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Towards a definition of microglia heterogeneity
Luke M. Healy 1✉, Sameera Zia2 & Jason R. Plemel 2,3,4✉

High dimensional single-cell analysis such as single cell and single nucleus RNA sequencing

(sc/snRNAseq) are currently being widely applied to explore microglia diversity. The use of

sc/snRNAseq provides a powerful and unbiased approach to deconvolve heterogeneous

cellular populations. However, sc/snRNAseq and analyses pipelines are designed to find

heterogeneity. Indeed, cellular heterogeneity is often the most frequently reported finding. In

this Perspective, we consider the ubiquitous concept of heterogeneity focusing on its

application to microglia research and its influence on the field of neuroimmunology. We

suggest that a clear understanding of the semantic and biological implications of microglia

heterogeneity is essential for mitigating confusion among researchers.

Derived from the Greek ἕτερος (heteros; other, different) and γένος (genos; kind, gender),
heterogeneity refers to the quality of uniformity (or lack thereof) in a substance,
population, or mixture. A heterogeneous population is one made up of contrasting or

diverse elements. Studies of heterogeneity are sensitive to several key parameters, these include
scale, sample size, sampling strategy and magnitude.

While an object might appear homogenous on a macroscopic scale, heterogeneity can be
revealed when viewed through the lens of sequentially more powerful optics. For example, metal
surfaces can appear smooth to the naked eye but when subjected to electron microscopic
investigation can reveal complex structural heterogeneity. Similarly, sample size (n) can have a
considerable effect on one’s ability to detect heterogeneity. Typically, the larger the n number the
more likely it is one will detect heterogeneity. This is due to a significant increase in the
probability of observing rarer subpopulations or subsets within a large population. However, this
may not always be the case. If one considers a bag of skittles candy, sampling by hand on
separate occasions will reveal different combinations of numbers and colours of skittles. How-
ever, if one empties this bag into a bowl and compare the colours and their ratios this sampling
heterogeneity is lost, and the true number of skittles is revealed in the bag. Therefore, choosing
an appropriately sized sample and sampling enough times to generate an accurate picture is
crucial to avoid the premature drawing of conclusions regarding the extent of heterogeneity of
the bag. Finally, the precise point at which a population becomes heterogeneous remains to be
defined by the investigator. For example, consider a bag of 100 marbles, all different colours and
sizes, this is clearly a heterogeneous population. However, a bag of 99 black marbles of uniform
size, plus one large red marble could also be described as heterogeneous. While both these bags
can be described as heterogeneous, there is a clear distinction in magnitude. Drawing from this
metaphor, a small population of transcriptionally distinct microglia responding uniformly to a
focal point of injury and multiple distinct and diverse microglial subpopulations arising during
development, would both be referred to as heterogeneous. A given field of investigation must be
cognizant of the fact that ‘heterogeneity’ can encompass a range of complexity and overreliance
on this word can lead to loss of important information and misunderstanding between
researchers. If one considers heterogeneity to be a quality of immense importance, then a precise
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metric or heterogeneity ‘index’ may be useful to allow for the
cross-sectional study of this phenomenon.

Ultimately, in the microglia field, the word ‘heterogeneity’
typically provokes interest as the word itself carries with it an
inference of microglial functional diversity. It is this functional
diversity that should expedite our understanding of diverse
homoeostatic cellular functions and by extension, our under-
standing of diverse cellular responses to injurious and patholo-
gical microglial states.

Microglia heterogeneity
Microglia are CNS resident immune cells that regulate the
response to injury and disease, while also serving critical func-
tions throughout development and life such as synaptic pruning
and circuitry remodelling1,2. Microglia change their cellular state
(see Box 1 for definitions), defined often by protein or gene-
expression patterns, throughout development and during
disease3,4. Microglia express >1000 receptor systems, of
which >100 are uniquely expressed compared to other non-
myeloid central nervous system (CNS) cells5, making them
exquisitely sensitive to the extracellular environment. Perhaps,
owing to this high responsivity, environmental conditions alter
microglia to adopt diverse cellular states. However, microglia also
originate from different sources including both yolk sac and early
foetal monocytes1, which may also impart distinct responses to
environmental signals. During development, microglia adopt
distinct cellular states as indicated by the unique expression of
one or more genes. For example, within the developing white
matter tracts there is a microglial state enriched for genes such as
Secreted phosphoprotein 1(Spp1), Glycoprotein Nonmetastatic
Melanoma Protine B(Gpnmb), and Insulin-like Growth Factor
(Igf1)6,7. Other proliferative, metabolically active, and phagocytic
microglial states are present in development, but many of these
diverse phenotypes are sparsely present after puberty in mice6–9.

During injury and disease, microglia again adopt a diverse
range of cellular states. Along with the phenotypically similar
myeloid cells such monocyte-derived macrophages, CNS
meningeal, and perivascular macrophages, these cells have subtle,
complex, and incompletely understood roles. For example,
microglia and macrophages regulate myelin regeneration10–13

and promote neonatal axonal regeneration14 in the white matter.
However, the roles of these cells are complex as they also drive
autoimmune neurotoxicity and demyelination15. It is still unclear
how microglia contribute to these divergent outcomes that propel
or impede pathogenesis. However, it is tempting to speculate that
the divergent regenerative or neurotoxic attributes of microglia
relate to subpopulations of cells with functionally divergent
properties, or cellular phenotypes. Simply put—and of great
importance—some microglia phenotypes may be neurotoxic,

while other phenotypes may support regeneration. Historically,
microglia were assumed, based on their similarity to macro-
phages, to take on proinflammatory M1 or immunoregulatory
M2 phenotypes, which may account for neurotoxic or regen-
erative phenotypes. However, using scRNAseq it becomes clear
that classic M1 and M2 states are not identified in microglia
in vivo6,16,17. Therefore, the properties of any putative regen-
erative or cytotoxic microglial states remain to be determined. A
clear understanding of these cells is of great significance for the
potential treatment of neurological conditions.

Heterogeneity in the microglia population is not altogether
surprising. During microglia homoeostasis there is no evidence of
the kind of clonal expansion that drives the phenotypic restriction
seen in populations of lymphocytes. Instead microglia undergo
slow, stochastic self-renewal1. Over time, microglia are exposed to
their own unique microenvironment, which ultimately leads to
the acquisition of distinctive transcriptional signatures18–20. As
one considers microglia heterogeneity, it is also important to
consider changes over time. A fundamental feature of microglia is
their ability to rapidly sense, integrate and respond to signals
from within the CNS compartment and from the periphery. The
inclusion of longitudinal studies of microglia (and associated
heterogeneity) will be important in distinguishing between how
microglia respond to changes in diet, circadian rhythms, hor-
monal cycles, and other environmental factors.

How is microglia heterogeneity studied?
Microglia are routinely defined to be heterogenous6–8,16,21–25.
What does this mean and how do researchers reach these con-
clusions? The most common tools used to define cells and their
transcriptional states are scRNAseq and snRNAseq, although
other high dimensional approaches such as cytometry by time of
flight (CyTOF) or spectral flow cytometry are available. These
experiments begin with sample collection, sample processing,
sequencing, alignment to a select genome, and finally, computa-
tional analysis. Understanding the technical underpinnings of
each step is fundamental to understanding how researchers
conclude that a given microglial population is heterogeneous.

Single cell and nuclei approaches are widespread with the
recent commercialization of the Chromium system by 10X
genomics, as well as other options (detailed in Table 1). These
approaches measure cDNA converted from mRNA that is
amplified, fragmented, and then counted as a ‘read’ by a
sequencing platform. Most of these approaches use a unique
molecular identifier (UMI), a random sequence of nucleotides
used to tag and count mRNA. The benefit of a UMI is that it
corrects for PCR-induced artifacts during the library preparation
steps26. The UMI also enables molecular counting, which is an
advantage over previous approaches that normalized data to

Box 1. | Microglia heterogeneity definitions

How does the brain function during development, throughout life, and during disease or injury? These are fundamental questions that encapsulate much
of neuroscience research. Historically, cell function was studied by taking a cell of interest, homogenizing the sample, and measuring either the protein
or mRNA content to generate a ‘signature’. By combining this signature with specific gain/loss of function experiments, overall functions were ascribed
to that cell. What we know now is that there is more diversity in the CNS, even within a particular cell type. With the dawn of the single-cell era, new
cell populations are being discovered and understanding this cellular heterogeneity will be a focus for researchers in the decades to come. For this
review, we refer to a unique cellular signature based on protein or mRNA markers as a cell state. For high dimensional data, often projected onto a
UMAP or TSNE, data is sorted through an algorithm and organized into one or more clusters. If cell state is defined based on clusters from UMAP or
TSNE data, others may also refer to this as a subpopulation, subtype, or subset. However, a recent nomenclature review by prominent microglia experts
suggested using state until a consensus is reached on specific microglial subpopulation, subtype, or subset72. When a known function is ascribed to a
specific cellular state, we refer to this as a cellular phenotype. Any shift from one phenotype to another would be an example of plasticity. A further
challenge in the microglial field is how to describe microglia that arise from distinct developmental origins—microglia can arise for the yolk sac or from
early foetal monocytes1. Scientific consensus should in the future address these challenges72.
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overall read counts. With so many different sc/snRNAseq plat-
forms, it is important to consider the impact of method selection.
Ding and colleagues compared seven of these methods, including
two low throughput and five high throughput scRNAseq
methods27. Major differences were found with respect to sensi-
tivity, or the ability to capture RNA molecules as reflected by the
average number of detected UMI or genes per cell. Low
throughput methods had greater sensitivity than high throughput
methods, with the most common system used to study microglia
—the 10X Genomics Chromium platform—outperforming other
high throughput approaches27. In a systematic comparison study
that controlled for the bioinformatic pipeline, sensitivity differ-
ences affected the ability to identify distinct cell types when
clustering peripheral blood mononuclear cell (PBMC) from
scRNAseq data. Generally, more sensitive methods were better
able to accurately define the percentage of a given cell population
residing in the PBMC fraction. For microglia, the low throughput
method Smart-seq2 and high throughput 10X Chromium plat-
form were similarly able to detect an activated and white matter
associated microglial state in the aged brain25.

An alternative approach to improve UMI and gene counts, is to
increase the number of reads per cell, or sequencing depth. Like
any estimate, increasing the number of objects counted—in this
case, reads—reduces noise. Increased sequencing depth leads to
reduced measurement noise28–30. An important question is, what
is the optimal read depth to allow for the differentiation of cel-
lular states? While it has not been addressed systematically with
microglia, Pollen and colleagues addressed this directly by com-
paring high sequencing depth to lower depths and found that as
few as 10,000–50,000 reads per cell was sufficient to group
developing human neurons29. At lower sequencing coverage
fewer genes were detected, the genes that were not captured were
primarily genes expressed at low levels. Similarly, Heimberg and
colleagues found that as few as 1000 transcripts could distinguish
hippocampal pyramidal neurons from cortical pyramidal
neurons30. However, they found that greater read depth provides
a more accurate assessment of the variance, which may be
important for defining more nuanced cellular states.

Following the sc/snRNAseq run, read or count data will
undergo preprocessing via a number of pipelines for UMI or non-
UMI based methods, detailed in Table 1. When Chen and col-
leagues benchmarked these across a range of samples and plat-
forms, there was only modest variance in the number of genes
detected per cell31. The chosen preprocessing pipeline used is
therefore a minor contributor to gene detection variance. After
prepossessing, it is common to normalize data. Normalization is a
strategy to account for scRNAseq technical variation such as
difference in read depth across cells or libraries. For example,
scRNAseq data contains a high number of zero read counts32.
While initially it was thought that scRNAseq data may be zero
inflated, recent modelling with droplet scRNAseq suggests that
the overabundance of zero values can be attributed to biological

variation or challenges in measuring small numbers of transcripts
at a single-cell level33. To account for the distribution of
scRNAseq data, several normalization approaches are available.
Chen and colleagues compared eight different normalization
methods and found that six out of eight methods assessed pre-
formed equivalently well including sctransform, scran deconvo-
lution, CPM, DEseq, and Linnorm31.

When comparing common scRNAseq pipelines the most
impactful factor was correcting for batch effects, or the stochastic
effects imposed on different samples prepared at different times.
Batch correction is especially important for low throughput
approaches because often many libraries are collected to obtain
enough cells. Chen and colleagues found large disparities in batch
correction approaches31. Some batch correction methods per-
formed well in accounting for biologically similar samples, or
shared subpopulations between samples. Other approaches were
useful for integrating samples with distinct cell types. Therefore,
batch correction does not appear to be a one size fits all approach
and researchers should tailor the batch correction tool to the
sample they are integrating. For many of the landmark papers
using single-cell RNA sequencing to characterize microglial
states, researchers use low throughput approaches where often
hundreds of libraries are required to obtain enough
cells6,7,23,24,34–36. How batch effect and batch correction alters the
interpretation of the studies is rarely reported.

How is microglia heterogeneity assessed?
Following preprocessing, normalization, and integration,
researchers will cluster their data and project it onto a
t-Distributed Stochastic Neighbor Embedding (TSNE), or Uni-
form Manifold Approximation and Projection (UMAP) plot37.
To define microglia heterogeneity, researchers use two main
clustering algorithms: k-means clustering9,23,35,38 or community
assessment with Louvain algorithm6,7,16,39–41. For k-means
clustering, the number of clusters (k) are chosen by the user
before the data is iteratively clustered around k clustering centres,
with each cell assigned to its closest cluster centre using Llyod’s
Algorithm42. However, this biases clusters towards those of equal
sizes and, as a result, rare populations can be missed. Therefore, a
package that uses k-means clustering, called RaceID, introduced
an outlier detection method to counteract this issue43.
Community-based detection algorithms like Louvain’s algorithm,
detects clusters based on ‘communities’, which is the basis for the
popular scRNAseq tool, Seurat44 used by many microglial
researchers6,7,16,25,34,39–41,45–47. Either clustering algorithm
separates cells based on similarities and the proximity of each cell
within the graphical projection indicates their relatedness. Clus-
ters can be defined or annotated using knowledge of the sample
collection, previously identified gene-expression profiles, or
available automated annotation software (reviewed by48). Given
that most labs use one clustering algorithm, it is not yet clear how

Table 1 Overview of single-cell sequencing and preprocessing approaches.

Sequencing technique Example study Pre-processing Example study

Chromium 10X genomics 16 Cell Ranger 14

inDrop 60 featureCounts 61

Drop-seq 62 UMI tools 63

Smart-seq2 64 RSEM 65

CEL-seq2 66 Kallisto 67

Microwell-Seq 68

Seq-Well 69

BDRhapsody system 70

SPLiT-Seq 71
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the choice of clustering algorithm alters our understanding of
cellular heterogeneity.

Two chief strategies are emerging to define microglia hetero-
geneity: low throughput and high throughput approaches. Many
researchers opt for a low throughput approach, which typically
collects as much as 30–40 percent of the mRNA molecules in a
cell49. However, with low throughput approaches many hundreds
or even thousands of libraries need to be collected, requiring the
application of imperfect integration or batch correction
strategies31. An alternative strategy is to use a high throughput
approach to collect thousands of cells in a single library50.
However, with higher throughput only 5–20 percent of mRNA
molecules are collected, resulting in fewer genes detected per
cell27. What is clear is that understanding cellular heterogeneity
requires the capture of large numbers of cells. Using astrocytes
collected from a commercially available source we show how
more cells results in greater clarity of astrocyte clusters, with
nearly four times more clusters identified with 10,000 cells than
1000 cells (Fig. 1). However, clustering does not carry inherent
biological meaning. Indeed, one adjustable bioinformatic attribute
known as ‘resolution’ can alter the number of clusters identified
(Fig. 1). The method of resolution selection depends on the type
of clustering analysis used. While strategies for the selection of an
optimal resolution are available37,51, decisions about the level of
resolution remain subjective.

Obtaining a high number of cells is important to detect small
populations, but can also amplify noise. For example, cells die
during dissociation and not all of these dying cells will be
excluded with quality control. These damaged cells may form
their own cluster if their numbers are high enough, which is
unlikely to be a functional subpopulation. Similarly, doublet or
multiplet cells are not their own state. Quality control measures
during the bioinformatic pipeline such as mitochondrial gene

counts and total gene counts are meant to limit these con-
founding populations, but they may still be present in small
numbers after quality control measures. Another concern is dis-
sociation artifacts, or changes in a cell population based on how
the cells are dissociated. Fortunately, using transcriptional and
translational inhibitors researchers minimize ex vivo dissociations
artifacts52. Taken together, it is important to validate an identified
microglial states by using orthogonal approaches. Validation of
cellular heterogeneity can be done with immunohistochemistry or
fluorescent in situ hybridization (FISH) approaches such as
seqFISH53, RNAscope54, and merFISH55. Bioinformatic approa-
ches, such as gene regulatory network assessment using tools like
Single-cell Regulatory Network Interference and Clustering
(SCENIC)56, increase confidence that a cluster is biologically
relevant and not a consequence of the clustering technique
applied to the data.

Concluding remarks
Semantic satiation was coined by Leon Jakobovits James to
describe the phenomenon in which a word temporarily loses its
meaning when listened to, verbalised, or read repeatedly over a
short period of time. In this era of multi-omics, the word het-
erogeneous is one of the most frequently used words to describe
microglia. Given its high frequency of use, we feel compelled to
suggest a cautious approach to its interpretation. When examined
more carefully, this word can be used to describe a wide range of
experimental results, with the interpretation left up to the reader.
We believe that the word heterogeneity should at the very least be
defined and not act as a conclusion. For example, the results for a
single-cell RNA sequencing study would find heterogeneous cel-
lular states. Future work may then identify functional hetero-
geneity. Ultimately, reports of microglia heterogeneity on a

Fig. 1 Number of cells and bioinformatic settings impact cluster numbers. Astrocyte transcriptional data was obtained from the publicly available mouse
brain dataset (https://support.10xgenomics.com/single-cell-gene-expression/datasets)57. We chose to use astrocyte data as an exemplar due to the
availability of a sufficiently comprehensive and large dataset. Cells were clustered using the Louvain algorithm in Scanpy44,58. a Data was optimized using
the machine learning algorithm SCCAF59 and data was projected onto a UMAP. By increasing the cell number analyzed through subsampling of original
data (from 500, 1000, 10,000, or 100,000 cells) there is an increase in the number of clusters under similar analytic conditions. Analyzing more cells,
therefore, yields more clusters. b Clustering a similar number of cells (102,000 astrocytes) using Louvain’s algorithm while varying resolution
demonstrates that a higher resolution produces more clusters.
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transcriptional level have generated huge interest, primarily due
to the inference that transcriptional heterogeneity begets func-
tional heterogeneity. Future work is still required to elucidate
functional differences between these diverse microglial states with
the hope that these observations will aid our understanding of the
roles microglia play in disease and injury. A clearer under-
standing of microglia heterogeneity will pave the way for ther-
apeutic interventions that target specific phenotypes or subset(s)
of microglia while leaving the bulk of the brain’s microglia
population unaffected.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data is available from (https://support.10xgenomics.com/single-cell-gene-expression/
datasets) called “1.3 million brain cells from E18 mice” or NCBI GEO as (GSE93421)57.

Code availability
The code we used is all publicly available from other research groups44,58,59.

Received: 26 February 2022; Accepted: 6 October 2022;

References
1. Hammond, B. P., Manek, R., Kerr, B. J., Macauley, M. S. & Plemel, J. R.

Regulation of microglia population dynamics throughout development, health,
and disease. Glia https://doi.org/10.1002/glia.24047 (2021).

2. Hammond, T. R., Robinton, D. & Stevens, B. Microglia and the brain:
complementary partners in development and disease. Annu Rev. Cell Dev.
Biol. 34, 523–544 (2018).

3. Zia, S. et al. Microglia diversity in health and multiple sclerosis. Front.
Immunol. 11, 588021 (2020).

4. Masuda, T., Sankowski, R., Staszewski, O. & Prinz, M. Microglia heterogeneity
in the single-cell era. Cell Rep. 30, 1271–1281 (2020).

5. Hickman, S. E. et al. The microglial sensome revealed by direct RNA
sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

6. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout
the mouse lifespan and in the injured brain reveals complex cell-state changes.
Immunity 50, 253–271 e256 (2019).

7. Li, Q. et al. Developmental heterogeneity of microglia and brain myeloid cells
revealed by deep single-cell RNA sequencing. Neuron 101, 207–223 e210
(2019).

8. Kracht, L. et al. Human fetal microglia acquire homeostatic immune-sensing
properties early in development. Science 369, 530–537 (2020).

9. Sankowski, R. et al. Mapping microglia states in the human brain through the
integration of high-dimensional techniques. Nat. Neurosci. 22, 2098–2110
(2019).

10. Lloyd, A. F. et al. Central nervous system regeneration is driven by microglia
necroptosis and repopulation. Nat. Neurosci. 22, 1046–1052 (2019).

11. Lloyd, A. F. & Miron, V. E. The pro-remyelination properties of microglia in
the central nervous system. Nat. Rev. Neurol. https://doi.org/10.1038/s41582-
019-0184-2 (2019).

12. Baaklini, C. S., Rawji, K. S., Duncan, G. J., Ho, M. F. S. & Plemel, J. R. Central
nervous system remyelination: roles of glia and innate immune cells. Front
Mol. Neurosci. 12, 225 (2019).

13. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous
system. Cell Stem Cell 10, 96–103 (2012). S1934-5909(11)00580-7 [pii].

14. Li, Y. et al. Microglia-organized scar-free spinal cord repair in neonatal mice.
Nature 587, 613–618 (2020).

15. Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be
pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16, 1618–1626
(2013).

16. Plemel, J. R. et al. Microglia response following acute demyelination is
heterogeneous and limits infiltrating macrophage dispersion. Sci. Adv. 6,
eaay6324 (2020).

17. Mendiola, A. S. et al. Transcriptional profiling and therapeutic targeting of
oxidative stress in neuroinflammation. Nat. Immunol. 21, 513–524 (2020).

18. Ayata, P. et al. Epigenetic regulation of brain region-specific microglia
clearance activity. Nat. Neurosci. 21, 1049–1060 (2018).

19. Böttcher, C. et al. Human microglia regional heterogeneity and phenotypes
determined by multiplexed single-cell mass cytometry. Nat. Neurosci. 22,
78–90 (2019).

20. Grabert, K. et al. Microglial brain region-dependent diversity and selective
regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

21. Young, A. M. H. et al. A map of transcriptional heterogeneity and regulatory
variation in human microglia. Nat. Genet 53, 861–868 (2021).

22. Geirsdottir, L. et al. Cross-species single-cell analysis reveals divergence of the
primate microglia program. Cell 179, 1609–1622.e1616 (2019).

23. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human
microglia at single-cell resolution. Nature 566, 388–392 (2019).

24. Keren-Shaul, H. et al. A unique microglia type associated with restricting
development of Alzheimer’s disease. Cell 169, 1276–1290 e1217 (2017).

25. Safaiyan, S. et al. White matter aging drives microglial diversity. Neuron 109,
1100–1117.e1110 (2021).

26. Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular
identifiers. Nat. Methods 11, 163–166 (2014).

27. Ding, J. et al. Systematic comparison of single-cell and single-nucleus RNA-
sequencing methods. Nat. Biotechnol. 38, 737–746 (2020).

28. Zhang, M. J., Ntranos, V. & Tse, D. Determining sequencing depth in a single-
cell RNA-seq experiment. Nat. Commun. 11, 774 (2020).

29. Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular
heterogeneity and activated signaling pathways in developing cerebral cortex.
Nat. Biotechnol. 32, 1053–1058 (2014).

30. Heimberg, G., Bhatnagar, R., El-Samad, H. & Thomson, M. Low
dimensionality in gene expression data enables the accurate extraction of
transcriptional programs from shallow sequencing. Cell Syst. 2, 239–250
(2016).

31. Chen, W. et al. A multicenter study benchmarking single-cell RNA sequencing
technologies using reference samples. Nat. Biotechnol. https://doi.org/10.1038/
s41587-020-00748-9 (2020).

32. Sarkar, A. & Stephens, M. Separating measurement and expression models
clarifies confusion in single-cell RNA sequencing analysis. Nat. Genet 53,
770–777 (2021).

33. Svensson, V. Droplet scRNA-seq is not zero-inflated. Nat. Biotechnol. 38,
147–150 (2020).

34. Sala Frigerio, C. et al. The Major Risk Factors for Alzheimer’s Disease: Age,
Sex, and Genes Modulate the Microglia Response to Abeta Plaques. Cell Rep.
27, 1293–1306 e1296 (2019).

35. Jordao, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with
distinct fates during neuroinflammation. Science https://doi.org/10.1126/
science.aat7554 (2019).

36. Mathys, H. et al. Temporal tracking of microglia activation in
neurodegeneration at single-cell resolution. Cell Rep. 21, 366–380 (2017).

37. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised
clustering of single-cell RNA-seq data. Nat. Rev. Genet 20, 273–282 (2019).

38. Tay, T. L., Sagar, Dautzenberg, J., Grun, D. & Prinz, M. Unique microglia
recovery population revealed by single-cell RNAseq following
neurodegeneration. Acta Neuropathol. Commun. 6, 87 (2018).

39. Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular
changes in autism. Science 364, 685–689 (2019).

40. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in
multiple sclerosis. Nature 573, 75–82 (2019).

41. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals
unique transcriptional identities shaped by ontogeny and tissue environment.
Nat. Neurosci. 22, 1021–1035 (2019).

42. Lloyd, S. P. Least squares quantization in PCM. IEEE Trans. Inform. Theory
28, 129–137 (1982).

43. Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal
cell types. Nature 525, 251–255 (2015).

44. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177,
1888–1902.e1821 (2019).

45. Witcher, K. G. et al. Traumatic brain injury causes chronic cortical
inflammation and neuronal dysfunction mediated by microglia. J. Neurosci.
41, 1597–1616 (2021).

46. Silvin, A. et al. Dual ontogeny of disease-associated microglia and disease
inflammatory macrophages in aging and neurodegeneration. Immunity
https://doi.org/10.1016/j.immuni.2022.07.004 (2022).

47. Absinta, M. et al. A lymphocyte–microglia–astrocyte axis in chronic active
multiple sclerosis. Nature https://doi.org/10.1038/s41586-021-03892-7
(2021).

48. Clarke, Z. A. et al. Tutorial: guidelines for annotating single-cell
transcriptomic maps using automated and manual methods. Nat.
Protoc.(2021).

49. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform
resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04081-6 PERSPECTIVE

COMMUNICATIONS BIOLOGY |          (2022) 5:1114 | https://doi.org/10.1038/s42003-022-04081-6 | www.nature.com/commsbio 5

https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://doi.org/10.1002/glia.24047
https://doi.org/10.1038/s41582-019-0184-2
https://doi.org/10.1038/s41582-019-0184-2
https://doi.org/10.1038/s41587-020-00748-9
https://doi.org/10.1038/s41587-020-00748-9
https://doi.org/10.1126/science.aat7554
https://doi.org/10.1126/science.aat7554
https://doi.org/10.1016/j.immuni.2022.07.004
https://doi.org/10.1038/s41586-021-03892-7
www.nature.com/commsbio
www.nature.com/commsbio


50. Datlinger, P. et al. Ultra-high-throughput single-cell RNA sequencing and
perturbation screening with combinatorial fluidic indexing. Nat. Methods 18,
635–642 (2021).

51. Zappia, L. & Oshlack, A. Clustering trees: a visualization for evaluating
clusterings at multiple resolutions. Gigascience https://doi.org/10.1093/
gigascience/giy083 (2018).

52. Marsh, S. E. et al. Dissection of artifactual and confounding glial signatures by
single-cell sequencing of mouse and human brain. Nat. Neurosci. 25, 306–316
(2022).

53. Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single
cells reveals spatial organization of cells in the mouse hippocampus. Neuron
92, 342–357 (2016).

54. Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-
fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).

55. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA
imaging. Spatially resolved, highly multiplexed RNA profiling in single cells.
Science 348, aaa6090 (2015).

56. Aibar, S. et al. SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083–1086 (2017).

57. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of
single cells. Nat. Commun. https://doi.org/10.1038/ncomms14049 (2017).

58. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19, 15 (2018).

59. Miao, Z. et al. Putative cell type discovery from single-cell gene expression
data. Nat. Methods 17, 621–628 (2020).

60. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to
embryonic stem cells. Cell 161, 1187–1201 (2015).

61. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics 30,
923–930 (2014).

62. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of
individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

63. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in
inique molecular identifiers to improve quantification accuracy. Genome Res
27, 491–499 (2017).

64. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in
single cells. Nat. Methods 10, 1096–1098 (2013).

65. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq
data with or without a reference genome. BMC Bioinforma. 12, 323 (2011).

66. Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell
RNA-Seq. Genome Biol. 17, 77 (2016).

67. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic
RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

68. Han, X. et al. Mapping the mouse cell atlas by microwell-seq. Cell 172,
1091–1107 e1017 (2018).

69. Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single
cells at high throughput. Nat. Methods 14, 395–398 (2017).

70. Shum, E. Y., Walczak, E. M., Chang, C. & Christina Fan, H. Quantitation of
mRNA transcripts and proteins using the BD Rhapsody™ single-cell
analysissystem. Adv. Exp. Med Biol. 1129, 63–79 (2019).

71. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and
spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

72. Paolicelli, R. et al. Defining microglial states and nomenclature: a roadmap to
2030. Cell https://doi.org/10.2139/ssrn.4065080 (2022).

Acknowledgements
This work was supported by a CIHR project grant and a Canada Research Chair in Glial
Neuroimmunology help by J.R.P.

Author contributions
J.R.P. and L.M.H. wrote this manuscript. L.M.H. completed Table 1. S.Z. completed
Fig. 1. All authors revised manuscript and all agree with its content.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-022-04081-6.

Correspondence and requests for materials should be addressed to Luke M. Healy or
Jason R. Plemel.

Peer review information Communications Biology thanks the anonymous reviewers for
their contribution to the peer review of this work. Primary Handling Editors: Alex Nord
and George Inglis.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

PERSPECTIVE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04081-6

6 COMMUNICATIONS BIOLOGY |          (2022) 5:1114 | https://doi.org/10.1038/s42003-022-04081-6 | www.nature.com/commsbio

https://doi.org/10.1093/gigascience/giy083
https://doi.org/10.1093/gigascience/giy083
https://doi.org/10.1038/ncomms14049
https://doi.org/10.2139/ssrn.4065080
https://doi.org/10.1038/s42003-022-04081-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Towards a definition of microglia heterogeneity
	Microglia heterogeneity
	How is microglia heterogeneity studied?
	How is microglia heterogeneity assessed?
	Concluding remarks
	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




