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Blib is a multi-module simulation platform for
genetics studies and intelligent breeding
Luyan Zhang 1, Huihui Li 1,2 & Jiankang Wang 1,2✉

Simulation is an efficient approach for the investigation of theoretical and applied issues in

population and quantitative genetics, and animal and plant breeding. In this study, we report a

multi-module simulation platform called Blib, that is able to handle more complicated genetic

effects and models than existing tools. Two derived data types are first defined in Blib, one to

hold the required information on genetic models, and the other one to represent the genetics

and breeding populations. A number of subroutines are then developed to perform specific

tasks. Four case studies are present as examples to show the applications of Blib, i.e., genetic

drift of multiple alleles in randomly mating populations, joint effects of neutral mutation and

genetic drift, comparison of mass versus family selection, and choice of testers in hybrid

breeding. Blib together with its application modules, has great potential to benefit theoretical

genetic studies and intelligent breeding by simulating and predicting outcomes in a large

number of scenarios, and identifying the best optimum selection and crossing schemes.

https://doi.org/10.1038/s42003-022-04151-9 OPEN

1 National Key Facility for Crop Gene Resources and Genetic Improvement, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences
(CAAS), Beijing 100081, China. 2 National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan 572024,
China. ✉email: wangjiankang@caas.cn

COMMUNICATIONS BIOLOGY |          (2022) 5:1167 | https://doi.org/10.1038/s42003-022-04151-9 |www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04151-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04151-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04151-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04151-9&domain=pdf
http://orcid.org/0000-0002-0790-0277
http://orcid.org/0000-0002-0790-0277
http://orcid.org/0000-0002-0790-0277
http://orcid.org/0000-0002-0790-0277
http://orcid.org/0000-0002-0790-0277
http://orcid.org/0000-0002-9117-5011
http://orcid.org/0000-0002-9117-5011
http://orcid.org/0000-0002-9117-5011
http://orcid.org/0000-0002-9117-5011
http://orcid.org/0000-0002-9117-5011
http://orcid.org/0000-0002-8069-5329
http://orcid.org/0000-0002-8069-5329
http://orcid.org/0000-0002-8069-5329
http://orcid.org/0000-0002-8069-5329
http://orcid.org/0000-0002-8069-5329
mailto:wangjiankang@caas.cn
www.nature.com/commsbio
www.nature.com/commsbio


S implified assumptions are often made for reasons of tract-
ability in many theoretical studies, however the real world is
more complicated. Computer simulation provides an effi-

cient tool that has been widely used in many scientific fields and
disciplines, probably since computers were invented. Genetic
studies and breeding applications allow us to investigate the
implications of relaxing some of the assumptions made in
population and quantitative genetics, and their effects on the
activities of breeding programs1. On the other hand, simulation
can generate a large amount of data that is impossible or difficult
to obtain from the empirical experiments or theoretical con-
siderations, which can be used to compare different selection
methods, and validate the proposed theories or models. In
addition, simulation can help perform pilot research, accelerate
research and development, and transfer discoveries from the
laboratory or theory to practice2,3. As an example, by using
molecular data on parents and genomic prediction models, the
segregating populations of virtual crosses can be generated and
then compared, from which the most promising ones can be
predicted before the crosses are actually made in the field4.

To use the simulation approach in genetic studies and breeding
applications, the development of suitable software packages,
platforms and/or modules is fundamental. QU-GENE is such a
platform that was developed for the quantitative analysis of
genetic models5,6. Based on the QU-GENE platform, several
application modules have been developed, and then used to
investigate various issues in breeding. As an example module of
QU-GENE, QuLine was designed to simulate the breeding pro-
grams for deriving inbred (or pure) lines and has been used to
compare different breeding methods7–9, predict cross perfor-
mance using known gene information10, optimize marker assisted
selection in the pyramiding of multiple genes11, and investigate
the efficiency of a single backcrossing breeding strategy12.
QuHybrid is another module designed to simulate breeding
programs for selecting hybrids as the final products, and it has
been used to calculate the probability of success of a biofortified
breeding program for improving the provitamin A content in
maize13. More recently, QuMARS was developed to simulate and
optimize various recurrent selection strategies, including pheno-
typic selection, marker-assisted recurrent selection, and genomic
selection (GS) for both short-term and long-term breeding
procedures14.

Several other simulation platforms have been developed in past
decades for various purposes. SimuPop provides a forward-time
simulation environment, which may be used to manipulate
genetic populations after many generations of random mating,
and investigate the evolutionary mechanism of natural
populations15. PedigreeSim simulates meiosis in both diploid and
tetraploid species and can be used to generate pedigrees and cross
populations16. Slim is a forward simulation tool designed to study
the effects of linkage and selection and is capable of modeling the
complex scenarios of demography and population substructure17.
Forqs is a forward-in-time simulator of recombination, quanti-
tative traits and selection designed to investigate haplotype pat-
terns in scenarios where substantial evolutionary change has
taken place18. By using progeny simulation and genomic pre-
diction strategies, PopVar can predict the population mean,
genetic variance, mean of superior progenies, and correlated
responses of multiple traits19. AlphaSim is a package for simu-
lating plant and animal breeding programs that is flexible in
terms of historical population structure and diversity, pedigree
structure, trait architecture and selection strategy20. Similar to
QU-GENE application modules, ADAM-plant can simulate
breeding programs for self-pollinated and cross-pollinated crop
plants, and for the application of new technologies such as speed
breeding and GS21.

The QU-GENE platform together with its application modules
represents one of the most mature and widely used simulation
tools in genetics and breeding. The platform can handle a wide
range of genetic models including molecular markers as well as
genes underlying phenotypes, genetic linkage, multiple alleles,
additive, dominance, epistasis, and gene-by-environment inter-
actions. However, it was originally designed without considering
more complicated effects and/or genetic phenomena, such as
mutations, cytoplasm effects, and fertilities of female and male
gametes, needless to say the interactions between cytoplasm and
nuclear genes. These phenomena or effects are important in
evolutionary biology, population genetics and breeding applica-
tions, but cannot easily be imbedded into the existing platform
and its application modules.

In this study, we report a multi-module genetic simulation
platform called Blib, which has the potential for a much wider
range of genetic studies and intelligent breeding. First, we intro-
duce the technical issues for derived data types of the generalized
genetic models and genetics/breeding populations, together with
major subroutines in Blib. We then present four case studies as
examples to show some of the applications of Blib in genetic
studies and breeding.

Results
Case study I: Genetic drift of multiple alleles in randomly
mating populations. One Blib application module called DRIFT
was developed to simulate genetic drift in randomly mating
populations. First, two subroutines, i.e., Blib_ReadGmodel and
Blib_ReadPopulation, were called to assign the global variable
Gmodel and one initial population from two external files,
respectively. Then, the subroutine Blib_Cross1Population was
repeatedly called to conduct random mating in one parental
population and generate the progeny population for a given
number of generations. The whole procedure was repeated for a
given number of runs or replications. Statistical parameters
associated with the population were calculated by calling sub-
routine Blib_CalcPstatistics and outputted to external files for
each generation of random mating and each run. One locus with
multiple alleles but without mutation was considered in the
genetic model. Two population sizes (N) were set at 10 and 50.
For each population size, four initial allele numbers were con-
sidered in the base populations, i.e., 2, 0.5N, N and 2N. The
alleles had equal frequency in the base populations. The drift
procedure was repeated for 100 generations of random mating
and 100 simulation runs. For each generation, allelic frequencies
in the 100 subpopulations (generated from the 100 simulation
runs) were recorded.

The inbreeding coefficient in limited-size populations during
random drift has been well studied in population genetics22–24.
Starting from one base population, the theoretical inbreeding
coefficient after t generations of random drift in populations with
the size of N is given by Eq. (1). Assuming there is no inbreeding
in the base population, i.e., F0= 0, we have Eq. (2).

Ft ¼ 1� 1� 1
2N

� �t

ð1� F0Þ ð1Þ

Ft ¼ 1� 1� 1
2N

� �t

ð2Þ

Equations (1) and (2) are derived under some idealized
conditions, such as fixed population size, equal fertility of female
and male individuals, equal fertility of female and male gametes,
and no generation overlap23. Under the nonidealized conditions,
Eqs. (1) and (2) are applicable when replacing N with the effective
population size (i.e. Ne). Assuming there are a number of
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subpopulations under genetic drift starting from one base
population, the observed inbreeding coefficient, i.e., FObs, can be
estimated from the observed allelic frequencies in subpopulations,
i.e.,

HObs ¼
1
m

∑
m

j¼1
1� ∑

k

i¼1
p2ij

� �
; HExp ¼ 1� ∑

k

i¼1
�p2i ;

FObs ¼
HExp �HObs

HExp

ð3Þ

where pij is the observed frequency of the ith allele (i= 1 to k,
where k is the number of alleles) in the jth subpopulation (j= 1 to
m, where m is the number of subpopulations, or the number of
simulation runs in this study), and �pi is the mean frequency of the
ith allele across the m subpopulations23.

Figure 1a, b show the change in the inbreeding coefficient
during the 100 generations of random drift for two population
sizes, 10 and 50, respectively, where the theoretical values were
calculated by Eq. (2) and the observed values were calculated by
Eq. (3). Obviously, the observed inbreeding coefficients are
independent of the number of alleles (k) occurring in the base
population, even though k is included in Eq. (3). The inbreeding
coefficients estimated from Eq. (3) are highly consistent with their
theoretical values, as given by Eq. (2). For a population size of 10,
the inbreeding coefficient approaches one after 60-70 generations
of random mating; for a population size of 50, the inbreeding
coefficient approaches ~0.5 after 60–70 generations. The
inbreeding coefficient is expected to approach one after infinite
generations of random drift in limited-size populations. When
the inbreeding coefficient becomes one, each subpopulation is
fixed for one homozygous genotype, which is normally called the
fixed or pure line. A simulation experiment based on the Blib
application module DRIFT confirms the theory on inbreeding
coefficients and its validity in the case of multiple alleles at one
genetic locus.

Figure 1c, d show the change in allele number during the 100
generations of random drift for two population sizes. The
observed number of alleles in one subpopulation was equal to the
number of alleles with nonzero frequencies. Unlike the inbreeding
coefficient, Fig. 1c, d indicate that the number of alleles retained

in subpopulations depends on the number of alleles in base
populations in earlier generations of random drift. The more
alleles there are in the base population, the more alleles are
retained, especially when the population size is large. It is
expected that the allele number will also approach one after
infinite generations of random drift in limited-size populations.
The number of alleles located at one chromosomal locus is an
important parameter for characterizing the genetic architecture of
populations22. The change in allele number during random drift
is difficult to study theoretically, but can be properly investigated
through simulation.

Case study II: Neutral mutations in randomly mating popu-
lation with limited size. Neutral theory plays an important role
in modern population genetics and evolution theories24–28. When
mutation is included in the genetic model, the Blib application
module as introduced and used in Case study I can also be used to
simulate the simultaneous action of mutation and drift during
random mating. Under mutation, the inbreeding coefficient
between two succeeding generations is given in Eq. (4), where N is
the population size, and u is the mutation rate22,24. According to
neutral theory, an equilibrium can be reached after infinite gen-
erations of neutral mutation and genetic drift in limited-size
populations. The theoretical inbreeding coefficient at equilibrium
is shown in Eq. (5), which can be acquired from Eq. (4) by letting
Ft ¼ Ft�1 and 1=ð1� uÞ2 � 1þ 2u. The number of alleles at
mutation–drift equilibrium was investigated by Crow and
Kimura22, Ewens29, and Karlin and McGregor30. Equation (6) is
an approximate expression given by Ewens29, where θ ¼ 4Nu.

Ft ¼
1
2N

þ 1� 1
2N

� �
Ft�1

� �
ð1� uÞ2 ð4Þ

~F ¼ 1
1þ 4Nu

ð5Þ

EðkÞ ¼ θ

θ
þ θ

θ þ 1
þ θ

θ þ 2
þ ¼ þ θ

θ þ n� 1
ð6Þ

In practice, assuming there are a number of subpopulations
under mutation and drift at generation t, the observed inbreeding

Fig. 1 Theoretical and simulated inbreeding coefficients and the observed allele numbers after 100 generations of random drift for two population
sizes (N) and four initial numbers of alleles. a Inbreeding coefficient when N is 10. b Inbreeding coefficient when N is 50. c Alleles retained when N is 10.
d Alleles retained when N is 50.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04151-9 ARTICLE

COMMUNICATIONS BIOLOGY |          (2022) 5:1167 | https://doi.org/10.1038/s42003-022-04151-9 |www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


coefficient can be estimated from the observed allelic frequencies
in m subpopulations24, i.e.,

FObs ¼
1
m

∑
m

j¼1
∑
k

i¼1
p2ij ð7Þ

where pij is the observed frequency of the ith allele (i= 1 to k,
where k is the number of alleles) in the jth subpopulation (j= 1 to
m, where m is the number of subpopulations, or the number of
simulation runs in this study).

In the simulation using the Blib application module DRIFT,
one locus with multiple alleles and mutations was considered in
the genetic model. Two rates at the level of pairwise mutation
were considered, i.e., 0.0001 and 0.0002. Two population sizes (N)
were set at 10 and 50. For each population size, four initial allele
numbers were considered in base populations, i.e., 2, 0.5N, N and
2N. All alleles had equal frequencies in the base populations. The
mutation and drift procedure was repeated for 200 generations of
random mating and 100 simulation runs. For each generation,
allelic frequencies in the 100 subpopulations (generated from the
100 simulation runs) were recorded.

Table 1 shows the theoretical and observed inbreeding
coefficients, together with the number of retained alleles in the
population. Theoretical inbreeding coefficients at equilibrium
were calculated by Eq. (5), and theoretical numbers of retained
alleles after 200 generations were calculated by Eq. (6), where the
total mutation rate was used. The total mutation rate listed in
Table 1 is the pairwise mutation rate multiplied by k-1, where k is
the number of alleles. Observed inbreeding coefficients after 200
generations were calculated by Eq. (7), and observed numbers of
the retained alleles after 200 generations were acquired by
counting the alleles with nonzero frequencies in subpopulations.
The difference between the theoretical and observed values in
Table 1 is marginal for both the inbreeding coefficient and the
number of retained alleles. Even though neutral theory is built on
the infinite-alleles model24, simulation results indicate that the
theory on inbreeding coefficient and retained alleles works well
under the scenario of a limited number of alleles at a genetic
locus, even for the two-allele model (Table 1). Simulation using
the Blib application module DRIFT provides solid evidence to
demonstrate the wide application of neutral theory in population
genetics.

In fact, in Blib, mutation rates at any genetic locus are defined
by one k by (k-1) matrix, where k is the number of alleles at the

locus (Supplementary Fig. 1). For example, for one locus with
three alleles, the first row of the matrix is mutation rates from
allele 1 to alleles 2 and 3; the second row is mutation rates from
allele 2 to alleles 1 and 3; and the third row is mutation rates from
allele 3 to alleles 1 and 2. Therefore, nonuniform mutation rates
can be defined in Blib, such as forward mutations having higher
rates than reverse mutations or alleles at different loci having
different mutation rates. It is anticipated that the effects of
heterogeneous mutation rates on neutral theories, e.g. Equations
(4) to (6), can be quantified as well by further simulation
experiments using the Blib application module DRIFT.

Case study III: Comparison of mass selection with family
selection. One other Blib application module called PRS was
developed to simulate the phenotypic recurrent selections that are
typical in both animal and plant breeding. The selection in PRS
can be based on phenotypic values at the individual level, or on
phenotypic means of the progeny families. First, two subroutines
Blib_ReadGmodel and Blib_ReadPopulation were called to assign
the global variable Gmodel and one initial population from two
external files, respectively. Then, the subroutine Blib_Cross1Po-
pulation was called to conduct random mating in one parental
population and generate a new progeny population. Blib_Calc-
Phenovalue was called to calculate phenotypic values for the
progeny population. Blib_Select was called to conduct the selec-
tion. Finally, Blib_CalcPstatistics was called to calculate the sta-
tistical parameters associated with the population.

Four selection methods were considered in PRS, i.e., pheno-
typic or mass selection, which is based on the performance of
individuals (PS); S1 family selection, which is based on the
performance of one generation of selfed families (S1); S2 family
selection, which is based on the performance of two generations
of selfed families (S2); and half-sib selection, which is based on
the performance of half-sib families (HS). Forty cycles of
recurrent selection were conducted. Upward selection was
conducted for 20 cycles, followed by 20 cycles of downward
selection.

Two alleles were considered at each locus in the genetic model.
Size of the initial population was set at 100. Models with three
types of effects were simulated, i.e., pure additive effects (AD0),
additive and dominant effects (AD1), and additive, dominant and
epistatic effects (ADE). Ten independent genes were predefined
to affect the trait of interest. For model ADE, five epistatic

Table 1 Theoretical inbreeding coefficient and number of retained alleles at equilibrium, and observed inbreeding coefficient and
number of retained alleles after 200 generations of random drift and neutral mutation.

Scenario Pairwise mutation rate Population size (N) Initial
alleles

Total mutation rate
(u)

Inbreeding coefficient Final alleles

Theoretical Observed Theoretical Observed

1 0.0001 10 2 0.0001 0.9960 0.9975 1.01 1.01
2 0.0001 10 0.5N 0.0004 0.9843 0.9909 1.06 1.03
3 0.0001 10 N 0.0009 0.9653 0.9620 1.13 1.16
4 0.0001 10 2N 0.0019 0.9294 0.9045 1.26 1.36
5 0.0001 50 2 0.0001 0.9804 0.9198 1.10 1.26
6 0.0001 50 0.5N 0.0024 0.6757 0.6411 3.20 3.29
7 0.0001 50 N 0.0049 0.5051 0.5415 5.12 5.16
8 0.0001 50 2N 0.0099 0.3356 0.3376 8.34 8.48
9 0.0002 10 2 0.0002 0.9921 0.9972 1.03 1.02
10 0.0002 10 0.5N 0.0008 0.9690 0.9632 1.11 1.14
11 0.0002 10 N 0.0018 0.9328 0.9045 1.25 1.34
12 0.0002 10 2N 0.0038 0.8681 0.8836 1.51 1.49
13 0.0002 50 2 0.0002 0.9615 0.9304 1.20 1.29
14 0.0002 50 0.5N 0.0048 0.5102 0.4966 5.04 5.14
15 0.0002 50 N 0.0098 0.3378 0.3559 8.28 7.69
16 0.0002 50 2N 0.0198 0.2016 0.2177 13.44 12.77
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networks were considered. In each network, genes at two different
loci interact with each other. Genotypic values at each individual
locus or in each epistatic network are randomly assigned values
between 0 and 1. Broad-sense heritability was set at 0.2 for each
model. Mutation and no mutation were considered separately.
When mutation was included, the rates of forward and reverse
mutation were set at 0.02 and 0.01, respectively, for all genetic loci
in consideration.

The simulation was repeated for 100 runs. Figure 2 shows the
change in population mean during 40 cycles of recurrent selection
for the three effect models under no mutation and with mutation.
The values shown in Fig. 2 have been adjusted by the lowest and
highest genotypic values in each genetic model, and therefore
range from 0 to 1. Classical quantitative genetics theory indicates
that genetic gain from selection depends only on additive
variance in the population23, where higher additive variance
results in greater response to selection. Therefore, the population
quickly moves to the peak trait value after a few cycles of selection
under model AD0 with only the additive effects (Fig. 2a, b). At
the peak trait value, the population is fixed for one homozygous
genotype, leaving no genetic variation, and therefore, the reverse
selection cannot act without mutations (Fig. 2a). This phenom-
enon has been well explained by the pure-line theory in breeding.
However, when mutation occurs, the population quickly moves in
the opposite direction as reverse selection is applied (Fig. 2b).
Nonadditive variances are included in models AD1 and ADE,
which reduce the efficiency of selection (Fig. 2c–f). Obviously, the

population can never reach the highest genotypic value when
nonadditive effects are present, and the individual with the
highest performance is heterozygous. One peak trait value can
still be reached, but diversity still occurs in the populations at the
peak trait value. Therefore, when reverse selection is applied,
populations can move in the opposite direction (Fig. 2c, e). This
clearly indicates that mutation can make the selection more
efficient under both models AD1 and ADE (Fig. 2d, f), which may
be worth investigating further.

In Fig. 2, efficiency can be compared for the four selection
methods as well. In model AD0, PS, S1 and S2 are almost equally
efficient, but HS is less efficient in changing the population mean.
This can be explained by the quantitative genetic theory that 100%
of the additive variance is included in PS, S1, and S2, but 25% of the
additive variance is included in HS23. For model AD1 without
mutation, the difference among the four selection methods is much
smaller during the 20 cycles of forward selection. However, PS is
more efficient during the 20 cycles of reverse selection (Fig. 2c). For
model AD1 with mutation, PS is more efficient than the other three
methods during the 40 cycles of forward and reverse selections
(Fig. 2d). For model ADE, S1 and S2 are more efficient during the
20 cycles of forward selection; HS is less efficient regardless of the
presence of mutation (Fig. 2e, f).

Theories in classical quantitative genetics are mainly built on
the multifactorial hypothesis. Some observations in Fig. 2 can be
properly explained by the equation of genetic gain in quantitative
genetics23. There are also some interesting issues that may be

Fig. 2 Population mean during 20 cycles of forward selection and 20 cycles of reverse selection. Three biallelic genetic models were considered, i.e.,
AD0 (additive model), AD1 (additive and dominant model) and ADE (additive, dominant and epistatic model). Four selection methods are simulated, i.e.,
phenotypic selection (PS), S1 family selection (S1), S2 family selection (S2), and half-sib selection (HS). a Model AD0 and no mutation was considered.
b Model AD0 and mutation was considered. c Model AD1 and no mutation was considered. d Model AD1 and mutation was considered. e Model ADE and
no mutation was considered. f Model ADE and mutation was considered.
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worthy of further investigation, such as the efficiency of selection
when multiple alleles are considered in genetic models. In
addition to the change in population mean as shown in Fig. 2,
allelic frequencies, components of genetic variance, narrow- and
broad-sense heritability, correlations between phenotypic traits,
and correlations between environments can be investigated as
well during short or long term selection, which cannot easily be
studied theoretically. In addition, Blib is able to simulate a large
number of genetic models and the outcomes of these models after
long-term selection. By comparing the simulation results with
observations from artificial experiments, such as long-term
selection on oil and protein contents in corn31, the genetic
architecture of quantitative traits may be better understood.

Case study IV: Choice of testers in hybrid breeding programs.
As the major component and activity in hybrid breeding pro-
grams, a large number of newly developed inbred lines are
evaluated by their testing crosses with a few testers from the
alternative heterotic group. The elite inbred lines thus selected are
expected to have high combining ability, and are then used to
develop new hybrids. However, the choice of suitable testers is an
open question in hybrid breeding due to the complicated nature
of the breeding procedure32. One Blib application module, called
ISB-B4H, was developed to simulate breeding programs for
developing hybrids as the final product in plants. A detailed
description of ISB-B4H is beyond the scope of this paper. Instead,
we use this module to show how the breeding efficiency yielded
by different testers can be investigated by simulation in a more
holistic view, by which the most suitable tester may be predicted
and chosen for a particular hybrid breeding program.

Assume one hybrid breeding program, such as that for maize,
begins with two heterotic groups, each consisting of 50 inbred
lines as parents. One target trait, such as yield, is controlled by
100 biallelic loci distributed on 10 chromosomes with known
genetic effects, which may come from genotype-to-phenotype
modeling of historical breeding data, training populations or any
other genetic studies4,6,14. In each breeding cycle, a total of 100
biparental crosses are made within one heterotic group, and from
each cross a total of 100 doubled haploids (DH) are developed.
Elite DH lines are selected through two stages of testcrossing
evaluation. In stage one, the 10,000 DH lines are crossed with one
tester from the other heterotic group, and 5% are selected on the
basis of their performance in testing crosses. In stage two, the 500
DH lines retained from stage one are crossed again with the same
tester, and 10% are selected, resulting in 50 lines which are then
used to develop new hybrids and perform the next round of
biparental crosses. The simulation was repeated for 100 runs.

During simulation, the 50 retained DH lines at the end of each
breeding cycle are evaluated by the 50 crosses with the tester,
2500 single crosses with the 50 inbred lines in the other heterotic
group, and the inbred lines per se. Figure 3 shows the change in
genotypic means from four testers in 10 breeding cycles. Tester1
and Tester2 are randomly selected from the 50 inbred lines in the
other heterotic group; Tester3 harbors all favorable alleles at the
100 genetic loci; Tester4 harbors all unfavorable alleles at the 100
genetic loci. In this breeding program, selection is conducted solely
on testing cross performance. The genotypic mean of testing
crosses is advanced in parallel for the four testers (Fig. 3a). Tester3
has the largest number of favorable alleles, and the genotypic mean
of its testing crosses is also the highest; Tester4 has the fewest
favorable alleles, and the genotypic mean of its testing crosses is
also the lowest. Due to the equal intensity of selection, genetic gains
in testing crosses are equal among the four testers.

In hybrid breeding, the intensity of selection mostly comes
from the selection on testing cross performance. However, the

improvement of testing cross performance is in fact not the most
important objective. Only a higher genotypic mean of single
crosses with the alternative heterotic group can give breeders a
greater opportunity to select more elite hybrids. Regarding the
genotypic mean of 2500 single crosses, Tester1 is identified to be
the best, and Tester4 is the worst (Fig. 3b). Genetic advances in
crosses with the other heterotic group cannot easily be evaluated
in practice but can be properly performed by the Blib application
module ISB-B4H. In addition, genetic advances in inbred lines
per se can also be determined (Fig. 3c). Advances observed in
Fig. 3b, c are also called the in-direct or correlated genetic gains
according to quantitative genetics theory23. In this sense, hybrid
breeding actually provides an example where the in-direct gain
outperforms the direct gain.

Discussion
Predictions are expected at almost every stage during the rather
long breeding procedure. When making crosses, breeders wish to
know which parents should be chosen, and how many crosses
should be made. In early segregating generations, breeders wish to
know how many individuals should be planted in the field, how
strong selection should be, and which phenotypic traits should be
used as the selection criteria. At the stage of yield and adaptation
testing, breeders wish to know the best locations for conducting
the trials, how many locations should be used and how many
replications should be arranged. Some issues of interest in

Fig. 3 Genotypic means of tester crosses, hybrids with one other
heterotic group, and inbred lines per se during 10 cycles of hybrid
breeding. a Genotypic means of 50 tester crosses. b Genotypic means of
2500 hybrids with one other heterotic group. c Genotypic means of 50
inbred lines per se. The ordinate axes of the three subfigures are different
for a better illustration of the differences among the four testers.
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breeding program design and analysis are beyond the reach of
empirical experimental investigations. Simulation studies can be
conducted to complement, extend, and improve the design and
interpretation of empirical studies2,7,10,33.

Generally, decisions can be made from predictions; predictions
can be made from simulations. With the accumulation of our
knowledge and understanding of the inheritance of breeding
traits, it is anticipated that the simulation, prediction and
decision-supported tools will be in high demand3,33. Once
properly designed and developed, these tools can help investigate
many what-if crossing and selection scenarios, allow many sce-
narios to be tested and compared in silico in a short period of
time, and finally help breeders make important decisions before
conducting resource-demanding field experiments7,11. Simulation
and prediction tools are essential components especially for the
incoming breeding 4.034, when breeding activities will be more
driven by information technology in acquiring phenotypic data,
molecular technology in acquiring genotypic data, and artificial
intelligence in utilizing big data to make selection decisions.

We designed and developed Blib as reported in this study over
our decades of research experience and advances in genetic
analysis methodology35–40, breeding modeling and
simulation7,10–12, and computer tool and software
development41–44. Blib is composed of one global variable to
define the generalized genetic models, one derived data type to
define the genetics/breeding populations, and a number of gen-
eral subroutines for manipulation and calculation. Blib has been
well-developed and widely tested in recent years, and it can be
treated as a computing and programming library for the purpose
of genetics and breeding simulation. By using the library as the
underlying components, various application modules can be
readily developed to complete specific tasks, which have been
shown by the four case studies. The separation of application
modules from the library can save a great deal of time and effort
when other researchers wish to develop new simulation tools or
modify the existing modules.

In addition to genetic effects and models that have been con-
sidered in QU-GENE5,6, Blib can define and handle mutations
(both for cytoplasm and nuclear genes), cytoplasm effects, cyto-
plasm by nuclear gene interactions, and fertilities of female and
male gametes. By considering the additional genetic effects and
models not included in QU-GENE, we expect that the application
modules built on Blib will have greater potential for the theore-
tical genetic studies and breeding practice. For example, theories
on population genetics seldom consider more than two factors
simultaneously due to the intractability in mathematical deduc-
tion. By using the Blib platform, an application module can be
easily developed to evaluate the joint effect of multiple factors
affecting population structure, such as drift, mutation, migration,
selection, stratification, and admixture. Such a module can also be
used to generate a large number of genetic populations to evaluate
the efficiency of statistical methods in genetic linkage
mapping40,41,44 and genome-wide association studies (GWASs),
and evaluate the efficiency of various prediction models in
GS4,14,33.

We do not expect one or just a few application modules to be
able to meet most purposes. In contrast, we expect that different
application modules will need to be designed and developed for
different purposes. However, one module can work with different
models and simulate different genetic phenomena as defined in
external input files. For demonstration and validation, we
developed one Blib application module to simulate genetic drift in
randomly mating populations (i.e., Case studies I and II), one
module to simulate mass and family recurrent selection (i.e., Case
study III) and one module to simulate breeding programs for
developing hybrids (i.e., Case study IV). As shown in Case studies

I and II, by modifying the input information, the module DRIFT
can simulate not only the randomly mating populations under
genetic drift but also the populations under the joint action of
mutation and drift. It can also simulate a single locus with two
alleles, a single locus with multiple alleles, and multiple loci with
two or multiple alleles. When multiple loci are considered in the
genetic model, linkage can be defined as well. A similar situation
is true for the PRS module shown in Case study III, when dif-
ferent kinds of genetic effects are defined in input files. By
adopting this philosophy, we believe that the need to develop new
modules can be minimized. For most researchers, their efforts can
be spent more effectively in building suitable genetic models,
designing simulation experiments, running suitable application
modules, and analyzing simulation results.

As another example, one specific module was developed to
simulate the genetic recombination events between parents with
the designed crossing schemes, which has been integrated with
the genomic prediction tool to conduct genomic cross prediction
in flax linseed breeding45. More application modules are being
developed or planned, such as the in silico simulation of general
breeding programs for developing pure lines, hybrids (as shown
in Case study IV), and clonal varieties in plants, cross perfor-
mance prediction and parental selection given the training
populations with genotypic and phenotypic values, and simula-
tion of various mapping populations from the user-defined
linkage maps and genetic models. These modules are applicable
to genetic studies and breeding practices in both sexually and
asexually propagated species. Once developed and validated, all
Blib-based application modules will become freely available to
scientific researches.

To run one application module of Blib, at least three kinds of
external files are needed as the input information. The first
contains the information used to define the generalized genetic
model (i.e., Gmodel), the second defines one or several initial
populations, and the third defines the parameters in the simula-
tion experiment. Although many genetic effects and models can
be handled in Blib, not all of them have to be included in each
external file or each simulation experiment. Take the application
module used to simulate recurrent selections (i.e. Case study III)
as an example. Three genetic models (i.e., pure additive, both
additive and dominant, and epistasis) are defined separately in
three external files. To run the same module on the three genetic
models sequentially, we can monitor the change in population
mean due to phenotypic and family selection schemes, as shown
in Case study III. By adopting this philosophy, we believe that the
procedure used to develop the Blib application module can be
greatly simplified and more straightforward. The development of
application modules can only focus on the third kind of input
information and organization of the Blib subroutines to complete
more specific and complex tasks.

To facilitate access to Blib and its application modules, we are
currently developing some user interfaces that will help prepare
the external files of input information for the global variable
Gmodel and initial populations, which are fundamental to the
simulation studies based on Blib. Alternatively, the information
needed for simulation may be extracted from the existing data-
base systems that are affiliated with on-going breeding
programs46. By connecting with the information systems and
ongoing breeding pipelines, the simulation platform Blib and its
application modules can be used to conduct real-time simulation
and prediction related to the outcomes of a large number of
potential selection and crossing schemes. Thus, the optimum
selection and crossing schemes can be identified and recom-
mended to breeders before conducting field experiments. By
doing so, simulation tools and approaches that are built on Blib
are expected to make significant contributions by facilitating the
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change in conventional breeding from artificial selection to
intelligent selection or helping move from the current stage to the
incoming Breeding 4.0.

Methods
The global variable Gmodel for the generalized genetic models. In Blib, a
global variable named Gmodel was first defined, which holds all necessary infor-
mation in a generalized genetic model. This information was packed up into 13
derived data types in Fortran (Fig. 4; Supplementary Table 1). General information
in Gmodel includes the numbers of environments, traits, composite traits, chro-
mosomes, genetic loci (can be either genes or markers) in the genome, markers,
genes, epistasis networks, cytoplasm, cytoplasm actions, and fertility actions.
Included in the environmental information are the environmental name and fre-
quency of occurrence in the target population of environments (TPE). Included in
the trait information are the trait name, heritability and error variance in each
environment. In addition, genes, epistasis networks, and cytoplasm actions for each
trait are also stored to assist in the calculation of genotypic values for traits during
simulation. Composite traits are calculated by addition, subtraction, multiplication

and division from two or more underlying traits defined in Gmodel%trt(:) (Sup-
plementary Table 1). The inclusion of composite traits in Blib also provides the
opportunity to acquire the phenotypic values externally, such as the prediction of
breeding values by one genomic prediction model that has been previously
established in a training population.

Given next is the information on chromosomes and genetic loci on
chromosomes (Supplementary Table 1). For each chromosome, the variable
‘Gmodel%chr(:)’ defines the chromosome name, and number of loci on the
chromosome. For each set of ordered genetic loci on chromosomes, the variable
‘Gmodel%locus(:)’ defines the locus name, chromosomal position in centi-Morgans
(cM), recombination frequency with the prededing locus, number of alleles at the
locus, whether the locus is a marker or a gene, whether to consider mutation at the
locus, and mutation rates if mutation is considered. For each locus specified as a
marker, variable ‘Gmodel%mrk(:)’ defines the locus identity, and scores of all
genotypes at the marker locus, allowing selection based on marker scores. For each
locus specified as a gene, ‘Gmodel%gene(:)’ defines the locus identity, the number
of traits affected, which traits are affected, and the values of all genotypes at the
gene locus for each affected trait in each environment. For each epistasis network,
the variable ‘Gmodel%epn(:)’ defines the trait identity, the environment identity,
the number of loci in the network, which loci are involved, and the values of all
genotypic combinations in the network.

Included in the cytoplasm information are the cytoplasm name, whether to
consider mutation, and mutation rates if mutation is considered (Supplementary
Table 1). Cytoplasm may have independent effects on some traits, or may interact
with some nuclear genes to affect one trait. The effects on traits involving the
cytoplasm are called cytoplasm actions in Blib. For each cytoplasm action, the
variable ‘Gmodel%cact(:)’ defines the cytoplasm identity, the trait identification, the
environment identity, the number of loci in the action, which nuclear genetic loci
are involved, and the values of all genetic combinations in the action
(Supplementary Table 1). The fertility of female and male gametes may be affected
by the cytoplasm alone, nuclear genes alone, or cytoplasm by nuclear gene
interactions. These effects on female and male fertility are called fertility actions in
Blib. For each fertility action, the variable ‘Gmodel%fert(:)’ defines the cytoplasm
identification, the environment identity, the number of loci in the action, which
loci are involved, and the values of all genotypic combinations in the action
(Supplementary Table 1). Finally, the variable ‘Gmodel%range’ defines the lowest
and highest marker scores and the lowest and highest values for each trait
(Supplementary Table 1), by which the phenotypic traits may be adjusted to be
located in the range of 0 to 1 for the convenience of comparison.

Technical details of key variables included in Gmodel. Suitable definition of the
large number of highly varied and complicated genetic models is key in developing
the genetic simulation tools or platforms. More technical details of the five selected
variables are given below in Supplementary Table 1, which consist of the core
contents of the global variable Gmodel. When loading the information from one
external file, the pointer ‘Gmodel%locus(:)’ is first allocated, with the size being
equal to the number of genetic loci defined in Gmodel%status. For each ordered
genetic locus defined by TYPE(Gmodel_locus) (Supplementary Fig. 1), one char-
acter variable, i.e., ‘Gmodel%locus(:)%name’, represents name of the locus. Two
real variables, i.e., ‘Gmodel%locus(:)%pos’ and ‘Gmodel%locus(:)%recfreq’, repre-
sent the chromosomal position in cM and the recombination frequency with the
preceding locus. Three integer variables, i.e., ‘Gmodel%locus(:)%nallel’, ‘Gmodel%
locus(:)%isgene’ and ‘Gmodel%locus(:)%mutate’, represent the number of alleles at
the locus, whether the locus is a marker or a gene, and whether or not to consider
mutation at the locus. The last real variable, i.e., ‘Gmodel%locus(:)%murate’, is
defined as a real pointer of one-dimensional array, which is to be allocated and
assigned with mutation rates when mutation is considered. Input information of
seven loci is given in the lower part of Supplementary Fig. 1 as an illustration. For
example for the second locus, we have Gmodel%locus(2)%name= ‘Locus2’ and
Gmodel%locus(2)%pos = 10.0, and therefore, its genetic distance from the pre-
ceding locus is equal to 10 cM from which variable Gmodel%locus(2)%recfreq for
recombination frequency can be assigned by Haldane’s mapping function. Gmodel
%locus(2)%nallel= 3 indicates that there are three alleles at the locus; Gmodel%
locus(2)%isgene= 0 indicates that the locus is a marker; and Gmodel%locus(2)%
mutate= 1 indicates that mutation is considered at the locus. Then, Gmodel%
locus(2)%murate is defined as an array with a size of 6, and assigned the six
mutation rates from allele 1 to alleles 2 and 3 (i.e., 0.0001 and 0.0002), from allele 2
to alleles 1 and 3 (i.e., 0.0003 and 0.0004), and from allele 3 to alleles 1 and 2 (i.e.,
0.0005 and 0.006) (Supplementary Fig. 1).

The pointer ‘Gmodel%gene(:)’ is first assigned with the size being equal to the
number of genes defined in Gmodel%status. For each gene defined by
‘TYPE(Gmodel_gene)’ (Supplementary Fig. 2), two integer variables, i.e., ‘Gmodel
%gene(:)%wlocus’ and ‘Gmodel%gene(:)%ntrt’, represent the locus identity and
number of traits affected by the gene. The integer variable ‘Gmodel%locus(:)%wtrt’
is defined as a pointer, which is to be allocated and assigned with the trait identity.
The real variable ‘Gmodel%locus(:)%gvalue(:,:,:)’ is defined as a pointer of three
dimensions, which is to be allocated and assigned with the genotypic values of all
genotypes at the gene locus for all affected traits in all environments. For example
for the gene defined in the lower part of Supplementary Fig. 2, Gmodel%gene(1)%
wlocus= 3, and Gmodel%gene(1)%ntrt= 2, indicating that the gene is located at

Fig. 4 Relationships between derived data types and subroutines in Blib.
Shown in the upper left is the definition of global variable Gmodel, which
holds the required information on genetic models, e.g. environments, traits,
composite traits, chromosomes, markers, genes, epistasis networks,
cytoplasm, cytoplasm actions, and fertility actions. These information is
packed up into 13 derived data types in Fortran. Shown in the upper right is
one derived data type in Fortran, which can be called to define the genetic
and breeding populations whenever needed. It consists of two integer
variables, and seven variables of other derived data types. Based on Gmodel
and the derived type of populations, subroutines are then developed, which
are indicated in the lower part of the figure. Four subroutines are designed
to manipulate the global variable Gmodel, and nine are designed to
manipulate individual populations. Five subroutines are developed to
implement the overloading features of populations, three are developed for
the purpose of generation advancement, and two are developed for the
purpose of selection.
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the third locus in the genome and has effects on two traits. The real variable
‘Gmodel%locus(1)%gvalue’ is defined as an array of three dimensions with sizes of
2, 3, and 10, representing the number of traits affected by the gene, number of
environments, and number of genotypic combinations at the gene locus. The 60
values shown on the lower right side in Supplementary Fig. 2 represent the 10
genotypic values for the second and third traits in the three environments which
are defined by Gmodel%env(:).

The pointer ‘Gmodel%cyto(:)’ is first defined, with the size being equal to the
number of cytoplasms defined in Gmodel%status. For each cytoplasm defined by
‘TYPE(Gmodel_cyto)’ (Supplementary Fig. 3), one character variable, i.e., ‘Gmodel
%cyto(:)%name’, represents the name of the cytoplasm. One integer variable, i.e.,
‘Gmodel%cyto(:)%mutate’, represents whether or not to consider mutation for the
cytoplasm. One real variable, i.e., ‘Gmodel%locus(:)%murate’, is defined as a
pointer that is to be allocated and assigned with mutation rates if mutation is
considered. For example, for the fourth cytoplasm in the lower part of
Supplementary Fig. 3, Gmodel%cyto(4)%name= ‘Cyto4’, and Gmodel%cyto(4)%
mutate= 1, indicating that mutation is considered for the cytoplasm. Gmodel%
cyto(4)%murate is defined as an array with a size of 4, and assigned the four
mutation rates from cytoplasm 4 to cytoplasms 1, 2, 3 and 5 (i.e., 0.0090, 0.0050,
0.0000, and 0.0000) (Supplementary Fig. 3).

The pointer ‘Gmodel%cact(:)’ is first defined with the size being equal to the
number of cytoplasm actions defined in Gmodel%status. For each cytoplasm action
defined by ‘TYPE(Gmodel_cact)’ (Supplementary Fig. 4), five integer variables, i.e.,
‘Gmodel%cact(:)%wcyto’, ‘Gmodel%cact(:)%wtrt’, ‘Gmodel%cact(:)%wenv’,
‘Gmodel%cact(:)%nvalue’, and ‘Gmodel%cact(:)%nlocus’ represent the cytoplasm
identity, trait identity, environment identity, number of values, and number of loci
included in the action, respectively. The number of values, i.e., ‘Gmodel%cact(:)%
nvalue’, is automatically calculated from the number of alleles at each locus
included in the action. The integer variable ‘Gmodel%cact(:)%wlocus’ is defined as
an integer pointer, which is to be allocated and assigned the locus identity. The real
variable ‘Gmodel%cact(:)%cvalue(:)’ is defined as a real array pointer, which is to
be allocated and assigned the genotypic values in the action. For example for the
first action defined in the lower part of Supplementary Fig. 4, Gmodel%cact(1)%
wcyto= 2, Gmodel%cact(1)%wtrt= 4, Gmodel%cact(1)%wenv= 1, Gmodel%
cact(1)%nvalue= 1, and Gmodel%cact(1)%nlocus= 0, indicating that the second
cytoplasm has an independent effect on the fourth trait in the first environment.
The independent effect is equal to 1.01, which is assigned to the allocated real array
‘Gmodel%cact(2)%cvalue(1:1)’. For the second action in Supplementary Fig. 4, the
first cytoplasm and the tenth locus together affect the first trait in the first
environment. There are two alleles at the tenth locus (Supplementary Fig. 1);
therefore, three genotypic values are given in Supplementary Fig. 4 for the action,
which are assigned to the allocated real array ‘Gmodel%cact(2)%cvalue(1:3)’. For
the third action in Supplementary Fig. 4, the third cytoplasm and three loci
together affect the fourth trait in the first environment. The three loci (i.e., 10, 11,
and 22) have 2, 2, and 3 alleles (Supplementary Fig. 1), resulting in 3, 3, and 6
genotypes, respectively. Therefore, a total of 54 genotypic values are given in
Supplementary Fig. 4 for the action, which are assigned to the allocated real array
‘Gmodel%cact(3)%cvalue(1:54)’.

We assume that fertility is independent of environment. Alternatively, fertility is
mainly controlled by cytoplasm and/or nuclear genes under normal environmental
conditions. The pointer ‘Gmodel%fert(:)’ is first defined, with the size being equal
to the number of fertility actions defined in Gmodel%status. For each fertility
action defined by ‘TYPE(Gmodel_fert)’ (Supplementary Fig. 5), three integer
variables, i.e., ‘Gmodel%fert(:)%wcyto’, ‘Gmodel%fert(:)%nvalue’, and ‘Gmodel%
fert(:)%nlocus’, represent the cytoplasm identity, number of values, and number of
loci included in the action, respectively. The number of values, i.e., ‘Gmodel%
fert(:)%nvalue’, is automatically calculated from the number of alleles at each locus
included in the action. The integer variable ‘Gmodel%fert(:)%wlocus’ is defined as a
pointer, which is to be allocated and assigned with the locus identity. Two real
variables ‘Gmodel%cact(:)%fvalue(:)’ and ‘Gmodel%cact(:)%mvalue(:)’, are defined
as real pointers of a one-dimensional array, which are to be allocated and assigned
with the female and male fertility values. For example for the first action defined in
the lower part of Supplementary Fig. 5, Gmodel%fert(1)%wcyto= 3, Gmodel%
fert(1)%nvalue= 1, and Gmodel%fert(1)%nlocus= 0, indicating that the third
cytoplasm has an independent effect on fertility. The female fertility is equal to 1.00
(i.e., normal), which is assigned to the allocated array ‘Gmodel%fert(1)%
fvalue(1:1)’; the male fertility is equal to 0.90 (i.e., partial sterility), which is
assigned to the allocated array ‘Gmodel%fert(1)%mvalue(1:1)’. For the second
action in Supplementary Fig. 5, Gmodel%fert(2)%wcyto= 0, Gmodel%fert(2)%
nvalue= 6, and Gmodel%fert(2)%nlocus= 1, indicating that there is one locus
with independent effects on fertility, i.e., locus 22. There are three alleles at the
locus (Supplementary Fig. 1); therefore, six values are given for female fertility,
which are assigned to the allocated array ‘Gmodel%cact(2)%fvalue(1:6)’; and six
values are given for male fertility, which are assigned to the allocated array ‘Gmodel
%cact(2)%mvalue(1:6)’. For the third action in Supplementary Fig. 5, Gmodel%
fert(3)%wcyto= 0, Gmodel%fert(3)%nvalue= 18, and Gmodel%fert(3)%
nlocus= 2, indicating that two loci together affect fertility, i.e., locus 1 and locus 2.
There are two alleles at locus 1 and three alleles at locus 2 (Supplementary Fig. 1),
resulting in a total of 18 (i.e., 3×6) genotypes when the two loci are considered
together. Therefore, 18 values are given for female fertility, which are assigned to
the allocated array ‘Gmodel%cact(3)%fvalue(1:18)’, and 18 values are given for

male fertility which are assigned to the allocated array ‘Gmodel%cact(3)%
mvalue(1:18)’.

Definition of the generalized genetic and breeding populations in Blib. In Blib,
‘Population’ is one derived data type in Fortran, which can be called to define the
generalized genetic and breeding populations whenever needed (Supplementary
Fig. 6). For example, the code ‘TYPE(Population):: Popg, Popb, PopF1(3)’ defines
two populations (i.e., Popg and Popb), and one array of populations with the size of
three, i.e., PopF1(1:3), which can then be manipulated in Blib subroutines and
application modules. Type ‘Population’ consists of two integer variables, and seven
variables of other derived data types (Fig. 1; Supplementary Table 2). One integer
variable, i.e., ‘…%psize’, saves the population size, and the other one, i.e., ‘…%
pdefn’, saves the method to generate the individual genotypes, e.g., by allele fre-
quencies or by allele combinations. The second integer variable is mainly used
when assigning one population from one user-defined external input file (Sup-
plementary Table 2).

The variable ‘…%pinput’ saves the frequencies of cytoplasm, and frequencies of
alleles at each locus, or the specified allele combinations, which are loaded
externally (Supplementary Table 2). The variable ‘…%pstruct’ saves the parental
identity, cytoplasm type, and two alleles at two homologous chromosomes of every
diploid individual in the population. This is the most important piece of
information regarding the genetic and breeding populations. The variable ‘…%
gpvalue’ holds the female and male gametic fertilities, marker score, and genotypic
and phenotypic values of every diploid individual in the population, which are
allocated and assigned whenever needed in application modules.

The other variables of derived data types record the genetic parameters at the
population level, which are allocated and assigned upon request. The variable ‘…%
stgv’ records population means, variances, genotype by environment interactions,
broad-sense heritability, trait correlations, and environmental correlations. The
variable ‘…%stvar’ records the additive and dominance variances, and broad-sense
and narrow-sense heritabilities. The variable ‘…%stfre’ records the frequencies of
cytoplasm, and frequencies of alleles at each marker or gene locus. The variable ‘…
%stdiv’ records the diversities of markers and genes. Frequencies and diversities
can also be calculated independently from genes located on each chromosome,
from genes affecting each trait, or from genes in each epistasis network. All these
parameters have been widely used in theoretical and applied population genetics.

Major Fortran subroutines in Blib. Based on the previously described global
variable Gmodel and the derived data type ‘Population’, a number of general
subroutines were then developed for specific purposes (Fig. 1; Supplementary
Table 3). Four subroutines were designed to manipulate the global variable Gmodel
(1.1 to 1.4 in Supplementary Table 3), such as read the user-defined information to
Gmodel from an external file (i.e., Blib_ReadGmodel), calculating and assigning the
variables in Gmodel not directly given in external file (i.e., Blib_CalcGmodel),
releasing the allocated memory in Gmodel (i.e., Blib_CloseGmodel), and writing
the information in Gmodel to an external file (i.e., Blib_WriteGmodel).

Nine subroutines were designed to manipulate the population (Fig. 1; 2.1 to 2.9
in Supplementary Table 3). The first three were designed to allocate memory to the
to-be-used variables in the population (i.e., Blib_AllocatePopulation), read one
population from one user-defined external file (i.e., Blib_ReadPopulation), and
create the genotypes of all individuals from the user-defined cytoplasm frequency
and allele frequencies (i.e., Blib_CreatePopulation). The three subroutines in the
middle were designed to calculate female and male fertility values for each
individual in the population (i.e., Blib_CalcFertility), calculate genotypic values for
each individual in the population for a specific trait in a specific environment (i.e.,
Blib_CalcGenovalue), and calculate phenotypic values for each individual in the
population for a specific trait in a specific environment (i.e., Blib_CalcPhenovalue).
Subroutine Blib_CalcPstatistics calculates the statistical parameters related to the
genetic and breeding population, such as population means for marker score and
traits, additive and dominance variances, frequencies of alleles at each locus, and
genetic diversities. The last two can be used to release part or all of the allocated
memory in the population (i.e., Blib_ClosePopulation), and write one population to
an external file (i.e., Blib_WritePopulation).

Overloading is an important feature in modern programming languages. Five
subroutines were designed to have the overloading features for populations (3.1–3.5
in Supplementary Table 3). By using these subroutines, we can define one
population as an empty population (i.e., Blib_pop_to_pop), merge two populations
to make a new population (i.e., Blib_pop_ad_pop), merge a one-dimensional array
of populations to obtain a new population (i.e., Blib_pops_to_pop), split one
population into a one-dimensional array of populations each with a size of one (i.e.,
Blib_pop_to_pops), and assign a one-dimensional array of populations to another
one-dimensional array of populations (i.e., Blib_pops_to_pops). By calling the
overloading subroutines, the development of Blib application modules can be
greatly simplified, especially when considering that both among-family selection
and within-family selection are frequently applied in most breeding programs.

Three subroutines were developed for the purpose of generation advancement
(4.1 to 4.3 in Supplementary Table 3). The first one, i.e., Blib_Cross1Population,
was designed to conduct hybridization using one population of parents, and then
generate a new population of progenies. The second one, i.e.,
Blib_Cross2Population, was designed to conduct the hybridization between two

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04151-9 ARTICLE

COMMUNICATIONS BIOLOGY |          (2022) 5:1167 | https://doi.org/10.1038/s42003-022-04151-9 |www.nature.com/commsbio 9

www.nature.com/commsbio
www.nature.com/commsbio


populations (one used as female parents, and the other used as male parents), and
then generate a new population of progenies. The third one, i.e., Blib_Mutation,
was designed to conduct mutation (both cytoplasm and the alleles at each mutating
locus) once a new population is formed. Notably, the third subroutine is always
automatically called by the first two.

Two subroutines were developed for the purpose of selection (5.1 to 5.2 in
Supplementary Table 3). One was designed to randomly select a given number of
individuals from one population, and form a new population (i.e.,
Blib_SelectRandom). The other one was designed to select a given number of
individuals by one specified selection mode from one population (i.e., Blib_Select),
such as top selection (i.e., individuals with the highest trait values are selected),
bottom selection (i.e., individuals with the lowest trait values are selected), and
middle selection (i.e., individuals with medium trait values are selected). More
advanced selection methods are sure to occur, which will be considered as Blib
application modules are further developed.

Statistics and reproducibility. All statistical analyses were performed using
Microsoft Excel 2016. Case studies were conducted using the application modules
and input files provided in Supplementary Software 1. In case studies I and II, two
population sizes were set at 10 and 50. In case study III, size of the initial popu-
lation was set at 100. In case study IV, each of the two heterotic groups consisted of
50 inbred lines. Each case study was repeated for 100 simulation runs as defined in
the input files.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Input and output files of the four case studies were provided as Supplementary
Software 1. Source data underlying figures were presented in Supplementary Data 1.

Code availability
Compiled codes of application modules used in the four case studies were provided as
Supplementary Software 1.
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