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Cortical gradient of a human functional similarity
network captured by the geometry of
cytoarchitectonic organization
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Mapping the functional topology from a multifaceted perspective and relating it to underlying

cross-scale structural principles is crucial for understanding the structural-functional rela-

tionships of the cerebral cortex. Previous works have described a sensory-association gra-

dient axis in terms of coupling relationships between structure and function, but largely based

on single specific feature, and the mesoscopic underpinnings are rarely determined. Here we

show a gradient pattern encoded in a functional similarity network based on data from

Human Connectome Project and further link it to cytoarchitectonic organizing principles. The

spatial distribution of the primary gradient follows an inferior-anterior to superior-posterior

axis. The primary gradient demonstrates converging relationships with layer-specific

microscopic gene expression and mesoscopic cortical layer thickness, and is captured by

the geometric representation of a myelo- and cyto-architecture based laminar differentiation

theorem, involving a dual origin theory. Together, these findings provide a gradient, which

describes the functional topology, and more importantly, linking the macroscale functional

landscape with mesoscale laminar differentiation principles.
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The human brain is characterized by heterogeneous patterns
of structural wiring and functional connectivity (FC).
Typically, the FC is defined as the correlation of two ele-

ments’ blood oxygen level-dependent (BOLD) time series1.
The end result, the functional brain network, represents the
organization of neural activity and thus provides profound
insights regarding macro-scale functional specialization and
integration2,3. However, the FC itself cannot provide organizing
principles of cortical topology.

Increasing evidence has implied that a set of anatomically dis-
tributed functional systems/networks were anchored on the cer-
ebral cortex by some axes describing the spatially graded changes
in the expression of connectivity patterns, which were the so-
called “Gradients”4–6. These spatial architectures inferred from
BOLD fluctuations have established substantial relationships with
microscopic gene expressions7 and neurotransmitter profiles8,9,
mesoscopic cytoarchitecture and cortical morphology10–13, and
macroscopic functional system hierarchies4 and dynamics14–16,
which were also necessarily intertwined with cognitive function,
behaviors, and brain-related disorders17–20 that illustrated the
importance of studying cross-scale interactions among the genetic,
molecular, cellular, and macroscale levels of brain circuitry and
connectivity and behavior. These exemplary cross-scale interac-
tion studies provide a unified framework, which consists of a
continuous varying axis to describe the spatial organization of the
cerebral cortex from multiple perspectives. Previous studies
usually focused on single-feature based similarity matrix embed-
dings (gradients), which provided one specific aspect of the
topology of cerebral functional activities. However, there still
lacked a multifaceted informative macroscale description of the
cerebral functional topology.

Comprehensively describing the functional characteristics of
the cerebral cortex requires local activities and global commu-
nication indicators. Brain regions possess various functional
properties in many aspects, such as the local activity and global
communication relationships, which cannot be elucidated using a
single index. Converging multiple descriptive features to identify
cross-region relationships, which are involved in cortical mor-
phological research21, may provide a complementary under-
standing of the functional topology that is presently and
predominately based on single feature association. Metrics
derived from spontaneous BOLD fluctuations can describe the
functional topology of the cerebral cortex from local and global
perspectives. Local fluctuation properties such as the amplitude of
low frequency fluctuations (ALFF) and fractional ALFF
(fALFF)22,23 describe the frequency spectrum power, which
suggests the energy of neuro-vascular fluctuations, and the
regional homogeneity (ReHo)24–26 quantifies the degree of con-
nections of a given node with its nearest neighbors. When
complemented with local fluctuation properties, network model
metrics based on graph theoretical indexes abstract the global
cortical communication framework into a simplified graph27,28,
such as, integration (degree centrality, DC; global efficiency,
gEfficiency; and shortest path length), and segregation (local
efficiency, lEfficiency). These network measures capture multi-
faceted properties of topology of functional interactions among
nodes or brain regions under a global framework. Combining the
mentioned metrics from global and local scales may therefore
provide a more comprehensive representation of the cortical
function topological landscape.

An extensively explored topic is the relationship between
functional activity with the cortical structural basis29. One of the
widespread and recognized theories is that functions arise from
the structural and differential coupling properties across the
cortical mantle29. Numerous studies have characterized the
associations of BOLD activities and derived the functional

network topology with macroscale cortical geometry and mor-
phological features, as well as diffusion signal-based structural
networks30,31. There have been some spatially more detailed
measures, such as myeloarchitecture, cytoarchitecture, and
cortical-cortical connections from tract tracings. This converging
evidence has been summarized as an evolutional, developmental,
converged cortical structural organization principle, the dual
origin theory32, which has not been connected to macroscale
functional topology. However, to what extent and manner the
structural architecture inferred from mesoscopic cytoarchitec-
tonic information restricts or determines the topological land-
scape of function still needs to be studied.

Here, we converged multifaceted functional regional activity
and network metrics to represent the functional topology of the
cerebral cortex and characterized the similarities of topological
features. We then leveraged a canonical dimensionality reduction
algorithm to map the primary gradient (Fig. 1). We showed the
spatial pattern of the primary gradient across the neocortex and
tested the reproducibility in internal and external validations.
Similar spatial associations with the functional similarity gradient
were revealed across the cytoarchitecturally-defined cortical layer,
including microarray-detected gene expression levels and layer
thickness distributions. The geometry using the framework of the
dual origin theory modeled the primary gradient. Collectively,
this work revealed a low dimensional embedding (gradient) of
functional topology, and identified the associations with micro-
and mesoscale structural features. More importantly, these find-
ings demonstrated a dual origin principle of the primary gradient
alignment with the theoretical hypothesis derived from
cytoarchitectonic studies.

Results
Cortical gradient of functional similarity networks. We map-
ped the cortical functional similarity networks, integrated with
multifaceted functional measures, including regional spontaneous
fluctuations and global topological properties from the resting-
state BOLD functional MRI (fMRI) signal in a large-sample
(N= 999) multimodal dataset, which was the Human Con-
nectome Project (HCP). All the results presented in the main text
is based on the data of first session of HCP (HCP-REST1), unless
otherwise stated. We defined network nodes (N= 360) with a
multi-modal parcellation scheme33, and the edges on the basis of
the similarities between the functional metrics of two nodes.
These metric maps (including ALFF, fALFF, ReHo, DC, shortest
path length, lEfficiency, and gEfficiency) spatially vectorized and
z-scored for each participant (Fig. 1a). These metrics reflected
different aspects of the functional topology of the cerebral cortex,
mainly from the local scale fluctuation characteristics and global
communication descriptive features of the network model. Each
parcel’s topological metrics formed a feature vector, which
described area topological characteristics from a more compre-
hensive point of view. To quantify the similarities of functional
topologies of nodes, we computed normalized angles across the
feature vectors of nodes to define the node-to-node (parcel-to-
parcel) similarities, to provide functional similarity matrices6,21,34

(Fig. 1b). The encoded functional similarity matrices were aver-
aged across participants, to yield a group-level similarity matrix.
To acquire the principal spatial variation pattern of this group-
level topological similarity matrix, we deployed a well-recognized
dimensionality reduction algorithm, called diffusion map
embedding, to map the embedded spatial patterns or
“gradients”35. The first component of the embeddings, the pri-
mary gradient, explained over half of the variance (the primary
gradient, 54 ± 2%; Fig. 1c), which represented a dominant spatial
pattern of the functional similarity network. The subsequent
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analyses were then mainly based on this primary gradient because
of its dominant place across embeddings.

The primary gradient indicated a nonuniform spatial distribu-
tion, and showed gradual changes along the allocortex-isocortex
axis. The primary gradient generally displayed a gradual increase
from the inferior-anterior to the superior-posterior of the cerebral
cortex, with the lowest located in the temporal pole and para-
limbic regions, and the highest in the parietal-occipital junction
area (Fig. 2a). It could be reproduced in internal validation (HCP-
REST2 dataset) (rs= 1, pSAC < 0.0001) and external validation
[independent Midnight Scan Club (MSC) dataset] (rs= 0.53,
pSAC= 0.0006) analysis (Supplementary Fig. 1). The primary
gradient was be reproduced across different parcellation schemes
(Supplementary Fig. 2). The proposed gradient differed from the
canonical functional connectome gradient, which represented a
unimodal-transmodal axis (Supplementary Fig. 3, rs=−0.35,
pSAC= 0.04). We found a correlation (rs= 0.90) between the
temporal signal-to-noise ratio (tSNR) map and the primary
gradient, Supplementary Fig. 4). Moreover, we found that the
tSNR map spatial correlated with all functional metrics maps
except for the ReHo map (Supplementary Table 1), consistent
with previous studies36,37. We also compared the primary
gradient and tSNR map (both z-scored) using paired t-test. The
difference is widely spread across the cortex, including the

occipital cortex, lateral temporal cortex, prefrontal cortex,
orbitofrontal cortex, and insula (Supplementary Fig. 4b).
Although the primary gradient and the tSNR maps show a
significant correlation, the discrepancy suggests the primary
gradient of the cortical functional similarity network is not simply
dominated by tSNR.

We dissected the brain into four types according to a
histologically defined atlas based on cortical laminar differentia-
tion classes38. The paralimbic class remained at the lower end
relative to the other three cortical classes, which had more diverse
distributions (Kruskal–Wallis test, χ2(3)= 132.9, p < 0.0001)
(Fig. 2b, paralimbic: −0.24 ± 0.07; heteromodal: 0.03 ± 0.16;
idiotypic: 0.06 ± 0.12; unimodal: 0.07 ± 0.14) across the primary
gradient (axis), suggesting a diverging role of paralimbic regions
in the dominant embedding of topology similarities. The
converged result was shown in the distributions of primary
gradient in terms of functional network identities, which also
showed a limbic system apparently dissociated from other
networks (Supplementary Fig. 3b).

Layer-specific characteristic of functional similarity embed-
ding. We used transcriptomic and histology data to determine the
layer-specific characteristic of the primary gradient.

Fig. 1 Schematic diagram of the multifaceted functional gradient. a shows seven metrics derived from the resting-state BOLD-fMRI signal. For each
individual, all seven metrics maps vectorized to form a feature matrix, and the normal angle of each pair of brain areas or region of interest was calculated
as a similarity measure (b). A symmetric similarity matrix resulted from preceding procedures fed into a diffusion map embedding algorithm, to project the
high dimensional similarity profile to a series of low dimensional embeddings. The first component of embeddings was selected as the primary gradient
because it better explained the half variance of the input similarity matrix and was then rendered in the bottom row on the inflated surface (c).
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First, we used layer-specific gene expression maps from the
Allen Human Brain Atlas (AHBA)39. This publicly available
post-mortem human brain transcriptional atlas contains brain-
wide gene expression data measured with microarrays. We
acquired the layer-specific gene expression map from a previous
study, which grouped related genes into sets representative of
supragranular (Layers 1–3), granular (Layer 4), and infragranular
(Layers 5, 6) layers40,41. To characterize the relationships
between the macroscopic functional topology gradient with
microscopic specific layer-related gene expressions, we correlated
these two maps using Spearman’s rank correlation coefficient,
and defined the statistical significance level using a spatially
constrained null model42. The primary gradient showed distinct
associations with granular and infragranular layers (Fig. 3a),
which had a strong positive correlation with the granular layer 4
gene expression (rs= 0.65, pSAC= 0.003), but not with the
infragranular layers 5 and 6 (rs=−0.71, pSAC= 0.001). The
supragranular layer related genes expression map did not have a
significant association with the primary gradient (rs=−0.05,
pSAC= 0.76).

To assure distinctive separation relationships with granular
and infragranular layers in the preceding gene expression
correlation analysis, we used a histological brain atlas, the
BigBrain43, to characterize the relationships with the
cytoarchitectonic-defined layer-specific cortical thicknesses. We
quantified the thickness of the supragranular, granular, and
infragranular layers and parcellated these maps using the same
scheme in the original BigBrain space. We then correlated these
layer-specific thickness maps with primary gradients across the
cerebral cortex. The results showed a similar pattern compared to
the preceding gene expression analysis, with the granular layer
thickness positively correlated (Fig. 3b, rs= 0.47, pSAC= 0.01)
with the primary gradient with an opposite trend (rs=−0.18,
pSAC= 0.27), which was shown in the infragranular layer
thickness. In addition, the supragranular layer thickness did not
correlate with the primary gradient (rs=−0.09, pSAC= 0.47).

We then determined the relationship of the primary gradient
relation with an in vivo microstructure profile gradient (MPC),
which was embedded in the covariance pattern of the surface-
depth dependent T1/T2 myelination profile across the cortical
mantle44. The MPC showed differential patterns of myelination
along the depth of the cortical surface, which provided insight
into microstructural patterning across different layers. The high
rank in the MPC tended to show a more uniform myelination
profile across different layers. By contrast, the high rank of the
MPC represented a nonuniform pattern, with the granular layer
with more myelination. The primary gradient negatively
correlated with the MPC (Fig. 3c, rs=−0.61, pSAC= 0.002),
which showed the functional organization axis associated with a
gradual transition from uniform myelination to mid-surface
preference myelination.

Association with the “dual origin” theory. The studies of
numerous neuroscientists regarding the cytoarchitecture of the
human cerebral cortex and corticocortical connections using
tract-tracing in non-human primates over the past two centuries
have resulted in a comprehensive framework for interpreting the
structural organization of the cortex, namely the “dual origin”
theory. According to this theoretical principle, the cerebral cortex
has evolved from two primordial allocortical moieties: the
paleocortex (piriform cortex) and archicortex (hippocampus). We
established the distinguishing associations between the primary
gradient with cytoarchitecture-defined layer-specific microscopic
gene expressions and mesoscopic cortical thicknesses across three
layers in a previous section. Here, we evaluated the relationships
between the primary gradient and geodesic distance from the
paleocortex (piriform cortex) and the archicortex (hippocampus).
We found a positive association in both geodesic distance maps
with the primary gradient (Fig. 4a, Paleocortex: rs= 0.77,
pSAC= 0.0007 and Archicortex: rs= 0.62, pSAC= 0.01). We used
these two geometry maps to construct a linear regression model
to fit the primary gradient. The proposed model explained 88%
variance (Fig. 4b, F(2, 357)= 1361, p < 0.0001, adjusted R2= 0.88)
in the primary gradient and the two geodesic distance maps
significantly predicted the gradient (Paleocortex: F(1, 357)= 899.8,
p < 0.0001; Archicortex: F(1, 357)= 1514, p < 0.0001).

Discussion
Our findings revealed a novel cortical organization axis or gra-
dient, which was embedded in functional similarity networks and
captured the geometry organizing principle obtained from
cytoarchitecture studies. The proposed gradient showed cortical
layer-specific characteristics in gene expressions and layer thick-
nesses. With-in dataset repeated sessions and independent data-
sets were then used to confirm the stability and reproducibility of
the gradient pattern.

Understanding the functional topology principle of the cerebral
cortex is a fundamental question in the field of neuroscience. We
proposed a multifaceted approach to assess the functional
arrangement on the cortical mantle based on BOLD neurovas-
cular coupling signals in vivo. By aggregating local fluctuation
characteristics, which included energy implied spectrum power
(ALFF and fALFF) and regional homogeneities, along with global
network metrics describing functional segregation (local effi-
ciency) and integration (global efficiency, shortest path length,
and degree centrality), we showed the proposed functional
similarity matrices/networks encoded multiple topological fea-
tures and were a general representation of the cerebral functional
landscape. This type of procedure already exists in brain mor-
phological studies6,21,34,45–47. Compared with previous functional
connectome/network studies48–50, which represented the
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organization of neural activity by computing the similarity of
BOLD fluctuation2, the functional similarity network in the
present study was based on the similarities of high-dimension
topological characteristics. This approach may provide more
general principles of functional topology.

By capturing the low dimensional representation of each area
in an abstract features space, we obtained the landscape of
functional topology based on multiple metrics. This spatial
representation was nonuniformly distributed and appeared to
continuously vary across the cortical mantle. The proposed

gradient pattern represented an inferior-anterior to superior-
posterior variation axis across the cortex surface, which likely
implied the transition of the allocortex to isocortex.
Differing from multiple converged evidence of a sensory-
association hierarchical axis51 manifest in human cortical
anatomy40,52, function53–55, connectivity4, evolution56–59, and
development51, we proposed an alternative cortical axis that
represented the functional topology inferred from multiple
metrics, which may enhance our knowledge of the associations
between macroscale function with mesoscopic cytoarchitecture.
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In our findings, the primary gradient showed differential
associations to different cortex layers in both microarray gene
expressions and histological layer thicknesses. The primary
gradient showed strong positive relationships to thicknesses
and expressions of related genes of the granular layer, and also
the fourth layer in the canonical six-layer laminar structure.
However, the supragranular layer (layers 1−3) did not show
any associations with the primary gradient, in terms of related
gene expressions and thicknesses. In contrast with the granular
layer, the expressions of related genes and thicknesses of
infragranular layers (layers 5, 6) showed negative correlations
or corresponding trends with the primary gradient. These dif-
ferential findings suggest the layer-specific characteristics of the
proposing primary gradient and its possible linkage with
underlying cytoarchitecture. The granular layer receives affer-
ent connections from the infragranular layer, which is involved
in a feedforward system. In contrast, the infragranular layer is
the major origin of reciprocal feedback connections, which
preferentially terminate at the first layer60,61. Our findings may
link the primary gradient with corticocortical connection
hierarchy and the spatial distribution of feedforward and
feedback connections.

The laminar differentiation of human cortex is least evident in
allocortical areas, which have three cortex layers and mainly
include the archicortex (hippocampus) and paleocortex (pyri-
form cortex) with more differentiation developed in the peri-
allocortex, which is adjacent to and surrounding the allocortical
regions, on the proisocortex32. The laminar differentiation
stream eventually reaches the isocortex (neocortex), which

clearly shows six cortex layers. The laminar differentiation
stream has two major branches, the dorsal and ventral trends.
The dorsal trend originates from the archicortical allocortex,
while the ventral trend streams from another allocortex (the
paleocortex)32. The aforementioned principles of differentiation
streams have been included in a theorem, namely the dual origin
theory62,63. The geometry of this theory on the cortical surface
can be simply expressed as the geodesic distance to two seeds, the
paleocortex and archicortex. In the present study, the primary
gradient showed strong correlations to both paleo- and archi-
cortex distance maps, which presumably represented the geo-
metry principle of the dual origin theory11. Surprisingly, the
topological primary gradient was well-modeled and predicted by
a linear model (combination) of the distance maps. These find-
ings demonstrated the close relationship between the functional
gradient and cytoarchitecture structures, and suggested that the
functional topology may be largely controlled by the laminar
differentiation stream.

How human functional topology from a multifaceted view is
distributed across the cortical mantle and related to underlying
multiscale structural features is a challenging question in the field
of neuroscience. The present results proposed a novel spatial
variation pattern-gradient, which represented the functional
topology from multiple perspectives and was displayed as an
allocortex-isocortex transition axis. Our findings only elucidated
the linkage between functional gradients with mesoscale struc-
tural principles from a statistical aspect, so the detailed
mechanism supporting this across-scale and modality relation-
ship remains to be studied.
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Methods
MRI data
Human Connectome Project. We utilized resting-state BOLD-fMRI datasets from
the HCP S1200 release 3T MRI for conducting the analyses. Original data
release included 1,113 healthy young adults. We excluded subjects who failed to
complete the scan sessions (less than four resting-state fMRI scan sessions,
N= 95) and a batch of incorrectly preprocessed subjects (N= 19) by the HCP.
Finally, we enrolled 999 young, healthy adults (female= 541, age= 26.95 ± 3.47
years) from the HCP S1200 release for whom all four rs-fMRI and structural
scans were available. All MRI data used in this study were publicly available
from HCP’s Connectome Database (ConnectomeDB, https://www.
humanconnectome.org/software/connectomedb). Participant recruitment pro-
cedures and informed consent forms, including consent to share deidentified
data, were previously approved by the Washington University Institutional
Review Board as part of the HCP. Briefly, we utilized preprocessed rs-fMRI data
acquired from the HCP. Original data went through the minimally preproces-
sing pipeline64, aligned to the fs_LR32k group space using Multimodal Surface
Matching All area feature-based registration (MSM-All)65. Data denoising was
achieved by FMRIB’s independent component analysis-based X-noiseifier (ICA-
FIX)66. We used data of both two runs in HCP-REST1 session to conduct the
main analysis.

In addition, we used the data of both two runs in HCP-REST2 session as
internal validation to test the reproducibility of the primary gradient.

Midnight Scan Club. We used an independent dataset-Midnight Scan Club (MSC) as
the external validation of the proposed functional similarity network encoded mul-
tifaced gradient. The detail descriptions for the scan parameters, subject inclusions,
and imaging preprocessing pipeline can be found in Gordon et al.67. Briefly, ten
healthy adults were scanned at Washington University using a 3T Siemens Trio
scanner (Siemens, Campbell, CA, USA). The study was approved by the Washington
University School of Medicine Human Studies Committee and Institutional Review
Board, and informed consent was obtained from all participants. Participants com-
pleted 12 scanning sessions on 10 sequential days. Ten rs-fMRI sessions were col-
lected using gradient-echo EPI sequence (run duration= 30min, TR= 2,200ms,
TE= 27ms, flip angle= 90°, 4-mm isotropic voxel resolution) with eyes open. All
sessions underwent slice timing correction and were normalized to a whole brain
mode intensity value of 1000. Images then underwent distortion correction, motion
correction (frame-wise displacement > 0.2mm censored), demeaning and detrend-
ing, multiple regression (including whole brain, ventricular and white matter signals,
and motion regressors derived by Volterra expansion), and band-pass filtering
(0.009 Hz < f < 0.08 Hz). Then, a BOLD-fMRI volumetric time series (both resting-
state and task) were sampled to each subject’s original mid-thickness left and right-
hemisphere surfaces using the ribbon-constrained sampling procedure, and
deformed and resampled from the individual’s original surface to the 32k fs_LR
surface.

Temporal and topological feature computation of rs-fMRI data. For con-
structing the functional similarity matrices/networks, we computed a set of metrics,
which included the local fluctuation metrics and global network metrics. We used
a well-recognized multimodal parcellation atlas (MMP)33 to resolve the pre-
processed BOLD-fMRI time series and local fluctuation metrics from vertex to
parcel levels.

Spontaneous fluctuation. The ALFF was computed as the averaged square root of
each frequency across 0.01− 0.08 Hz in the BOLD-fMRI time series’ power
spectrum22. fALFF was defined as the ratio of the power of each frequency at the
low frequency range (0.01–0.08 Hz) to that of the entire frequency range23.

Regional homogeneity. ReHo was defined as Kendall’s coefficient concordance of a
given vertex’s time series with its closet neighbors24.

Functional network and network metrics. There were three fundamental perspec-
tives to describe the network model, including integration (degree centrality,
shortest path length, and global efficiency), and segregation (local efficiency)68. DC
reflected the numbers of neighbors connected to the node, which determined the
importance of the given node in the network. lEfficiency was the fraction of node’s
neighbors that were also neighbors of each other, which quantified the ability for
specialized processing to occur within densely interconnected groups of brain
regions, namely functional segregation. The ability to rapidly combine specialized
information from distributed brain regions functional integration was quantified by
the shortest path length (path length) to its neighbor and the deriving gEfficiency.
Each parcel’s time series was defined as the spatial mean of all included vertexes’
time series. We then correlated each parcel’s time series using Pearson’s correlation
coefficient to obtain the functional connectivity matrix. We used the GRETNA
toolbox69 to compute multi-graph theoretical metrics, the detail computation
process and formulas refer to Wang et al69. A series of thresholds (0.1–0.3,
0.02 stepwise) was used to control the sparsity of the connectivity matrix. The area
under the curve of the network metric-sparsity characteristic curve was computed
and used in subsequent analyses.

Construction of the cortical functional similarity matrix. Each metric map was
z-scored to normalize the data. For one parcel of the cortex, seven metrics com-
prised the feature vector. We used normalized angles to define the similarities
across parcels, which computed the cosine distance between parcels’ feature vectors
and transformed to angle representation. Across-parcel similarity matrix was
constructed for each participant.

Cortical gradient computation. We averaged the all-individual’s similarity
matrices to yield a group-level similarity matrix. This group-level matrix was
submitted to a non-linear dimensionality reduction algorithm, which was called
diffusion map embedding. The algorithm was controlled with two parameters, α
and t, where α controlled the influence of density of sampling points on the
underlying manifold (α= 0, maximal influence; α= 1, no influence), and t con-
trolled the scale of eigenvalues of the diffusion operator. We set α at 0.5 and t at 0, a
setting that maintained the global relationships between data points in the
embedded space, and was more robust to noise in the similarity matrix.

AHBA transcriptional data. Layer-specific gene expression profiles were acquired
from Burt et al.40 and are openly available to the public via the BALSA database.
The human gene expression data were obtained from the AHBA (http://human.
brain-map.org). The detailed processing information is described in Burt et al.40.

Cytoarchitecture data. Layer-specific cortical thickness was obtained from the
BigBrain database43 (https://bigbrainproject.org). The areal level thickness map was
obtained by parcellating the original layer-specific thickness using a transformed
MMP atlas in the BigBrain space.

Microstructure profile covariance gradient. The MPC gradient was acquired
from Paquola et al.44. The detail processing information can be found elsewhere44.
Briefly, based on 110 healthy unrelated young adults (female= 66, age= 28.8 ± 3.8
years) of the HCP S1200 release, 14 equi-volumetric surfaces between the outer and
inner cortical surfaces were constructed and T1/T2 values systematically sampled
to linked vertices from the outer to the inner surface across the whole cortex. A
covariance matrix was constructed based on the myelination profiles across cortical
surfaces, and a diffusion map embedding algorithm was deployed to extract the
dominant component-MPC gradient.

Statistics and reproducibility. The correlation between topological gradient and
other cortical features was quantified using the Spearman’s rank correlation
coefficient. Significance was determined by comparing empirical correlation values
with the spatial-autocorrelation accounted null model, which was comprised of
surrogate maps generated by a spatial-lag model42. The linear regression model was
constructed using two geodesic maps, which seeded at the paleocortex (piriform
cortex) and the archicortex (hippocampus) to fit the primary gradient.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in the paper are present in main text and
the Supplementary Materials. The source data underlying Figs. 2, 3 and 4 are provided as
Supplementary Data 1. MRI data used in this study were publicly available from HCP’s
Connectome Database (ConnectomeDB, https://www.humanconnectome.org/software/
connectomedb). The human gene expression data were obtained from the Allen Human
Brain Atlas AHBA (“Complete normalized microarray datasets”, https://human.
brainmap.org/static/download)). Layer-specific cortical thickness was obtained from the
BigBrain database (https://bigbrainproject.org).

Code availability
All the code is openly available at https://github.com/YaoMeng94/FSN-Gradient.
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