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Complexity of modular neuromuscular control
increases and variability decreases during human
locomotor development
Francesca Sylos-Labini 1,2✉, Valentina La Scaleia2, Germana Cappellini1,2, Arthur Dewolf 1, Adele Fabiano3,

Irina A. Solopova4, Vito Mondì 5, Yury Ivanenko 2 & Francesco Lacquaniti 1,2✉

When does modular control of locomotion emerge during human development? One view is

that modularity is not innate, being learnt over several months of experience. Alternatively,

the basic motor modules are present at birth, but are subsequently reconfigured due to

changing brain-body-environment interactions. One problem in identifying modular struc-

tures in stepping infants is the presence of noise. Here, using both simulated and experi-

mental muscle activity data from stepping neonates, infants, preschoolers, and adults, we

dissect the influence of noise, and identify modular structures in all individuals, including

neonates. Complexity of modularity increases from the neonatal stage to adulthood at

multiple levels of the motor infrastructure, from the intrinsic rhythmicity measured at the

level of individual muscles activities, to the level of muscle synergies and of bilateral inter-

muscular network connectivity. Low complexity and high variability of neuromuscular

signals attest neonatal immaturity, but they also involve potential benefits for learning

locomotor tasks.
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Two related concepts have attracted considerable interest in
neuroscience and evolutionary developmental biology,
modularity, and complexity1,2. Modularity refers to the

existence of decomposable processes with stereotypical functions,
interactions between components being weak compared with
those within components3. Complexity refers to the minimum
number of components (dimensionality) needed to account for a
given behavior across a number of conditions4. Both low-
dimensional and high-dimensional modular structures bring their
own benefits, the former entailing better generalization across
different contexts and the latter better separability of encoded
information5.

These issues are relevant also to the field of motor control6–8.
The application of methods such as unsupervised machine
learning algorithms to electromyographic (EMG) activities
recovers the statistical structure of neural drive to the muscles
from the time profiles of muscle activities. Thus, it has been
shown in several different animal species that muscle coordina-
tion results from the modular engagement of groups of muscles
(muscle synergies) sharing common temporal patterns of
activation7–9. The temporal activation patterns and the muscle
synergies reflect the output of spinal networks of premotor
interneurons10,11. Modular synergistic organization may extend
up to the level of motor cortex12 and down to the level of subsets
of individual motoneurons13. Dimensionality of control (i.e.,
the number of neuromuscular modules) has been addressed
for several motor behaviors14,15, and in particular for
locomotion16–20.

While the modularity of mature neuromuscular control of
locomotion is relatively well established, its ontogenetic basis is
still hotly debated for different animal species, especially altricial
species such as rodents and primates21–24. Although these ani-
mals show a rich repertoire of primitive movements (such as
general movements, kicking, or stepping25) well before birth
which persist over a variable time after birth, the structure of the
motor commands underlying these movements is still under
dispute. Moreover, how innate and learned factors contribute to
the progressive shaping of motor commands remains poorly
understood. In this regards, different hypotheses have been
proposed21–27. According to the learning hypothesis, modularity
is not innate; infants and pups begin with a proliferation of
variable, unstructured movement patterns, and experience tea-
ches them to select coordinative solutions tailored to the current
relations between their body and the environment. By contrast, a
strict nativist view holds that locomotor modules are determined
in early development, and are then robustly conserved into
adulthood. A third hypothesis, more in line with current views in
developmental neuroscience, is that both innate and learnt
components play a critical role in motor development. In parti-
cular, one possibility is that the set of primitive modules revealed
in stepping neonates is incomplete, and new fundamental mod-
ules are added during development to integrate postural and
locomotor control.

The learning hypothesis is supported by the observation that
infant stepping is highly variable, depending on subtle changes in
context and neural or non-neural factors. Stable solutions would
emerge only after several months or years of exploration of
alternative, temporary solutions26,27. Consistent with this
hypothesis, computer simulations emphasizing rich (high-
dimensional) models with a weakly-defined prior structure are
capable of learning locomotor tasks by generating efficient control
policies based on generic neural networks28.

On the other hand, the strict nativist view is supported by the
observation that the isolated spinal cord of neonatal rodents sti-
mulated by different neurotransmitters can express all patterns of
EMG29 and motoneuron30 activity typical of mature locomotor

coordination. Also, the muscle synergies of rats who underwent
spinal transection as adults differ insignificantly from those of
neonatal injured rats, despite different developmental histories31.

Finally, the hypothesis of incompleteness of the neonatal
locomotor modules is supported by the observation that the
number of temporal patterns of muscle activation is low at birth,
and reaches adult-like conformation only after independent,
unsupported walking is established24,32–37. On the computational
side, low-dimensional, flexible motor primitives encoded in
spinal modules succeed in learning high-dimensional locomotor
control problems of humanoids using reinforcement learning
algorithms38.

The hypothesis that components of early-established motor
circuits are substrative and retained in adults, but their con-
nectivity undergoes major reconfiguration during maturation34 is
also supported by work on animal models24,39. Thus, while spinal
motor circuits are established early during development allowing
animals to generate a variety of movements prior to and at
birth25,40, the activity of these motor circuits changes drastically
during development41.

The different hypotheses outlined above may be resolved
experimentally by carefully comparing the EMG activities at
several different stages of motor development. In particular,
measures of EMG complexity and variability may contribute to
the resolution. The identification of neuromuscular modules in
infants is made difficult by the presence of considerable noise,
high intra-individual (inter-step), and inter-individual variability
in EMG activity32,42,43. Also, the criteria to determine the number
of basic modules (the dimensionality issue) vary in different
studies, which in turn may influence the interpretation of the
spatiotemporal muscle activity. For instance, using a fixed
threshold for the variance accounted for (VAF) by the selected
modules may not be reliable when variable amounts of noise
affect the overall output. In fact, a systematic method to deter-
mine the number of the basis vectors has not been established by
now44.

Here, we address the issue of modularity and complexity of
neuromuscular control of stepping during human development
using multiple, complementary approaches. To this end, we
considered cross-sectional data spanning distinct developmental
stages, from birth till adulthood, with several different time points
during the first 3 years of age. To provide context, we also ana-
lyzed artificial data sets with varying amounts of simulated noise
that matched the real data but had known, preset dimensionality.
We used three different methods for EMG factorization, spatial
decomposition, temporal decomposition, and space-by-time
decomposition45. Each of these methods makes specific
assumptions: the spatial decomposition assumes spatial mod-
ularity, the temporal decomposition assumes temporal mod-
ularity, and the space-by-time decomposition assumes the
concurrent existence of spatial and temporal modules37,45. In
addition, we assessed dimensionality from a frequency analysis of
EMG activities of individual muscles including both periodic and
aperiodic components46, and from bilateral EMG network
analysis47.

Dimensionality was quantified by means of both VAF and
consistency measures well suited to take the presence of noise
into account. Consistency was estimated as a similarity index of
the temporal patterns across all strides for the spatial decom-
position, a similarity index of the synergies across all strides for
the temporal decomposition, and as a diagonality index of the
activation coefficients across all strides for the space-by-time
decomposition. We found that the rate of change of these con-
sistency measures as a function of the hypothetical number of
modules was a sensitive indicator of the dimensionality of the
modules in the presence of noise.
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In this manner, we provide a global assessment of modular
complexity during locomotor development by reporting a sys-
tematic trend toward the increase of dimensionality from the
neonatal stage to adulthood across all employed measures.
Overall, the results are compatible with the hypothesis that
infants begin with a small set of primitive neuromuscular mod-
ules, and add more modules to better integrate sensory and
cortical signals in locomotor control. We also show that the
increase of complexity from the neonatal stage to adulthood
involves multiple levels of the motor infrastructure, from the
intrinsic rhythmicity measured at the level of individual muscle
activities, to the level of muscle synergies and bilateral inter-
muscular network connectivity. We find that, while the com-
plexity of neuromuscular organization increases with age, in
parallel the associated variability decreases.

Results
General gait parameters. Table 1 summarizes the characteristics
of the participants in each group, the average stride duration, and
its variability for each group. As reported in previous studies33,43,
stride cycle duration T significantly shortened with increasing
age, reaching an average duration in adulthood that was less than
half of the duration at birth. On the other hand, its variability was
more than 20 times larger in neonates compared to adults, and
systematically decreased with age in children.

Except as otherwise remarked, all EMG analyses were
performed on data concatenated over 7 strides for each muscle.
In order to have a comparable set of data for all participants, the
EMG data of 7 strides at the same (treadmill) or similar (on
ground) speed were used for all analyses. The constraint of
7 strides arose from the results obtained in neonates, who
typically perform a limited number of steps27,32,36,37. Here, we
found that 7 strides was the maximum number of strides that was
common to all our neonates. In all participants, we recorded the
EMG activity of rectus femoris (RF), biceps femoris (BF),
tibialis anterior (TA), and gastrocnemius lateralis (LG) of both
lower limbs.

Figure 1 shows results from two representative participants, a
neonate (a) and an adult (b). Despite higher variability (in stride
duration and EMG amplitude) in the neonate, one can notice a
tendency for synchronous activation of groups of muscles (BF,
RF, LG), denoting a lower complexity of neuromuscular
activations compared to adults. Notice that these same muscles
are asynchronously activated in the adult. In the next sections, we
will consider the two features, complexity and variability of
muscle coordination, in more detail.

Intra-muscular complexity. We first consider intra-muscular
complexity, as revealed by the frequency contents of the EMGs of
individual muscles in neonates and adults. We applied an
algorithm46 that modeled the power spectral density (PSD) of the
rectified and time-interpolated EMG data as a combination of
periodic and aperiodic components (Fig. 2a–d). Model fitting was
accurate, with average r2= 0.82 (95% confidence interval CI95%,
[0.81, 0.83]).

For each muscle, the periodic component of PSD had a
significantly greater number of peaks in adults than in neonates
(Fig. 2b, Wilcoxon rank sum test, p < 0.001 for BF, p= 0.011 for
RF, p= 0.033 for LG, and p= 0.0036 for TA). Moreover, in adults
the center frequency of the peaks was more consistent than in
neonates (Fig. 2c). Indeed, the great majority (~83%) of the peaks
of the periodic component of the EMGs of adults was located
near the stride frequency (1/T) and its first four harmonics (from
2/T to 5/T). By contrast, in neonates, ~17% and ~10% of the
peaks were located around 1/T and 2/T respectively, and the T
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others peaks were uniformly distributed across frequencies from
0 to 10/T. Also, the peaks in the spectra of neonates had
significantly lower power and larger bandwidth as compared to
those of the adults (Fig. 2c, Wilcoxon rank sum test, p < 0.001 for
both parameters).

Also the features of the aperiodic component46, namely the
corrected broadband offset, the corrected knee parameter and the
exponent (see Methods), were significantly different between
neonates and adults (Fig. 2d, Wilcoxon rank sum test, p < 0.001
for all parameters). In particular, the aperiodic component of the
spectra of the EMG activity in neonates was significantly up-
translated (by ~1 dB), had a narrower horizontal slope, and was
less inclined past the knee inflection point compared to adults.

From the PSD we also calculated the spectral entropy (SE) to
measure the degree of irregularity of the EMG signal of each
muscle. SE was significantly higher in neonates for all analyzed
muscles (Fig. 2e, Wilcoxon rank sum test, all p < 0.001), implying
that EMG activity was less regular in the neonates.

Since irregularity over the seven concatenated strides may
come in part from high variability in the stride duration in
neonates, each stride duration was normalized to T for the
analyses of Fig. 2. Nevertheless, even when we analyzed intra-
muscular complexity of the original, unnormalized EMG data, we
found higher complexity of EMG waveforms in adults compared
to neonates (Supplementary Figure 1).

Another potential concern about the source of irregularity in
neonates arises from analyzing strides that were not necessarily
consecutive. However, as explained in Methods, to make all data
sets as closely comparable as possible in all analyses, we randomly
sampled seven strides of each adult (not necessarily consecutive)
to generate the concatenated sequence of analyzed strides. In
addition, we also performed the same frequency analyses on a

subset of seven neonates who produced five consecutive strides,
and we obtained results similar to those in Fig. 2. In particular,
the average number of peaks of the periodic component of the
PSDs in neonates performing five consecutive strides was similar
to that in neonates with seven, not necessarily consecutive strides;
the average number of peaks over all muscles was 2.4 ± 1.3
(mean ± SD) and 3.3 ± 1.1, respectively (Wilcoxon rank sum test,
p= 0.18 for BF, p= 0.042 for RF, p= 0.053 for LG, and p= 0.28
for TA). Moreover, this number for the neonates with five
consecutive strides was significantly lower than in adults
(Wilcoxon rank sum test, p < 0.001 for all muscles).

Inter-muscular complexity in the spatial and temporal domain.
One way to assess the minimum complexity of inter-muscular
coordination consists in using dimensionality-reduction algo-
rithms, and assessing the dimensionality of the decomposition
model that fits the EMG data of different muscles adequately.
Typically, one increases the number of modules of the decom-
position progressively, and computes the corresponding VAF.
The minimum complexity is then defined as the minimum
number of modules reaching a predefined VAF threshold.
Alternatively, minimum complexity can be defined on the basis of
the characteristics of changes in the VAF curve (such as its
curvature or polynomial fitting). However, all these procedures
and the resulting assessment of complexity may be affected by the
presence of noise, especially if they are based on a single point on
the curve (e.g. the threshold crossing point or the value for a
single synergy). Therefore, here we combined traditional VAF
measures with consistency measures that take into account
the potential variability of motor modules across strides and
participants.

a neonate

original 
reconstructed with 2 modules (VAF = 67%) 

a.
u.

adult

original 
reconstructed with 4 modules (VAF = 76%)  

TACL

LGCL

RFCL

BFCL

TA

LG

RF

BF

2 s

b

Fig. 1 EMG activity of leg muscles during stepping. a Raw EMG data from eight bilateral leg muscles (gray) in one representative neonate. Black lines
represent the rectified EMG data, red lines represent the reconstructed EMG data using spatial decomposition with two modules. b Raw EMG data in one
representative adult (same format as a). Red lines represent the reconstructed EMG data using spatial decomposition with four modules. Red areas
highlight an example of the different inter-muscular coordination (synchronous in the neonate vs. asynchronous in the adult) of some groups of muscles.
(BF Biceps Femoris, RF Rectus Femoris, LG Lateral Gastrocnemius, TA Tibialis Anterior, CL Contralateral Leg, VAF Variance Accounted For).
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Simulated data. To assess the ability of these methods to capture
the actual dimensionality of the EMG data in the presence of
noise, we calculated the VAF by the reconstructed data and we
also calculated three specific consistency measures (one for each
decomposition method, see below). We tested these methods on
different sets of simulated EMG data, which were obtained from
predetermined modules (number of simulated modules ranging
from 2 to 5) and contaminated by different levels of signal-
dependent noise48. In addition, we used three different methods

of EMG factorization, spatial decomposition, temporal decom-
position, and space-by-time decomposition45 (Fig. 3a). We out-
lined the differences between these factorization methods in the
Introduction. For further details, see Materials and Methods.

Figure 4 illustrates the results obtained using simulated EMG
data sets originated from three modules and corrupted with
increasing levels of noise (100 data sets for each noise level), but
similar results were obtained from data sets involving different
number of modules (Supplementary Figure 2). In Fig. 4, the r2
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Fig. 2 Parametrized frequency analysis of EMG data. a Power spectral density (PSD) for all neonates (left) and all adults (right) was calculated from
rectified EMGs interpolated over the gait cycle (T: stride duration) for each muscle (from top to bottom: BF, RF, LG, and TA, right and left leg muscles were
pooled together) using Fast Fourier Transform (FFT) and fitted with an algorithm for parameterizing neural PSDs into periodic and aperiodic components46.
Gray lines represent fitted PSDs from individual subjects, black lines represent average fitted PSD across subjects, green lines represent the aperiodic
component from the individual PSDs, red lines represent the average aperiodic component across subjects. b Periodic component of the PSD for all
neonates (left) and all adults (center), black lines represent average across subjects. The average (+SD) number of peaks (defined from the algorithm as
the frequency regions of power over and above the aperiodic component) across subjects of each group are illustrated in the right column for each muscle
(n= 26 for neonates and n= 30 for adults). c Characteristics of the peaks of the periodic component. The average (+SD) power (left) and bandwidth
(right) of the peaks across subjects and muscles are shown on the left side of the panel (n= 344 for neonates and n= 507 for adults). The distributions of
the peak power (upper plots, each point represents a peak, all peaks from all muscles of all subjects are pooled together) and of the percent number of
peaks across center frequencies of the peaks are shown on the right side of the panel. Note that the great majority (~83%) of the peaks of the periodic
component of the EMGs of adults was located near to the stride frequency (1/T) and its first four harmonics (from 2/T to 5/T), while, in neonates, ~17%
and ~10% of the peaks were located respectively around 1/T and 2/T and the others peaks were uniformly distributed across frequencies from 0 to 10/T.
d Parameters of the aperiodic component. From left to right average (+SD) corrected broadband offset, corrected knee, and exponent of the aperiodic
component across subjects and muscles (n= 104 for neonates and n= 120 for adults). Note that all three parameters that characterize the arrhythmic
activity of EMGs significantly differ between neonates and adults. e Average (+SD) spectral entropy across subjects for each muscle in neonates and
adults (n= 26 for neonates and n= 30 for adults). Data points for all individuals are included in the histograms. Red asterisks denote significant differences
between groups (Wilcoxon rank sum test p < 0.05).
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between noiseless and noisy EMG data ranged between 0.89 and
0.62 for η ranging between 0.9 and 1.7. The VAF by assuming the
same number of modules (N= 3) that generated the simulated
data was significantly affected by the noise level for all
decomposition methods. Thus, the VAF ranged from 94.7%
(CI95% [94.5%, 94.9%]) for η= 0.9 to 85% (CI95% [84.6%, 85.6%])
for η= 1.7 for the spatial decomposition, from 94.7% (CI95%
[94.6%, 94.9%]) for η= 0.9 to 84.6% (CI95% [84.2%, 85.1%]) for
η= 1.7 for the temporal decomposition, and from 92.5% (CI95%
[92.1%, 92.8%]) for η= 0.9 to 78.7% (CI95% [78%, 79.3%]) for
η= 1.7 for the space-by-time decomposition (Fig. 4b). This
means that using a fixed VAF threshold is not sufficient to
estimate unambiguously the dimensionality of muscle activation
modules in data sets affected by noise. Other criteria based on the
VAF curves—such as their shape as a function of the number of
modules—may also be inaccurate, since the curvature of VAF was
also affected by the level of noise (Fig. 4b).

On the other hand, the shape of the three consistency measures
was less affected by the amount of noise (Fig. 4b). We considered
the consistency of basic activation patterns across strides for the
spatial decomposition, the consistency of synergies across strides
for the temporal decomposition, and the diagonality of the
activation coefficients matrix for the space-by-time decomposi-
tion. Activation coefficients of the space-by-time decomposition
represent the level of activation of each possible pair of spatial
and temporal modules45. Consistency was computed as the
average scalar product (cosα) of the basic patterns or the
synergies across all possible pairs of strides. This scalar product
estimates the similarity of a given pattern or synergy across
strides. Diagonality was computed as the average ratio of the
diagonal activation coefficients to all activation coefficients (Eq. 6
in Methods). We then considered how these consistency
measures change as a function of the number of modules (from
1 to 8), by taking the slope of this function (lower panels in
Fig. 4b). Maximum slope locates the point of the function where
increasing or decreasing the number of modules relative to this
point leads to the most drastic change of the corresponding
consistency parameter. Thus, the slope represents a sensitive
indicator for the dimensionality of modules in the presence of
noise. In particular, the slope of the diagonality of the space-by-
time decomposition showed a clear peak corresponding to the
actual number of simulated modules (N= 3), which remained
stable over a wide range of noise levels (Fig. 4b, lower panels).
Similar results were obtained with different numbers of simulated
modules (Supplementary Figure 2). Notice that structureless data
obtained by randomly shuffling the simulated EMG samples
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Fig. 4 Effect of noise on simulated data. a Schematic of motor modules
using three different models (from top to bottom) spatial modularity
(ms tð Þ ¼ ∑ic

s
i tð Þwi), temporal modularity (ms tð Þ ¼ ∑iciðtÞws

i ) and space-by-
time modularity (ms tð Þ ¼ ∑i∑jci tð Þasijwj). The outputs of the first (blue),
second (magenta), and third (green) modules were summed together to
generate overall muscle activation (ms tð Þ, black envelope). The simulated
example of muscle activity profiles was computed using constant basic
patterns (csi tð Þ) for the spatial modularity model, constant synergies (ws

i ) for
the temporal modularity model across different strides (s), and the identity
matrix for the activation coefficients (asij) for the space-by-time modularity
model. b Effect of noise on the percent of variance accounted for (VAF,
upper) by the reconstruction of simulated EMGs using three different
decomposition methods (from left to right, spatial, temporal, and space-by-
time decomposition) and on the similarity measures (middle) and their
slope (lower): average similarity of the activation patterns across strides for
spatial decomposition, average similarity of synergies across strides for
temporal decomposition and average diagonality of the activation
coefficients matrix across strides for space-by-time decomposition (from
left to right). The simulated EMGs were constructed, by an adaptation of
the method proposed by Tresch et al.48, using the corresponding equation
for each model to calculate noiseless data value ms tð Þ and adding signal-
dependent noise with SD ¼ η �ms tð Þ, where η is the slope of the relationship
between the SD and noiseless data value. We constructed sets of 8 EMGs
for 7 strides starting from 3 modules composed of constant synergies and
basic patterns as in panel a. Each simulation was performed using
increasing values of η for 100 times (averages across simulations and
confidence intervals—as shaded areas—are shown in the graphs). Note
that VAF was significantly affected by noise, making it difficult to
distinguish the exact number of modules (N= 3) used to generate the
simulated EMGs for higher levels of noise for each decomposition method,
while the similarity measures showed a substantial reduction going from 3
to 4 modules regardless of the level of noise. Red lines represent the results
from structureless data obtained by randomly shuffling the simulated EMG
samples (see Methods).
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(see Methods) did not exhibit the same trend as the original data
(red points in Fig. 4b).

In the simulations of Fig. 4 and Supplementary Figure 2, the
underlying basic patterns (for spatial decomposition), synergies
(for temporal decomposition), or activation coefficients (for
space-by-time decomposition) that generated the EMGs were
constant across the strides before being corrupted by different
levels of noise. In a different set of simulations, we relaxed this
constraint and assessed the effect of cycle-to-cycle variability of
either the timing (Supplementary Figure 3a) or the amplitude
(Supplementary Figure 3b) of the basic patterns on the
consistency measures. In Supplementary Figure 3, the r2 between
noiseless and noisy EMG data ranged between ~0.7 and 0.4 for η
ranging between 0.9 and 1.7. We found that, also in these
simulations, the slope of the consistency measures exhibited a
peak (especially marked for the diagonality of the space-by-time
decomposition) corresponding to the actual number of simulated
modules (N= 3), which remained stable over a wide range of
noise levels.

Experimental data. Biological data, and in particular EMG signals,
are affected by different types and levels of noise49. In fact, the
VAF curves calculated from the actual EMG data of neonates,
infants, and adults as a function of different number of modules
for different decomposition methods (principal component ana-
lysis PCA, and non-negative matrix factorization NNMF) showed
the same features as those obtained from the simulated data
affected by high levels of noise (Fig. 5a). For a number of modules
less than eight (the maximum number that is theoretically pos-
sible, given that there are eight muscles), VAF was higher in
neonates and decreased with age in infants (a trend especially
clear with the spatial decomposition model, Fig. 5a), consistent
with an increasing dimensionality with age. However, the dif-
ferences across age groups were small and insufficient to assess
the dimensionality of the data sets unambiguously.

Therefore, for each participant we also evaluated the number of
modules corresponding to the maximum slope of the specific
measures of consistency across strides that we used with the
simulated data (Fig. 5b). The number of modules identified by
these criteria was variable across participants of all age groups,
including the adults (Fig. 5c). In particular, one can notice in
Fig. 5c that a few participants of all age groups, except the adults,
showed only one module of neuromuscular activity. This was due
to low-frequency oscillations of ipsilateral EMG activities that
predominated on all other components. Overall, the consistency
measures showed a systematic trend toward increasing dimen-
sionality of the modules with increasing age. Figure 5d plots the
mean values of the modules identified using the maximum of the
slope of diagonality of the activation coefficients matrix (space-
by-time decomposition) versus the mean age of each group of
participants. The trend with age was statistically significant: the
linear regression of the number of modules versus age yielded
r= 0.88 including only all children, and r= 0.95 including also
the adults. Very similar results were obtained using the number of
modules identified from the consistency measures for the spatial
and temporal decomposition.

Notice that the VAF by two modules in neonates was
significantly lower than the VAF by four modules in adults for
all decomposition models, presumably due to higher noise
(unstructured variability) in the former than in the latter
participants. In neonates, two modules explained on average
62% (CI95% [59%, 66%]) of the variance of the EMG data with the
spatial decomposition, 44% (CI95% [41%, 47%]) with the temporal
decomposition, and 41% (CI95% [39%, 44%]) with the space-by-
time decomposition. In adults, 4 modules explained on average
83% (CI95% [81%, 84%]) of the variance of the EMG data for

spatial decomposition, 81% (CI95% [77%, 83%]) for temporal
decomposition, and 78% (CI95% [75%, 81%]) for space-by-time
decomposition. Critically, however, the number of modules
necessary to account for a given level of variance tended to
increase with age, consistent with the hypothesis that the
dimensionality of neuromuscular control increases with age.

In addition to the quantitative parameters, it is helpful to assess
qualitatively the ability of the decomposition methods to describe
the original data. Figure 1 reports examples of data reconstruction
in one neonate and one adult using the spatial decomposition
algorithm with two and four modules, respectively. In general, the
envelope profiles of EMG activities are reproduced reasonably
well by the algorithm, but there were also episodes of poor
correspondence. The results from all neonates (except participant
N6, see Methods) and adults using the spatial decomposition and
the temporal decomposition are plotted in Supplementary
Figure 4 and Supplementary Figure 5, respectively, with two
and four modules in neonates and 4 modules in adults.

The same data are analyzed using the space-by-time decom-
position in Fig. 6. This method, in particular, allows a clear visual
assessment of how changing the number of dimensions would
affect the way one can account for the data in the presence of
variability45. In particular, the matrix of the activation coefficients
for all single strides indicates the extent to which the participants
of a given age group use the same modules (patterns and
synergies) in all strides. Thus, higher values of the activation
coefficients along the matrix diagonal (aii) relative to the
activation coefficients off-diagonal (aij and aji) denote a greater
consistency of engagement of the same modules in most strides
across participants of a given age group. Figure 6 shows that, in
neonates, this is the case for two modules but not for four
modules, consistent with our previous quantitative assessment.
Indeed, it can be noticed that the coefficients a11 and a22 are much
higher than a12 and a21 for two modules in neonates (Fig. 6a),
whereas a11, a22, a33, and a44 are only slightly higher than the
other coefficients for 4 modules (Fig. 6b). By contrast, a11, a22, a33,
and a44 are much higher than the other coefficients for 4 modules
in the adults (Fig. 6c).

As an additional approach to investigate the dimensionality of
the neuromuscular modules, we used the cluster analysis to
identify similar muscle synergies and activation patterns across all
recorded strides of all participants of each age group36. To this
end, we first applied NNMF to each single stride of each
participant separately, and we retained the smallest number of
modules that accounted for ≥80% of the variance of EMG
profiles. Next, we clustered individual muscle synergies and
activation patterns, and found that the optimal number of clusters
for both sets of variables was two and four in neonates and adults,
respectively (Supplementary Figure 6). In neonates, 82%
(n= 277) of all activation patterns and 76% of all muscle
synergies were above the silhouette threshold (see Methods). In
adults, 90% (n= 399) of all activation patterns and 85% of all
muscle synergies were above the silhouette threshold. The timing
and shape of these patterns, as well as the values of the associated
muscle synergies obtained with cluster analysis were very similar
to those plotted in Fig. 6a for neonates and Fig. 6c for adults.

In sum, different approaches converge toward the conclusion
that neonates employ fewer modules of neuromuscular control
during stepping than adults. However, since we could not account
for a considerable fraction of the data variance in neonates, one
may wonder whether there was any systematic structure in the
residuals that were not fit by the decomposition models. To
address this issue, we computed the similarity (scalar product)
between the residuals in all muscles and neonates or adults from
the space-by-time decomposition (similar results were obtained
using the other decomposition methods). We found that the
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similarity did not differ significantly from 0 (corresponding to
complete dissimilarity) for any number of modules greater than
two in neonates (CI95% encompassing 0), whereas in adults
the similarity differed significantly from 0 for any number
of modules. Two-way ANOVA showed that the similarity of
residuals was significantly higher in adults than neonates [main

effect of group, F(1,1776)= 1611.00 p < 0.001], decreased sig-
nificantly with increasing number of modules [main effect of
number of modules, F(7,1776)= 217.71 p < 0.001], and was
significantly lower in neonates than adults with increasing
number of modules [interaction effect, F(7,1776)=101.37
p < 0.001]. Therefore, in neonates all EMG activity not accounted
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for by two spatiotemporal modules reflects unstructured step-by-
step variability (noise). By contrast, in adults one may still find
significant structure even in higher order components.

Functional comparison of the modularity between neonates and
adults. Figure 6a, Supplementary Figure 5a and 6b show that the
two main patterns of EMG activity in neonates exhibit sinusoidal-
like waveforms, the first pattern (c1) peaking at ~30% of the
cycle (midstance), and the second one (c2) peaking at ~75%

(midswing). On each limb, c1 recruits the quasi-synchronous acti-
vation of several extensor and flexor muscles, contributing to stiffen
the limb and exerting vertical forces supporting part of body
weight32,34,36,42. Neonates typically support ~30–40% of their weight
during this stepping phase43,50. c2 recruits mainly flexor muscles
such as tibialis anterior, contributing to flex the leg and foot. Neo-
nates typically lack major muscle activity at either touch down or
lift-off, and they show correspondingly small tangential forces at
the step-by-step transitions32. Forward progression/propulsion is
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generally provided by the experimenter (or treadmill belt) rather
than by the neonate. Overall, the sequence of muscle activations
generates the idiosyncratic style of locomotion of neonates, involving
ground contact with variable parts of the foot sole, and hyperflexion
of the lower limbs during swing32,34,50.

Figure 6c, Supplementary Figure 5c and Supplementary Figure 6b
show that adults exhibit 4 main patterns of EMG activity, each of
much shorter duration relative to the neonatal patterns. On each
limb, these patterns are accurately timed around the four critical
events of the gait cycle, heel strike, weight acceptance/forward
propulsion, lift-off, and touch down. Adults show a much lower
extent of muscle co-contraction as compared with neonates and
infants42,43. During stance, the limbs are kept relatively extended, and
the center of pressure on the ground shifts smoothly heel-to-toe34.

Inter-subject consistency. The inter-subject consistency of the EMG
modules extracted using different decomposition methods decreased
significantly with increasing number of modules (Fig. 7a, two-way
ANOVA F(7,1192)= 1452.82 p < 0.001, F(7,1192)= 500.64
p < 0.001, and F(7,1192)= 416.66 p < 0.001 for the effect of the
number of modules for basic activation patterns extracted respec-
tively with spatial, temporal and space-by-time decomposition and
F(7,1192)= 856.21 p < 0.001, F(7,1192)= 1378.52 p < 0.001, and
F(7,1192)= 694.90 p < 0.001 for the effect of the number of modules
for muscle synergies extracted respectively with spatial, temporal
and space-by-time decomposition). Also, the decrease of inter-
subject consistency with increasing number modules was sig-
nificantly different across age groups (Fig. 7a, two-way ANOVA
F(49,1192)= 4.77 p < 0.001, F(49,1192)= 6.10 p < 0.001, and
F(49,1192)= 6.02 p < 0.001 for the interaction between the effect
of the number of modules and the effect of group for basic activation
patterns extracted respectively with spatial, temporal and space-
by-time decomposition and F(49,1192)= 12.86 p < 0.001,
F(49,1192)= 8.37 p < 0.001, and F(49,1192)= 13.26 p < 0.001 for
the interaction between the effect of the number of modules and the
effect of group for muscle synergies extracted respectively with
spatial, temporal and space-by-time decomposition). In particular,
considering a fixed number of modules (N= 4) for all groups of
participants, the inter-subject variability of the basic activation pat-
terns obtained using spatial decomposition and of the muscle
synergies extracted with all decomposition methods was higher
(meaning less consistent modules across participants) in infants
compared with adults (Fig. 7b, Tukey’s Honestly Significant Dif-
ference test, p < 0.047 for all the comparisons shown in the Figure).

Inter-muscular complexity in the frequency domain. The
coordination between multiple muscles can be assessed also in the

frequency domain by studying the characteristics of the muscle
networks derived from the spectral coherence between different
pairs of muscles47. We applied this approach to the EMG data of
neonates and adults in order to evaluate the complexity of multi-
muscle control in the frequency domain for these two groups of
participants.

Consistent with the results obtained in the spatiotemporal
domain, the dimensionality of the muscle networks (assessed by
the VAF curves calculated from the decomposition of the inter-
muscular coherence spectra with different number of modules)
was smaller in neonates than in adults (Fig. 8a). In fact, on
average 2.5 ± 1.7 (±SD) modules with PCA and 3.2 ± 1.9 modules
with NNMF were sufficient to reach a VAF ≥ 80% of the
reconstructed coherence spectra in neonates, while 3.3 ± 1.7
modules with PCA and 4.4 ± 2 modules with NNMF were
required in adults to reach the same VAF threshold (Fig. 8b).

In Fig. 9, we illustrate the features of the inter-muscular
coherence networks obtained with two components in neonates
(accounting on average for 79% of variance, CI95% [69%, 86%],
Fig. 9a), and with four components in adults (accounting on
average for 82% of variance, CI95% [78%, 86%], Fig. 9b). The
networks of different participants from each group were clustered
according to the between-subjects similarity (scalar product) of
the frequency components (c1-c2 in Fig. 9a and c1-c4 in Fig. 9b),
and sorted by the frequency of the main peak of these
components. Only the frequency components of the first network
in neonates (c1 in Fig. 9a), and the frequency components of the
first three networks in adults (c1-c3 in Fig. 9a) were consistent
across participants of the same group. This means that common
fluctuations of muscle EMGs in neonates have coherence
components mainly at low frequencies (below 5 Hz), while in
adults, in addition to the low-frequency components, there are
distinct components ranging up to ~12 Hz (Fig. 9). Supplemen-
tary Figure 7 illustrates similar results obtained using one
component of the coherence spectra in neonates and three
components in adults. Moreover, the topological features
(anatomical distribution across different sets of muscles) of all
extracted networks were significantly different (Kruskal–Wallis
p < 0.001 between neonates and adults for betweenness-centrality
and average edge weight, Fig. 9c). Even the first networks of
neonates and adults (n1 in Fig. 9) were quite different in topology,
despite their similar spectral signature. The muscular network n1
in neonates was characterized by higher (even if not statistically
significant, p= 0.07) betweenness-centrality and significantly
lower (Tukey’s Honestly Significant Difference test, p= 0.0017)
interlimb average weight as compared to n1 in adults, implying a
weaker bilateral connectivity of the muscle network of neonates.

Fig. 6 Space-by-time decomposition. a Result of the space-by-time decomposition of EMG data of neonates using two modules. Left column: muscle
synergies (w1 and w2, from top to bottom), each column represents a single neonate, and each row represents a muscle (BF: Biceps Femoris, RF: Rectus
Femoris, LG: Lateral Gastrocnemius, TA: Tibialis Anterior, CL: Contralateral Leg), the intensity of the color is proportional to the muscle weight, the average
(+SD) values are illustrated through gray bars on the right. Upper row: basic activation patterns (c1 and c2, from left to right), each colored line represents
a single neonate, black lines indicate the average across subjects. Middle panels: elements of the activation coefficients matrix (a11, a12, …, a22), each bar
represents a single stride (s1-s7) of each neonate (in different colors). The modules of each subject are grouped in order to attain the minimum distance
(1-scalar product) between the basic activation patterns of all subjects. Since for the space-by-time decomposition there is not a unique relationship
between synergies and basic patterns, which are related by the NxN matrices of activations coefficients, after sorting the basic activation patterns, we
sorted also the muscle synergies in order to obtain the resulting activation coefficient matrix as close as possible to a diagonal matrix. b Space-by-time
decomposition of EMG data of neonates using four modules, same format as panel a. c Space-by-time decomposition of EMG data of adults using four
modules, same format as panels a and b. Note that, despite four modules in neonates account on average for 69% (CI95% [66%, 71%]) of the variance of
the EMG data [in neonates two modules account on average for 41% (CI95% [39%, 44%]) of the variance, and in adults four modules account on average
for 78% (CI95% [75%, 81%]) of the variance], these modules are visibly less consistent across strides and across subjects (the average synergies across
subjects are flatter and the non-diagonal elements of the activation coefficients matrices are noticeably higher) compared with the decomposition with two
modules in neonates (a) and four modules in adults (panel c). N6 data are missing because this neonate performed 5 consecutive strides, but did not have
the seven strides necessary for factor analysis (see Methods).
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In agreement with previous reports47, we found that muscle
connectivity in adults takes place via long-range connections (e.g.,
the bilateral connections between legs), especially in the low-
frequency muscle network. The new finding is that, in neonates, the
low-frequency muscle network is characterized by shorter-range
connections (mainly restricted to intra-limb connections), as shown
by the lower average weight of the interlimb edges (Fig. 9c, lower
right panel) and by the higher betweenness-centrality (Fig. 9c,
upper right panel). Betweenness-centrality quantifies the impor-
tance of individual nodes of the network to keep interconnections.
The nodes of neonatal networks have higher centrality due to the
lack of long-range (interlimb) pathways, implying weaker or less
coordinated bilateral inter-muscular networks.

Discussion
It has previously been argued that the high intra- and inter-
individual variability of muscle activities typical of infant stepping

indicates the lack of any underlying structured pattern, thus refuting
the hypothesis of innate modular control26,27. Indeed, it may be
difficult to determine putative neuromuscular modules and their
dimensionality in the presence of noise44,48. Here, we tackled the
potential confounds due to noise and structured variability by means
of different approaches. First, we simulated several data sets with
varying amount of noise, matching real data but with known
dimensionality. We used 3 different algorithms for data factoriza-
tion, namely spatial decomposition, temporal decomposition, and
space-by-time decomposition, each making different assumptions45.
We observed that, in the presence of noise, a criterion based on a
given VAF threshold may not suffice to recover the dimensionality
of the simulated data. However, consistency measures, and in par-
ticular the slope of the diagonality of the space-by-time decom-
position algorithm, identify the dimensionality of noisy data
unambiguously (Fig. 4b). Next, we applied the same decomposition
algorithms to the experimental data of a cohort of children and
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adults, and found that the number of modules estimated by our
consistency measures increased with age (Fig. 5c, d). The number of
modules was variable across participants of all age groups, including
adults. Also previous studies found inter-subject variability in the
number of locomotor modules extracted by factorization methods in
adults16,18,19 and children51. However, both the basic activation
patterns and the muscle synergies exhibited much greater inter-
subject variability in all children groups compared with the adults
(Fig. 7).

Overall, our decomposition methods concurred in showing
that (i) neuromuscular modules are identifiable in all age groups,
including the newborns, (ii) the number of modules increases
with age, (iii) intra- and inter-individual variability exists in all
age groups, but it is considerably higher in neonates and infants
than in adults. Therefore, modularity coexists with variability, but
while the complexity of modular organization increases with age,
the associated variability decreases.

We also showed that the increase in complexity and decrease of
variability from the neonatal stage to adulthood is evident in the
frequency content and entropy of the individual EMGs (Fig. 2).
Thus, the frequency peaks in neonates were significantly less
numerous, had lower power and larger bandwidth as compared to
adults. Also, the aperiodic component of the frequency content
and the spectral entropy were significantly different between

neonates and adults, consistent with a greater irregularity of the
intrinsic rhythmicity of EMG activity in neonates.

Complementary findings emerged by considering the spectral
coherence between pairs of muscles47. Thus, the muscle networks
of neonates had significantly lower dimensionality (number of
modules of the inter-muscular coherence spectra) and weaker
bilateral connections than in adults (Figs. 8–9). Moreover, inter-
muscular coherence in neonates showed only low-frequency
(<5 Hz) components, which are deemed to be associated with
common modulation of motor unit firing rate and muscle force
generation52. By contrast, in adults we found additional coher-
ence components at higher frequencies (up to ~12 Hz), which
may reflect supraspinal inputs on spinal motoneurons53.

In this study, we recorded the EMG activity of eight muscles,
rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius
lateralis of both lower limbs. These muscles were selected because
they correspond to those analyzed in several previous studies in
neonates and infants27,32,33,37,42. While a larger set of muscles would
allow a more detailed description of neuromuscular control of
locomotion, in a previous study36 we showed that the basic acti-
vation patterns did not differ appreciably when extracted from the
present set of muscles (n= 8) or a larger set of muscles (n= 22).
Therefore, we believe that the main conclusions of our work would
not change by including a larger set of muscles.
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In the following, we discuss the possible underpinnings of our
findings.

Neural and biomechanical determinants of developmental
changes in neuromuscular control. Work in animal models
shows that the basic neural circuits underlying locomotor-like

behavior are laid down in the spinal cord at early stages of
development, well before birth54,55. However, they are then
modified extensively over a prolonged postnatal period by
experience, with spontaneous neural activity, sensory feedback,
and supraspinal control playing a critical role in shaping pro-
gressively the locomotor function24,40,41,56. Similarly, develop-
mental studies in humans show that locomotor-like behavior is
present prior to and at birth25,32–36,42, but the kinematic and
kinetic features typical of mature locomotion are reached only
after several years57.

There is increasing evidence that both rodents and primates (as
well as other altricial species) are born with immature nervous
systems involving circuits that have neither the neuronal
properties nor the connectivity needed for future behaviors40,58.
Neuronal properties and connectivity are tuned to limb and
body biomechanics during the critical period of postnatal
development59. At birth, several properties of the neuromuscular
system differ profoundly from the mature stage, and in line of
principle might account for the present results in neonates. Thus,
although muscle fiber specification (type I or II, based on ATPase
histochemistry) takes place in utero, physiological studies in
neonatal cats show that both fast and slow muscles initially
exhibit similarly slow contraction, which speeds up weeks after
birth60. Also the conduction velocities of motor and sensory
peripheral nerves in neonates are about 3 times slower than in
adults. Prior to birth, motor axons establish widespread multiple
innervation of muscle fibers that remains until several weeks after
birth in both rodents and humans61. This polyinnervation might
contribute to the muscle coactivation and low-dimensional
control we found in neonates. The biophysical properties of
mouse spinal motoneurons also change drastically after birth,
maximal firing increasing and excitability decreasing into the
third postnatal week58. A high-density neuromuscular interface
in kicking human neonates showed relatively low discharge rates
of spinal motoneurons, which were not modulated with
increasing muscle contraction speed but were strongly synchro-
nized across motoneurons52. Motoneuron synchronization had
previously been observed in neonatal rodents, and associated to
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motoneuron path-finding, synapse maturation (e.g., establishing
the initial polyneuronal innervation and subsequent synapse
elimination), and refinement of pattern-generating circuits62.
Motoneuron synchronization is indicative of strong common
synaptic input from premotor interneurons of locomotor pattern
generators and from afferent feedback53, and supports the
modular neuromuscular organization we reported here also in
neonates. In addition, transient electrical gap-junction coupling
between motor neurons may account for motoneuron synchro-
nization in neonates62. All these factors may contribute to
the extensive muscle coactivation and the resulting low-
dimensionality of neuromuscular modules in neonatal stepping.

Rhythmic bursting patterns of motoneurons are revealed in
embryonic and fetal rodent preparations, progressively evolving
from mainly synchronous to mainly alternating patterns between
contralateral limbs55. Intrinsic rhythmogenesis can be revealed
also in the isolated spinal cord of neonatal rodents stimulated by
different neurotransmitters29, but these rhythms are often quite
irregular and variable63. The irregular rhythmicity revealed by the
present frequency analysis of EMG activities in individual
muscles of neonates appears consistent with these observations
in neonatal animals.

Left-right coordination matures with different time courses in
different animal species55. Here, it was assessed quantitatively by
means of muscle networks analysis47. We found that the
networks of neonates had lower dimensionality and weaker
bilateral connectivity than adults’ networks. This indicates that
locomotor pattern generators can operate independently for the
left and right lower limbs in neonates, and that the interlimb
coupling is weaker than in adults64. A weak interlimb coupling
partly depends on the fact that cortical control contributes little to
neonatal stepping65. Interlimb coupling is weaker in the absence
of cortical descending inputs, as shown for instance in spinal
cats66.

Weak interlimb coupling of neonates may also depend on
immature sensory feedback from load signals and hip-position
signals24,67,68. Sensory feedback may also contribute to shape
neuromuscular modularity, expanding or compressing the
number of modules. We previously compared the results of
factorization of neonatal EMG activities during ground stepping
and spontaneous kicking36. While neonatal stepping is triggered
by the contact with the support surface and involves strong
sensory signals about limb load and hip extension24,67,68, sensory
inputs are not necessary for triggering spontaneous kicking
movements, which involve limited feedback about limb load and
hip extension. We found that kicking involves activation patterns
with a similar dimensionality and waveform as those of more
mature locomotion, but they lack a stable association with
systematic muscle synergies across movements36. In contrast,
stepping involves fewer temporal patterns but all structured in
stable synergies (a finding we confirmed here), whose fractiona-
tion may account for the synergies of older children36. Therefore,
the spinal locomotor circuits might be reconfigured as a function
of sensory feedback from a contact surface.

Functional significance of developmental changes in com-
plexity and variability of control signals. Low complexity and
high variability of neuromuscular signals attest neonatal imma-
turity but, at the same time, they involve potential benefits for
learning locomotor tasks. Not only do infants exhibit few neu-
romuscular modules, but they also employ a tight synergistic
covariation of limb joint angles during stepping26,32,34,42. As first
suggested by Bernstein69, when people start learning a skill, they
may restrict the number of degrees of freedom to reduce the size
of the search space and simplify the coordination problem, lower

dimensionality of control enabling a more efficient exploration of
the sensorimotor space. As the skill develops, the novice gradually
releases degrees of freedom. The idea of freezing the degrees of
freedom of movement at the initial stage of learning a task and
then freeing them as learning progresses has been incorporated in
neural network models of the development of locomotion70, as
well as in robotic humanoids71. It has also been argued that low-
dimensional control allows easier generalization across different
contexts5, which is critical to learn different motor tasks during
development.

A high variability of the neuromuscular signals has a
complementary significance to the low-dimensional character of
infant stepping. Motor variability can take two forms: the
variability originating from the periphery (sensorimotor noise),
which must be decreased to move more accurately, and the
variability that originates from central circuits and drives
learning-related motor exploration72. Indeed, in human adults
performing a new task, trial-by-trial variability predicts the
individual motor learning ability: the greater the variability, the
faster the learning73,74. In human infants, the absence of
structured variability is a sign of motor disability; the movement
stereotypy typical of developmental motor disorders contrasts
with the variation and flexibility of healthy infant movements59.

In conclusion, the nativism/learning controversy for the
ontogeny of locomotion that we outlined initially can be resolved
by acknowledging that the basic motor components are laid down
prior to and at birth, but they are then reconfigured and enriched
considerably from extensive experience with continuously chan-
ging brain-body-environment interactions.

Methods
General procedures were similar to those described in ref. 36. All experiments were
in accordance with the World Medical Association Declaration of Helsinki for
medical research involving human subjects. The Research Ethics Committee of
Azienda Sanitaria Locale (Local Health Center) Roma C approved the experiments
with the neonates (protocol CEI/15843 study n. 609, and protocol 27593, study n.
38.15). The Research Ethics Committee of Santa Lucia Foundation approved the
experiments with a subset of infants and all adults (protocol CE/AG4/PROG.341-
01). The Research Ethics Committee of the Veltischev Research and Clinical
Institute for Paediatrics of the Pirogov Russian National Research Medical Uni-
versity approved the experiments for another subset of infants (protocol n. 14/18).
A parent for the child and all adult participants provided informed written consent
to participate in the study after the nature and possible consequences of the study
were explained. All children were full-term at birth and had no known pathology.
Those who did not step were excluded from the study. Table 1 gives the average
characteristics of the eight different groups of recruited participants: full-term
neonates (Apgar score ≥8 at 1 and 5 min, uneventful delivery and perinatal his-
tory), infants of 6 different age groups, group 1 (g1, age range 4–6 months), group 2
(g2, 6–8 months), group 3 (g3, 8–10 months), group 4 (g4, 10–14 months), toddlers
(12–15 months), preschoolers (24–48 months), and adults. These participants were
selected from a larger sample because they had full EMG recordings from all 8
tested muscles of at least 7 strides. One neonate (N6) was included for a separate
analysis because she performed 5 consecutive strides, but did not have 7 strides (see
below). Supplementary Table 1 gives the detailed characteristics of all 79 partici-
pants included in the study.

Experimental protocols
Neonates. Neonates were studied in the hospital well-baby maternity ward. Step-
ping was elicited following established procedures32,34,36,42. An experienced
pediatrician held the child under the armpits, with the feet soles touching the
treadmill surface. Stepping was typically successful when the child was sufficiently
aroused. No movement recording was carried out if the child was drowsy or asleep.

Neonates stepped on a treadmill at different speeds. Each experiment started
with stepping trials at 0.03 m/s. All these neonates were then tested at 0.05 and
0.1 m/s. Higher speeds (0.15, 0.2 m/s) were tested only if the neonate was able to
step at a lower speed. The belt speed was generally changed between the trials (with
the child not in contact with the treadmill). Occasionally, the belt speed was
changed in mid-trial; in these instances, the steps performed during the
acceleration or deceleration phase were not included in the analysis.

Infants. Infants were studied in a hospital laboratory or pediatric room. Stepping
was elicited in a manner similar to that used for neonates. Twenty-four infants
(from groups g1-g4 and toddlers) were tested on a treadmill with incremental
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speeds in the range between 0.05 m/s and 0.6 m/s. Twenty-nine infants (from
groups g1-g4, toddlers and preschoolers) were tested on a horizontal walkway
(Supplementary Table 1). Toddlers were recorded within 4 weeks from the first day
of unsupported walking experience (as reported by the parents).

Adults. They walked at 1.1 m/s (4 km/h) on a treadmill.

Experimental setups and recordings. Neonates, infants (except those who step-
ped on a horizontal walkway) and adults stepped on a pediatric treadmill model 2
Carlin’s Creations (Sturgis, MI, 69 cm × 46 cm length × width), model 3 Carlin’s
Creations (Sturgis, MI, 81 cm × 46 cm), and standard treadmill (EN-Mill 3446.527,
Bonte Zwolle BV, BO Systems, The Netherlands, 150 × 60 cm), respectively.

Kinematics was recorded by means of a video camera (Canon MD160, Canon
Inc., Japan, 1152 × 864 pixels, 25 frames/s or Panasonic НС-V760ЕЕ-К,
1920 × 1080 pixels, 50 frames/s) for children who stepped on a walkway. We used a
3D SIMI motion capture system (Munich, Germany, 3 video cameras, 640 × 480
pixels, 100 frames/s) to record stepping on treadmill in neonates, and a 3D Vicon
Nexus (Oxford, UK, 10 Bonita cameras, 1024 × 1024 pixels, 200 frames/s) in
infants who stepped on treadmill and adults. In all cases, adhesive markers
(diameter, 9 and 14 mm in neonates and older participants, respectively) were
attached to the skin over the hip (greater trochanter, GT), knee (lateral femur
epicondyle, LE), ankle (lateral malleolus, LM), and fifth metatarsophalangeal joint
(5MT) of the leg facing the video cameras.

In neonates, surface EMG activities were recorded at 2 kHz using the wireless
Zerowire system (Aurion Srl, Italy) with miniature (2-mm diameter) surface
electrodes (Beckman Instruments), bandwidth of 20–1000 Hz with an overall gain
of 1000. To minimize movement artefacts, preamplified EMG sensor units were
attached at the experimenter’s wrist, and twisted pairs of wires (between electrodes
and units) were limited to 25 cm length and fixed along the infant leg using elastic
gauze. In infants and adults, EMGs were recorded by means of the Trigno Wireless
EMG System (Delsys Inc., Boston, MA, bar electrodes, contact 5 × 1 mm),
bandwidth of 20–450 Hz, overall gain of 1000. Sampling rate was 2 kHz for
participants stepping on treadmill, and 963 Hz for those stepping on a horizontal
walkway. In all participants, we recorded bilaterally from rectus femoris (RF),
biceps femoris (BF), tibialis anterior (TA), and gastrocnemius lateralis (LG). In all
experiments, sampling of kinematic and EMG data was synchronized. All markers
and electrodes used in children were for pediatric use.

Data analysis. All data analysis was performed using custom-written programs in
Matlab (MathWorks, Natick, MA). The acquired kinematic data were low-pass
filtered at 20 Hz with a zero-lag 4th-order Butterworth filter. We selected the
sequences with at least three consecutive steps involving alternating (left-right) foot
placements. A step was defined as a cyclic movement that included the placement
of 5MT ahead of GT. Stance and swing phases were defined on the basis of the
timing of the local minima of the vertical position of the foot markers (LM and
5MT). Stride cycle was defined as the time interval between two successive touch-
downs by the same foot, and included a step of one foot followed by a step of the
contralateral foot.

Raw digitized EMG data were first inspected visually to detect artefacts and
remove the corrupted data segment from further analysis. Because of the low skin
impedance at each electrode site and the preamplification close to the electrodes,
artefacts were infrequent (less than 4% of recorded data were removed). EMG data
were high-pass filtered at 60 Hz, full-wave rectified, and low-pass-filtered at 5 Hz
(except for the analysis of muscle coherence networks, see section below
Spatiofrequency organization of the muscle activity patterns) to obtain envelope
time-series. All filters were zero-lag 4th-order Butterworth. In order to have a
comparable set of data for all participants, the EMG data of seven strides at the
same (treadmill) or similar (on ground) speed were used for all analyses, except for
the frequency analysis of the cases with five consecutive strides (see section Intra-
muscular complexity in Results). Since the percentage of seven consecutive strides
was low (~20%) in most neonates, in order to render all data sets comparable, we
randomly sampled seven strides of each individual in the other age groups, making
sure that each individual had the reference percentage (20%) of seven consecutive
strides of neonates. The processed EMG data were time-interpolated over a
normalized 200-point time base. Then, we subtracted the minimum over the cycle
from each EMG profile, and normalized the EMG amplitude to the maximum
computed over all cycles of a given participant and condition.

Parametrized frequency analysis of EMG data of individual muscles. To assess intra-
muscular activity complexity, the Power Spectral Density (PSD) was calculated for
each participant using the Fast Fourier Transform (FFT) algorithm (fft.m function
in Matlab) on the time-interpolated EMG data of each muscle, concatenated over
the selected 7 strides. The PSD for each muscle was then parametrized using the
algorithm proposed by Donoghue et al.46, which models the PSD as a combination
of an aperiodic component and periodic oscillatory peaks. These oscillatory
components of the PSD are characterized as frequency regions of power over the
aperiodic component, and are modeled as Gaussians. The periodic component Gn

is the sum of N total Gaussians, described as:

Gnðf Þ ¼ A � exp �ðf � f cÞ2
2σ2

� �
ð1Þ

where A is the power of the peak, fc is the center frequency, σ is the standard
deviation (bandwidth) of the Gaussian, and f is the frequency vector.

The aperiodic component L is modeled using a Lorentzian function, written as:

Lðf Þ ¼ b� logðkþ f χÞ ð2Þ

where b is the broadband offset, χ is the exponent, and k is the “knee” parameter,
accounting for the bend in the aperiodic component. Broadband power refers to
fluctuations occurring over a broad range of frequencies. The final outputs of the
algorithm are the parameters defining the best fit for the aperiodic component in
Eq. 2 and the N Gaussians in Eq. 1. The FOOOF algorithm (version 1.0.1) was used
to parameterize EMGs power spectra. Settings for the algorithm were: peak
width limits from 0.5/T to 10/T and peak threshold= 2. Power spectra were
parameterized across the frequency range from 0.1/T to 10/T. Notice that, in order
to deal with the difference in stepping frequency with age (see Table 1), we
performed frequency analyses on time-interpolated EMG data. Therefore, the
vector of input frequency is not expressed in Hz but in 1/T, where T is the stride
duration.

Since the parameters of the aperiodic component are strictly correlated between
each other and may be difficult to interpret individually, we introduced two
additional parameters that better describe the characteristics of the aperiodic fit.
The corrected broadband offset b*= b−log(k) represents the offset of the aperiodic
fit relative to the horizontal slope (overall up/down translation of the whole
spectrum), and the corrected knee k*= k(1/χ) defines the frequency at which the
aperiodic fit transitions from horizontal to negative slope. Notice that the exponent
reflects the slope of the aperiodic component past the knee inflection point.

In order to measure the degree of EMG irregularity, we calculated for each
participant and each muscle the spectral entropy75 as SE ¼ �∑f p f

� �
lnðp f

� �Þ,
where p is the relative power (that is the ratio of each PSD value to the total PSD)
between 0/T and 10/T. SE was divided by the natural logarithm of the number of
PSD samples in order to obtain a value between 0 and 1, where 1 represents the SE
of a signal with all frequency components of equal power value (white noise).

Spatiotemporal organization of the muscle activity patterns. To assess inter-
muscular activation complexity, we used a dimensionality-reduction approach.
Basic neuromuscular modules were extracted from time-varying profiles of pro-
cessed EMG activities of all recorded muscles of seven strides for each
participant using three different methods: spatial, temporal, and space-by-time
decomposition45. One neonate (N6) performed five consecutive strides, but did not
have the seven strides necessary for the factor analysis mentioned above. For each
model, we defined specific measures of consistency of the modules across strides
and across participants.

Spatial decomposition model: In this model (Fig. 3a, upper panel), for each stride
(s), each muscle pattern (m) is represented as a linear combination of a set of time-
invariant (and stride-invariant) weight vectors in the muscles space (muscle
synergies, w) activated by a time-varying activation coefficient (basic activation
patterns, c), as follows:

ms tð Þ ¼ ∑
N

i¼1
csi tð Þwi þ ε ð3Þ

where t is the time, ε are the residuals, and N is the number of spatial modules.
Since the basic activation patterns can vary across strides, the consistency measure
for this model was evaluated by calculating, for each basic activation pattern (ci),
the average scalar product across all possible pairs of strides, and averaging this
value across the N modules (Fig. 3a).

Temporal decomposition model: In this model (Fig. 3a, middle panel), for each
stride, each muscle pattern is represented as a linear combination of a set of time-
varying basic activation patterns (c, invariant across strides) weighted by a set of
muscle synergies (w) that can vary across strides:

ms tð Þ ¼ ∑
P

i¼1
ci tð Þws

i þ ε ð4Þ

where P is the number of temporal modules. Similarly to the spatial decomposition
model, the consistency measure for this model was evaluated by calculating, for
each muscle synergy (wi), the average scalar product across all possible pairs of
strides, and averaging this value across the N modules (Fig. 3a).

Space-by-time decomposition model: This model (Fig. 3a, lower panel), proposed
by Delis et al.45, assumes that each muscle pattern can be reconstructed starting by
a set of muscle synergies (w) and a set of basic activation patterns (c) that do not
vary across strides, and which are related by a matrix of activation coefficients (aij)

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04225-8

16 COMMUNICATIONS BIOLOGY |          (2022) 5:1256 | https://doi.org/10.1038/s42003-022-04225-8 | www.nature.com/commsbio

www.nature.com/commsbio


that can vary across strides:

ms tð Þ ¼ ∑
P

i¼1
∑
N

j¼1
ci tð Þasijwj þ ε ð5Þ

By assuming P=N, we obtain square matrices of activation coefficients. In
order to evaluate the consistency of the activation coefficients across strides, for
each participant, we first ordered the basic activation patterns in a “chronological”
order (with respect to the timing of the main peak) and then we sorted the set of
synergies to obtain the resulting activation coefficient matrix as close as possible to
a diagonal matrix. The diagonality (d) of the activation coefficient matrix was
calculated, for each stride, using the following formula:

ds ¼
∑
N

i¼1
asii

∑
N

i¼1
∑
N

j¼1
asij

ð6Þ

Factorization algorithms: The principal component analysis (PCA, pca.m function
in Matlab) and the NNMF algorithm were used to factorize EMG data that were
organized into two different matrices as illustrated in Fig. 3a for spatial and
temporal decomposition. PCA was also applied to the EMG data of single strides.
The sample-based non-negative matrix tri-factorization (sNM3F) algorithm45 was
used to extract the concurrent spatial and temporal modules and the matrices of
activation coefficients from the space-by-time decomposition model. For both
NNMF and sNM3F algorithms, the best solution was selected out of 100 runs to
avoid local minima of the root-mean-squared residuals. In order to assess the
spatial and temporal dimensionality, we applied the factorization methods by
varying the number of modules from 1 to 8, and calculated, for each N and each
given model, the percent of variance accounted for (VAF), the consistency mea-
sures described above, and their slope.

Inter-subject consistency: To assess the consistency of the basic activation patterns
and of the muscle synergies across participants of the same group, we first iden-
tified for each N the modules that were similar across participants. For all
decomposition methods, we sorted the modules of each participant in order to
attain the minimum distance (1- cosα) between the basic activation patterns of all
participants (in the case of spatial decomposition, the average of the basic acti-
vation patterns across strides was used for each module). Since for the space-by-
time decomposition there is not a unique relationship between synergies and basic
patterns, which are related by the NxN matrices of activations coefficients, after
sorting the basic activation patterns, we sorted also the muscle synergies in order to
obtain the resulting activation coefficient matrix as close as possible to a diagonal
matrix. We then evaluated the consistency across participants as the average
similarity (scalar product) of the basic activation patters or of the synergies of the
similar modules between all possible couples of subjects of the same group.

Analysis of residuals: To verify whether there was any systematic structure in the
residuals (ε in Eqs. 3–5) that were not fit by the decomposition models, we
computed the similarity (scalar product) between the residuals in all muscles and
participants of each age group.

Simulated data. To assess the influence of noise on the VAF and on the consistency
measures, we simulated different sets of eight rectified EMG data starting from
known modules (N equal 2 to 5 modules). Following the method used by Tresch
et al.48, we generated a set of N muscle synergies (wi, Fig. 4a) drawn from expo-
nential distribution with a mean of 10. In order to obtain a set of independent
synergies, we ran the random generation 1000 times and chose the set that
minimized the scalar product between the N synergies. Mimicking the shape and
the characteristics of the basic activation patterns extracted from the experimental
data, we generated a set of N basic activation pattern (ci, Fig. 4a) as Gaussians,
evenly shifted across the gait cycle, with width inversely proportional to N. For each
module, the same Gaussian was concatenated unchanged over the 7 strides
assumed for the simulation (see the upper panel of Fig. 4a). The data generated
from these known wi and ci using Eq. 3 were then corrupted by a signal-dependent
noise with standard deviation proportional to the noiseless data value by a factor of
η and low-pass filtered at 5 Hz (as the experimental data). For each N and for each
level of noise (η ranges from 0.9 to 1.7, corresponding to r2 from 0.89 to 0.62
between noiseless and corrupted EMG data, Fig. 4b), we generated 100 data sets on
which we applied the decomposition algorithms (varying the number of modules
from 1 to 8), and calculated the VAF and consistency measures. The same analysis
was performed on 100 structureless data sets obtained by randomly shuffling all
samples of the simulated EMGs, independently for each channel.

Notice that using Eq. 3 with the imposed wi and ci (repeated unchanged over
the 7 strides) to generate the noiseless simulated EMGs is equivalent to using Eq. 4
with the same stride-invariant ci and repeating wi unchanged across strides or using
the same stride-invariant ci and wi in Eq. 5 assuming that the activation coefficients
matrices are identity matrices (Fig. 4a).

In a separate series of simulations, we assessed the effect of cycle-to-cycle
variability of either the timing (Supplementary Figure 3a) or the amplitude
(Supplementary Figure 3b) of the basic patterns on the consistency measures. In

the former case, we generated EMG sets in which the Gaussians of the 7 strides
were independently shifted across the stride cycle by a random interval drawn from
a normal distribution with mean 0% and standard deviation 5% of the cycle. In the
latter case, we generated EMG sets in which the Gaussians of the 7 strides were
independently scaled in amplitude by a random factor drawn from a normal
distribution with mean 1 and standard deviation 0.3 of their amplitude. For each N
and for each level of noise (η ranges from 0.9 to 1.7, corresponding to r2 from ~0.7
to about 0.4 between noiseless and corrupted EMG data), we generated 100 data
sets on which we applied the decomposition algorithms (varying the number of
modules from 1 to 8), and calculated the VAF and consistency measures.

Consistency parameters. For both simulated and experimental data, consistency was
computed as the average scalar product (cosα) of the activation patterns or the
synergies across all possible pairs of strides. Diagonality was computed as the
average ratio of the diagonal activation coefficients to all activation coefficients
(Eq. 6). We then considered the maximum value of the slope of change of the
consistency measures as a function of the number of modules (from 1 to 8). In a
few experimental cases, this maximum value corresponded to 1 module but was
poorly defined. This occurred in 13% of all subjects for the spatial decomposition,
6% for the temporal decomposition, and 2% for the space-by-time decomposition.
In these cases, we based the identification of the number of modules on both the
consistency measures across strides and the VAF. Specifically, when 1 module
accounted for <20% of the total data variance, we selected the number of modules
corresponding to the second highest value of the consistency slope if this value
differed by <0.01 relative to the maximum.

Cluster analysis of neuromuscular modules. Muscle synergies and time-varying basic
activation patterns were computed according to Eqs. 3 and 4, respectively. Here,
however, NNMF was separately applied to each single stride of each participant. We
varied the number of synergies or basic patterns from 1 to 8, and for further analyses
we retained the smallest number accounting for ≥80% of the variance of EMG
profiles. Next, to identify similar synergies or patterns across strides, all w or all c
extracted from single strides of all participants of each group and condition were
pooled together and partitioned in k mutually exclusive clusters using the k-means
algorithm36. To minimize the possibility of local minima, we performed 100 repli-
cations of the algorithm. Because the k-means method requires choosing the number
of clusters as input, we determined the optimal number of clusters in the range 2 to
20 using the Calinski-Harabasz method76. The Calinski-Harabasz index is defined as:

CHk ¼
SSB
SSW

ðN � kÞ
ðk� 1Þ ð7Þ

where SSB is the overall between-clusters variance, SSW is the overall within-cluster
variance, k is the number of clusters, and N is the number of observations. The
overall between-clusters variance SSB is defined as

SSB ¼ ∑
k

i¼1
nikmi �mk2 ð8Þ

where ni is the number of observations in cluster i,mi is the centroid of cluster i, m is
the overall mean of the sample data, and ‖mi−m‖ is the L2 norm between the two
vectors. The overall within-cluster variance SSW is defined as

SSW ¼ ∑
k

i¼1
∑
x2ci

kx �mik2 ð9Þ

where x is a data point, ci is the i-th cluster, and ‖x−mi‖ is the L2 norm between the
two vectors.

Well-defined clusters have a large between-clusters variance (SSB) and a small
within-cluster variance (SSW). The larger the CHk ratio, the better the data
partition. The optimal number of clusters corresponded to the solution with the
highest CHk value.

The goodness of clusterization for individual muscle synergies and activation
patterns was assessed using the silhouette method36. The centroid for each cluster
was the point with minimum distance from all points in the cluster. As distance
measure (in 200-dimensions space), we used [1 – cosαi], αi being the angle between
points (treated as vectors). The silhouette value is a measure of how similar a given
data point is to the other data points in its own cluster, when compared to data
points belonging to different clusters. The silhouette Si for the i-th point is defined as:

Si ¼
ðbi � aiÞ
maxðai; biÞ

ð10Þ

where ai is the average distance from the i-th point to the other points in the same
cluster as i, and bi is the minimum average distance from the i-th point to points in a
different cluster, computed over all clusters. All muscle synergies and all activation
patterns with S ≤ 0.2 were considered unmatched and excluded from the
corresponding cluster. For each group of participants, the resulting clusters of
activation patterns were ordered chronologically, based on the timing of the main
peak relative to the stride cycle.

Spatiofrequency organization of the muscle activity patterns. To evaluate the
coordination between multiple muscles in the frequency domain, we constructed
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the muscle coherence networks of neonates and adults with the method proposed
by Boonstra et al.47. To this end, the EMGs of the eight muscles were high-pass
filtered at 30 Hz (zero-lag 4th-order Butterworth) and rectified using the Hilbert
transform. The EMG envelopes from the same seven strides used for the other
analyses were then concatenated in time (Fig. 3b, left) in order to compute the
inter-muscular coherences. From the processed mean-centered EMG signals, we
calculated the magnitude-squared coherence (mscohere.m in Matlab) between all
possible couples of muscles (n= 24, Fig. 3b).

NNMF was used to decompose this set of inter-muscular coherences (cohe) into
frequency components (c) and inter-muscle loadings (w) according to the following
model:

cohe f
� � ¼ ∑

F

i¼1
ci f
� �

wi þ ε ð11Þ

where f is the frequency, ε are the residuals and F is the number of frequency
components.

For each frequency component (reflecting the spectral signatures of the given
module), it is possible to build an 8x8 matrix from the corresponding inter-muscle
loading (wi), since each element of the wi vector represents the coupling strength
between a given pair of muscles. We then constructed, for every subject, a set of F
networks, each one characterized by a given spectral content (ci), whose nodes are the
8 muscles and the edges are the elements of the weighted matrix constructed from wi.

To characterize the frequency of each network, we calculated the 50% frequency
band as the frequency interval in which the frequency component amplitude
exceeds half of its maximum. To evaluate the topography of the networks, we
calculated the betweenness-centrality as the fraction of all shortest paths in the
network that pass through a given node47 and the average edge weight across all
networks (global), across intra-limb connections, and across interlimb connections.

To investigate the dimensionality (the number of components), we performed
NNMF and PCA on inter-muscular coherences by varying the number of modules
from 1 to 8, and we calculated the VAF by the reconstructed data.

Statistics and reproducibility. Descriptive statistics included means ± SD across
all participants of a given group. Sample size for each age group is reported in
Table 1. Trials performed by each individual are reported in Supplementary
Table 1. The values of r2, VAF, distances between vectors, and diagonality were
standardized using the Fisher z-transform (inverse hyperbolic tangent), means and
confidence intervals were computed on the transformed values and back-
transformed using the inverse transformation. Kolmogorov–Smirnov test was used
to assess the null hypothesis that the data come from a normal distribution. The
non-parametric Wilcoxon rank sum test was used to evaluate the differences
between neonates and adults in the average periodic and aperiodic parameters of
PSD and in the average spectral entropy, since the null hypothesis of normality of
these data was rejected. The Kruskal–Wallis test was used to evaluate the differ-
ences in the average measures between all inter-muscular networks from adults and
neonates. Tukey’s Honestly Significant Difference test was used for post-hoc
comparisons. Two-way ANOVA was used to assess the effect of group, the effect of
the number of modules used for the decomposition and their interaction on the
average of the z-transformed measures of inter-subject consistency. Reported
results were considered significant for p < 0.05.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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