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Self-supervised machine learning for live cell
imagery segmentation
Michael C. Robitaille1, Jeff M. Byers1, Joseph A. Christodoulides1 & Marc P. Raphael 1✉

Segmenting single cells is a necessary process for extracting quantitative data from biological

microscopy imagery. The past decade has seen the advent of machine learning (ML)

methods to aid in this process, the overwhelming majority of which fall under supervised

learning (SL) which requires vast libraries of pre-processed, human-annotated labels to train

the ML algorithms. Such SL pre-processing is labor intensive, can introduce bias, varies

between end-users, and has yet to be shown capable of robust models to be effectively

utilized throughout the greater cell biology community. Here, to address this pre-processing

problem, we offer a self-supervised learning (SSL) approach that utilizes cellular motion

between consecutive images to self-train a ML classifier, enabling cell and background

segmentation without the need for adjustable parameters or curated imagery. By leveraging

motion, we achieve accurate segmentation that trains itself directly on end-user data, is

independent of optical modality, outperforms contemporary SL methods, and does so in a

completely automated fashion—thus eliminating end-user variability and bias. To the best of

our knowledge, this SSL algorithm represents a first of its kind effort and has appealing

features that make it an ideal segmentation tool candidate for the broader cell biology

research community.
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The information stored in time-lapse live cell microscopy
imagery is of paramount importance to cell biology. In
particular, two-dimensional (2D) cell cultures and experi-

ments are widespread in both academic and industrial research,
regulatory processes, and commercial pipelines. Thus, there is a
well-established need for quantitative bioimage analysis tools,
often in the form of cell segmentation. Over the past decade,
machine learning has emerged as a powerful method for cell
segmentation1–3. Machine learning offers a framework, super-
vised learning (SL), that combines the data with human anno-
tated labels to form a classifier model for identifying features of
interest. In particular, Artificial Neural Networks (ANNs) have
been a popular SL technique in bioimage analysis in recent
years, as they typically outperform standard image processing
pipelines3,4.

A major drawback of machine learning is that it is data hungry.
In particular, ANNs typically require an immense amount of
labeled data for good performance on complex data sets, in a step
typically referred to as data pre-processing. For example, standard
computer vision training libraries like Microsoft’s COCO contains
over 1 million label objects to adequately train ANNs5. The pro-
blem with this approach is that imagery in cell biology is incredibly
diverse when compared to the imagery typical for internet-related
computer vision problems (i.e. animal recognition). Con-
sequentially, there are numerous large-scale efforts to create ever
larger training libraries to address this need, such as the recently
curated EVICAN6 (26,000 labeled objects), CellPose7 (70,000
labeled objects), and LIVEcell8 (1.6 million labeled objects) librar-
ies, in hopes of achieving robust models that can simply be utilized
by the larger cell biology research community. However, underlying
all SL, including ANNs, is the fact that models will only perform
reliably on data similar to those used during training9. This “big
library” approach is no match for the sheer breadth of cell types,
optical modalities, microscope configurations, 2D and 3D extra-
cellular environments and customized experimental conditions
which embody cell microscopy—all of which are continuously
evolving. The commonmotto in machine learning, “when in doubt,
retrain”, is a clear testament to this fact, yet model training is far
from trivial and a notoriously labor-intensive task10, often at the
expense of the end-user.

While the field can keep pursuing a “bigger is better” philo-
sophy with regards to training libraries, there is a growing rea-
lization that subjective elements enter machine learning models
via data labeling11–14, causing biases to be effectively baked into
the extracted data by the training process in ways that are poorly
defined and difficult to determine. Furthermore, due to the
opaque nature of model weights and potential overfitting when
spanning such a large parameter space, the efficacy of large
libraries is still an active question. To increase machine learning
accessibility to the broader cell biology community an alternative
approach is required that does not rely upon “bigger is better”
training strategies. One alternative strategy is self-supervised
learning (SSL). SSL leverages some underlying features in the data
itself as a means of supervision, or labeling data, and is promising
as it can learn directly from the end-user’s own data—eliminating
the need for labor-intensive curated libraries and the biases
contained within. For time-lapse live cell imagery, there is a
prominent data structure that can be used to self-label data,
regardless of what cell type, optical modality or otherwise
experimental set up used: motion.

Here, we show that optical flow between consecutive images
can be used as a means to self-label data for cell segmentation
(zero shot learning). We then construct an algorithm that trains
itself with this self-labeled data to classify cells versus background,
and can do so in a completely automated fashion. We validate our
algorithm on a variety of live cell imagery, spanning five optical

modalities (both fluorescent and tag-free) and extensively dif-
ferent experimental set ups to show its applicability to the broader
cell biology research community. By leveraging motion inherent
in time-lapse live cell imagery, we show that (1) SSL eliminates
human intervention; there is no need to build ever expanding
training libraries, (2) SSL allows for complete automation, an
important step forward in eliminating bias and producing
reproducible machine learning efforts in cell biology, and (3) SSL
has no dependencies on particular cell type, optical modality, or
experimental environment. Together, all three of these advantages
translate into a robust, reproducible and user-accessible cell
segmentation tool.

We show that by leveraging motion as a means of self-
supervision directly from the data to be analyzed, we outperform
state-of-the-art ANN generalist models with curated libraries of
over tens of thousands of labels. To the best of our knowledge,
this work represents the first-of-its-kind completely automated
general cell segmentation algorithm. More importantly, our SSL
approach directly addresses the pre-processing problem in
machine learning, and offers a path forward to increase unbiased
machine learning accessibility for cell biology laboratories.

Results
Self-labeling algorithm overview. To replace manual and
supervised learning approaches for segmenting cells with a self-
supervised algorithm, we took advantage of the one phenotypic
feature which is always present in live cell microscopy: motion.
The ever present dynamics captured by live cell microscopy make
it ideal for applying optical flow (OF) algorithms designed to
identify the variation or ‘flow’ of image features from frame to
frame. Optical flow algorithms are founded upon the assumption
that two images can be related by a spatial shifting of their pixel
values. The methods used to calculate these displacements are
matched with various imaging goals, such as motion detection,
guiding autonomous vehicles, stabilizing imagery taken from
moving platforms, aligning medical imagery or, in the case of this
study, cell motion segmentation15. To account for the facts that
cells are highly deformable and that live cell imagery typically
incorporates jitter from scanning stage motion, a multi-resolution
Farneback Displacement16 (FD) optical flow algorithm was
employed (Supplementary Note 3).

Our approach to self-supervised learning and automated model
generation begins with using FD to automate the training process
(Fig. 1). Typical segmentation strategies involve utilizing static
information in a single image at time frame (t), which can have
difficulty distinguishing ‘cell’ from ‘background’ pixels in a
generalizable manner (Fig. 1a). In contrast, our approach begins
with a FD calculation based on images from consecutive time
frames (t-1, t). This enables us to leverage the ubiquitous nature
of intracellular motion and build a dynamics-based feature vector:
pixels with the highest displacements are automatically labeled as
‘cell’ pixels, those with the lowest displacement are automatically
labeled as ‘background’ pixels, and those that do not fit either
category remain unlabeled (Fig. 1b, c). We note that this
automatic self-labeling is broadly applicable in that it is not
dependent on principles of any specific optical modality, cell type,
or phenotype. The robustness of applying optical flow to self-
supervised learning stems from the fact that the algorithm detects
intracellular motion as well as motion due to overall cell
migration. As a result, motion of internal structural components
such as organelles and membrane fluctuations contribute to the
classification process, and if applied to fluorescently tagged cells,
fluorescently labeled molecules contribute as well.

The FD-based self-labeling approach outputs a set of ‘cell’ and
‘background’ labeled pixels which are then used to generate
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additional entropy and gradient feature vectors at each time
point. These static feature vectors are then used to train and
generate a classifier model which, in the final step, is applied to all
pixels in the image for cell segmentation.

The complete self-supervised approach to segmentation based
on FD self-labeling is illustrated in Fig. 2 using time lapse DIC
imagery of multiple (top) and a single highlighted (bottom)
MDA-MB-231 cell. From the raw imagery (Fig. 2a, b), many
portions of individual cells appear to blend in with the
background. However, when the FD self-labeling strategy is
applied, the algorithm automatically identifies pixels with high
displacement magnitude, highlighted as green pixels (Fig. 2c, d),
which are selected as having the highest probability of correctly
being labeled ‘cell’. This identification may be due to overall cell
motion or intracellular dynamics as highlighted by the blue
optical flow vectors in Fig. 1b. To automatically label the
background, the algorithm over segments, that is, a liberal (low)
FD threshold is employed which captures motion from not only
the cell but also from nearby background pixels as well. The
algorithm sets these pixel values to zero and labels the remaining
pixels as ‘background’ (Fig. 2c, d yellow pixels). Once labeled ‘cell’
or ‘background’ in this unsupervised manner by FD (dynamic
features from image pair t � 1; tð Þ), entropy and gradient feature
vectors (static features from image at t) are generated for each of
these training pixels using their local neighborhood of pixels
(Supplementary Note 1, Fig S1). These additional feature vectors
are then used to train and generate a Naïve Bayesian classifier
model which is applied to the entire image in a pixel-wise fashion.
The information gained from the entropy and gradient feature
vectors enables pixels which were left unlabeled in the FD
training steps (Fig. 2c, d gray pixels) to be classified. The contrast
enhanced image (Fig. 2b) and model-generated segmentation

(Fig. 2e, f, teal pixels) show that the algorithm is able to segment
the cell with high fidelity (DIC image/segmented boundary
overlay, Fig. 2g). Importantly, this labeling, training and
classifying procedure occurs recursively on each successive pair
of t � 1; tð Þimages, enabling the classifier model to adapt to
changing backgrounds and phenotypes. By using FD to label the
highest displacement pixels as ‘cells’ and lowest displacement
pixels as ‘background’, the labeling process has become
automated (or ‘self-supervised’) and no manual inputs or curated
training libraries are needed.

For extremely low contrast imagery there can be too few
training pixels labeled ‘cell’ for robust segmentation to occur
given the initial FD threshold setting. In such cases, the algorithm
calculates the entropy associated with ‘cell’ pixels and iteratively
reduces the FD threshold until the associated ‘cell’ entropy feature
vector is well distinguished from that of the ‘background’ entropy
feature vector.

Algorithm evaluation. A central theme of this work is that
machine learning approaches which require supervised training
can be time consuming, subjective, and ultimately ineffective. The
training process is widely recognized as the most time consuming
aspect of machine learning approaches. Due to the opaque nature
of many machine learning algorithms, and in particular deep
learning techniques, the reasons behind the success or failure of a
training data set is often not clear to the end user. Hence, the
process is one of trial and error, requiring retraining if the
model’s performance is not deemed adequate14. To evaluate
segmentation by our self-supervised approach, we compiled a
diverse imagery data set (Fig. 3, Supplementary Note 2, Table S1).
For comparison against a supervised learning approach with a
curated training library, we chose the recent popular artificial

Fig. 1 Overview of the Farneback displacement (FD) self-labeling strategy. a The vast majority of cell segmentation techniques utilize single image
frames and the static information contained within as means to distinguish ‘cell’ from ‘background’, oftentimes represented in a histogram. The self-
supervised algorithm utilizes optical flow as a means to self-label pixels in an automated fashion. b Due to the prevalence of intracellular dynamics in time-
lapse live cell imagery, FD can be calculated for each pair of consecutive images t� 1; tð Þ. The FD can then be represented as vectors associated with each
pixel (right). c The magnitude of the FD then offers a means to distinguish cells from their background, as shown in the bivariate histogram which co-plots
the pixel intensity of a single image at t to the FD vector magnitudes calculated between consecutive images t� 1; tð Þ. Pixels with the highest displacements
can be automatically labeled ‘cell’ (left of the green dashed line) and those with the lowest can be labeled ‘background’ (right of the yellow dashed line).
Pixels that do not meet either criteria remain unlabeled, while the self-labeled pixels are used to create a training data set for classification. Time increment:
600 s, scale bar= 20 µm.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04117-x ARTICLE

COMMUNICATIONS BIOLOGY |          (2022) 5:1162 | https://doi.org/10.1038/s42003-022-04117-x | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


neural network CellPose7, which consists of a model pre-trained
on 70,000 manually annotated objects spanning multiple optical
modalities, cell types, and objects. Like our approach, CellPose is
trained to be a generalist model applied to the wider cell biology
research community, and furthermore has the option for auto-
mated analysis, thus making it an ideal algorithm for comparison.
The F1-score metric was calculated to evaluate the quality of
segmentation done by each method on each data set. For each
data set, cells are manually segmented to serve as the ground
truth against the segmentation for each method. The true posi-
tives (TP), false positives (FP), and false negatives (FN) of each
method are calculated in a pixel-wise fashion. The F1-score is
then defined as:

F1 ¼
TP

TP þ 1
2 ðFN þ FPÞ ð1Þ

The Fig. 3 imagery shows the generality of this approach and
also demonstrates how the self-supervised algorithm additionally
automates commonly required manual inputs such as size
filtering and hole filling. The segmented cells were processed
from imagery acquired from a range of cell types, imaging
modalities, magnifications and time increments (Supplementary
Note 2, Table S1). The FD algorithm enabled a straightforward
approach to automated size filtering which is a common user
adjustable parameter in supervised machine learning approaches.
To accomplish this, a stand-alone application of FD was applied
to the imagery which lacked the added steps of self-tuning and
model building described above. While some cell features are
missed, this simpler, faster approach was found to be more than
precise enough to estimate average cell size and to exclude much
smaller objects, thus automating the size filtering process. Because
extraneous debris often lacked the motion of the live cells, this
debris was also automatically labeled as background by the FD
algorithm. Figure 3a, b demonstrate the self-supervised code’s

ability to size filter, while also adapting to cell types of differing
sizes, by comparing the segmentation of human fibroblasts (10X,
phase contrast) to those of the much smaller Dictyostelium
ameboid cells (10X, transmitted light), respectively. Extraneous
debris features in the Hs27 imagery (Fig. 3a, white arrows) are
correctly identified as ‘background’, even though similar in size
and intensity to the Dictyostelium cells of Fig. 3b. The
background inhomogeneities observed in Fig. 3a, b, which could
potentially be mislabeled as ‘cell’, are correctly identified because
they remain relatively constant from frame t � 1 to frame t. The
segmentation results of the MDA-MB-231 cells (10X, phase
contrast) in Fig. 3c illustrates the algorithm’s ability to adapt to a
wide range of phenotypes, from rounded Fig. 3c(i) to spread
Fig. 3c(ii), which is enabled without need for user input by
continuously retraining the model on consecutive image pairs.

The algorithm works robustly for a range of optical modalities
and magnifications as shown in Fig. 3d–f. Figure 3d, e are
segmentation results from IRM imagery (40X, Hs27 cell) and DIC
imagery (20X, MDA-MB-231). As a fluorescence imaging
example, a self-supervised segmentation of a GFP-actin tagged
A549 cell at 100X magnification is shown in Fig. 3f. As an
additional option, FD can be applied not only as an algorithm
labeling element, but also a measurement tool, as shown in the
Fig. 3f vector plot. The plotted FD vectors (blue) display the
magnitude and direction of the measured GFP tagged actin flow
between frames. Such measurements have been shown to be
useful for quantifying intracellular protein and calcium signaling
dynamics17–19.

Hole filling, another often required manual input for image
processing-based and machine learning algorithms, has also been
automated by this approach. Common examples of when hole
filling input is required include fluorescent tags that do not
penetrate the nucleus or, for tag-free microscopy modes such as
phase contrast, large spread cells in which the algorithm has a
difficult time associating the interference enhanced cell edges with

Fig. 2 Overview of the automated self-supervised learning algorithm. a The contrast enhanced DIC image of several and b a single highlighted MDA-MB-
231 cell illustrates the range of intensities inherent within the cells. (20X objective). c, d Unsupervised learning via FD: high threshold FD is used to select
only those pixels exhibiting the highest displacement magnitudes and labels them as ‘cell’ (green pixels). Similarly, low threshold FD is used to identify
pixels with a much wider range of displacement magnitudes than the high flow regime. The lowest displacement magnitude pixels are labeled ‘background’
(yellow pixels). Pixels that exhibit FD in between these regimes remain unlabeled (gray pixels). e, f Supervised learning via self-labeled training data. The
self-labeled pixels (green and yellow) are then used to generate static feature vectors, which are in turn used to train the classifier model. g The blue
outline is the resulting segmentation which outlines all pixels classified by the FD trained model as ‘cell’ and is also overlaid on the image in b. This process
is repeated at every time step, thereby using the most recent imagery to update the training data. Scale bar: 25 µm (20X objective, time increment: 300 s).
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the enclosed lamellipodia. We found that motion within cells was
ubiquitously detected by FD, regardless of imaging modality or
whether imaging the cell membrane, nucleus or cytoplasm.
Because motion detection was far more common than not for a
given pixel within an area labeled ‘cell’, a fixed morphological
blurring tool (circular with a radius of 5 pixels) was found to
robustly hole fill regardless of cell type or microscope configura-
tion. The calculated cell area was found to be invariant for a range
of blurring tool radii (Supplementary Note 4, Fig. S3). In all cases,
the use of optical flow to identify motion and the 5 pixel radius
blurring tool was sufficient to correctly fill in the cell.

A comparison of our SSL approach versus CellPose is shown
in Fig. 4 via F1-scores, with a brief description of each data set
given at the top, including how many annotated labels were used
in each model and applied to how many objects (cells) within
each data set. CellPose7 is a relatively new supervised learning
framework that is trained to identify intensity gradients and is
based on a general U-Net neural network architecture20. To
achieve this, the authors have taken considerable resources to
train their model off of 70,000 manually annotated objects,

including both fluorescent and tag-free images, and this was
directly applied to the data sets representing both common and
more specialized modes of microscopy in cell biology. In
contrast, our SSL trained on the data sets itself without any
need from human input (#L= 0). Figure 4 shows that SSL
performed well across data sets, achieving F1-scores from
~0.7–0.9 indicating robust performance across diverse live-cell
imagery. SSL outperformed CellPose in four of the data sets used
for validation in this study that were largely lower magnification
and multi-cellular data sets. In the two remaining data sets that
were higher magnification of single-cells, the performance of
each method was statistically equivalent. Details of CellPose
segmentation on the data sets are shown in the Supplementary
Note 5, Figs. S4–S9.

Discussion
The past decade has seen significant efforts and improvements to
the application of machine learning (ML), and in particular
supervised learning techniques to cell segmentation. However, the

Fig. 3 Self-supervised segmentation for a range of cell types, microscope modalities, time resolutions and magnifications. a phase contrast of Hs27
fibroblasts (10X objective, time increment: 1200 s) b transmitted light of Dictyostelium (10X objective, time increment: 60 s) c phase contrast of MDA-
MB-231 (10X objective, time increment: 600 s) d IRM image of a single Hs27 cell (40X objective, time increment: 600 s). e DIC image of MDA-MB-231
cells (20X objective, time increment: 120 s) f fluorescence image of a single lifeAct (GFP-actin conjugate) transfected A549 cell (pseudo-colored) with the
associated FD vector plot (100X objective, time increment: 10 s). Insets i, ii, iii highlight boxed image regions. White arrows point to examples of debris that
was correctly labeled ‘background’ due either to lack of motion or automated size filtering. Images have been contrast enhanced to highlight low contrast
features and background inhomogeneities. DIC image e was additionally enhanced with a sharpen filter to highlight interference induced shadowing of cell
features. Scale bars: a, b, c: 50 µm; d, e: 25 µm; f: 10 µm.
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well-defined nature of the supervised learning framework can
hide many assumptions about the relationship between the data
and corresponding labels – that is, that humans are actively
supervising the labeling and training processes during pre-
processing steps. Despite great improvements making ML more
accessible7,10,21, this pre-processing requirement of supervised
learning is one of the reasons ML has yet to widely transition
from computer scientists to the wider cell biology research
community—it hinders efficiency and poses a serious challenge
for ensuring reproducibility in bioimage analysis. Thus, it is
crucial that the field strive for the high standard of general stra-
tegies that can segment cell imagery from any research group
without input from the user. Indeed, this was the scope of the
2018 Data Science Bowl, which set out to establish a completely
automated algorithm for segmentation of fluorescently tagged
nuclei22. Our SSL approach represents a natural extension of this
line of thought, broadening the automation to entire cell seg-
mentation in time-lapse imagery, with the goal of this work being
to create a broadly applicable ML strategy (1) without the need of
input or configuration from the end-user and (2) without the
need of any data pre-processing (i.e. manual labeling).

Our SSL approach accomplishes this by building a con-
tinuously evolving model that retrains itself on each new image
via the Farneback displacement (FD), a dynamic feature vector
imbedded in the data structure of time lapse imagery. From the
FD, additional static feature vectors can easily be generated for
model training. In this work we primarily studied two such static
feature vectors—gradient and entropy—but the code is modular
in this regard and there are many additional image features that
can be added based on the application. While optical flow has
been used previously for biological imagery, it has largely been in
the context of spatio-temporal characterization of fluorescently
tagged proteins23,24, and much less seldom applied to cell seg-
mentation in a general way15. Here, we show that the evolution of
cellular dynamics captured by FD can be leveraged as a powerful
means to continuously self-train ML algorithms. One con-
sequence of this continual training is that cell features or back-
ground illumination, which inevitably vary over time, do not need
to be manually anticipated a priori as the same imagery to be
segmented is also used for training.

Due to the exponential growth of ML applied to the life sci-
ences in recent years25, there has been more attention on estab-
lishing and adopting best practices to ensure reproducibility of
ML applied to bioimage analysis. Often the discussions are cen-
tered around issues like reporting documentation of training data
sets, data augmentation, and hyperparameters used, to name a
few, in an attempt to achieve transparency in how ML models
were trained and applied14. The unencumbered approach of our
SSL strategy outlined here succinctly sidesteps many of these
issues due to the fact that it is completely automated—easily
achieving the recently established “gold standard” for reprodu-
cibility of ML in lifesciences26 as long as end-users simply make
their data available. However, even this gold standard does not
address the concerns about biases built into the networks them-
selves during both the selection and annotation of training data in
pre-processing steps11–14. For instance, the authors of LIVEcell
library took incredible care to structure and manage the anno-
tation of their library to avoid bias8 due to the industrial and
regulatory application of their work. However, these cautionary
steps are rarely applied in research-based ML training libraries
due to the sheer cost and resources associated with implementing
them. Again, the automation enabled by SSL largely sidesteps
concerns of bias in data labeling/pre-processing and offers an
appealing strategy to ensure reproducibility in ML efforts on a
wider scale.

In general, model training is a significant barrier into both the
accessibility10 and reproducibility14 of machine learning in cell
biology. Once trained, models can be applied effectively on data
that is similar to that which it was trained on initially. However,
the use of pre-trained models on new and distinct data sets, or
transfer learning, is a current hurdle ML, and in particular SL
approaches struggle with. The relatively poor performance of
CellPose on our validation data sets, despite the use of a large and
diverse training library, are a testament to how sensitive the
performance of state-of-the-art ANNs is on the choice and
curation of training data sets. We note that CellPose is not unique
in this regards, but rather this phenomenon is systemic in SL
approaches and in particular ANNs27.

The algorithm presented here is not of overly-sophisticated
architecture, and thus does not require the intense computational

Fig. 4 Segmentation evaluation of Self-Supervised Machine Learning (SSL) and CellPose on the data sets used for validation in this study via F1-
scores. The top row includes the name of the data set annotated by magnification, optical modality, cell type and brief description of the imagery
characteristics. #L stands for the number of annotated labels used for model training, and #O stands for the number of objects to be segmented by the
model within a given data set. *CellPose has a single parameter, a size filter, that can be automatically estimated, however, for some of the data sets the
best segmentation was found by manually tuning this size filter. The figures below show the ground truth (green-solid lines), SSL (cyan-large dashes), and
CellPose (red-small dashes) outlines overlaid on the final image of the data set.
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power/infrastructure common for many ML pipelines10. Quite
the opposite, this code was validated only on laptops and could
achieve acceptable processing times when using this algorithm on
high-resolution microscopy data. For instance, a pair of
1216 × 1920 8-bit images can be self-segmented in ~7 s on the
mid-range laptops we used for testing. This helps make our SSL
algorithm accessible to common cell biology laboratories, which
are largely focused around windows-based microscopy systems.
In constructing our algorithm, we initially explored classifiers
such as random forests, SVM, and K-Nearest Neighbor. However,
the Naïve Bayes classifier was chosen as a flexible and effective
option, as they are known to have good bias-variance tradeoff
because of their simplistic assumption of feature independence,
and was found to perform robustly in the context of cell seg-
mentation outlined here.

The SSL algorithm presented does have limitations. First and
perhaps most obvious, it can only be applied to live-cell imagery.
Second, due to its nature of self-labeling via optical flow, it
requires a stable experimental set up in order to correctly dis-
tinguish cells from their background—if the microscope stage is
drifting laterally or the focus is drifting, the assumption that only
cells are moving relative to a stable background are invalid. In our
experiments we found that today’s commercially available live cell
microscopes were more than stable enough to meet this criteria
and, when not, auto alignment software (such as that included
with ImageJ) could be easily incorporated. In its current form, the
software is designed for semantic segmentation only and not
instance segmentation (i.e. separating touching cells). However,
the code is designed to be modular, and future work will focus on
adding a de-clumping techniques, such as watershed methods, to
the binary mask generated by SSL.

To the best of our knowledge, this work represents a first-of-
its-kind effort for automated cell segmentation that can be
applied across cell types, optical modalities, or otherwise experi-
mental set ups in cell biology (e.g. from different laboratories).
The crux of our approach is to utilize optical flow, specifically a
Farnebeck Displacement (FD), between consecutive images of
time-lapse live cell imagery as a means to self-label training data
for a model that distinguishes cells from their background. This
self-supervised strategy enables complete automation—drastically
reducing the labor of supervised learning techniques, eliminating
sources of bias from the curation and labeling of training
data, and overall represents a step to both increase accessibility of
ML to cell biology labs and introduce a strategy that aids
reproducibility in ML.

Methods
Cell culture and microscopy. All mammalian cells were cultured in DMEM
(ATCC, #30-2002) supplemented with 10% fetal bovine serum (ATCC, #30-2020)
at 37 °C and 5% CO2, and all imaging of mammalian cells was conducted under
serum free conditions (DMEM alone). Hs27 fibroblasts (ATCC, #CRL 1634) were
imaged on planar sections of quartz contact guidance chips as previously
described28. MDA-MB-231 cells (ATCC #HTB-26) were imaged on glass bottomed
well plates coated with 25 µg/mL Fibronectin (Gibco #33016015) or functionalized
gold coated coverslips as previously described29. A549 cells (ATCC #CCL-185)
were imaged on planar sections of quartz nanostructured chips as previously
described30. The Dictyostelium cells were wild type AX2 strain and generously
gifted from the Devreotes laboratory of Johns Hopkins University, were cultured
axenically in HL5 at 22 °C, and imaged on glass bottom well plates as previously
described31. Microscopy details for each cell type including microscopy mode,
magnification, numerical aperture, camera and wait time between images are listed
in Supplementary Note 2.

Statistics and reproducibility. Each segmented image was produced from two
consecutive images in the time series (N= 2). The self-supervised methodology is
inherently blinded and reproducible because it does not rely upon curated data sets
or user-determined parameter settings, but rather trains itself from the image data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Images evaluated in Figs. 3, 4 are available as TIFF files in the Supplementary Data and
are also included in the code packages available at Zenodo32.

Code availability
The SSL application is available as a stand-alone GUI download for Windows, Mac and
Linux operating systems and as a separate SSL Matlab source code package. Both
packages are available for download at Zenodo32. They are included here as
Supplementary Software 1 and Supplementary Software 2, respectively, and the
associated ReadMe files have been reprinted in Supplementary Notes 6, 7.
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