analysed associations between brain structure (grey matter

volume, cortical thickness, and surface area) and behaviour (spanning cognition, emotion,

and alertness) using regularized canonical correlation analysis and a machine learning fra-

mework that tests the generalisability and stability of such associations. The replicability of

brain-behaviour associations was assessed in two large, independent cohorts. The load of

genetic factors on these associations was analysed with heritability and genetic correlation.

We found one heritable and replicable latent dimension linking cognitive-control/executive-

functions and positive affect to brain structural variability in areas typically associated with

higher cognitive functions, and with areas typically associated with sensorimotor functions.

These results revealed a major axis of interindividual behavioural variability linking to a

whole-brain structural pattern.
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The association between human behaviour and brain
structure is poorly understood. One important factor
affecting progress in this field is the low replicability of

studies linking neuroimaging with behaviour1. For instance,
despite associations between behaviour and brain structure being
often reported in the literature, the likelihood of finding such
associations in an exploratory approach, and/or replicating pre-
viously reported associations in a confirmatory approach, is
actually extremely low2,3. The replicability of such studies could
be improved by using big sample sizes1, out-of-sample (within-
cohort) validation4, as well as cross-cohort replicability
assessments5. Another factor challenging our understanding of
brain-behaviour associations is the multivariate nature of these
relationships5. In particular, there is not a one-to-one mapping
between psychological constructs and brain regions6. This calls
for the use of exploratory multivariate methods to discover
meaningful patterns of brain-behaviour covariation5.

Canonical correlation analysis (CCA), or the closely related
partial least squares (PLS), are multivariate data-driven methods
that can be used to discover associative effects between brain
and behaviour (i.e., latent dimensions of brain-behaviour
covariation)4,7. CCA/PLS search for a latent space that captures
the underlying relationship between brain and behaviour8. Spe-
cifically, these exploratory methods find a linear combination of
brain variables and a linear combination of behavioural variables
with maximal correlation (CCA) or covariation (PLS)4. The latent
dimensions yielded by CCA/PLS can be interpreted as axes that
maximally explain interindividual variability in the association
between brain and behaviour.

Some studies have used CCA/PLS to find brain-behaviour
associations in young healthy adults, using the sample of the
Human Connectome Project-Young Adult (HCP-YA). These
studies reported a positive-negative mode of behaviour linked to
resting state functional connectivity (RSFC)9, to working memory
network activation and connectivity10, and to cortical thickness
(CT)11. Interestingly, these studies indicate that the association of
behaviour with both, CT and RSFC, follows a similar pattern.
This pattern is characterised by functional and structural differ-
entiations between high and low regions of the cortical
hierarchy9,11.

These previous studies analysing brain-behaviour latent
dimensions in young healthy adults have linked brain features to
very diverse exposome and behavioural aspects, such as family
psychiatric and neurologic history, vision correction, substance
use, psychiatry and life function, personality, cognition, emotion,
alertness, motor performance and sensory perception9,11.
Although this is an interesting approach to study very broad
associations between phenotypical features and brain features
from an epidemiological standpoint, a specific focus on beha-
vioural features such as alertness, cognition, and emotion, is
required to better understand brain-behaviour relationships
focused on psychological functioning.

In addition, these findings suggest that brain structure, speci-
fically CT, contributes to a positive-negative mode of human
neurocognitive phenotype. However, only one brain structural
feature, CT, has been related to this latent dimension. To provide
a more comprehensive understanding of the brain structural
features of the brain-behaviour latent dimensions, surface area
(SA) and grey matter volume (GMV) should also be analysed.

GMV and SA can provide complementary information to CT,
since both have been reported to be poorly correlated with CT12.
It is worth noting that even though some authors have reported
GMV to be closely related to SA, and hence have suggested to
prefer CT and SA over GMV12, other authors still argue for the
inclusion of the three brain structural markers in studies of brain-
behaviour associations13,14. In fact, some studies that included SA

and GMV have found associations between behaviour and one
structural marker but not the other13. Since GMV is influenced
by various biological factors of the brain structure, such as cur-
vature or grey/white matter hyperintensities15, the inclusion of
GMV in brain-behaviour studies provides a multi-determined
measure that can capture structural variability not reflected by CT
and SA alone. Furthermore, GMV estimations allow the investi-
gation of subcortical structures, which are typically ignored in
studies focusing on surface-based techniques. Hence, in this study
we focused on CT, GMV and SA to get a comprehensive
understanding of the brain structural variability associated to
behaviour.

It is worth noting that a study on the HCP-YA cohort linked
several brain structural features to a positive-negative behavioural
profile16. However, the methods used in this study first integrate
the brain structural variables to derive brain structural compo-
nents, which are only later correlated to behaviour. To uncover
associations driven by both, brain and behaviour, latent dimen-
sions should be investigated using methods that integrate beha-
viour with several brain structural features in a single model. One
of the advantages of CCA/PLS is that several brain and beha-
vioural variables are integrated into a single model, and hence
the latent dimensions are driven by variability in both sets of
variables4.

However, CCA/PLS analyses also have limitations. For
instance, they are prone to overfitting and hence yield unstable
latent dimensions when the number of samples is small (relative
to the number of features)4,7,17. This compromises the replic-
ability, generalisability, and interpretability of the latent dimen-
sions yielded with such methods4,17. Of note, some attempts to
replicate previous studies linking brain to behaviour with CCA
have failed18.

Importantly, a recently developed machine learning framework
implements steps to reduce overfitting and improve gen-
eralisability and stability of CCA/PLS methods4,8,19. This frame-
work uses multiple test and holdout sets of the dataset to assess
the stability and generalisability of the latent dimensions. It is
worth noting that this framework optimises the hyperparameters
of the model independently for each latent dimension sought in
the data. Moreover, by using a regularised version of CCA
(RCCA) both, the complexity of the model and the chance of
overfitting can be reduced4.

Another challenging aspect that remains to be studied
regarding brain-behaviour latent dimensions is the underlying
cause of their variability in the population. One first step
towards assessing the cause of a phenotype is to evaluate its
heritability and genetic correlation. Heritability assessment
consists of estimating the partition of the variability of a par-
ticular phenotype into its genetic and environmental compo-
nents. In other words, heritability (in the narrow sense, h2)
allows to disentangle the overall influence of additive genetic
factors from the overall influence of environmental factors on a
specific phenotype20,21. Heritability is a population parameter
and is computed as the ratio between the additive genetic
variation and the phenotypic variation. Hence, this approach
allows the study of the relationship between genotype and
phenotype, and it can be interpreted as the percentage of the
variation of a phenotype in a population that can be attributed
to genetic factors22.

A related concept is the genetic correlation (ρg) between two
traits. The genetic correlation is an estimation of the amount of
additive genetic influences that are shared between two pheno-
typic traits (i.e., pleiotropy)23–25. The genetic correlation is useful
to identify phenotypes that may have interconnected underlying
genetic factors26. Heritability and genetic correlation represent a
first exploration that could guide further research into more
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detailed aspects of the genetic and environmental factors influ-
encing phenotypes20,21,25,27,28. Thus, in a broader perspective
these analyses could ultimately help to disentangle the mechan-
istic underpinnings of phenotypes such as brain-behaviour
associations.

The heritability of several univariate brain structural features
has been reported, including local CT12,25,29, local GMV and local
SA12. Also, the heritability of univariate behavioural phenotypes
has been reported, including intelligence, depression, cognitive
features, social interaction and personality traits20,29,30. Interest-
ingly, bivariate associations between brain structure and beha-
viour have been shown to be heritable31 and to have significant
genetic correlations25,29,31. However, the heritability and genetic
correlation of latent dimensions of brain-behaviour associations
is still unknown. Examining the heritability of such dimensional
phenotypes in healthy adults would help to better understand the
influence of overall genetic factors on broad, dimensional, and
meaningful brain-behaviour associations.

In this study, we searched for robust multivariate associations
linking behaviour (spanning alertness, cognition, and emotion) to
the structure of the brain grey matter (parcel-wise estimations of
CT, SA and GMV). In addition, we studied the heritability and
genetic correlation of such associations. We used two large and
openly available datasets of the Human Connectome Project
(HCP): the HCP-YA and the HCP in aging (HCP-A). Our
findings show one replicable and heritable latent dimension
linking interindividual variability in behaviour to interindividual
variability in CT, SA and GMV.

Results
Latent dimensions in the HCP-YA and HCP-A cohorts. We
used 32 behavioural variables spanning alertness, cognition, and
emotion (Supplementary Table 1). These variables were chosen
for covering phenotypes of interest in our study, for being
available in both cohorts (HCP-YA and HCP-A) and for not
having missing data. The set of brain structural features included
parcel-wise measures of GMV (239 cortical, subcortical and
cerebellar parcels), CT, and SA measures (both for 200 cortical
parcels). Brain features were corrected by brain size using internal
data normalisation. This means that GMV, CT and SA features of
a given participant were divided, respectively, by TIV, overall CT
and overall SA of that participant. Accordingly, these features
reflect the relative structural profile of a parcel (as opposed to the
absolute structural estimate). Age and gender were regressed out
both from the brain and behavioural features avoiding train-test
leakage.

To identify the brain-behaviour latent dimensions, we used
RCCA (Fig. 1) embedded in a machine learning framework that
uses multiple test and holdout sets of the data to assess the
stability and generalisability of the latent dimensions4 (Supple-
mentary Fig. 1). In this study, we used five outer data splits, each
with five inner splits. The inner splits were used for model
selection and the outer splits for model evaluation. This means
that, in each cohort, five canonical correlations (Pearson’s
correlations) were yielded, each with one p value (corresponding
to the five outer splits). For this reason, the values provided below
correspond to the range between these five outer splits.

First, we performed one global analysis in each cohort, linking
the 32 behavioural variables to parcel-wise estimations of the
three brain structural features (GMV, CT and SA). The RCCA
model in the HCP-YA cohort yielded one significant latent
dimension (rrange= 0.25–0.41, p= 0.005–0.02) (Supplementary
Table 2). The RCCA model in the HCP-A cohort yielded
two significant latent dimensions (first latent dimension:
rrange= 0.29–0.61, p= 0.005–0.005; second latent dimension:
rrange= 0.04–0.33, p= 0.005–0.999) (Supplementary Table 3). In
the next section, we evaluated the cross-cohort replicability of
these latent dimensions.

Stability and cross-cohort replicability of the latent dimen-
sions. To statistically evaluate the replicability of the latent
dimensions found, their brain and behavioural loadings (averaged
over the five outer splits) were compared across cohorts (see
Fig. 1 for definition of loadings). The cross-cohort similarity of
behavioural loadings was evaluated with Pearson’s correlation,
while the cross-cohort similarity of CT and SA loadings was
evaluated with spin test to account for spatial dependencies of the
brain data32.

We found that only the first latent dimension in each cohort
was replicable on the other cohort. This latent dimension showed
significant cross-cohort correlations at the behavioural (r= 0.72,
p < 0.001), CT (r= 0.80, p < 0.001) and SA (r= 0.57, p < 0.001)
loadings. The loadings of the second latent dimension in the
HCP-A were correlated with the loadings of the first latent
dimension in HCP-YA only on their CT loadings (r=−0.31,
p < 0.032), but not on their SA and behavioural loadings
(p > 0.99).

Since our results indicated that only the first latent dimension
in each cohort was replicated on the other cohort, we here
assumed that only that dimension represents a general axis of
interindividual variability likely independent of the specific
population group evaluated. Accordingly, only that latent

Fig. 1 Canonical correlation analysis (CCA). In the context of searching for brain-behaviour associations, inputs to the CCA model would be a brain matrix
X and a behavioural matrix Y. In both matrices, each row corresponds to a participant and each column corresponds to a brain or behavioural variable. CCA
identifies brain weights (u) and behavioural weights (v), which describe linear combinations of the variables in X and in Y, respectively. When projecting
the original data X and Y onto the weights u and v, respectively, scores are obtained (Xu and Yv). The model selects the weights in order to maximise the
canonical correlation, which corresponds to the Pearson’s correlation between the brain scores and the behavioural scores. The canonical correlation can
be visualised as a latent space (dimension) where each dot represents one participant. To identify those original variables that correlate with the latent
dimension, loadings are obtained. Loadings correspond to the correlation between the original variables in X and Y and the brain and behavioural scores,
respectively. Behav Behaviour. Green represents brain data, purple represents behavioural data.
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dimension is described in detail on the following sections and
further investigated in the subsequent analyses. Of note,
according to our supplementary analyses, our results appear to
not be influenced by potential spurious effects of site in the HCP-
A cohort (see Supplementary Methods and Supplementary
Results subsections “Socio-economic status and site effects in
the latent dimension”).

Behavioural features associated with the replicable latent
dimension. As noted above, we found one significant and cross-
cohort replicable latent dimension linking behaviour to brain
structure (Fig. 2 and Supplementary Figs. 3–6). On the beha-
vioural side, the positive pole of this latent dimension captures
variability of good cognitive functions and positive affect (Fig. 3
and Supplementary Figs. 7 and 8). Specifically, the latent
dimension is positively correlated in both cohorts with better
language abilities (vocabulary comprehension and reading

decoding), self-regulation, episodic memory, working memory,
executive functions (cognitive flexibility and inhibition), proces-
sing speed and emotion recognition.

Although the latent dimension is replicated across cohorts,
some variables flip the sign of their loadings across cohorts. These
variables include meaning/purpose and friendship, which flip
from a positive association with the latent dimension in HCP-YA
to negative association in HCP-A. Moreover, physical aggression,
hostility/cynicism, rejection, sleep disturbance, hostility, sadness,
loneliness, anger (irritability-frustration), fear, use of sleep
medication and daytime dysfunction flip from a negative
association with the latent dimension in HCP-YA to a positive
association in HCP-A. These flipped behavioural variables have a
very low correlation with the latent dimension in at least one of
the cohorts (below 0.2) and some of them have error bars
crossing zero. This indicates that the association of these variables
with the latent dimension is very unstable, even within cohorts.
Accordingly, we can assume that such measures do not capture a

Fig. 2 Latent dimension. Latent dimension in a HCP-YA and in b HCP-A. Each scatterplot shows the brain and behavioural scores averaged over the splits
in each cohort. Each dot represents one participant. HCP-YA: n= 1047 subjects; HCP-A: n= 601 subjects.

Fig. 3 Behavioural loadings. Behavioural loadings a in the HCP-YA cohort and b in the HCP-A cohort. Shown loadings represent the average over the five
outer splits. Error bars depict one standard deviation. The shadowed zone marks loadings between −0.2 and 0.2. Green represents behavioural variables
related to cognition, blue to alertness and dark red to emotion. HCP-YA: n= 1047 subjects; HCP-A: n= 601 subjects.
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clear behavioural aspect with the same validity across cohorts, or
that such variables are not strongly valid as psychometric
measurements and/or may not have clear associations with brain
structure.

Brain features associated with the replicable latent dimension.
On the brain side (Fig. 4, Supplementary Fig. 9), the CT loadings
showed a hierarchical differentiation of the cortex (Fig. 4a, d and
Supplementary Figs. 10 and 11). Specifically, higher associative
areas were negatively associated with the latent dimension and
sensorimotor areas were positively associated with the latent
dimension. The strongest CT positive loadings in both cohorts
were found on medial and superior temporal gyri, middle tem-
poral gyri, right inferior temporal gyrus, fusiform gyri, para-
hippocampal gyri, insula, right rolandic operculum, superior and
middle occipital gyri, right inferior occipital gyrus, lingual gyri,
calcarine gyri, cuneus, precuneus, postcentral gyri, left inferior
parietal lobule and left pars orbitalis. The strongest CT negative
loadings in both cohorts were located on inferior temporal gyri,
left superior orbital gyrus, precuneus, superior parietal lobule,
precentral gyri, mid cingulate cortex, anterior cingulate cortex,
posterior medial frontal, middle and superior frontal gyri,
superior medial gyri, pars triangularis, pars opercularis, mid
orbital gyri and middle orbital gyri. This can be interpreted as
better cognitive functions and positive affect being associated
with lower CT in transmodal associative regions and with higher
CT in sensorimotor regions.

The SA loadings on both cohorts were found to be positive in
the inferior and middle temporal gyri, fusiform gyri, precuneus,
cuneus, superior parietal lobule, anterior cingulate cortex, middle
and superior frontal gyri, pars opercularis and right superior
medial gyrus (Fig. 4b, e and Supplementary Figs. 12 and 13).
Negative SA loadings in both cohorts were located on superior
and middle temporal gyri, fusiform gyri, insula, left parahippo-
campal gyrus, right rolandic operculum, calcarine gyri, left lingual
gyrus, paracentral lobule, right middle frontal gyrus, right pars
triangularis, left pars orbitalis and rectal gyri.

Cortical GMV loadings showed a similar pattern as SA
loadings (Fig. 4c, f and Supplementary Figs. 14 and 15). Positive

cortical GMV loadings on both cohorts were found in middle and
inferior temporal gyri, medial temporal pole, fusiform gyri,
postcentral gyri, precentral gyri, superior parietal lobule and right
superior medial gyrus. Negative loadings for GMV in the cortex
on both cohorts were located on left parahippocampal gyrus
and insula. Negative GMV loadings in subcortical and limbic
structures in both cohorts were found in hippocampus (including
dentate gyrus and CA3), caudate nucleus, putamen, and pallidum.
Cerebellar loadings in both cohorts were negative, being located
in regions of the cerebellum that are functionally connected with
the visual and somatomotor networks.

Anatomical resolution. We tested if the latent dimension was
still yielded when using higher and lower levels of anatomical
resolution across cortical, limbic, and cerebellar structures. This
latent dimension was stable when using different levels of ana-
tomical resolution (Supplementary Tables 4 and 5).

Modular latent dimensions. We performed three modular
RCCAs in each cohort to test if the same latent dimension was
captured when including only one structural feature in the model
(Supplementary Methods “Modular analyses”). In each cohort,
we performed three single-feature (modular) analyses linking the
same set of 32 behavioural features with either (1) only GMV
features, (2) only CT features or (3) only SA features.

Interestingly, the replicable latent dimension described above
was captured when including only one structural feature at a time
(modular analyses) (Supplementary Results, Supplementary
Table 6 and Supplementary Figs. 16–21). This indicates that the
same behavioural mode is associated with different brain
structural features.

Comparison of brain loadings with gradients of functional
connectivity. In order to interpret the brain loadings of the latent
dimension found, we compared them with the principal gradient
of functional connectivity over the brain cortex33 using spin
test32. The CT loadings of the global latent dimensions in both
cohorts were significantly correlated with the first gradient of
functional connectivity (HCP-YA: r=−0.46, p < 0.001; HCP-A:
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e) Surface Area

f) Grey Matter Volume 

d) Cortical Thickness
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Fig. 4 Brain loadings. The left panel shows brain loadings for the HCP-YA cohort, the right panel shows brain loadings for the HCP-A cohort. a, d Cortical
thickness loadings, b, e Surface area loadings, c, f Grey matter volume loadings. In c and f, top row corresponds to MNI coordinates: −43.6, 16, 52.9;
bottom row to MNI coordinates: −10.3, −3.9, −9.1. Shown loadings correspond to the average over the five outer splits. Red represents positive loadings,
blue negative loadings. HCP-YA: n= 1047 subjects; HCP-A: n= 601 subjects.
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r=−0.32, p= 0.004). The SA loadings of the global latent
dimensions were significantly correlated with the first gradient of
functional connectivity only for the HCP-A cohort (r= 0.24,
p= 0.03) but not for the HCP-YA cohort (r= 0.13, p= 0.10).

Heritability. In order to characterise the influence of overall
genetic effects on the latent dimension, we examined the herit-
ability (h2) of their brain and behavioural scores in the HCP-YA
cohort (see Fig. 1 for definition of scores). The heritability ana-
lyses showed that both brain scores (h2= 0.85; p < 0.001) and
behavioural scores (h2= 0.72; p < 0.001) were heritable.

Moreover, we tested if the brain and behavioural scores of the
latent dimension were influenced by overlapping mechanisms, by
computing their genetic (ρg) and environmental (ρe) correlations
in the HCP-YA cohort. We observed a significant genetic
correlation between the brain and behavioural scores (ρg= 0.66;
p < 0.001). Their environmental correlation was also significant
(ρe= 0.17; p= 0.021). These results indicate that the association
between behaviour and multi-featured brain structure found in
the latent dimension is driven, at least in part, by shared genetic
and environmental effects.

The heritability of brain (h2= 0.82; p < 0.001) and behavioural
scores (h2= 0.69; p < 0.001), as well as the genetic correlation
(ρg= 0.61; p < 0.001) and the environmental correlation
(ρe= 0.16; p= 0.025) remained significant after removing
variance of TIV, age, age2, gender, age*gender, and age2*gender.

Discussion
This work provides robust findings on the association between
behaviour and multi-featured brain structure. We found one
latent dimension that can be understood as a single axis in which
participants are distributed based on their covariance between
brain structure and behaviour.

Our study confirms previous findings of a positive-negative
behavioural mode in the HCP-YA cohort9,11. Importantly, we
expand these findings by providing a more comprehensive view
on the brain structural features of the latent dimension by
including GMV and SA, as well as a behavioural profile focused
on cognition, alertness, and emotion. In comparison with pre-
vious studies using CCA/PLS to link brain and behaviour, we
reduce the chance of overfitting by using RCCA embedded in a
recently proposed machine learning framework that tests the
generalisability and stability of the findings8,19. Crucially, we
expand this latent dimension to a wider age range and replicate it
in an independent cohort, the HCP-A. In addition, we provide
estimations of the influence of overall genetic and environmental
factors on it.

The behavioural variability captured by the latent dimension is
characterised by good-cognitive-control/executive-functions and
positive affect. The behavioural profile of this latent dimension is
in line with the previously reported positive-negative latent
dimension linked to RSFC9,11, working memory network acti-
vation and connectivity10 and CT11 in the HCP-YA cohort. A
similar positive-negative latent dimension associated with GMV
was also found in adolescents34. By using a carefully selected set
of behavioural variables and comprehensive brain structural data,
our results provide a characterisation of this latent dimension
focused on cognition, alertness and emotion and demonstrate
their association with brain structure.

We found that cognitive-control/executive-functions and
positive affect are associated with relatively thicker cortex in
sensorimotor regions and with relatively thinner cortex in asso-
ciative areas. This brain pattern is in line with the previous study
in the HCP-YA reporting a positive-negative mode associated
with CT11.

The association of cognitive-control/executive-functions with
thinner CT in transmodal associative areas has been reported
before in the HCP-YA cohort35,36, even when controlling for
brain size36. This finding does not align with the “bigger is better”
hypothesis, which suggests that better brain functions and
behavioural performance are associated with bigger brain areas37,
and vice versa. For instance, in adults, reductions in CT in
associative areas have been associated with neurodegeneration in
clinical samples38,39. Alternatively, this association has been
related with healthy maturation of the brain cortex during
adolescence40 and during lifespan41. However, our study finds
this negative association in a sample of healthy adults and after
removing variance of age. Altogether, these findings suggest that
the direction of the association between CT and behaviour might
not indicate healthy or unhealthy factors per se. Future studies
should further explore the neurobiological underpinnings of the
negative association between CT in associative areas and
cognition.

Interestingly, our study shows a positive association between
cognition and emotion with CT variability in brain areas typically
associated with sensorimotor functions. This can be interpreted as
better cognition and positive emotions being associated with
relatively ticker cortex in sensorimotor regions. Since these areas
are typically associated mainly with sensorimotor functions, they
are often excluded from analyses in studies linking brain to
cognition and emotion. Hence, our results call for the exploration
of sensorimotor areas in studies focused on brain associations
with cognition and emotion.

Our study also found that the CT pattern associated with the
latent dimension is consistent with the first gradient of functional
connectivity organisation in the brain cortex33. This gradient
represents an axis of variability that ranges from the connectivity
pattern of the default mode network to the connectivity pattern of
sensorimotor brain cortices33. Previous studies have also related
the pattern of CT covariation in the brain cortex with the same
gradient of functional organisation42. Our study strengthens these
findings by showing that CT variability in the hierarchical dif-
ferentiation of the cortex is maximally associated with behaviour.
Hence, the hierarchical differentiation of the cortex in terms of
CT would be an important feature of brain organisation relevant
for behaviour.

The association of the latent dimension with SA and cortical
GMV is similar. Relationships between SA and GMV have been
shown before. For instance, it has been reported that GMV and
SA are phenotypically, genetically and environmentally corre-
lated, but poorly correlated with CT12. Our results extend these
findings by showing that the association between GMV and SA
also covaries with behavioural phenotype.

Interestingly, the pattern of SA and GMV shown in our study
is similar to the pattern of cortical expansion during ontogeny
and phylogeny43. Specifically, the latent dimension is associated
with relatively higher SA and relatively higher GMV in areas of
high expansion, and with relatively lower SA and relatively lower
GMV in areas of low expansion. Of note, cortical areas that show
high expansion during evolution and human development have
been associated with higher cognitive functions, and areas that
show low expansion are associated with sensorimotor functions43.
This suggests that our results capture a dimension of brain
structure that has evolved and develops in coordination with the
high cognitive functions that characterise humans.

Loadings in limbic structures and basal ganglia indicated
negative associations between cognitive-control/executive-func-
tions and affect and relative GMV in caudate nucleus, putamen,
pallidum, insula, hippocampi and left parahippocampal gyrus. Of
note, negative associations between volume in structures such as
the hippocampi have been associated with psychopathology such
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as schizophrenia39, depression38, Alzheimer’s disease and mild
cognitive impairment8. The negative association between GMV in
these structures and positive or negative behavioural features
might be due to non-linear effects (for instance inverted U shape
effects).

We found that cognitive-control/executive-functions and
positive affect are associated with relatively lower GMV in the
cerebellum. In the last decades, several studies highlighted the
association of the cerebellum with higher cognitive functions44,45,
particularly in posterior cerebellar regions. For instance, the
posterior cerebellar lobules, such as Crus 1 and Crus 2 have been
reported to map46 (for revisions see refs. 45,47,48) and to have
RSFC46 (for a review see ref. 48) with cortical associative areas.

Our results show that the latent dimension is associated with
cerebellar regions functionally connected to the cortical visual
and somatomotor cerebral networks. This suggests that not only
cerebellar higher regions, but also regions typically associated
with lower functions (for reviews see refs. 47,48 for a meta-analysis
see ref. 49), contribute to higher cognitive and emotional/affective
functions. Interestingly, this is in line with the pattern of covar-
iation between CT and the latent dimension, linking sensor-
imotor cortices with cognitive-control/executive-functions and
positive affect. Of note, a previous multivariate whole-brain study
in functional connectivity highlighted the role of sensorimotor
cortices in mental disorders50. Altogether, these findings suggest a
contribution of sensorimotor cortical and cerebellar areas to
cognitive and affective/emotional functions, and hence suggest
their relevance in mental health.

The association of cognitive-control/executive-functions and
positive affect with relatively lower GMV in the cerebellum is in
line with phylogenetic studies reporting that the motor regions
occupy a smaller fraction of the cerebellum in humans compared
to chimpanzees51. However, decreases in cerebellar volume have
often been associated with negative factors such as healthy aging
across the lifespan52 or pathologies such as Alzheimer’s disease53

or schizophrenia39. Altogether, these findings suggest a complex
relationship between cerebellar GMV and behaviour.

The quantitative genetic analyses indicated that the brain and
behavioural scores of the latent dimension are heritable and
genetically correlated. This suggests that variability in the asso-
ciation between brain and behavioural features in the population is
influenced by variability in genetics in the population. In other
words, genetics is an important contributor to the interindividual
variability of the latent dimension. In addition, the brain and
behavioural variables driving this latent dimension are influenced
by overlapping genetic mechanisms. It is important to note that a
high heritability should not be interpreted as an indicator of low/
difficult malleability of the phenotype, or that the phenotype is
determined by genetics. Since heritability is computed as a ratio, a
change in the environment can influence the phenotype. We would
also like to highlight that heritability is a population parameter,
and as such inferences about individuals cannot be made.

Previous studies have shown that CT, SA and subcortical
volumes are heritable (in the HCP-YA sample31 and in a different
sample12). Moreover, phenotypic correlations between cognition
and both, CT and SA, have been found to be mirrored by genetic
correlations31. The significant genetic correlation that we found
between brain and behavioural scores supports our findings
showing that the association between brain structure and beha-
vioural features has likely an important genetic background.
However, it should be noted that the relationship may not be
direct, and several mediating factors may explain this relation-
ship. Furthermore, the statistical properties of the synthetic brain
and behavioural scores used in this study may have artificially
inflated the heritability estimates. Thus, future studies are needed
to reinforce these initial findings.

Although CCA/PLS methods have several advantages, they also
have some limitations. For instance, these methods can only find
linear relationships4,19, and the latent dimensions found are
limited by the variables included in the analyses. The mixed type
of variables (e.g., continuous, ordinal or categorical data) and
their different distributions can also present difficulties in the
modelling approach54.

Future studies should analyse latent dimensions linking beha-
viour to brain structure including other brain structural features,
such as gyrification or white matter markers derived from dif-
fusion MRI. Multi-view CCA/PLS models could shed light on
more complex relationships between the different brain features
and behavioural variables34.

In conclusion, our results indicate that the maximal association
between brain structure and behaviour is characterised, on the
behavioural side, by a spectrum of variability in good cognitive-
control/executive-functions and positive affect. The CT features
associated with this latent dimension show a hierarchical differ-
entiation of the cortex, in line with the first gradient of variability
in RSFC. The SA and cortical GMV features are similarly asso-
ciated with the latent dimension, differentiating regions of low
and high cortical expansion during ontogeny and phylogeny. Of
note, our results show covariation between both, cognition and
emotion/affect, and low-level regions of the brain, often asso-
ciated with sensorimotor functions and hence often excluded
from studies focusing on cognitive or affective/emotional func-
tions. This explorative approach hence reveals robust findings as
well as yields some hypothesis that should be evaluated in a
hypothesis-driven design. Finally, the quantitative genetic ana-
lyses indicate that this association between brain structure and
cognitive-control/executive-functions and positive affect is influ-
enced by overlapping genetic mechanisms.

Methods
Participants. We used two publicly available and large-scale datasets of the HCP:
the HCP-Young Adult (HCP-YA, S1200 release55) and the HCP-A (2.0 release56).
The HCP-YA cohort is the biggest dataset available at the moment for a twin-based
heritability analysis of brain-behaviour multivariate associations in healthy young
adults. The assessment of replicability of multivariate analyses involving behaviour
has the limitation that the selected cohorts should have the same set of behavioural
measurements. The HCP-A is a suitable dataset to assess generalisability of findings
on the HCP-YA sample, because its behavioural assessments and neuroimaging
protocols were selected to maximise similarity and harmonisation with the HCP-
YA cohort, while optimising data quality in a different age span57. For instance,
several behavioural measures are shared between both datasets, which is necessary
to compare brain-behaviour latent dimensions yielded across cohorts. In addition,
the use of the HCP-A cohort allows for the extension of the results to a broader
age range.

The HCP-YA cohort comprises neuroimaging and behavioural data of 1206
participants between 22–37 years old. Participants are healthy individuals born in
Missouri to families that include twins55. The sample consists of 457 families,
including 292 monozygotic twins, 323 dizygotic twins and 586 not-twins. In this
cohort, each family includes between 3 to 6 individuals and one pair of twins55. We
excluded 93 participants for not having available structural scans, 2 for errors
during CAT processing and 66 for not having complete data, leading to a final
sample of 1047 participants (560 females, mean age= 28.78 years, SD age= 3.67
years, age range= 22–37 years). The final sample of the HCP-YA cohort included
94 participants with ethnicity Hispanic/Latino, 940 with ethnicity Not Hispanic/
Latino, and 13 with unknown or not reported ethnicity. With regard to race, the
final sample included 2 participants with race American Indian/Alaska Native, 62
with race Asian/Native Hawaiian/Other Pacific Is., 153 with race Black or African
American, 785 with race White, 27 with More than one race, and 18 with
Unknown or not reported race. Regarding school attendance, 839 participants were
not attending school at the moment of data collection and 208 were attending
school.

The HCP-A cohort includes neuroimaging and behavioural data of 725 healthy
adults between 36 to 100 years old. We excluded 1 participant for technical
problems, 5 participants for errors in the CAT processing (estimated untypical
tissue peaks) and 118 for not having complete behavioural data. This leads to a
final sample of 601 unrelated participants (353 females, mean age= 58.5 years, SD
age= 14.9 years, age range= 36–100 years). Participants of this sample included in
this study were unrelated (did not pertain to the same families). The final sample of
the HCP-A cohort included 65 participants with ethnicity Hispanic/Latino, 535
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with ethnicity Not Hispanic/Latino, and 1 with unknown or not reported ethnicity.
With regard to race, the final sample included 2 participants with race American
Indian/Alaska Native, 47 with race Asian, 91 with race Black or African American,
422 with race White, 26 with More than one race, and 13 with Unknown or not
reported race. Regarding school attendance, 534 participants were not attending
school at the moment of data collection, 34 were attending school and 33 had
missing value for this information.

Information about income and education for both samples can be found in
Supplementary Fig. S2.

Behavioural data. Both cohorts include behavioural data acquired using ques-
tionnaires and tasks. We selected those behavioural variables focused on emotion
and cognition that were present in both cohorts without missing values. The
selected behavioural variables spanned sleep, episodic memory, executive functions,
language, processing speed, self-regulation/impulsivity, working memory, emotion
recognition, negative affect, psychological well-being, social relationships, and
stress and self-efficacy (see Supplementary Table 1 for specific behavioural vari-
ables included). In both cohorts, the values for reaction time to emotion recog-
nition were flipped (variable ER40_CRT). The evaluation of the role of socio-
economic status (SES) on the latent dimensions can be found in the supplementary
methods and results subsections “Socio-economic status and site effects in the
latent dimension” as well as Supplementary Figs. 22–24.

Neuroimaging data acquisition. Neuroimaging data in the HCP-YA cohort were
obtained using a customised 3T Magnetic Resonance Siemens Skyra “Connectom”
scanner with a standard 32-channel Siemens receive head coil in a single site at
Washington University in St. Louis, United States of America55,58. T1-weighted
images were obtained using a 3D MPRAGE sequence (TR= 2400 ms; TE= 2.14
ms; TI= 1000 ms; voxel size= 0.7 mm isotropic)55,58–60.

In the HCP-A cohort, neuroimaging data were acquired on standard Siemens
3T Prisma scanners with Siemens 32-channel Prisma head coils at four sites in the
United States of America: Washington University in St. Louis, University of
California-Los Angeles, University of Minnesota and Massachusetts General
Hospital57. Matched neuroimaging protocols were used across sites56. T1-weighted
images were obtained using multi-echo MPRAGE sequences (TR/TI= 2500/1000;
TE= 1.8/3.6/5.4/7.2 ms; voxel size= 0.8 mm isotropic)57.

Structural preprocessing. The T1-w anatomical images of both cohorts were
processed with the Computational Anatomy Toolbox version 12.561. After nor-
malisation and segmentation, the grey matter segments were modulated for non-
linear transformations and smoothed. Grey matter was parcellated using a com-
bination of the Schaefer atlas for 200 cortical regions62, the Melbourne subcortex
atlas for 32 subcortical regions63 and the Buckner/Yeo atlas for 7 cerebellar
regions46. Since the subcortical and cerebellar atlases overlap in some voxels with
the cortical atlas, these voxels were set to zero (background) in the subcortical and
cerebellar atlases. This was done in order to avoid artificial correlation between
GMV regions due to that overlap. CT and SA were obtained from the HCP,
estimated with FreeSurfer64 version 5.3.0-HCP in HCP-YA55,59,60 and with version
6.0 in HCP-A. CT and SA were parcellated using the Schaefer atlas for 200
regions62. It should be noted that in CAT the GMV estimations are computed
independently from CT and SA. Therefore, in our study, GMV appears com-
plementary, rather than redundant, to CT and SA. The robustness of the results to
different levels of anatomical resolution was tested (see section below about
“Anatomical resolution”).

Regularized canonical correlation analysis. CCA is a multivariate method that
finds linear relationships between two datasets65. This method can be used to
discover latent dimensions of brain-behaviour interindividual variability4,19. In this
context, a latent dimension can be described as a set of behavioural variables that
co-vary in a similar way with a set of brain variables. In this study, we used this
method embedded in a machine learning framework (which is described in the
next section).

To analyse latent dimensions linking brain and behaviour, the inputs to the
CCA model would be a brain matrix X and a behavioural matrix Y (Fig. 1). CCA
identifies brain weights (u) and behavioural weights (v), which describe linear
combinations of the variables in X and in Y, respectively4. These weights can be
interpreted as a quantification of how much each variable contributes to the latent
dimension4. This model selects the weights in order to maximise the canonical
correlation, which corresponds to the correlation of the brain scores (Xu) with the
behavioural scores (Yv)4,19. The scores can be interpreted as a quantification of
how much the latent dimension is present in each participant.

One limitation of the CCA is that it is prone to overfitting the data4,17.
Interestingly, a regularised version of CCA (RCCA) reduces this drawback by
adding L2-norm constraints to the weights, which are controlled by regularisation
parameters (cx and cy) to the model4,19,66,67.

We used RCCA to analyse latent dimensions linking interindividual variability
in behaviour with interindividual variability in multi-featured brain structure
(GMV, CT and SA). RCCA analyses were implemented independently in each
cohort. In each cohort, we first performed a global RCCA analysis to detect latent

dimensions including all the behavioural variables on the Y matrix, and the three
structural features concatenated in the X matrix. On a second step, we wanted to
test if the patterns of brain-behaviour associations obtained with this global
analysis were affected when including only one brain structural feature (see
subsection “Modular latent dimensions”).

In the global as well as the modular analyses, age and gender were regressed out
from both, X and Y in a fashion avoiding leakage between the training and test sets
(i.e., procedures for deconfounding the data were estimated on the training set and
applied to the validation and holdout sets). In all the analyses brain data was
normalised by brain size. The normalisation for brain size was performed
participant-wise (dividing GMV features of a given participant by the
corresponding TIV of the same participant, dividing CT feature of a given
participant by overall CT of the same participant, and dividing SA features of a
given participant by overall area of the same participant).

The RCCA models were trained and tested in a machine learning framework as
described below, using MATLAB R2020b. The significance of the latent dimensions
was assessed as described in the following section. When a significant latent
dimension was found, its variance was removed from the data using deflation19.
Following that, an additional latent dimension was sought.

To interpret the significant latent dimensions found, we computed and
visualised loadings4. The brain loadings are obtained by correlating the original
brain variables (X) with the brain scores (Xu). Similarly, the behavioural loadings
are computed by correlating the behavioural original variables (Y) with the
behavioural scores (Yv). The loadings indicate which brain and behavioural
variables are more strongly associated with the latent dimension.

Machine learning framework. We used a recently proposed machine learning
framework that uses multiple holdouts of the data8,19. In this framework, two
consecutive splits of the data (i.e., outer split and inner split) are used for model
selection and statistical evaluation, respectively (Supplementary Fig. 1). The outer
split divides the overall data into optimisation set (80%) and a hold-out set (20%).
The inner split divides the optimisation set into training set (80%) and testing set
(20%). We used five outer splits and five inner splits, respecting the family structure
of the HCP-YA dataset68. Several RCCA models, each with a different combination
of regularisation parameters, are fitted on the training sets. Then the testing sets are
projected onto the obtained weights, yielding test canonical correlations. In addi-
tion, the stability of RCCA models was assessed based on the similarity of model
weights (measured as Pearson’s correlation) across the five inner splits. The
combination of regularisation parameters yielding the highest test canonical cor-
relation and stability19 is then selected and used to fit the whole optimisation set.
Finally, the hold-out set is projected onto the weights obtained in the optimisation
set in order to test for the generalisability of the model.

Statistical evaluation of the latent dimensions. Statistical significance of the
latent dimensions was tested using permutation tests with 1000 iterations. On each
iteration, the rows of the Y matrix were shuffled separately within the optimisation
and hold-out sets, breaking the association between brain and behavioural data of
each participant. Shuffling was performed respecting the family structure of the
data68. The RCCA model was fitted on the permuted optimisation set using the
best parameters (obtained from the original data). Next, the permuted hold-out set
was projected onto these weights, and the canonical correlation was obtained.
Finally, p values were computed as the percentage of iterations where the canonical
correlations obtained from the permuted data were higher than the original
canonical correlation obtained from the original data. This process was repeated for
the five outer splits of the data, obtaining five p values.

The omnibus hypothesis (Homni) was then evaluated8. The Homni is a null
hypothesis of no effect on any of the splits. If a spilt is significant (after Bonferroni
correction for multiple comparisons), then we can reject this null hypothesis and
conclude that there is a significant latent dimension. p values in each outer split
were corrected for multiple comparisons using the Bonferroni method over five
comparisons (corresponding to the five outer splits).

Cross-cohort replicability of the latent dimensions. The replicability of the
latent dimensions was tested by comparing the mean brain and behavioural
loadings across cohorts. Loadings of each latent dimension in each cohort were
averaged over the five outer splits. Behavioural loadings were compared across
cohorts with Pearson’s correlation. The CT and SA loadings were compared across
cohorts using spin test, to account for their spatial dependencies32 as provided by
BrainSpace toolbox69.

The spin test assesses the significance of the similarity between two brain maps
while accounting for the spatial dependency of the data and preserving the
hemispheric symmetry. For that, null maps of SA loadings were generated by
randomly rotating the angles of the spherical representation of the SA loadings in
1000 permutations. Next, a null distribution was generated by correlating the null
SA loadings with the brain pattern of the principal gradient of functional
connectivity. Finally, a p value was computed as the percentage of iterations where
the null correlations were higher than the original correlation obtained from the
original map of SA loadings and the map of the principal gradient of functional
connectivity. The same procedure is repeated for CT loadings.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04244-5

8 COMMUNICATIONS BIOLOGY |          (2022) 5:1297 | https://doi.org/10.1038/s42003-022-04244-5 | www.nature.com/commsbio

www.nature.com/commsbio


p values were corrected for multiple comparisons using Bonferroni method over
18 comparisons (three latent dimensions in one cohort are compared with two
latent dimensions in the other cohort, leading to six comparisons. This was
repeated three times: once for behavioural loadings, once for CT loadings, and once
for SA loadings, leading to 18 comparisons).

Anatomical resolution. To analyse if the latent dimension was captured when
using different levels of anatomical resolution, we repeated the global analyses after
parcellating the brain with different granularities. The analyses reported in the
results section correspond to a granularity level of 1239 regions. We used three
additional combinations of atlases resulting in 323 regions, 1267 regions and 1871
regions. This leads to four levels of anatomical resolution (Supplementary Table 4).

Modular latent dimensions. In order to assess if the latent dimension was found
when including only one brain structural feature in the model, we performed three
modular (brain structure modality specific) RCCAs in each cohort. In these
modular analyses, the same set of behavioural variables was linked with only GMV,
only CT or only SA as brain variables. In each cohort, the latent dimensions yielded
by these modular analyses were compared with the global latent dimension by
correlating their behavioural loadings, and by performing spin test on the CT and
SA cases (see Supplementary Results). p values corresponding to behavioural
loadings were corrected with the Bonferroni method over 14 multiple comparisons.
p values corresponding to brain loadings were corrected for multiple comparisons
using the Bonferroni method over eight comparisons. We would like to already
note that the behavioural loadings of the global analyses in both, HCP-YA (r > 0.61,
p < 0.005) and HCP-A (r < 0.66, p < 0.001) were significantly correlated with the
behavioural loadings of the first level of all the modular analyses in both samples
(Supplementary Table 6). This indicates that the global latent dimensions show the
same behavioural profile than the modular latent dimensions for both cohorts.

Socio-economic status and site effects in the latent dimension. In order to
analyse the association of SES on the brain-behaviour latent dimension, we per-
formed an RCCA independently in each cohort, linking brain structure (GMV, CT
and SA) with behaviour and SES. In this set of analyses, the behavioural matrix
included three additional variables as proxies for SES: household income, educa-
tion, and employment. The sample sizes for these analyses were n= 1047 for HCP-
YA (560 females, age range= 22–37 years old) and n= 420 for HCP-A (254
females, age range= 36–100 years old). In the HCP-YA cohort, age and gender
were regressed out from both, brain, and behavioural data. In the HCP-A cohort,
age, gender, and site (as four dummy variables) were regressed out from both,
brain, and behavioural data. In both cohorts, brain data were corrected by brain
size using internal data normalisation. In the HCP-A cohort, the variable house-
hold income was converted to categorical ordinal in order to be coherent with the
HCP-YA cohort (i.e., values <1000 were replaced by 1, values >1000 and <1999
were replaced by 2, etc). Bonferroni method was used to correct p values for
multiple comparisons, over five comparisons. We assessed the cross-cohort
replicability of these brain-behaviour-SES latent dimensions by correlating their
loadings across cohorts (Pearson’s correlation for behavioural loadings and spin
test32 for CT and SA loadings).

Comparison of brain loadings with gradients of functional connectivity. In
order to interpret the brain loadings of the latent dimension found, we compared
them with the first gradient of functional connectivity over the brain cortex33. The
gradient locates each cortical node in a spectrum of gradual transitions of their
functional connectivity patterns over the brain cortex33. Nodes that are located
closer in this gradient have similar cortical connectivity patterns33. To do so, we
used spin test32 as provided by BrainSpace toolbox69. Since data of the principal
gradient are provided in surface space, they are comparable with our CT and SA
loadings. GMV loadings were excluded from these analyses since they are volu-
metric. Multiple comparisons were corrected using the Bonferroni method over
four comparisons (two brain maps in each cohort were compared with the first
gradient of functional connectivity).

Heritability. Heritability is a population parameter that gives insight into the effect
of nature and nurture on a trait70. Heritability in the narrow sense (h2) partitions
the total variance of a trait onto variance influenced by additive genetic factors and
environmental factors70–72. It is defined as a ratio of variances, which estimates the
proportion of the total variance of a trait which can be attributed to variance of
additive genetic influences70–72. Despite the concept of heritability having limita-
tions and being criticised, it is useful to estimate the importance of additive genetics
and environment on a trait70. The advantage of heritability is that it can be
computed relatively simply and can give insight onto the causes of the trait70.
Moreover, if a trait is found to have high heritability, it suggests that a more
comprehensive genetic analysis of that trait is worth it70. The heritability values are
estimated by comparing the observed covariance matrix of the trait with the
covariance matrix predicted by family structure. Traits with higher heritability
show higher covariance in individuals with higher genetic proximity than in
individuals with lower genetic proximity.

Bivariate genetic correlations estimate the shared additive genetic effect between
two traits. If two traits have strong genetic correlations, it can be interpreted that
they are influenced by the same genetic factors (i.e., pleiotropy)23,24. Bivariate
genetic correlations decompose the phenotypic correlation between two traits into
genetic (ρg) and environmental (ρe) correlations23.

In the HCP-YA, we analysed the heritability as well as genetic and
environmental correlations of brain and behavioural scores using a twin-based
design (see Fig. 1 for definition of scores). Heritabilities, genetic correlations and
environmental correlations were estimated using Sequential Oligogenic Linkage
Analysis Routines version 8.5.1 (SOLAR-Eclipse; www.solar-eclipse-genetics.
org). SOLAR-Eclipse uses maximum likelihood variance decomposition to
estimate heritability and can handle family structures of arbitrary size and
complexity73.

Ethics and inclusion statement. The ethics protocols for analyses of these data
were approved by the Heinrich Heine University Düsseldorf ethics committee (No.
4039). Informed consents from the participants were obtained by HCP58.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Supplementary data includes behaviour and brain loadings of HCP-A (Supplementary
Data 1 and 2, respectively) as well as behaviour and brain loadings of HCP-YA
(Supplementary Data 3 and 4, respectively). Access to data of the HCP can be requested
on ConnectomeDB (https://db.humanconnectome.org/app/template/Login.vm).

Code availability
The code used for the machine learning framework (https://doi.org/10.5281/zenodo.
7153571) has been made publicly available at https://github.com/mlnl/cca_pls_toolkit
The code used in this work corresponds to a previous version of the mentioned toolkit.
MATLAB R2020b and python3 were used for data curation; the RCCA analyses and the
machine learning framework were implemented in MATLAB R2020b, Heritability and
genetic correlations analyses were implemented in SOLAR Eclipse version 8.5.1;
Computational Anatomy Toolbox version 12.5 was used to estimate grey matter volume.
Cortical thickness and surface area were obtained by HCP using FreeSurfer version 5.3.0-
HCP and FreeSurfer version 6.0 for HCP-young adult and HCP-aging, respectively.
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