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Single-cell transcriptomics reveals cellular
heterogeneity and molecular stratification
of cervical cancer
Chunbo Li1,5, Hao Wu2,3,5, Luopei Guo1, Danyang Liu4, Shimin Yang1, Shengli Li 2✉ & Keqin Hua 1✉

Cervical cancer (CC) is the most common gynecological malignancy, whose cellular het-

erogeneity has not been fully understood. Here, we performed single-cell RNA sequencing

(scRNA-seq) to survey the transcriptomes of 57,669 cells derived from three CC tumors with

paired normal adjacent non-tumor (NAT) samples. Single-cell transcriptomics analysis

revealed extensive heterogeneity in malignant cells of human CCs, wherein epithelial sub-

population exhibited different genomic and transcriptomic signatures. We also identified

cancer-associated fibroblasts (CAFs) that may promote tumor progression of CC, and further

distinguished inflammatory CAF (iCAF) and myofibroblastic CAF (myCAF). CD8+ T cell

diversity revealed both proliferative (MKI67+) and non-cycling exhausted (PDCD1+) sub-

populations at the end of the trajectory path. We used the epithelial signature genes derived

from scRNA-seq to deconvolute bulk RNA-seq data of CC, identifying four different CC

subtypes, namely hypoxia (S-H subtype), proliferation (S-P subtype), differentiation (S-D

subtype), and immunoactive (S-I subtype) subtype. The S-H subtype showed the worst

prognosis, while CC patients of the S-I subtype had the longest overall survival time.

Our results lay the foundation for precision prognostic and therapeutic stratification of CC.
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Cervical cancer (CC) is one of the most frequent female
malignancies around the world1. CC ranked the fourth of
incidence and the fourth of mortality across all cancer types

in women2. According to the World Health Organization (WHO),
an estimated 604,000 new cases and 342,000 deaths of CC were
reported around the world in 2020. A large proportion of CC cases
are reported to be related with the human papillomavirus (HPV)3.
Accompanying the HPV infections, some genetic factors contribute
a lot to the development of CC4. Although patients with early CC
can survive for years after surgery or radiation therapy, those
diagnosed with advanced or metastasized CC is incurable. Ther-
apeutics against advanced or recurrent CC are available, such as
anti-angiogenesis and immunotherapy, but the response rate is still
low5,6, which is mainly due to the inter-tumor and intra-tumor
heterogeneity of CC. Therefore, understanding the heterogeneity of
CC in high resolution is crucial for the development of personalized
therapeutic strategies.

The Cancer Genome Atlas (TCGA) group reported a compre-
hensive molecular characterization of CC by profiling genomics,
transcriptomics and proteomics in 288 CC samples7. They revealed
highly heterogenous molecular profiles across samples and iden-
tified three subtypes, i.e., the keratin-low squamous, keratin-high
squamous and adenocarcinoma-rich subtype. Zhu et al. identified
two subtypes of HPV+ CC based on the most varied 50 genes
across CC samples8. Furthermore, an increasing number of studies
have identified molecular units (including DNA, RNA, and pro-
teins) as biomarkers for the diagnosis and treatment of CC9–11. But
these studies were based on bulk sequencing data, thus overlooking
the extensive cellular heterogeneity of CC. Recently, our study
based on single-cell RNA sequencing (scRNA-seq) provided a
glimpse into the phenotypic diversity and ecosystems of CC
microenvironment12. In this study, we presented a comprehensive
characterization of CC cellular heterogeneity by utilizing scRNA-
seq.We identified subpopulations of epithelial cells, fibroblasts, and
CD8+ T cells, illustrating the cellular heterogeneity of CC. Based on
the signature genes derived from scRNA-seq analysis, we identified
four different CC subtypes that exhibited clinical significance. Our
study shed light on the cellular heterogeneity and promoted the
personalized treatment of CC.

Results
Single-cell transcriptomics analysis reveals extensive hetero-
geneity of malignant cells in human CC. To investigate the
cellular diversity and distinct molecular signatures in CC, scRNA-
seq was performed in three CC cancer and paired NAT samples
(Supplementary Fig. 1a). A total of 57,669 cells were obtained after
stringent filtering, with specific cell groups of tumor or NAT
samples (Supplementary Fig. 1b). These cells were further classified
into 16 different clusters (Supplementary Fig. 1c). Marker genes in
each cluster were then compared to known markers of cervical
cells to determine known cell types (see “Methods”). These 16 cell
clusters were assigned to seven different cell types (Fig. 1a),
including epithelial cells (20,547 cells, 35.6%, marked with
CDKN2A, EPCAM, CD24, and CDH1), endothelial cells (8617 cells,
14.9%, marked with PECAM1, CDH5, and ENG), fibroblasts
(15,304 cells, 26.5%, marked with COL1A2, DCN, and APOD),
smooth muscle cells (7429 cells, 12.9%, marked with ACTA2 and
ACTG2), lymphocytes (4490 cells, 7.8%, marked with CD3E,
CD3D, and CD2), macrophage (571 cells, 1.0%, marked with CD68,
CD163, and LYZ), and neutrophils (741 cells, 1.3%, marked with
CSF3R) (Fig. 1b). In our scRNA-seq data, the majority of smooth
muscle cells (6463 cells, 87.0%) and endothelial cells (7118 cells,
82.6%) were derived from normal samples, while most epithelial
cells (18,362 cells, 89.4%) were from tumor samples (Fig. 1c).
Epithelial cells from tumor samples showed distinct transcriptional

features with those from normal samples (Fig. 1d). Compared to
those in NAT samples, both non-immune (Supplementary Fig. 2)
and immune cell types (Supplementary Fig. 3) showed hundreds of
differentially expressed genes that were enriched in specific path-
ways. All epithelial cells were further classified into seven different
subclusters (Fig. 1e). Cells in subcluster C1, C2, C3, C4, and C5
were mainly from tumor samples, whereas those in the C6 and
C7 subclusters were from normal samples. Cells in subcluster C1
were characterized by high expression levels of MMP1, SPRR1B,
KRT16, CSTA, and S100A9 (Fig. 1f, Supplementary Table 2). Cells
in subcluster C2 exhibited high expression levels of immune-
associated genes, such as CD74, and IL32. The C3 subcluster
showed high expression of CCDC80, IER5, and MAFB. The
C4 subcluster showed high expression of UBE2C, TOP2A, and
ANLN. Subcluster C5 exhibited high expression levels of normal
epithelial markers, such as CLU, SCGB3A1, and MUC5B. In
summary, our single-cell transcriptomics analysis revealed cellular
heterogeneity of cervical epithelial cells.

CC epithelial subpopulations exhibited genomic and tran-
scriptomic differences. To further investigate the distinctions
between the identified epithelial subpopulations, we inferred the
copy number aberration (CNA) of each cell based its gene
expression profile (see Methods). To evaluate the malignancy of
identified epithelial subclusters, analysis of CNA levels in each cell
population were performed according to average expression
patterns across intervals of the genome. Remarkably, subcluster
C1, C2, C3, and C4 exhibited copy number gains in chromosome
3q and 18, whereas they showed copy number loss in chromo-
some 3p, 5, and 13 (Fig. 2a). Overall, cells from subcluster C5, C6,
and C7 showed low CNA levels, while those from cluster C1, C2,
C3, and C4 showed relatively high CNA levels (Fig. 2b, Supple-
mentary Data 1). The low CNA level in subcluster C5, which is
mainly from tumor samples, might indicate a well differentiated
state (Fig. 1d–f). Our enrichment analysis of high expression
genes revealed the enrichment of response to stimulus, response
to hypoxia, regulation of angiogenesis and positive regulation of
mesenchymal stem cell migration, suggesting that cells in cluster
C1 acquired a malignancy behavior (Fig. 2c and Supplementary
Fig. 4a). Highly expressed genes in subcluster C2 were enriched in
negative regulation of epithelial stem cell proliferation, regulation
of cell cycle process and regulation of cell population proliferation
(Fig. 2c and Supplementary Fig. 4b). The C3 and C4 subclusters
shared similar enrichment of DNA repair, cell cycle, regulation of
cell cycle phase transition and DNA damage checkpoint (Fig. 2c,
Supplementary Fig. 4c, d). Highly expressed genes in subcluster
C5 were enriched in the regulation of stem cell division and cell
differentiation (Fig. 2c and Supplementary Fig. 4e). The C6 and
C7 subclusters shared the same enriched biological process of
normal epithelial biology, such as epithelial to mesenchymal
transition (EMT) and positive regulation of epithelial cell pro-
liferation (Fig. 2c, Supplementary Fig. 4f, g). Next, we employed
the single-cell regulatory network inference and clustering
(SCENIC) method to identify transcription factors that play
important regulatory roles in malignant epithelial subclusters.
Our analysis revealed many transcription factors in epithelial
subclusters, such as HIF1A, TFDP1, and GRHL1 in subcluster C1,
STAT1 and FOSL1 in subcluster C2, and XBP1 and NFKB1 in
subcluster C5 (Fig. 2d, Supplementary Table 3). Hypoxia-induced
factor-1 (HIF-1) is the most critical gene in hypoxic response and
is responsible for the upregulation of many downstream effector
genes that were collectively known as hypoxia-responsive genes
(such as VEGFA, EGF, p53, GLUT1, and GLUT3). These genes
govern multiple key biological pathways such as proliferation,
energy metabolism, invasion, and metastasis. For example, as

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04142-w

2 COMMUNICATIONS BIOLOGY |          (2022) 5:1208 | https://doi.org/10.1038/s42003-022-04142-w |www.nature.com/commsbio

www.nature.com/commsbio


the key member of interferon signaling, STAT1 modulates the
response to intracellular and extracellular stimulation13. STAT1
has been demonstrated to act as a tumor suppressor in many
cancer types14,15. Collectively, our analysis revealed genomic and
transcriptomic distinctions among epithelial subpopulations.

Tumor-derived fibroblasts exhibited transcriptional alterations
in CC. We next investigated the non-immune cells within the
tumor microenvironment (TME), including fibroblasts and
smooth muscle cells (SMCs). We identified a total of 22,451
fibroblasts and SMCs. Most of these cells were from the cervical
NAT samples (Fig. 3a). These cells were then re-clustered based
on gene expression profiles, which generated 13 different clusters
(Fig. 3b). These cell clusters showed different expression of
marker genes DCN, COL1A2, and ACTA2 (Fig. 3c). According to
the specific cell markers, we assigned cluster C1, C4, C5, C6, C11,
and C12 as fibroblasts and cluster C2, C3, C7, C8, C9, C10, and
C13 as SMCs. To further explore how fibroblasts impact CC
tumor progression, we examined the transcriptional alterations of
tumor-derived fibroblasts. Compared to fibroblasts from normal
tissues, the top upregulated genes in tumor-derived fibroblasts
were CXCL8, CXCL2, CCL2, CXCL3 and CXCL1, and the top
downregulated genes were IGFBP5, PTGDS, CCN5, CFD, and

RAMP1 (Fig. 3d, Supplementary Data 2). Functional enrichment
analysis revealed that fibroblasts in tumor tissue were associated
with IL-17 signaling pathway, antigen process and presentation
and INF-signaling pathway, indicating a potential role in immune
regulation (Fig. 3e). More importantly, we identified several
DEGs in fibroblasts that were significantly associated with
patient prognosis, such as CXCL8 and IGF1. The CXCL8 gene
was upregulated in tumor fibroblasts and the high expression
was associated with poor prognosis (Fig. 3f). The IGF1 gene was
downregulated in tumor fibroblasts and the low expression was
associated with poor prognosis (Fig. 3g). The CXCL8 gene
showed oncogenic, while IGF1 exhibited tumor suppressor fea-
tures in tumor fibroblasts.

In our scRNA-seq dataset, cluster C4, C5, C6, C11, and C12
fibroblasts had high expression of gene IL6, IL8, CXCL1, CXCL2,
CCL2, and CXCL12, and was identified as inflammatory cancer-
associated fibroblasts (iCAFs). Cluster C1 fibroblasts was identified
as myofibroblastic CAFs (myCAFs) with the high levels of SMA
(encoded by gene ACTA2). To explore the functional differences
between these two fibroblast types, we identified a set of significant
DEGs between iCAFs and myCAFs, including the top upregulated
genes, such as CXCL14, IFGBP7, PTGDS, CFD and CCN5, and top
downregulated genes, such as LEFTY2, MT1X, CLU, MYH11, and

Fig. 1 Tumor heterogeneity of CC at single-cell resolution. a UMAP dimensionality reduction of all cells. b Heatmap shows the relative expression of top
marker genes in each cell type. c The cell numbers in CC tumor and NAT samples for each cell type. d UMAP shows epithelial cells in CC tumor and NAT
samples. e UMAP shows seven different clusters of epithelial cells. f Heatmap shows the top marker genes in each epithelial subcluster.
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RHOB (Fig. 3h, Supplementary Data 3). Functional enrichment
analysis revealed upregulated activities of immune-related biologi-
cal processes, including cytokine-cytokine receptor interaction,
primary immunodeficiency, and intestinal immune network for
IgA production (Fig. 3i). We further compared the gene expression
between cancer cells and tumor-derived fibroblasts. Differential
gene analysis revealed 319 genes upregulated in tumor-derived
fibroblasts, such as DCN and SFRP4, and 214 genes upregulated in
cancer cells, such as SPRR1B and SLURP2 (Supplementary Fig. 5a).
We then performed pathway enrichment of these dysregulated
genes. Cell proliferation-related functions were more enriched in
tumor-derived fibroblasts, such as “epithelial cell migration” and
“response to fibroblast proliferation”, whereas cell communication-
related functions showed high enrichment in cancer cells, such as
“cell-cell junction assembly” and “positive regulation of leukocyte
cell-cell adhesion” (Supplementary Fig. 5b). These results indicated
that fibroblasts from tumor promoted the tumor progression.

CD8+ T cells showed high diversity and developed exhausted
intra-tumoral subtypes in CC. With 24,911 cells detected, T cells

represented the most prevalent cell type in our scRNA-seq data
(Fig. 4a). Our re-clustering analysis revealed eight T cell sub-
clusters, which were designated as CD8+ T cells (CD8A+, cluster
C2, C3 and C8), natural killer T cells (NKG7+, cluster C4) and
memory T cell (IL7R+, cluster C1), plasma cells (IGHG1+, cluster
C7), regulatory T cells (TNFRSF4+, cluster C6) and mast cell
(TPSB2+, cluster C5) (Fig. 4b, c, Supplementary Data 4). We
observed that CD8+ T cells highly expressed CD8+ T cell mar-
kers, but they had almost no expression of the CD4+ T cell
markers. Then, we analyzed the difference between CD8+ T cell
clusters, which represented a large proportion of CD8+ T cells in
both tumor and normal tissues. The C3 cluster CD8+ T cells
(CXCR4+) were characterized by the high expression of the
GZMK, CXCR2 and CX3CR1 gene, commonly associated with
effective T cells and the low expression of check point genes
(PDCD1, TIGIT, CTLA4, HAVCR2, LAG3 and CD274), suggest-
ing that these cells are precursors of cytotoxic T cells (Fig. 4d,
Supplementary Data 4). In addition, our analysis also revealed the
high expression of some CD8+ T cell migration regulators, such
as chemokine receptors (CX3CR1, CXCR4, and CXCR2), S1P

Fig. 2 Molecular differences among epithelial cell subclusters. a Inferred CNA levels in each epithelial cell cluster across 22 chromosomes.
b Comparisons of overall CNA levels among different epithelial subclusters. c Heatmap shows the relative activity scores of biological processes in each
epithelial subcluster. d Heatmap shows the relative expression of differential transcription factors in each cancer epithelial cell subcluster.
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receptors (S1PR1 and S1PR5), and integrins (ITGA5 and ITGAL).
High expressed genes of the C3 cluster CD8+ T cells (CXCR4+)
were found to be enriched with such pathways as NK cells
medicated cytotoxicity, T cells receptor signaling and Toll-like
receptor signaling pathway, which was related to the cytotoxic
function (Fig. 4e).

The C2 cluster CD8+ T cells (PDCD1+) were characterized by
the high expression of immune checkpoint genes (such as
PDCD1, TIGIT, CTLA4, HAVCR2, LAG3, and CD274). Mean-
while, the DEG analysis also revealed higher expression of HLA-
DPA1, HLA-DRA, and HLA-DRB1, which is beneficial to the
antigen presentation and the activation of cytotoxicity T cells.

Fig. 3 Cellular and molecular heterogeneity of fibroblasts in CC. a tSNE plot showing fibroblasts and SMCs in tumor and NAT cervical samples. b tSNE
plot showing fibroblast subclusters. c Relative expression levels of the DCN, COL1A2, and ACTA2 gene across 13 fibroblast/SMC subclusters. d Volcano plot
showing gene expression differences between tumor and NAT fibroblasts. e Bar plots showing the relative activities of upregulated and downregulated
biological processes in tumor fibroblasts. f The Kaplan–Meier survival curve of CXCL8 in the TCGA cervical cancer cohort. g The Kaplan–Meier survival
curve of IGF1 in the TCGA cervical cancer cohort. h Heatmap shows differential genes between iCAF and myCAF cells. i Bar plots showing the relative
activities of upregulated and downregulated biological processes.
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Fig. 4 The heterogeneity of CD8+ T cells in cervical cancer samples. a tSNE plot showing CD8+ T cells in tumor and NAT cervical samples. b tSNE plot
showing subclusters of CD8+ T cells. c The relative expression levels of the CD4, CD8A, NKG7, IGHG1, IL7R, TNFRSF4, and MS4A2 gene across
8 subclusters of CD8+ T cells. d Heatmap showing the relative expression of top marker genes in the C2, C3, and C8 subcluster. e Heatmap showing the
relative activities of significant biological processes in the C2, C3, and C8 subcluster. f Pseudo-time trajectory of the C2, C3, and C8 subcluster. g The
expression patterns of genes in the identified modules. h The expression levels of the gene HLA-DRA, CXCR4, MKI67, PDCD1, CD44, and TOP2A along the
pseudo-time trajectory across C2, C3 and C8 subclusters.
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Functional analysis revealed the enrichment of the immune-
related pathways, such as cell-adhesion molecular, ABC-trans-
ports, Th17 cell differentiation, and complement cascades. The
C8 cluster CD8+ T cells (MKI67+) presented proliferative cells as
they expressed high levels of gene MKI67, TOP2A, and CCNB1,
and low levels of gene TIGIT, CTLA4, PDCD1, HAVCR2, LAG3,
and LAYN. Functional enrichment analysis revealed that these
cells were enriched with pathways related to cell proliferation (cell
cycle, oocyte-meiosis, DNA replication and base excision repair),
suggesting limited effective ability of these cells.

To further investigate how different CD8+ T cell subtypes
developed in CC, we performed pseudo-time trajectory analysis
of all CD8+ T cells (see “Methods”). Our analysis showed that the
C3 cluster CD8+ T cells (CXCR4+) cells were at the beginning of
the trajectory path, whereas the C2 cluster CD8+ T cells
(PDCD1+) and the C8 cluster CD8+ T cells (MKI67+) were at
a terminal state (Fig. 4f). This was accompanied by the increased
expression of exhaustion markers PDCD1, LAG3, and TIM3, and
the decrease of effector markers, such as CX3CR1, CXCR4, and
CXCR2 (Fig. 4g). Meanwhile, we found that MKI67, TOP2A and
CCNB1 increased at one end of the pseudo-temporal trajectory
(Fig. 4h), and demonstrated that cell populations with both
proliferative and exhausted states were present. The observation
suggested that some cells might be reserved to have proliferative
ability before being terminally exhausted.

Deconvolution of bulk RNA-seq data revealed four different
CC subtypes. Our single-cell transcriptomics analysis revealed
highly different subpopulations in many cell types, suggesting a
more precision heterogenous property of CC. In CC, three subtypes
have been identified largely based on mRNA expression of certain
genes, including two squamous subtypes (Keratin-high and Kera-
tin-low), and an adenocarcinoma-rich subtype (adenocarcinoma).
However, these subtypes did not reflect the heterogenous TME
compositions and the prognostic differences. We further classified
CC subtypes by using cell type-specific genes that were highly
expressed by the malignant cells. Our classification strategy
reduced the effect of non-malignant cells in CC. We used the 705
marker genes of epithelial cells between normal and tumor tissues
(log FC > 1.5 and P < 0.05) from scRNA-seq data and divided
253 samples of the TCGA CESC cohort into four major subtypes
(Fig. 5a), namely the hypoxia (S-H subtype), proliferation (S-P
subtype), differentiation (S-D subtype), and immunoactive (S-I
subtype) subtype. The S-H subtype expressed 10 significant genes
(MMP1, IGFBP3, ITGA5, CDH3, ICAM1, FLOD2, TGFB1, PLAU,
FSCN1, and ITGB4) (Fig. 5b), and presented the enrichment of
hypoxia (Fig. 5c). Hypoxia is one of most common tumor char-
acteristics, which is mainly caused by insufficient vascularization16.
The hypoxic TME condition impedes immune response by
recruiting immunosuppressive cells and genes. The S-P subtype
expressed 10 significant genes (TUBB, UBE2C, NUSAP1, CKD1,
PSMC4, PCNA, DLG1, ATP2C1, MKI67, and TOP2A) and pre-
sented enrichment of cell proliferation. The S-D subtype expressed
10 significant genes (KRT6A, SPRR1B, KRT16, AQP3, PERP, CSTA,
DSG3, SPRR2D, CAPN1 and CDKN2A) that showed enrichment of
cell differentiation. The S-I subtype expressed 10 significant genes
(HLA-DMA, CD74, HLA-DMA, HLA-C, CXCL10, PSMB3, IFI6,
CXCL17, CST6 and HLA-DQA1), and presented enrichment of
immune-related biological processes. Furthermore, we obtained
gene expression profiles of 340 cervical cancer samples from the
GEO database (GSE15166, GSE29617, and GSE68335) and divided
them into four subtypes using the same gene marker set (Supple-
mentary Fig. 6a). These subtypes expressed similar signature genes
and biological processes (Supplementary Fig. 6b–f). Then, we
compared the prognosis of different subtypes. These four subtypes

showed significantly different overall survival times (Fig. 5d). The
S-I showed the longest survival time, while the S-H subtype
exhibited the worst prognosis. To further explore the differences
between the four CC subtypes, we performed GSVA analysis to
evaluate scores of 50 hallmarks in each sample (see Supplementary
methods). Different subtypes were specifically enriched in different
hallmarks (Supplementary Fig. 7a). In particular, the S-D subtype
was specifically enriched in “MYC targets v1” and “protein secre-
tion”-related hallmark gene sets. The S-P subtype was highly
enriched in “Wnt β catenin signaling”, “HEME metabolism” and
“myogenesis”-related hallmark gene sets. The S-I subtype showed
high scores of “IL6 JAK STAT3 signaling”, “oxidative phosphor-
ylation”, and “IL2 STAT5 signaling”-related hallmark gene sets.
The S-H subtype specifically high enrichment of “reactive oxygen
species pathway” and “hypoxia”-related hallmarks. We also per-
formed CIBERSORT analysis to infer the relative abundance of
immune cells in each sample (see Supplementary methods). The
four CC subtypes showed distinct infiltration of different immune
cell types (Supplementary Fig. 7b). For example, the S-I subtype
showed higher infiltration of CD8+ T cells and regulatory T cells.
In addition, we compared the expression levels of immune
checkpoint genes between different CC subtypes. The S-I subtype
showed significantly high expression of many immune check-
points, such as BTLA, CD27, and TIGIT (Supplementary Fig. 7c).

Discussion
In this study, we employed scRNA-seq to comprehensively
delineate the cellular heterogeneity of human CCs. By using the
signature genes derived from scRNA-seq data analysis, we identified
four molecular subtypes of CCs, namely the hypoxia, proliferative,
differentiated, and immunoactive subtype. The stratification of CC
tumors not only promotes our understanding of its etiologies, but
also accelerates the development of personalized therapeutic stra-
tegies for CC patients.

We calculated the percentages of the subpopulations of epithelial
cells, fibroblasts, and T cells in CC tumor and paired NAT samples
(Supplementary Fig. 8). Some cell subpopulations showed accep-
table variations in different tumor or NAT samples, such as the C1,
C3, and C5 T cells in NAT samples, while some showed large
variations in different tumor or NAT samples, such as the C1, C2,
and C3 epithelial cells in tumor samples. The large percentage
variations of some cell subpopulations might be due to hetero-
geneity between different patients and sample collections. Cell
subpopulations are cells with specific status under specific condi-
tions, some of which showed great heterogeneity between different
patients17–19. Samples used for scRNA-seq are randomly chosen
from pathological or related areas, but cells are not uniformly dis-
tributed. Increasing the number of samples could, to some extent,
reduce the bias induced by these limitations, but also enlarges the
volume of cell subpopulations. Cell subpopulations identified from
limited number of samples might show large variations between
samples, but reflect the existence of specific cell status.

One significant advantage of our CC classification was that our
strategy was based on the epithelial cell markers from scRNA-seq
data. The strategy could eliminate the influence of other cells such
as, stromal and immune cell markers in the categorizing process.
For example, in early phase, HGS-OvCa was identified as four
molecular subtypes: immunoreactive, differentiated, proliferative
and mesenchymal according to the TCGA data. However, a recent
study from scRNA-seq data found that the HGSOC classification of
immunoreactive and mesenchymal reflected the infiltration of
immune cells and fibroblasts, but ignored malignant cells. The
scRNA-seq data had the advantage over the bulk RNA-seq in
focusing on the tumor cells. Another advantage is that the scRNA-
seq data could help understand the potential mechanism of tumor
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progression. EMT plays key roles in the development and patho-
logical biology of tumor, and understanding its regulation is
important for developing new therapeutic intervention for tumor
patients20. In addition, emerging evidence has shown that hypoxia
could affect EMT by regulating the expression of EMT-related
transcription factors and signaling genes21,22.

Accumulating evidence has demonstrated that immune cells in
TME, such as tumor-associated macrophages and T cells, are clo-
sely involved in the progression of tumor. The TME, including
immune cells with malleable states and their communications with
other cells, is a major contributor to regulating immune response
against tumor cell behaviors23. To our best knowledge, our study
presented the first single-cell landscape of infiltrating immune cells
in CC. We observed that CD8+ T cells were infiltrating with

different status in CC samples, including proliferative and
exhausted status, and activated CD8+ T cells were in low abun-
dance. In the TME, CD8+ T cells are the major effector to kill
tumor cells24. The immunosuppressed state of CD8+ T cells
indicated the lack of sufficient activated T cells to kill tumor cells in
the TME of CC. We found that both inhibitory receptors (IRs) and
activation markers of T cell exhaustion were expressed in some
CD8+ T cells. Whether these CD8+ T cells turn into effective or
exhausted state was determined by the expression modulation of
IRs. We further revealed the differentiation trajectory of different
CD8+ T cells in CC wherein CX3CR1+ CD8+ T cells transformed
to the PDCD1+ CD8+ T cells.

We found that different subtypes presented various infiltration
of immune cells, especially for CD8+ T cells. CC patients of the

Fig. 5 Differences among the four CC subtypes. a Subclusters of CC samples based on signature genes from scRNA-seq data. b Bar plots showing the
comparisons of expression levels of representative subcluster markers genes across different subclusters. c GSEA enrichment of signature genes in each
CC subtype. d Survival differences among the four subclusters in CC samples. *P < 0.05, *P < 0.01, ***P < 0.001.
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immunoactive subtype might respond to immune checkpoint
blockade (ICB) therapy, but patients of other subtypes may not.
Recently, novel ICB targets beyond CTLA4 and PD-1 have been
identified, such as LAG3, TIM3, HAVCR2, and TIGIT25.
Numerous clinical trials of these emerging ICB targets are under-
way. Overall, CD8+ T cells showed high expression level of LAG3
and TIM3 in our scRNA-seq data. Our analysis suggest that LAG3
and TIM3 might be potential ICB targets that are worth further
investigation for the ICB therapy of CC patients.

In conclusion, our study characterized the single-cell landscape of
TME in CC. Then, we firstly classified all CESCs patients into four
subtypes, which may present different response to immune check-
point inhibitors. Although more datasets and experimental valida-
tion are needed, our results shed lights on T cell infiltration and
response in CC, which might promote the development of more
personalized diagnostic and therapeutic strategies in clinical practice.

Methods
Clinical specimen collection. Human cervical samples were collected from three
different patients in the Obstetrics and Gynecology Hospital of Fudan University,
including three cancer samples and paired adjacent non-tumor (NAT) samples. All
patients gave informed consent. The clinical information, including age, menstrual
status, FIGO stage, histological type, HPV status, and treatment, are provided in
Supplementary Table 1. The estrogen hormone of all included patients was at low
levels. This study was approved and supervised by the ethics committee of the
Obstetrics and Gynecology Hospital of Fudan University.

Sample preparation and single-cell isolation. Collected fresh cervical samples
were washed with 1× PBS three times. Then tissue samples were cut into 1 mm3

pieces and incubated in the same dispase solution at 37 °C for half an hour. Pieced
tissue was gently dissociated with a pipette and incubated in trypsin 0.05% solution
diluted with PBS for 10 min. Single-cell samples were filtered out with a 70 mm
filter after the trypsin was deactivated by RPMI 1640 medium (Gibco), supple-
mented with 10% FBS and 1% penicillin/streptomycin (Invitrogen). The trypan
blue microscopy was used to determine the percentage of active cells, and only
samples with no less than 85% of active cells were used for scRNA-seq. Single cells
were then counted with a hemocytometer and live cells were sorted for the pre-
paration of 10X Genomics scRNA-seq library.

Single-cell RNA sequencing. The single-cell suspension was loaded onto a 10X
Chromium Single-Cell instrument to generate single-cell Gel Beads-in-emulsion
(GEMs). The single-cell RNA library was then constructed and estimated by using
10X Genomics Chromium Single-cell 30 Library, Gel Bead & Multiplex Kit. The
scRNA-seq was performed on the Illumina NextSeq500. All procedures were
performed according to the standard manufacturer’s protocol.

ScRNA-seq data processing. The raw scRNA-seq reads were first processed for
sample demultiplexing, barcode processing, and genome mapping by using the Cell
Ranger (version 3.0.1)26 software. The GRCh38 human reference genome was uti-
lized in the read alignment process. The unique molecular identifiers (UMIs) were
counted in each single cell. Low-quality cells were filtered as previously described12.
Specifically, cells with UMI number <200, gene number <200, or percentage of
mitochondrion-derived UMI counts >10% were discarded as low-quality cells. The
Seurat R package (version 4.0)27 was applied in the quality control procedure. In
addition, the Scrublet software (version 0.2.2)28 was employed to identify and remove
potential doublets. After removing low-quality and doublet cells, data of all samples
was normalized and merged. The feature expression measurements for each cell were
normalized by the total expression by using the “LogNormalize” method imple-
mented in the NormalizeData function. Then normalized counts were then multi-
plied by a scale factor (10,000) and log-transformed.

Dimension reduction and unsupervised clustering. The normalized data was
used to identify gene features with high cell-to-cell variations by utilizing the
FindVariableFeatures function. The top 2000 highly variable genes were used to
scale the data by using the ScaleData function. Then the principal component
analysis (PCA) was adopted to reduce data dimensions. The FindNeighbors and
FindClusters functions were consecutively used to perform a graph-based clus-
tering and find the optimal cluster resolution. The RunTSNE function was applied
for appropriate visualization. Differentially expressed gene markers in each cluster
were identified by the FindAllMarkers function, which compares gene expression
with those in all other cell clusters.

Cell type annotation. The unbiased cell type recognition was performed by
applying the SingleR package (version 1.4.1)29, which leverages reference

transcriptomic datasets of pure cell types. Then the annotated cell clusters were
checked by manually curated gene markers retrieved from the CellMarker
database30 and published papers31,32. The differential genes were then identified in
each cell type with the following criteria: expressed in at least 20% of cells in either
sample groups; |log2FoldChange| >0.585; adjusted p value < 0.01.

Copy number alteration inference. The inferCNV software (https://github.com/
broadinstitute/infercnv) was applied to infer copy number alterations (CNAs) in
our scRNA-seq data. CNAs were computed according to a previous study33.
Briefly, genes were sorted by their chromosomal locations to evaluate initial CNAs
from expression levels. A sliding window of 100 genes was used to calculate moving
averages of relative expression values in each chromosome. In each epithelial cell,
the relative CNAs were calculated from the inferCNV outputs. For each bin of 30
genes, an average value of CNA was estimated in nonoverlapping genomic regions.
Average CNA values were rounded to the closest integers.

Pseudo-time trajectory analysis. The pseudo-time trajectory was inferred by
utilizing the Monocle2 package (version 2.8.0)34 to reveal the cell-state transitions.
The following parameters were adopted: average expression R0.125, num_cell-
s_expressed R10, qval < 0.01 (differentialGeneTest function). The DDRTree
function was applied to reduce the dimensions with default settings. The expression
and variance levels were used to determine the ordering genes.

Functional enrichment analysis. Functional enrichment analyses in this study
were conducted using the clusterProfiler R package (version 4.1)35. Differential
genes in each cell type or cluster were used to compute enriched GO biological
processes or KEGG pathways. The GSEA analysis was performed by using the gsea
function. GO terms or KEGG pathways with adjusted p value < 0.05 were con-
sidered as significantly enriched by the gene sets of interest.

Gene regulatory network analysis. The Single-Cell rEgulatory Network Inference
and Clustering (SCENIC) method was employed to perform gene regulatory net-
work analysis in different cell types or clusters. The SCENIC analysis was realized
by the pySCENIC (version 0.10.2) software36. Briefly, the processing consists of
three major steps37. First, co-expression modules of transcription factors (TFs) and
targets were inferred by using the gradient boosting machine regression imple-
mented in GRNBoost238. Second, these modules were optimized to remove indirect
targets by using the i-cisTarget software39. Third, enrichment scores for the reg-
ulons’ targets were calculated by the AUCell algorithm36 to estimate the activity of
these regulons. The TFs and target motifs were collected by the SCENIC group.

Statistics and reproducibility. Statistical analysis and data visualization in the
present study was performed by using the R software (version 4.0.2, R Foundation
for Statistical Computing, Vienna, Austria; http://www.r-project.org). Unless spe-
cifically stated, p or FDR values < 0.05 were considered as statistically significant.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Single-cell RNA sequencing gene expression data generated in this study has been
deposited in the ArrayExpress database with accession of E-MTAB-11948. Any other
data are available from the corresponding author on reasonable request. Software and
resources used for analysis and plotting are described in each method section.

Code availability
The R scripts used for analysis and visualization are available upon reasonable request to
the corresponding author.
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