
ARTICLE

Identifying behavioral structure from deep
variational embeddings of animal motion
Kevin Luxem1,2, Petra Mocellin1,2, Falko Fuhrmann1,2, Johannes Kürsch1,2, Stephanie R. Miller3,4, Jorge J. Palop3,4,

Stefan Remy 1,2,5,6,7✉ & Pavol Bauer1,2,7

Quantification and detection of the hierarchical organization of behavior is a major challenge

in neuroscience. Recent advances in markerless pose estimation enable the visualization of

high-dimensional spatiotemporal behavioral dynamics of animal motion. However, robust and

reliable technical approaches are needed to uncover underlying structure in these data and to

segment behavior into discrete hierarchically organized motifs. Here, we present an unsu-

pervised probabilistic deep learning framework that identifies behavioral structure from deep

variational embeddings of animal motion (VAME). By using a mouse model of beta amy-

loidosis as a use case, we show that VAME not only identifies discrete behavioral motifs, but

also captures a hierarchical representation of the motif’s usage. The approach allows for the

grouping of motifs into communities and the detection of differences in community-specific

motif usage of individual mouse cohorts that were undetectable by human visual observation.

Thus, we present a robust approach for the segmentation of animal motion that is applicable

to a wide range of experimental setups, models and conditions without requiring supervised

or a-priori human interference.

https://doi.org/10.1038/s42003-022-04080-7 OPEN

1 Leibniz Institute for Neurobiology (LIN), Department of Cellular Neuroscience, Magdeburg, Germany. 2 German Center for Neurodegenerative Diseases
(DZNE), Bonn, Germany. 3 Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA. 4Department of Neurology, University of California,
San Francisco, San Francisco, CA 94158, USA. 5 Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany. 6 German Center for Mental Health
(DZPG), Magdeburg, Germany. 7These authors jointly supervised this work: Stefan Remy, Pavol Bauer. ✉email: stefan.remy@lin-magdeburg.de

COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04080-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04080-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04080-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-04080-7&domain=pdf
http://orcid.org/0000-0002-3386-1662
http://orcid.org/0000-0002-3386-1662
http://orcid.org/0000-0002-3386-1662
http://orcid.org/0000-0002-3386-1662
http://orcid.org/0000-0002-3386-1662
mailto:stefan.remy@lin-magdeburg.de
www.nature.com/commsbio
www.nature.com/commsbio

The brain is a dynamical system and its dynamics are
reflected in the actions it performs. Thus, observable
motion is a valuable resource for understanding brain

function. In most of the current neuroethological studies this
resource has only been partially utilized1. Reaching the goal of
maximizing information content requires a complete capture of
observable motion and unbiased interpretation of behavioral
complexity. Unsupervised methods provide a gateway for this
purpose as they do not rely on human annotations like their
counterparts, supervised methods2–4. Moreover, unsupervised
methods are able to learn rich dynamical representations of
behavior on a sub-second scale, which are otherwise not
detectable5–10. The need for unsupervised behavioral quantifica-
tion methods has been recently recognized and innovative
approaches in this direction have been introduced7,11,12. While
there is a broad agreement among researchers in computational
ethology that observable behavior can be encoded in a lower
dimensional subspace or manifold7–10, current methods insuffi-
ciently capture the complete spatiotemporal dynamics of
behavior10.

Recently, pose estimation tools such as DeepLabCut (DLC)13,
SLEAP14 and DeepPoseKit15 enabled efficient tracking of animal
body-parts via supervised deep learning. The robustness of deep
neural networks allows for a high degree of generalization between
datasets13. However, while such tools provide a continuous virtual
marker signal of the animal body motion, the extraction of under-
lying dynamics and motifs remains a key challenge.

To address this challenge and provide a reliable and robust
solution, we here developed Variational Animal Motion
Embedding (VAME), an unsupervised probabilistic deep learning
framework for discovery of underlying latent states in behavioral
signals obtained from pose estimation tools or dimensionality
reduced video information16. The input signal is learned and
embedded into a lower dimensional space via a variational
recurrent neural network autoencoder. Given the low dimen-
sional representation, a Hidden-Markov-Model (HMM) learns to
infer hidden states, which represent behavioral motifs. A major
advantage of VAME is the ability to learn a disentangled repre-
sentation of latent factors via the variational autoencoder (VAE)
framework17–19. This allows the model to embed a complex data
distribution into a simpler prior distribution, where segments of
the behavioral signal are grouped by their spatiotemporal simi-
larity. We use a powerful autoregressive encoder to disentangle
latent factors of the input data. Our approach is inspired by
recent advances in the field of temporal action segmentation20,
representation learning21–24 and unsupervised learning of mul-
tivariate time series25,26.

In this manuscript, we introduce the VAME model and
workflow based on behavioral data obtained from a bottom-up
recording system in an open-field. We demonstrate the capability
of VAME to identify the motif structure, the hierarchical con-
nection of motifs and their transitions in a use case of Alzheimer
transgenic mice27. Within this use case, VAME is capable of
detecting differences between the transgenic and control group,
while no differences were detectable by human observers. In
addition, we compare VAME to current state-of-the-art
methods7,11 on a benchmark dataset. Finally, we present a
complete guide for users to adopt our framework, from the
installation process to training a model and common pitfalls.
Hence, we provide a self-contained manuscript for state-of-the-
art computational ethology analysis.

Results
VAME: variational animal motion embedding. In our experi-
mental setup, we let mice move freely in an open-field arena

(Fig. 1a). During the experiment the movement was continuously
monitored with a bottom-up camera for 25 min (N= 90,000
frames). A major advantage of the bottom-up perspective is that it
reveals most of the animal’s kinematic with only one camera view,
which can be efficiently tracked by pose estimation. Our goal is to
build a model that can learn the behavioral structure purely from
the kinematic pose tracking. In order to identify the postural
dynamics of the animal from the video recordings we used
DLC13. For tracking, we used six virtual markers, which were
positioned on all four paws of the animal, the nose, and the
tailbase (Fig. 1a, b)). We aligned the animal from its allocentric
arena coordinates to its egocentric coordinates. For this, each
frame was rotated around the center between nose and tail, so
that the animal was aligned from left (tailbase) to right (nose)
(Fig. 1a, c)). This resulted in a time-dependent series X 2 RN ´m

for each animal with m= 10 (x, y)-marker positions that cap-
tured the kinematic of specified body parts (see Methods for
guidance on the VAME preprocessing and alignment
functionality).

Our aim was to extract useful information from the time series
data, allowing for an effective behavioral quantification given
spatial and temporal information of body dynamics. For this,
trajectory samples xi 2 Rm ´w that are pre defined time windows
(with length w= 30) (Fig. 1a, d)) were randomly sampled from X
and represented the input to train the VAME model. Our first
goal was to identify behavioral motifs, which we defined
according to10 as "stereotyped and re-used units of movements".
The second goal was the identification of the hierarchical and
transition structure of motifs aiming at the detection of patterns
within these transitions.

The VAME model consists of three bidirectional recurrent
neural networks (biRNN)28 with gated recurrent units29 as basic
building blocks (Fig. 1a, e)). In our model, the encoder biRNN
receives a trajectory sample xi (i.e., 500 ms of behavior) and
embeds the relevant information into a lower dimensional latent
space Z 2 Rd ´N�w. Learning is achieved by mapping xi to a fixed
vector representation zi 2 Rd (where d <m ×w) and passing this
onto a biRNN decoder, which decodes the lower dimensional
vector into an approximation ~xi of the input trajectory.
Additionally, another biRNN decoder learns to anticipate the
structure of the subsequent time series trajectory ~xiþ1 2 Rm ´ v

from zi, thereby regularizing Z and forcing the encoder to learn
improved dynamical features from the behavioral time series30.
Here, v is the prediction time window. We tested different model
choices including single decoder model (only reconstruction) in
Supplementary Section 1 and showed that a two decoder model
(reconstruction and prediction) has improved performance on
our tested metrics (see Methods).

The model is trained as variational autoencoder (VAE)17 with a
standard normal prior (see Methods “Variational animal motion
embedding” for details on the VAE and “VAME workflow:
training the model and evaluation” for advice on training a VAME
model). Within the VAE framework, it is possible to investigate if
the model has learned a useful representation of the input data by
drawing random samples from the latent space and comparing
them to a subset of reconstructions (see Supplementary Section 6
and Methods). After the model is trained on the experimental data
(1.3 × 106 data points), the encoder embeds the data during
inference onto a learned latent space. We then segment the
continuous latent space into discrete behavioral motifs using a
HMM31 (Fig. 1a, f)), thereby treating the underlying dynamical
system as a discrete-state continuous-time Markov chain (see
Methods). See Supplementary Section 1 for more details on model
selection, where we also compare the HMM against a k-means
algorithm for cluster detection.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7

2 COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio

www.nature.com/commsbio

Figure 1b depicts an example of an egocentrically aligned DLC
time series (100 data points). Here, we defined a phase block,
which is characterized by a full walking cycle (orange line). The
inferred motif sequence aligns to the walking pattern, where the
onset of each motif matches to a particular phase of the input
signal. The video frames display the corresponding walk cycle
within the phase block.

We want to make the reader aware that the Method section
provides a full protocol of the VAME workflow with additional
information on how to use the method and use it to answer their
experimental questions. Here, we discuss the installation of the
framework, the necessary preprocessing steps, the training of
the model, and the final steps comprising the visualization of the
motif time series and the embedding space. Finally, we discuss

common pitfalls and direct the reader to further downstream
analysis.

Identification of behavioral motif structure. To identify motif
structure and to demonstrate the power of our approach, we used
n= 4 transgenic (tg) mice displaying beta-amyloidosis in cortical
and hippocampal regions. These mice harbor human mutations
in the APP and presenilin 1 gene (APP/PS1)27. We compared
these mice to n= 4 wildtype (wt) mice housed in identical con-
ditions. For these APP/PS1 mouse line, several behavioral dif-
ferences have been reported32. Among them, motor and
coordination deficits33, changes in anxiety levels34 and spatial
reference memory deficits35 were most prominently observed. In

Fig. 1 VAME: an unsupervised deep learning model for behavior segmentation. a VAME workflow. Data acquisition via bottom-up camera setup for
precise body and limb kinematics. Pose estimation of bottom view (DeepLabCut). Frames are egocentrically aligned and trajectory samples are fed into the
recurrent neural network model. The fully trained model resembles a dynamical system fromwhich motifs are inferred via a Hidden-Markov-Model. b Example
trace of an egocentric aligned DLC time series showing a full walking cycle (phase block). The corresponding motif sequence segmented by VAME has
repeated motifs during the phase block cycle. The matching video frames identify the phase block as a full walking cycle performed by the animal.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7 ARTICLE

COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio

the past, batteries of behavioral tests were used to assess possible
differences between genotypes since no differences could be
detected in open field tests36. Hence, this dataset forms an ideal
use-case for the purpose of unsupervised behavior quantification
to evaluate whether our proposed method can detect those
differences.

We determined general locomotor dependent variables to
investigate whether the animals show explicit locomotor
differences, in particular we investigated speed, traveled distance
and time spent in the center (Fig. 2a). The average speed during
the experiment was 6.12 ± 1.36 cm/s for wt animals and
6.84 ± 1.57 cm/s for tg animals with a maximum velocity of
50.61 ± 12.47 cm/s for wt and 57.14 ± 8.91 cm/s for tg animals.
The average time spent in the center (calculated from center
crossings) is 9.92 ± 1.81 s for wt and 17.14 ± 7.79 s for tg animals.
Lastly, the average distance traveled was 9187.44 ± 1266.4 cm and
9937.07 ± 1367.08 cm for tg and wt respectively. No statistically
significant differences were found between the groups for all
measures. Nevertheless, we see a tendency for the tg group to
move at a higher speed and spend more time in the center as
already shown by others36–38. Moreover, we let human experts
classify both groups to identify if the genotype had obvious
behavioral differences. The overall classification accuracy was at
chance level for all participants (46.61% ± 8.41%, Supplementary
Fig. 1c). A similar level of behavioral homogeneity between the
two animal groups was reported previously37.

To identify behavioral structure we applied VAME to the entire
cohort of animals and inferred the latent representation for each
animal. The latent dimension size was set empirically to zi 2 R30,
while comparing the difference between input and reconstructed
signals as well as the quality of the resulting motif videos (see
Methods). We summarize important choices of recording and
hyperparameter settings in Table 1 and Supplementary Table 3.
Using a HMM on the latent representation, we inferred the same 50
motifs per animal (see Supplementary Section 3 for details) to be
able to compare behavioral structure between groups. We then
created a hierarchical tree representation C from the motif structure
of the full cohort of animals (Fig. 2b) (see Methods “Motif
identification”). By comparing branches of the tree with corre-
sponding motif videos, we identified communities of similar
behavioral motifs. We found nine behavioral communities denoted
from a to i. Each community represents a cluster of movements that
can be simplified into actions like e.g., rearing, turning, walking.
Motifs within each community can be interpreted as a subset c 2 Ci
(with i= a, . . . , i) of these actions. Therefore, communities detected
by VAME display a multiscale behavioral representation. All
communities were visualized with their respective DLC trace and
further described in the Supplementary Section 5. Furthermore, we
provide Supplementary Movies 6–14 for all communities.

To find differences between the tg and wt mice we identified up-
or downregulated motifs/communities (Fig. 2b). Here, the usage of
a motif for the tg group is calculated as a ratio and normalized
against the wt group. The Exploration, Turning and Stationary
communities are downregulated, while the Walk to Rear and
Unsupported Rearing communities are upregulated. Other com-
munities have certain motifs which are differently used but with no
statistically significant group difference (Supplementary Fig. 1).

Most motifs showed a low variance in usage between animals
for a given group but there also are motifs where differences
between groups are visually apparent (Fig. 2c). To test this
observation we compared motifs at the community level between
both groups (n= 8). A multiple t-Test was used and statistical
significance was determined using the Holm–Sidak method with
alpha= 0.05 (*P ≤ 0.05, **P ≤ 0.01). We found a significant
differences for five motifs (Supplementary Table 2). Turning and

Stationary motifs are increased in wt animals while tg animals
showed a higher expression of Unsupported Rearing and Walking
motifs, displayed by arrows in Supplementary Table 2. In Fig. 2d
we visualized these motifs by taking the start (cyan color) and end
(magenta color) frame for a random episode of motif occurrence.
White dots are representing the DeepLabCut virtual marker
positions over time. Supplementary Fig. 1d shows the corre-
sponding DeepLabCut trajectory of the visualized motif. The
motifs are further described in Supplementary Section 2 and
displayed in the Supplementary Movies 1–5.

In order to investigate how stable differences during the
experiment are, we binned the experiment into six equal blocks
(Fig. 2e) and investigated the stability of the five prominent
motifs over time. We found that the motif usage is constantly up-
or downregulated.

Motif transitions and behavioral dynamics. In the VAME fra-
mework, discrete representations of animal behavior are orga-
nized on different scales, varying from single motifs to
communities. On the community level, the temporal structure of
behavior can be identified by observing the probability of a
community transitioning into another. The resulting transition
matrices can be constructed both, on the community level or the
motif level (see Methods “Motif identification”). Fig. 3a shows the
transition matrices for wt and tg animals ordered by the com-
munity structure. It can be seen that both groups share a similar
structure of transitions, as expected given the similar open field
behavior observed36–38. To examine differences in transition
probabilities between motifs we created a subtraction matrix
T sub ¼ T WT

lk � T TG
lk that illustrates which transitions are more

pronounced in wt animals (Red) or tg animals (Blue). Indeed, we
found significant differences in the usage of transitions within
communities (Supplementary Figs. 9 and 10). Overall, the most
prominent differences in transition probabilities appeared in the
Stationary community as well as the Walking community (Sup-
plementary Fig. 9).

We investigated the Walking community in more detail to
learn more about the transition differences. When following
along the highest transitions on the Markov graph for this
community, a cyclic structure appears. Within this cyclic
structure, different patterns of walking motifs are more strongly
used by both experimental groups (Fig. 3b). To understand this
structure, we embedded the encoded latent vectors of theWalking
community onto a two-dimensional plane via UMAP. We
visualized the UMAP (Fig. 3c) for two example animals from
the wt and tg group. To determine if this structure is indeed
cyclic, we decoded all points back to the original traces containing
marker movements. Then, we computed the mean phase for the
horizontal hind paw movement using Fourier transformation. We
projected the phase angle back onto the embedding of latent
vectors and observed that the phase angle follows the curve of the
cyclic embedding (red arrow shows phase direction). To
parameterize the structure in both animals, we applied k-means
clustering. This yielded discrete clusters organized along the
cyclic embedding. Such patterns are known to emerge from
oscillatory dynamics modeled by RNNs39,40. Cyclic representa-
tion of walking behavior was recently described in a Drosophila
locomotion study41 and here we confirm the existence of this
representation also in rodent locomotion. We explore the
possibility to detect locomotion subpatterns from this embedded
dynamics in the Supplementary Section 7.

Quantitative comparison of VAME with MotionMapper and
AR-HMM. Several approaches for behavioral quantification exist,
which all lead to valuable neuroethological data and provide

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7

4 COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio

www.nature.com/commsbio

important means for understanding the neural correlates of
behavior in different model organisms10. Since VAME makes use
of the variational autoencoder framework, the approach differs
substantially from others. We perfomed a qualitative and

quantitative comparison with two existing approaches (see also
Supplementary Section 8).

To validate the models (VAME, AR-HMM, MotionMapper)
we created a manually labaled dataset that was annotated by

Fig. 2 Behavioral quantification with VAME and hierarchical community clustering. a Locomotor activity of transgenic (tg, n= 4) and wildtype (wt,
n= 4) animals. b Hierarchical representation of behavioral motifs. Color grouping on the tree are depicting communities of motifs which belong to the
same observable category of behavior. A depiction of up- and downregulation of motifs and communities in tg animals (red line) compared to wt animals
(green line) and ordered by communities is shown below. c Quantification of motif usage in percent (%) ordered by communities. Differences between the
tg and wt phenotype are in community b, c, e and g. d Visual representation of significantly changes motifs. The start frame is colored in cyan and the end
frame is colored in magenta. White dots represent the DLC virtual marker points. e Time-dependent modulation of significantly changed behavioral motifs
for both phenotypes binned into six blocks. Error bars represent standard deviation.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7 ARTICLE

COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio

three human experts with training in behavioral neuroscience.
A video of a freely moving wt animal consisting of 20.000
frames (≈6 min length) was annotated with five behavioral
labels (Walk, Pause, Groom, Rear, Exploratory behavior)
(Fig. 4a, see Methods “Manually assigned labels and scoring”).
When quantifying agreement between individual experts, we
observed that 71.93% of the video frames were labeled equally
by all three. The remaining 13.61% of frames were labeled
unequally by two experts and 14.47% were labeled unequally by
all three experts (Fig. 4b). This implicated that behavior showed
a considerably high observer variability and is not trivially
assignable to discrete labels6,10.

We trained all models on the full dataset and validated how
they overlapped with the manual annotation (Fig. 4c). Here, the
blue columns represent the annotater agreement per motif of the
given model. The red columns represent a given models purity
based on discovered motifs and expert labels. We indicated an
annotator agreement of over 90% with a given model by a black
box in both (blue and red) columns. VAME had 16 motif
overlapping with a high annotator agreement (>90%) (Fig. 4c,
black boxes). For MotionMapper, we identified 11 motifs which
had a high annotator agreement and for the AR-HMM we
identified 5 motifs with a high annotator agreement. This suggests
that VAME is able to detect human identifiable labels in a more

Table 1 Important parameters of the config.yaml file.

Parameter Default value (type) Description

model_name VAME (string) Name of the model
n_cluster 30 (int) Number of motifs
pose_confidence 0.9 (float) Minimum accuracy from pose estimation that will be accepted.
project_path working directory path

(string)
The path to the working directory. It can be adapted if the project is moved on the file system.

video_sets - video-1 (string) Set of video files that are used as input to VAME.
- video-2
- …

egocentric_data False/True (boolean) Specifies if the data is egocentric or needs to be aligned.
num_features 12 (int) The total number of markers (both x and y) in the input CSV file.
time_window 30 (int) The size of the time window that moves through the data and is passed to the model.
zdims 30 (int) The number of latent dimensions that the model embeds the data to. See chapter XX for further

discussion.

Fig. 3 Identification of transition structure and locomotion patterns. a Transition probability matrices ordered by communities for the wt and tg group
and the corresponding difference plot of both matrices. Squares along the diagonal indicate the grouping into communities. b Example of an intra-
community transition graph for the walking community. The first two graphs are showing the two highest transitions for both groups and the third graph
shows the highest transition difference. c Joint UMAP embedding of points belonging to the walking community in a wt (19.783 points, black) and a tg
(13.264 points, red) mouse reveals a circular structure. The projection of the mean phase angle of the horizontal hind paw movement onto the embedding
displays the cyclic phase space of the walking movement in both animals. Parametrization of both point clouds with k-means shows blocks organized
around the cyclic structure. Red arrow indicates the phase direction.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7

6 COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio

www.nature.com/commsbio

concise way than both other models. Lastly, it can be seen that
columns are sometimes empty. This is the case as the models
were trained on the full dataset but the inference was only done
on the annotated dataset which was a smaller subset (0.8% of the
full dataset herein). VAME has five empty columns while the AR-
HMM and MotionMapper have two and three, respectively. This
might indicate that VAME is more selective about motifs and not
all motifs are present in the smaller benchmark dataset.

To further investigate the overlap of each model with the
benchmark dataset we quantified Purity, Normalized Mutual

Information (NMI) and Homogeneity (see Methods “Manually
assigned labels and scoring”). Applying all three measures we
found that VAME had the highest score for each measure (Purity:
80.65%, NMI: 28.61%, Homogeneity: 54.89%) (Supplementary
Table 4), when applied to a motif number of k= 50. In Fig. 4d, we
further showed that VAME achieves the best scores on all three
metrics when measured as a function of motif number k.
Interestingly, the performance of VAME stays stable even for
small motif numbers compared to the AR-HMM and Motion-
Mapper. Additionaly, we passed the original pose data also to a

Fig. 4 Annotated dataset and model comparison based on annotator agreement. a Overlap of manually assigned labels by three experts. b Disagreement
in manual annotation. c Confusion matrices showing the annotator variability (blue) and the agreement between 50 model (VAME, AR-HMM,
MotionMapper) motifs and 5 manually annotated labels (red). Empty columns exist when the specific motif did not appear in the annotated benchmark
data. d Model evaluation on three metrics (Purity, NMI, Homogeneity) as a function of number of motifs k.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7 ARTICLE

COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio

standard gaussian emission HMM and applied all three metrics to
the outcome to rule out that the performance of VAME is only
determined by the downstream HMM. Here, we found that the
HMM performance is similar to MotionMapper and significant
lower than our approach (see also Supplementary Table 5 for
different sizes of k.) In Fig. 4c, we furthermore compared
agreement overlap of the annotator with the model motifs. Here,
we found that VAME shows the highest overlap followed by
MotionMapper and AR-HMM. Moreover, in Supplementary
Section 9 we investigate the spatiotemporal embedding of the
VAME latent space by downprojecting it via Unifold Manifold
Approximation (UMAP) and compare it to the MotionMapper
t-SNE space (Supplementary Fig. 6).

Discussion
In this manuscript, we introduce an unsupervised deep learning
method called Variational Animal Motion Embedding (VAME)
to discover spatiotemporal structure of behavioral signals
obtained from pose estimation tools. It combines the VAE
framework17 with autoregressive models (biRNNs) and creates a
probabilistic mapping between the data distribution and a latent
space. This approach enables the model to approximate the dis-
tribution and to encode factors that contain sufficient informa-
tion to separate distinct behavioral motifs. A structural element of
this model that differentiates it from other approaches is that it
uses an additional biRNN decoder that learns to anticipate the
structure of the subsequent trajectory and regularizes the latent
space. This addition forces the encoder to learn improved
dynamical features from the behavioral time series. We want to
stress that we use the term behavioral dynamcis freely within this
work as a synonym for time-dependent analysis of body part
movements. The biRNN model within VAME is effectively car-
rying out a fit of the gated recurrent unit equations to the pose
estimation signal, which in a data-driven way describe the motion
of the DLC markers via difference equations.

VAME addresses a pressing need for behavior quantification in
neuroscience, because current methods still insufficiently capture
the complete spatiotemporal dynamics of behavior10, and limit
our understanding of its causal relationship with brain activity.
The field uses a rapidly developing repertoire of experimental
approaches to investigate neural correlates of behavior42–44.
Monitoring neural activity in freely behaving animals with ima-
ging, electrophysiological tools and cell-type specific interrogation
methods are state-of-the-art. In addition, new and traditional
transgenic animal models allow for a deep investigation of
molecular pathways in health and disease. All these approaches
require deep, reliable and complete dissection of behavior. In this
manuscript, we used a traditional transgenic model of Alzhei-
mer’s disease, the APP/PS-1 model, to demonstrate dis-
criminatory power of our approach in a mouse model system,
which shows clear behavioral deficits in specific tasks, but no
reported differences in open-field observation36,38. Our approach,
however, is not limited to any specific species or behavioral task
as long as continuous video-monitoring can be provided16,45.

Our results demonstrate that VAME is capable of detecting
differences between a tg and wt cohort of mice, while no differ-
ences were found by the human observer. In our use-case, we did
not aim at investigating behavioral deficits in the domain of
learning and memory with relation to Alzheimer’s disease.
However, even in this small sample size, VAME identified a
higher motif usage of the Unsupported Rearing community as
well as a lower motif usage in the Stationary community that
could be related to deficits of spatial orientation and environ-
mental habituation34,35. Interestingly, the motif usage within
groups showed a low variance, which points towards the

robustness of the method to detect a common and stereotyped
behavioral structure.

We found that VAME is particularly suited to learn motif
sequences from pose estimation signals. The main reason for
this is that VAME is equipped with a particularly high sensi-
tivity to the phase of the signals due to its biRNN encoder and
decoder. Here, we showed this by plotting the phase angles
onto a two-dimensional UMAP projection for the walking
community. In this way, we could uncover a circularly orga-
nized point cloud, which exactly captured the natural cycle of
limb movement41. Thus, VAME may be particularly useful in
the detection of reoccurring locomotion patterns. While we so
far have shown this only in one community, this advantage
could be further exploited to identify differences in other
movement types.

While VAME is effective in learning motif sequences from
pose estimation signals, we also investigated the hierarchical
structure of the resulting motif sequence by creating a tree
representation. Within the VAME framework, motifs are sub-
patterns of macro behaviors organized on a Markovian graph (see
ref. 45), Figure 3 (left)). By considering transition and usage
properties on this graph, we can identify different types of e.g
locomotion as shown in Supplementary Fig. 7. Hence, the tree
representation transforms the motif sequence into broader,
human readable categories like Walking or Rearing. This feature,
though, is not unique to VAME and our approach to transform
sub-patterns (or motifs) of behavior into a tree representation
could be applied to any other supervised or unsupervised method.

VAME models the spatiotemporal information to segment
behavior comparable to MoSeq and MotionMapper7,11. To
incorporate spatiotemporal information, MoSeq applies an AR-
HMM to infer hidden states from a series of transformed depth
images. On the other hand, MotionMapper, which was initially
implemented for fruit flies, relies on t-SNE46 embeddings of
wavelet transformations from high-speed camera images. In this
method, regions with high densities are assumed to contain ste-
reotypical behaviors. Since the spectral energy of a signal is the
key input feature, low frequency movements, which are more
prominent in mice than in flies, limits capturing the full beha-
vioral repertoire. In contrast to MotionMapper, MoSeq was first
applied in freely moving rodents. This allowed the detection sub-
second behavioral structure but the AR-HMM resulted in a
multitude of short and fast switching motifs, which can lead to
uncertainty in animal action classification. These three methods
have all been successfully applied to capture the behavioral
dynamics in different animal models and experimental settings.
To compare their performances, we trained all models on our
data and investigated their motif sequence distribution on a
benchmark dataset. Each model learned a consistent motif
structure, nevertheless, VAME obtained the highest scores for all
three metrics (Purity, NMI, Homogeneity). This result could be
due to a better embedding of the spatiotemporal information and
higher phase sensitivity of our model that is not as strongly
present in the others. Recently, an independent group of scientists
has published comparative data obtained from testing VAME to
other approaches on a benchmark dataset for a hand-reaching
task16. Their findings fully support our own observation of higher
VAME performance levels against other approaches (AR-HMM,
Behavenet7,47) in the following three criteria: Accuracy, NMI and
Adjusted Rand Index. Indeed, the combination of the video
representation model used in this study with VAME achieved the
best results.

In the light of our comparison between methods, we want to
highlight that the future of computational ethology needs
improved benchmarks and datasets for single and multi-animal
behavior. Comparing methods on one particular dataset can shed

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7

8 COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio

www.nature.com/commsbio

some light on their performances but certain methods are better
suited for certain kinds of data. With the rising amount of tools
for computational ethology this becomes a pressing need and we
want to trigger the development of better benchmarks and
metrics that do not only rely on motif structure but also consider
representations in lower dimensional space. Here, we showed that
VAME is indeed capable of providing good solutions to both
(Supplementary Figs. 8 and 9) but we have to acknowledge that
this was done in one particular setup and dataset. Future
benchmarks need to evaluate these tools on much broader sce-
narios to come to a conclusion about when to apply a given
method.

An important aspect of VAME are the choices of its hyper-
parameters, which we summarized in Supplementary Table 3.
Here, the number of latent dimensions is one of the central
parameter. The embedded dimension controls the amount of
information the model can exploit. Based on the information
bottleneck theory48, this number should be chosen as small as
possible to extract the most essential information from the data.
However, this is coupled with multiple factors. One of the prin-
cipal factors for VAME is the choice of time window w and
number of marker coordinates m as this is the information
VAME is condensing into a vector representation zi. Higher
numbers of w or m (or both) can result either into expanding the
latent dimensions or into preprocessing the data through a top
layer neural network (or other techniques like principal compo-
nent analysis). Users of VAME need to adjust this number to
their needs and should be aware that this number significantly
affects the outcome of their VAME model. Having a benchmark
dataset and investigating the reconstruction score can help to
identify an appropriate number.

Furthermore, choosing the number of appropriate motifs is
another question, which is hard to generalize, as every experiment
and/or animal used will have their unique set of behaviors and
hence number of motifs. In this work, we considered only motifs
that have a higher than 1% usage after sampling 100 motifs from
our embedding space and re-running the motif segmentation
with this number. In general, however, it would be of special
interest to identify motifs that are present in one group/animal
but not the other. This would show a complete different set of
behavior and mark highly significant differences between them.
Our data is very homogeneous in terms of behavior and the two
populations do not differ drastically in their executed behavior.
Hence, such motifs are not likely to appear in this work. However,
we believe that VAME is capable of finding these "out-of-dis-
tribution” motifs when they exists based on the variational
autoencoding framework. In general, for every behavioral quan-
tification method there is a trade-off of how general the motif
distribution should be versus how precise individual behavior is
measured. If the goal is to identify very specialized individual
behavior it would be possible to parameterize both populations or
all animals individually. The problem lies in relating motifs with
each other between populations/animals as the motif mapping
would change per parameterization. Users of these tools should
keep this in mind and this questions needs to be addressed by
future work.

Applying a trained VAME model to other unseen animal
datasets can be beneficial in terms of reducing computational
costs and identifying similar motif distributions. A caveat, how-
ever, lies in the fact that the unseen data must follow approxi-
mately the same data distribution as the training and test set. This
is typically the case if several animal recordings have been cap-
tured from the same cohort, under the same circumstances,
camera setup, etc. However, in general, we recommend users to
include the data to be segmented into motifs also into the training
dataset, as detailed within the Methods.

While VAME yielded higher performance scores when com-
pared to other unsupervised approaches, supervised approaches
may be better suited in experiments in which obtaining the full
behavioral repertoire is not required. Supervised approaches like
SimBa, MARS, or DeepEthogram2–4 all allow the labeling of
episodes of interest. Lastly, B-SOiD12, a recently developed
unsupervised method that does not require a deep learning
model, allows for a fast identification of similar frames and trains
a classifier to identify these clusters rapidly in new data points.
This approach, however, does not use a trajectory sample of the
behavior and projects framewise into a UMAP representation.
The temporal information comes mainly from a velocity feature
signal. These aspects should be considered when choosing an
optimal behavioral quantification method for a specific task and
species. As VAME learns spatiotemporal information, it may be
particularly useful to uncover behavioral dynamics in a lower
dimensional latent space. Moreover, VAME also has the potential
to train a classifier on the latent vector information to quickly
assign VAME motifs to new data points.

A promising application of VAME could be the combination
with three dimensional pose information49–51, which can be
easily incorporated into the VAME model. This will likely lead to
a better resolution of behavioral motifs, as most behaviors are
expressed in three dimensions. When aiming at quantification of
behavioral information with even higher dimensionality, the
VAME model allows for a straightforward integration of para-
meters such as cellular calcium responses, neurotransmitter
dynamics or other physiological features.

Taken together, we believe that VAME is an extremely useful
method for unsupervised behavior segmentation, that can be
easily applied by other scientists and strongly facilitate the
investigation of causal relationships between brain activity and
visible naturalistic behavior. VAME can identify motif structure
from pose estimation signals with a high degree of generalization
between animals and experimental setups. The framework is
open-source and easily accessible without expert knowledge in
programming and machine learning, and thereby open to a wide
audience of neurobiologists and other scientists. We anticipate
that it will stimulate the development of further machine learning
models16,52,53 and will trigger the development of robust metrics
and benchmark datasets for the computational ethology
community.

Methods
VAME workflow: overview and installation. In the former sections we presented
the VAME model, demonstrated its abilities on a use-case of APP/PS1 animal to
identify motif structure as well as embedding a dynamical space in which the phase
is well preserved. We provide the complete framework as an open-source package
on our GitHub website (https://github.com/LINCellularNeuroscience/VAME). In
the following section we aim to guide users through the installation process and
workflow, from setting up a VAME project, preparing the training data and fit the
model to common pitfalls and downstream analysis.

VAME is a general time series quantification method and while we used in our
exemplary data pose tracking input from DeepLabCut, VAME works also with
other pose estimation tools like SLEAP, DeepPoseKit or B-KinD14,15,54. In
principle, other kinds of data such as a principal component time series of the
video data or other sensory signals can be fed into the model. Throughout this
protocol we will use the demonstration data that are available on the VAME
GitHub page, which is a video of a freely moving mouse in an open-field arena
(video-1.mp4) and the corresponding DLC file containing the coordinates of the
virtual markers (video-1.csv). The dataset contains 29,967 frames. Note that it is
possible to train a working VAME model with as little data as this to achieve good
results in terms of motifs and latent space dynamics.

We recommend to install VAME within an Anaconda (https://www.anaconda.
com/products/distribution) virtual environment, for which we provide installation
files on the GitHub project website. Upon fetching the most up-to-date codebase
from GitHub, a new environment containing all necessary dependencies can be
created with the command conda env create -f VAME.yaml in the
Anaconda prompt. Make sure you navigated to the directory where you fetched the
GitHub repository of VAME, e.g., C:\MyUser\GitHub\VAME\. To install

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7 ARTICLE

COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio 9

https://github.com/LINCellularNeuroscience/VAME
https://www.anaconda.com/products/distribution
https://www.anaconda.com/products/distribution
www.nature.com/commsbio
www.nature.com/commsbio

VAME activate the new environment in the Anaconda prompt via conda
activate VAME and type python setup.py install in the command
window, which concludes with the full installation of the package. Finally, users
should consider to additionally install the Anaconda extension Spyder (conda
install spyder=5), which is an integrated development environment (IDE)
and is useful to work through our provided demo.py code as well as debugging and
adding analysis.

VAME utilizes specialized hardware, i.e., graphics processor units (GPU). In
this work, we were using a single Nvidia GTX 1080 Ti GPU to train our network.
Users should either have local access to a GPU or use a cloud computing provider
like Google Colab (https://colab.research.google.com/. To use Google Colab with
VAME, one has to move the fetched GitHub repository onto a Google Drive and
mount the path within Google Colab. Moreover, VAME can be trained on a central
processing unit (CPU), but this leads to longer training and inference time. For an
optimal introduction into the setup and hardware for modern behavioral
experiments we recommend the recent review paper about Open-Source tools for
behavioral video analysis55.

VAME workflow: initializing a new VAME project. The VAME workflow starts
by initializing a new project with the function vame.init_new_project(). It
takes in four arguments; the project name, a path to the directory of the animal
videos, a path that specifies the working directory where the project folder will be
created, and a parameter that specifies if the used videos are .mp4 or .avi (Fig. 5,
first gray box). The user needs to spell out the full path to a video such as
/directory/to/your/video-1.mp4, otherwise the config.yaml file is
not correctly initialized. This will create a folder with the project name and the
creation date e.g., Your-VAME-Project-Jun15-2022. Within this folder
four sub-folders will be created (data, model, results and videos) and a

config.yaml file, see Fig. 6 for reference. Note that the video-1.csv, which con-
tains the DLC pose estimation output, needs to be put manually into the
pose_estimation folder.

Once the VAME project folder structure is correctly setup, the user can
continue to check their configuration before starting to prepare the data and
training the VAME model. The config.yaml file is essential for your VAME
project as you can set all the necessary parameter in here. Certain parameters have
to be set manually for the used dataset, while others are default parameter for the
neural network architecture used by VAME. These parameters should be only
changed if the user has the sufficient understanding of PyTorch and the contained
models. The parameters that are necessary to set by the user are summarized in
Table 1.

VAME workflow: egocentric alignment and pre-processing. Typically, data
from pose estimation tools provide coordinates of tracked body parts as 2D
coordinates that have been extracted from the input video. Using DLC, this data
can be stored in a .csv file. If the data is from a freely moving animal (open-field
arena, operant conditioning chamber, etc.), the data needs to be egocentrically
aligned first. For this purpose, VAME provides the function vame.egocen-
tric_alignment() (Fig. 5), which aligns the animal along its principal body
axis (here spine). If, on the other hand, the data comes from a head-fixed setup (or
similar), where the global virtual marker coordinates align with the egocentrical
coordinates of the animal, one can simply transform the .csv file to a VAME
readable numpy file with vame.csv_to_numpy(). Its argument is the con-
fig.yaml path (Fig. 5).

The vame.egocentric_alignment() function takes in four arguments:
the path to the config file as well as the indices of the virtual markers (according to
the input .csv obtained from the pose estimation) that are used as reference points

Fig. 5 Workflow figure for VAME and the corresponding code functions. The figure shows the complete life cycle of a VAME project. The main steps are
the project initialization, the transformation of the data from the pose .csv file to a Python .npy file, the creation of a training and test dataset, to training and
evaluating the model, and lastly to segment the pose data into behavioral motifs. Afterwards, user can invest behavioral motifs by creating videos from
these episodes.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7

10 COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio

https://colab.research.google.com/
www.nature.com/commsbio

for the transformation to egocentric coordinates (pose_ref_index). As for our
example, the data obtained from the bottom-up recordings of a laboratory mouse
(see Fig. 1a as example), we might use the tuple [0, 5], as the 0th marker refers to
the snout tip and the 5th marker refers to the tail root of the mouse (see video-1.csv
for reference). The egocentric alignment function then transforms all other marker
points to the linear axis defined as the vector between the two reference points. The
other two arguments are the crop_size parameter, which defines the maximum
pixel area in the video that contains the complete body (and all virtual marker) of
the animal. This parameter is only necessary to check if the alignment fails or
works poorly. The fourth parameter to the function is a boolean parameter called
use_video. If this parameter is set to True, a video output of the egocentric
alignment is created and the user can visually inspect if the egocentrical alignment
worked. Note, however, that in this setting the function takes significantly longer to
run. It is recommended to also check the resulting time series for a signal that is not
skewed and cut-off at some extreme values.

Using two appropiate anchor points for the egocentrical alignment is crucial to
transform the animal from its allocentric virtual marker coordinates to its own
egocentric coordinate system. However, these points can be sometimes occluded by
e.g., the animals body. If this happens, the pose estimation will output a low accuracy
of the respective keypoint and the vame.egocentric_alignment() function
will set the value of this keypoint to NaN ("Not a Number"), which will be later
interpolated when creating the training dataset.

After extracting the virtual marker coordinates and bringing them into the right
format, we can now create the training data for VAME and apply some preprocessing
if necessary. For this, the user can use the vame.create_trainset() function
(Fig. 5, third gray box). For this function to work properly it is important to set the
configuration file parameter egocentric_data correctly. If set to True, the
vame.create_trainset() function assumes that the data is egocentric by
design and does not define anchor points, which were used to align data that is not
egocentrical a priori. Now, the function takes in two arguments; the config.yaml
path and a boolean option check_parameter and applies some filtering to the
data, which can be controlled by the user. Specifically, VAME implements a Savitzky-
Golay filter to smooth the time series as well as some thresholding based on the
interquartile range (IQR) to robustly cut out outliers within the signal. To set the IQR
value and filter settings, the config.yaml provides the following parameter: robust,
iqr_factor, savgol_filter, savgol_length and savgol_order. The
first parameter will eliminate outliers in the signal if set to True by multiplying the
IQR value with the set iqr_factor. If a value is higher than this it will be set to
NaN. Equally, if a value is smaller than the negative of this result, it will be set to NaN.
Afterwards, the NaNs are linearly interpolated. The second parameter defines if a
Savitzky-Golay is being used on the data while the last two specify the length and
order of that filter respectively. It is advised to carefully check how these parameter act
on the original signal, hence the function provides the check_parameter
argument. If set to True, the function runs only on parts of the data and displays the
original signal and the filtered signal (Supplementary Fig. 11). Here, the user can
check the IQR threshold and compare the filtering to the original data.

VAME workflow: training the model and evaluation. In the previous step, we
made sure that the input data of the pose tracking is correctly aligned and pre-
processed. This data is stored in the folder \Your-VAME-Project-Jun15-
2022\data\video-1\video-1-PE-seq-clean.npy\. A new folder has
been created called train (Fig. 6), which stores the data for training the model
and hold out data for testing the model. By varying the test_fraction
parameter in your config.yaml, the user can decide how much of their data is used
for testing. The default value is 0.1, which relates to 10% of the data.

To train your VAME model, the user can call the function
vame.train_model(). The input arguments to this function are the config.yaml
path. Within your configuration file, the most crucial parameter to train a VAME
model are the time_window and zdims parameter (see Table 1). We recommend to
set the first variabe, which defines the input trajectory length, to at least 20 datapoints
for the RNN to work properly. The reasoning here is that we want to learn an
embedding from the kinematic trajectory of the moving animal. Higher values of this
can also benefit the model and users are adviced to train multiple models with different
settings to identify an optimal solution for their data. The other parameter, zdims,
ensures that the model embeds a lower dimensional representation of the input
trajectory. To identify a good setting of this parameter, users could train their model
with different settings and evaluate when the reconstruction and prediction mean-
squared-error losses plateau. For the demonstration data we found that the plateau
startet at around 12 latent dimensions (Supplementary Fig. 13).

The configuration file further provides parameter to set the batch size,
learning rate and other parameter of the network. Users without experience in
training deep neural networks are adviced to keep these parameters as default.
For more explanation of the different configuration file parameter, please
consult our GitHub wiki page https://github.com/LINCellularNeuroscience/
VAME/wiki/2.-VAME-config.yaml. The training process ends after a
convergence criteria has been met, which is defined by either the maximum
number of epochs or if the loss on the test set has not improved over a certain
amount of epochs (default 50).

Once the model finished training, the user can inspect the model with the
function vame.evaluate_model(). This function takes the same
arguments as the vame.train_model() function. The trained model will be
evaluated on the test set and the output of the evaluation are two plots that show
the reconstruction and prediction capabilities as well as the loss curves
(Supplementary Fig. 12). Here, the upper part shows a model with good
reconstruction capabilities of the signal and which can predict the 15 subsequent
time steps very well. The lower part shows a model that has poor reconstruction
and prediction capabilities. In this case, one has the option to increase the
amount of training data, increase the bottleneck by setting zdims to a higher
number or inspect the training data to make sure that there are no obvious
outliers (Refer to Supplementary Fig. 11 and the troubleshooting section below
for more advice).

VAME workflow: model inference. After the successful training of a VAMEmodel
it can be used to infer the motif structure within the dataset i.e., segmenting the
behavioral time series into discrete units. This is done with the function vame.-
pose_segmentation() (Fig. 5, fourth gray box). The critical parameter to set is
n_cluster in the configuration file, which defines the number of discrete units (or
motifs). While this number is usually not known a priori, it can be useful to run the
analysis described in the Supplementary Section 3. Here, we run vame.pose_-
segmentation() function first with 100 discrete states and defined a threshold at
the 1%motif usage mark. This led to 50motifs that could be present in our data. Next,
we re-run the function with this number to get the final result. Users, however, should
always cross-check the quality and validity of the motif videos after the segmentation
with vame.motif_videos().

Finally, it is important to note that the inferred motifs time series is shorter than
the original input time series. This stems from the fact that we use a time_window
(see section above) that represents the trajectory length, which is embedded by the
RNN encoder into the latent space. By using a time_window = 30, the first motif
label starts at the 15th frame and the last label ends at the (N− 15)th frame, with N
being the full length of a behavioral video.

Fig. 6 VAME project folder structue for one video (video-1.mp4). By initializing a VAME project a project folder will be created within the working
directory. This folder contains the raw data, the configuration file (config.yaml), the trained VAME model(s), and the results (segmentation, latent vectors,
motif videos).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7 ARTICLE

COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio 11

https://github.com/LINCellularNeuroscience/VAME/wiki/2.-VAME-config.yaml
https://github.com/LINCellularNeuroscience/VAME/wiki/2.-VAME-config.yaml
www.nature.com/commsbio
www.nature.com/commsbio

VAME workflow: visualization and post-processing. As already mentioned in
the subsection before, the discrete motif time series can be visualized as single motif
instance videos with the function vame.motif_videos() (Fig. 5, fourth gray
box). The function samples several sequences of each motif into a video. Here, the
configuration file parameter length_of_motif_video controls the length of
each motif video. By visualizing motifs as videos it is possible to check if they are
consistent. Note that due to noise or other unregularities from the input data, some
misclassifications can occur. Moreover, the user can also visualize the embedded
latent space with the function vame.visualization(). This function gen-
erates an Uniform Manifold Approximation and Projection (UMAP) embedding
from the original latent space (in this example 12 dimensions) into a 2
dimensional space.

Finally, it is worth exploring some of the generative capabilities of VAME to
learn more about the models representation of the motif or general latent structure
(see also Supplementary Section 6 for more information). Here, we provide the
function vame.generative_model() that takes three input arguments, the
configuration file, a string called mode and an integer called motif_num. The
argument mode can be set to three options: reconstruction, sampling and motifs.
Here, the first two are generating random trajectory samples based on either
reconstructing orginal samples or generating new samples from the distribution
(length depends on your configuration file parameter time_window). If mode is
set to motifs and motif_num to None, the function will generate ten new samples
for each motif. If motif_num is set to an integer, it will generate new samples for
a specific motif defined by its integer number.

VAME workflow: pitfalls and downstream analysis. Finally, it is important to
highlight some common pitfalls when using VAME, especially for new users. This
is by no means an exhaustive list but points to general questions VAME users
encountered:

● Virtual marker identity switches: VAME can only be as good as the
provided input signal. Inconsistent motifs can occur fast when, for
example, the pose tracking method is not trained well enough and identity
switches between keypoints occur. Identity switching of virtual marker can
have a strong effect on the learned embedding space of VAME and reduces
the models capability to identify robust dynamics and motifs.

● Strong transients or noise: Another important aspect is to make sure to
check the virtual marker signal for big transients or strong noise before
training the model. Otherwise, this could lead to the RNN ignoring the
actual behavioral signal. It is adviced to crop the video to the actual
behavior/experiment.

● Check the training dataset: Another common issue (related to the first two)
is the quality of the training data. VAME provides options to preprocess
the data within the vame.create_trainset() function, which can
be control via the configuration file. By additionally setting the argument
check_parameter of the function to True, the user can inspect their
data. The Supplementary Fig. 11 provides some intuition on what users
should look for.

● Perspective (top down vs bottom up): The presented data in this manuscript
comes from a bottom-up perspective. This perspective reveals a lot of
kinematical details of the freely moving animal, especially the limb
movements, which VAME can extract very well into a dynamical space (see
Fig. 3c). Moreover, with this perspective it is easy to identify differences in
locomotion. In contrast, using a top-down perspective, the virtual pose
marker capture less of the limb kinematics. In this case, it is advised to add
additional information to the model like velocity and acceleration for the
center-of-mass or per marker to improve the embedding.

● Perspective (scale differences): If animals are recorded in different setups or
the camera angle/distance might slightly differ from animal to animal it is
important to take into account these differences in scale. We provide in our
vame.create_trainset() function z-scoring for the complete
dataset. However, user should check that all time series are following the
same statistics. Different scaling will most likely result into different
embedding of the model. This is also important if different group of
animals are used e.g., male and female, where one group is bigger in size.
We advice to make sure that the resulting time series for training and
embedding do not differ in scale, otherwise the resulting motif structure
might differ between animals.

● Hyperparameters: We discussed the crucial hyperparameters like trajectory
length and latent dimension size within this section. It is important that
users keep in mind these parameter and adjust them to their needs or train
multiple model to identify an optimal hyperparameter setting.

When finally having successfully trained a VAME model, users have the
extracted motif time series of their data and the latent space vectors within the
results folder. Here, we want to highlight some downstream analysis that users can
engage with. The obvious starting point is using the extracted motif time series. The
time series can be used to detect differences in usage between two groups or on an
individual level. Furthermore, it is possible to create the hierarchical representation
of the time series to identify the grouping of each motif. By spanning a graph
network, as done in our prior work45, users can study different connections

between motifs and most likely paths and transitions during experiments. Our
GitHub code provides some functionality for this but custom analysis scripts and
extensions will be needed. If the goal is to correlate the motif time series of VAME
to neural activity, we recommend reading our prior work, where we use an
information theoretical approach to compare the similarity of lower dimensional
representations of neural activity during different motifs and communities.

Another possibility provided by the VAME output is the study of the lower
dimensional behavioral latent space. We showed that it is possible to map
communities into a 2D representation from their original VAME space and to
study dynamics of e.g., locomotion. This can be extended to any community or
motifs of interest. Lastly, these latent vectors can also be used to train classifiers on
top of VAME for the fast detection of behavioral motifs.

Animals. For all experiments we used 12 month old male transgenic and non-
transgenic APPSwe/PS1dE9 (APP/PS1) mice56 on a C57BL/6J background (Jack-
son Laboratory). Mice were group housed under standard laboratory conditions
with a 12-h light-dark cycle with food and water ad libitum. All experimental
procedures were performed in accordance with institutional animal welfare
guidelines and were approved by the state government of North Rhine-Westphalia,
Germany.

Experimental setup, data acquisition and preprocessing. In the open field
exploration experiment mice were placed in the center of an circular area (trans-
parent plexiglas floor with diameter of 50 cm surrounded by a transparent plexiglas
wall with height of 50 cm) and have been left to habituate for a duration of 25 min.
Afterwards, sessions of 25 min were recorded where the mice were left to freely
behave in the arena. To encourage a better coverage, three chocolate flakes were
placed uniformly distributed in the central part of the arena prior to the
experiment.

Mouse behavior was recorded at 60 frames per second by a CMOS camera
(Basler acA2000-165umNIR) equipped with wide angle lens (CVO
GM24514MCN, Stemmer Imaging) that was placed centrally 35 cm below the
arena. Three infrared light sources (LIU780A, Thorlabs) were placed 70 cm away
from the center, providing homogeneous illumination of the recording arena from
below. All recordings were performed at dim room light conditions.

To extract behavioral pose, six virtual markers were placed on relevant
bodyparts (nose, tailroot, paws) in 650 uniformly picked video frames from 14
videos. A residual neural network (ResNet-50) was trained to assign the virtual
markers to every video frame13. The resulting training error was 2.14 pixels and the
test error 2.51 pixels, respectively.

To obtain an egocentric time series of (x, y) marker coordinates we aligned the
animal video frames from its allocentric arena coordinates to its egocentric
coordinates. In order to get a tail to nose orientation from left to right we compute
a rotation matrix and rotate the the resulting frame around the center between nose
and tail. This results into egocentrically aligned frames and marker coordinates
X 2 RN ´m for each animal, where N represents the recording length, i.e., 90,000
frames and m= 10 the x, y marker coordinates. Note that due to the egocentric
alignment the x-coordinate for the nose and tail are fixed lines and therefore do not
carry any behavioral information. We removed them from the resulting trajectory.
Hence the resulting dimensionality of m is equal to 10 (while the original DLC
input time series has a dimensionality of 12 per frame). To fit our machine learning
model we randomly sampled subsequences xi 2 Rm´w from X that represent
500 ms of behavior i.e., w= 30 video frames. In the same manner, we created
~xiþ1 2 Rm ´ v that stores the v= 15 subsequent time points of xi to train the
prediction decoder.

Variational animal motion embedding. Given a set of n multivariate time series
X ¼ fX1;X2; ¼ ;Xng, where each time series Xi= (x1, x2…, xN) contains N ×m
ordered real values, the objective of our model is to learn a latent space Z that
captures the dynamics of the time series data. To achieve this goal the multivariate
time series Xi are sampled into defined subsequences xi 2 Rm ´w , where m
representing the x, y egocentric marker coordinates and w representing the sam-
pled time window. Now, for every xi we learn a vector representation zi 2 Rd ,
which effectively reduces its dimension (d <m × w). Hence, zi is learned via the
non-linear mappings fenc: xi→ zi and f dec : zi ! ~xi, where fenc, fdec denotes the
encoding and decoding process, respectively and is defined by,

zi ¼ f encðxiÞ: ð1Þ

In order to learn the spatiotemporal latent representation our model encoder is
parameterized by a two layer bi-directional RNN (biRNN) with parameters ϕ.
Furthermore, our model uses two biRNN decoder with parameters θ and η.

The input data is temporally dependent and biRNNs are a natural choice in
order to capture temporal dynamics. They extend the unidirectional RNN by
introducing a second hidden layer which runs along the opposite temporal order.
Therefore, the model is able to exploit information about the temporal structure
from the past and future at the same time. Its hidden representation is determined
by recursively processing each input and updating their internal state ht at each

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7

12 COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio

www.nature.com/commsbio

timestep for the forward and backward path via,

hft ¼ tanh f ϕ xti ; ht�1

� ��
; hbt ¼ tanh f ϕ xti ; htþ1

� ��
; hc ¼ hft þ hbt ð2Þ

where hft is the hidden information of the forward pass and hbt is the hidden
information of the backward pass, xti is the current time step of the input sequence
xi, fϕ is a non-linear transition function, and ϕ is the parameter set of fϕ. The
transition function fϕ is usually modeled as long short-term memory (LSTM)57 or
gated recurrent unit (GRU)29. Here, we use GRUs as transition function in the
encoder and decoder.

The joint probability of a subsequence xi is factorized by a RNN as product of
conditionals,

pϕðxiÞ ¼
YT
t¼1

pϕðxt jx1:t�1Þ: ð3Þ

In order to learn a joint distribution over all variables, or more precise, the
underlying generative process of the data, we apply the framework of variational
autoencoders (VAE) introduced by17,18. VAEs have been shown to effectively
model complex multivariate distributions and can generalize much better across
datasets.

Variational autoencoder. In brief, by introducing a set of latent random variables
Z the VAE model is able to learn variations in the observed data and can generate
X through conditioning on Z. Hence, the joint probability distribution is defined
as,

pθðX;ZÞ ¼ pθðXjZÞpθðZÞ; ð4Þ
parameterized by θ.

Determining the data distribution p(X) by marginalization is intractable due to
the non-linear mappings between X and Z and the integration of Z. In order to
overcome the problem of intractable posteriors the VAE framework introduces an
approximation of the posterior qϕ(Z∣X) and optimizes a lower-bound on the
marginal likelihood,

log pθðXÞ≥EqϕðZjXÞ½log pθðXjZÞ� � KLðqϕðZjXÞjjpθðZÞÞ; ð5Þ
where KL(Q∣∣P) denotes the Kullback–Leibler divergence between two probability
distributions Q and P. The prior pθ(Z) and the approximate posterior qϕ(Z∣X) are
typically chosen to be in a simple parametric form, such as a Gaussian distribution
with diagonal covariance. The generative model pθ(X∣Z) and the inference model
qϕ(Z∣X) are trained jointly by optimzing Eq. (5) w.r.t their parameters. Using the
reparameterization trick (Eq. (6)), introduced by17 the whole model can be trained
through standard backpropagation techniques for stochastic gradient descent.

Variational lower bound of VAME. In our case, the inference model (or encoder)
qϕ(zi∣xi) is parameterized by a biRNN. By concatenating the last hidden states of
the forward and backward steps of the biRNN we obtain a global hidden state hi,
which is a fixed-length vector representation of the entire sequence xi. To get the
probabilistic latent representation zi we define a prior distribution over the latent
variables pθ(zi) as an isotropic multivariate Normal distribution N ðzi; 0; IÞ. Its
parameter μz and Σz of the approximate posterior distribution qϕ(zi∣xi) are gen-
erated from the final encoder hidden state by using two fully connected linear
layers. The latent representation zi is then sampled from the approximate posterior
and computed via the reparameterization trick,

zi ¼ μz þ σz � ϵ; ð6Þ
where ϵ is an auxiliary noise variable and ⊙ denotes the Hadamard product.

The generative model pθ(xi∣zi) (or decoder) receives zi as input at each timestep t
and aims to reconstruct xi. We use the mean squared error (MSE) as reconstruction
loss, defined by,

LMSE ¼ 1
n
∑
n

i¼1
jjxi � ~xijj22: ð7Þ

The log-likelihood of xi can be expressed as in Eq. (5). Since the KL divergence is non-

negative the log-likelihood can be written as

Lðθ; ϕ; xiÞ ¼ Eqϕðzi jxiÞ½log pθðxijziÞ� � KLðqϕðzijxiÞjjpθðziÞÞ: ð8Þ
Here, Lðθ; ϕ; xiÞ is a lower bound on the log-likelihood and therefore called the
evidence lower bound (ELBO) as formulated by17.

We extend the ELBO in our model by an additional prediction decoder biRNN
pηð~xijziÞ to predict the evolution ~xi of xi, parameterized by η. The motivation for
this additional model is based on30, where the authors propose a composite RNN
model which aims to jointly learn important features for reconstruction and
predicting subsequent video frames. Here, pηð~xijziÞ serves as a regularization for
learning zi so that the latent representation not only memorizes an input time
series but also estimates its future dynamics. Thus, we extend Eq. (8) by an
additonal term and parameter,

Lðθ; ϕ; η; xiÞ ¼Eqϕðzi jxiÞ½log pθðxijziÞ� þEqϕðzi jxiÞ½log pηð~xijziÞ�
� KLðqϕðzijxiÞjjpθðziÞÞ:

ð9Þ

Finally, the training objective is to minimize

min
θ;ϕ;η

Lðθ;ϕ; η; xiÞ ð10Þ
and the overall loss function can be written as

Ltotal ¼ Lreconstruction þ Lprediction þ LKL; ð11Þ
where Lprediction is the MSE loss of the prediction decoder.

The full model was trained on the combined dataset (1.3e6 time points) using the
Adam optimizer58 with a fixed learning rate of 0.0005 on a single Nvidia 1080ti GPU.
All computing was done with PyTorch59. The ergodic mean of the reconstruction
error Lreconstruction for all virtual marker time series was found to be 1.82 pixels.

Motif identification. To determine the set of behavioral motifs B= {b1,…, bK} we
obtained the latent vector Z from a given dataset using VAME as described in
Methods 4.10. Here, Z 2 Rd ´N�w , with the embedding dimension d, the number of
frames N and the temporal window w, represents the feature space from which we
want to identify the motif structure. By treating the underlying dynamical system as a
discrete-state continuous-time Markov chain, we apply a Hidden-Markov-Model
(HMM) with a Gaussian distributed emission probability to this space to detect states
(motifs). We used the hmmlearn python package in our framework to implement the
HMM. The default settings for the Gaussian emission model from the packages were
used. Moreover, we compared the HMM to a simpler and less time consuming
k-means clustering in Supplementary Section 1. To identify the number of motif
present in our dataset, we used a similar approach as in7. We let a HMM infer 100
motifs and identified the threshold, where motif usage dropped below 1%, see Sup-
plementary Fig. 8. Motif usage was determined as the percentage of video frames that
are assigned to the occurrence of a specific motif.

To model the transitions between behavioral motifs, we interpreted the motif
sequence as a discrete-time Markov chain where the transition probability into a
future motif is only dependent on the present motif. This results in a K × K
transition probability matrix T , with the elements

T lk ¼ PðbkjblÞ; ð12Þ
being the transition probabilities from one motif bl∈ B to another motif bk∈ B,
that are empirically estimated from clustering of Z.

In order to obtain a hierarchical representation of behavioral motifs we can
represent the Markov chain (12) as a directed graph G consisting of nodes v1…vK
connected by edges with an assigned transition probability T lk . We can transform
G into a binary tree T by iteratively merging two nodes (vi, vj) until only the root
node vR is left. Every leaf of this tree represents a behavioral motif. To select i and j
in each reduction step, we compute the cost function

CR ¼ min
i;j

∑
i;j

Ui þ Uj

T ij þ T ji

 !
; ð13Þ

where Ui is the probability of occurrence for the ith motif. After each reduction step
the matrix T is recomputed in order to account for the merging of nodes. Lastly, we
obtain communities of behavioral motifs by cutting T at given depth of the tree,
analogous to the hierarchical clustering approach used for dendrograms. Note that
the cost function is chosen to allow for the detection of the most highly connected
motifs first but in different settings this might be altered to achieve good results.

Manually assigned labels and scoring. In order to obtain manually assigned
labels of behavioral motifs we asked three experts to annotate one recording of
freely moving behavior with a duration of 6 min. All three experts had a strong
experience with in vivo experiments as well as ethogram-based behavior quanti-
fication. The experts could scroll trough the video in slow-motion forward and
backward in time and annotated the behavior into several atomic motifs as well as a
composition of those. As an example, the experts were allowed to annotate a
behavioral sequence as walk or exploration, but also walk and exploration. We then
summarized the annotation into atomic motifs into 5 coarse behavioral labels, as
shown in Table 2.

Table 2 Assignment of atomic motifs into coarse behavior
labels.

Coarse label Assigned atomic motif

Walk Walk, walk and bend, walk and sniff
Pause No locomotion, Bending, looking up or down while

standing still
Groom Groom
Rear Rear, low-rear, wall-rear
Exploratory Undirected sniffing while standing still, bending, looking

up or down

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7 ARTICLE

COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio 13

www.nature.com/commsbio
www.nature.com/commsbio

The coarse labels were created with respect to the behavior descriptions taken
from the Mouse Ethogram database (www.mousebehavior.org), which provides a
consensus of several previously published ethograms. The assignment of coarse
labels to the Mouse Ethogram database taxonomy is shown in Table 3.

For scoring of human assigned labels to VAME motifs we used the clustering
evaluation measures Purity, NMI and Homogeneity. Purity is a measure of the
extent to which clusters contain a single class. NMI (from scikit-learn) is a
normalization of the Mutual Information score to scale the results between 0 (no
mutual information) and 1 (perfect correlation). Homogeneity is, in its essence, a
more strict Purity measure. From scikit-learn: A clustering result satisfies
homogeneity if all of its clusters contain only data points which are members of a
single class. Purity is defined as

PurityðU ;VÞ ¼ 1
N

∑
u2U

max
v2V

ju \ vj; ð14Þ

where U it the set of manually assigned labels u, V is the set of labels generated by
VAME v and N is the number of frames in the behavioral video. The Normalized
Mutual Information score is written as

NMIðU ;VÞ ¼ MIðU;VÞ
EðHðUÞ;HðVÞÞ ; ð15Þ

where MI(U,V) is the mutual information between set U and V defined as

MIðU ;VÞ ¼ ∑
u2U

∑
v2V

ju \ vj
N

log
Nju \ vj
jujjvj

� �
; ð16Þ

and H(U) is the entropy of set U defined as

HðUÞ ¼ � ∑
jUj

i¼1

ju \ vj
N

log
ju \ vj
N

� �
; ð17Þ

where the ∣∣ operator denotes the amount of frames that have the corresponding
labels assigned. Homogeneity is defined as

Homogeneity ¼ 1�HðU jVÞ
HðUÞ ; ð18Þ

where the conditional entropy of manually assigned labels given the cluster
assignments from VAME is given by

HðU jVÞ ¼ � ∑
jUj

u¼1
∑
jKj

k¼1

u \ v
ju \ vj log

u \ v
jvj

� �
; ð19Þ

Note that the Purity score (14) is larger when the set V is larger than U and the
NMI score (15) is generally larger when both sets U and V are of similar size, i.e.,
the number of possible labels is roughly the same in the human assigned set as well
as the set generated using VAME.

Human phenotype classification task. For the classification of phenotypes using
human experts we have created an online form, where experts could watch all eight
videos and make their choice about which phenotype is shown in each video. There
was no time limit and the average time to complete the questionnaire was 30 min.
The participants have not been told how many animals of each group are in the set.
For every video, the following five decision could be made: APP/PS1 (Very sure),
APP/PS1 (Likely), Unsure, Wildtype (Likely), Wildtype (Very Sure). We have
counted a right answers (Very sure and Likely) as a correct classification (1 point),
and wrong answers as well as the choice for the Unsure option as wrong classifi-
cation (0 points). Eleven experts were participating in this classification task. All of
them had previous experience with behavioral video recordings in an open field
and/or treadmill setting. In addition, six of the participants had previous experi-
ence with the APP/PS1 phenotype.

Statistics and reproducibility. Statistical analysis was performed using Prism 8.
To quantify motif usage between transgenic (n= 4) and wildtype (n= 4) mice a
multiple t-test was used and statistical significance was determined using the
Holm–Sidak method. Multiple comparison 2-way ANOVA was used for the
transition statistics with post-hoc Sidak’s multiple comparison test. To evaluate
statistical significance in the locomotor activity of transgenic and wildtype mice
data were subjected to an unpaired t-test. All data presented are shown as
mean ± standard deviation and the threshold for significance was set at p < 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used within this manuscript is available at https://figshare.com/articles/media/
VAME_Data/19213272.

Code availability
The VAME toolbox is open-source and available to the scientific community at https://
github.com/LINCellularNeuroscience/VAME60.

Received: 3 February 2022; Accepted: 6 October 2022;

References
1. Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. &

Poeppel, D. Neuroscience needs behavior: correcting a reductionist bias.
Neuron 93, 480–490 (2017).

2. Nilsson, S. R. O. et al. Simple behavioral analysis (simba) – an open source
toolkit for computer classification of complex social behaviors in experimental
animals. Preprint at https://www.biorxiv.org/content/10.1101/2020.04.19.
049452v2 (2020).

3. Segalin, C. et al. The mouse action recognition system (mars) software pipeline
for automated analysis of social behaviors in mice. eLife 10, e63720 (2021).

4. Bohnslav, J. P. et al. Deepethogram, a machine learning pipeline for supervised
behavior classification from raw pixels. eLife 10, e63377 (2021).

5. Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M. & Mainen, Z. F. Big
behavioral data: psychology, ethology and the foundations of neuroscience.
Nat. Neurosci. 17, 1455–1462 (2014).

6. Anderson, D. J. & Perona, P. Toward a science of computational ethology.
Neuron 84, 18–31 (2014).

7. Wiltschko, A. B. et al. Mapping sub-second structure in mouse behavior.
Neuron 88, 1121–1135 (2015).

8. Berman, G. J. Measuring behavior across scales. BMC Biol. 16, 23 (2018).
9. Brown, A. E. X. & de Bivort, B. Ethology as a physical science. Nat. Phys. 14,

653–657 (2018).
10. Datta, S. R., Anderson, D. J., Branson, K., Perona, P. & Leifer, A.

Computational neuroethology: a call to action. Neuron 104, 11–24 (2019).
11. Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the

stereotyped behaviour of freely moving fruit flies. J. R. Soc. Interface 11,
20140672 (2014).

12. Hsu, A. I. & Yttri, E. A. B-soid, an open-source unsupervised algorithm for
identification and fast prediction of behaviors. Nat. Commun. 12, 5188 (2021).

13. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body
parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

14. Pereira, T. D. et al. Sleap: a deep learning system for multi-animal pose
tracking. Nat. Methods 19, 4 (2022).

15. Graving, J. M. et al. Deepposekit, a software toolkit for fast and robust animal
pose estimation using deep learning. eLife 8, e47994 (2019).

16. Shi, C. et al. Learning disentangled behavior embeddings. Neural Inf. Process.
Syst. 34, 22562–22573 (2021).

17. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. In 2nd
International Conference on Learning Representations, ICLR (2014).

18. Rezende, D. J., Mohamed, S. & Wierstra, D. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31st
International Conference on Machine Learning, vol. 31, 1278–1286 (2014).

19. Bengio, Y., Courville, A. & Vincent, P. Representation learning: a review and
new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).

20. Kuehne, H., Richard, A. & Gall, J. A hybrid rnn-hmm approach for weakly
supervised temporal action segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 42, 765–779 (2020).

Table 3 Mouse ethology database taxonomy corresponding for each manually assigned coarse label.

Coarse label Mouse Ethogram database

Walk Active behavior - General activity - Exploratory behavior - Search - General locomotion
Pause Inactive behavior- Still and alert
Groom Active behavior - Maintenance behaviors - Grooming
Rear Active behavior - General activity - Exploratory behavior - Search - Rearing
Exploratory Active behavior - General activity - Exploratory behavior - Investigate - Undirected sniffing

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7

14 COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio

http://www.mousebehavior.org
https://figshare.com/articles/media/VAME_Data/19213272
https://figshare.com/articles/media/VAME_Data/19213272
https://github.com/LINCellularNeuroscience/VAME
https://github.com/LINCellularNeuroscience/VAME
https://www.biorxiv.org/content/10.1101/2020.04.19.049452v2
https://www.biorxiv.org/content/10.1101/2020.04.19.049452v2
www.nature.com/commsbio

21. Chung, J. et al. A recurrent latent variable model for sequential data. Adv.
Neural Inf. Process. Syst. 28, 2980–2988 (2015).

22. Chen, X. et al. Infogan: Interpretable representation learning by information
maximizing generative adversarial nets. In Advances in Neural Information
Processing Systems, vol. 29, 2172–2180 (2016).

23. Higgins, I. et al. beta-vae: Learning basic visual concepts with a constrained
variational framework. In 5th International Conference on Learning
Representations, ICLR (2017).

24. Jiang, Z., Zheng, Y., Tan, H., Tang, B. & Zhou, H. Variational deep
embedding: an unsupervised and generative approach to clustering. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence,
vol. 26, 1965–1972 (2017).

25. Pereira, J. & Silveira, M. Learning representations from healthcare time series
data for unsupervised anomaly detection. In 2019 IEEE International
Conference on Big Data and Smart Computing (BigComp), 1–7 (2019).

26. Ma, Q., Zheng, J., Li, S. & Cottrell, G. W. Learning representations for time
series clustering. In Advances in Neural Information Processing Systems, vol.
32, 3776–3786 (2019).

27. Jankowsky, J. L. et al. Mutant presenilins specifically elevate the levels of the 42
residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-
specific gamma secretase. Hum. Mol. Genet. 13, 159–170 (2004).

28. Schuster, M. & Paliwal, K. K. Bidirectional recurrent neural networks. IEEE
Trans. Signal Process. 45, 2673–2681 (1997).

29. Cho, K. et al. Learning phrase representations using rnn encoder–decoder for
statistical machine translation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, 1724–1734 (2014).

30. Srivastava, N., Mansimov, E. & Salakhudinov, R. Unsupervised learning of
video representations using lstms. In Proceedings of the 32nd International
Conference on Machine Learning, vol. 37, 843–852 (2015).

31. Rabiner, L. & Juang, B.-H. An introduction to hidden Markov models. IEEE
ASSP Mag. 3, 4–16 (1986).

32. Huang, H. et al. Characterization of AD-like phenotype in aged APPSwe/
PS1dE9 mice. Age (Dordr., Neth.) 38, 303–322 (2016).

33. Onos, K. D. et al. Enhancing face validity of mouse models of Alzheimer’s
disease with natural genetic variation. PLoS Genet. 15, e1008155 (2019).

34. Lalonde, R., Kim, H. D. & Fukuchi, K. Exploratory activity, anxiety, and motor
coordination in bigenic APPswe + PS1/DeltaE9 mice. Neurosci. Lett. 369,
156–161 (2004).

35. Janus, C., Flores, A. Y., Xu, G. & Borchelt, D. R. Behavioral abnormalities in
APPSwe/PS1dE9 mouse model of AD-like pathology: comparative analysis
across multiple behavioral domains. Neurobiol. Aging 36, 2519–2532 (2015).

36. Giovannetti, E. A. et al. Restoring memory by optogenetic synchronization of
hippocampal oscillations in an alzheimer’s disease mouse model. Preprint at
https://www.biorxiv.org/content/10.1101/363820v1 (2018).

37. Webster, S. J., Bachstetter, A. D. & Van Eldik, L. J. Comprehensive behavioral
characterization of an app/ps-1 double knock-in mouse model of alzheimer’s
disease. Alzheimers Res. Ther. 5, 28 (2013).

38. Biallosterski, B. T. et al. Changes in voiding behavior in a mouse model of
alzheimer’s disease. Front. Aging Neurosci. 7, 160 (2015).

39. Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A. & Fiete, I. The intrinsic
attractor manifold and population dynamics of a canonical cognitive circuit
across waking and sleep. Nat. Neurosci. 22, 1512–1520 (2019).

40. Rubin, A. et al. Revealing neural correlates of behavior without behavioral
measurements. Nat. Commun. 10, 4745 (2019).

41. DeAngelis, B. D., Zavatone-Veth, J. A. & Clark, D. A. The manifold structure
of limb coordination in walking drosophila. eLife 8, e46409 (2019).

42. Zong, W. et al. Large-scale two-photon calcium imaging in freely moving
mice. Cell 185, 1240–1256.e30 (2022).

43. Xu, S. et al. Behavioral state coding by molecularly defined paraventricular
hypothalamic cell type ensembles. Science 370, eabb2494 (2020).

44. Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for
stable, long-term brain recordings. Science 372, eabf4588 (2021).

45. Luxem, K., Fuhrmann, F., Remy, S. & Bauer, P. Hierarchical network analysis
of behavior and neuronal population activity. In Conference on Cognitive
Computational Neuroscience (2019).

46. van der Maaten, L. & Hinton, G. Visualizing data using t-sne. J. Mach. Learn.
Res. 9, 2579–2605 (2008).

47. Batty, E. et al. BehaveNet: nonlinear embedding and Bayesian neural decoding
of behavioral videos. In Advances in Neural Information Processing Systems,
vol. 32, 15680–15691 (2019).

48. Tishby, N. & Zaslavsky, N. Deep learning and the information bottleneck
principle. Preprint at https://arxiv.org/abs/1503.02406 (2015).

49. Günel, S. et al. DeepFly3D, a deep learning-based approach for 3D limb and
appendage tracking in tethered, adult Drosophila. eLife 8, e48571 (2019).

50. Sarkar, I. et al. Evaluation of deep lift pose models for 3d rodent pose
estimation based on geometrically triangulated data. In CVPR 2021 Workshop
CV4animals (2021).

51. Dunn, T. W. et al. Geometric deep learning enables 3d kinematic profiling
across species and environments. Nat. Methods 18, 564–573 (2021).

52. Sun, J. J. et al. Task programming: Learning data efficient behavior
representations. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2876–2885 (2021).

53. Whiteway, M. R. et al. Partitioning variability in animal behavioral videos
using semi-supervised variational autoencoders. PLOS Comput. Biol. 17, 1–50
(2021).

54. Sun, J. J. et al. Self-supervised keypoint discovery in behavioral videos. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2161–2170 (2022).

55. Luxem, K. et al. Open-source tools for behavioral video analysis: setup,
methods, and development. Preprint at https://arxiv.org/ftp/arxiv/papers/
2204/2204.02842.pdf (2022).

56. Jankowsky, J. L. et al. Co-expression of multiple transgenes in mouse CNS: a
comparison of strategies. Biomol. Eng. 17, 157–165 (2001).

57. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9,
1735–1780 (1997).

58. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR, vol. 3 (2015).

59. Paszke, A. et al. Automatic differentiation in PyTorch. In NIPS Autodiff
Workshop (2017).

60. Luxem, K., Mathis, M. & Bauer, P. LINCellularNeuroscience/VAME: 1.1.
(Zenodo, 2022). https://doi.org/10.5281/zenodo.7087194.

Acknowledgements
We thank J. Macke, E. Restrepo, J. Gall and S. Stober for comments on the manuscript.
This work was supported by the European Research Council (CoG;SUBDECODE), NIA
P01AG073082 (J.J.P.) and DFG-SFB 1436 and 1089.

Author contributions
Conceptualization, K.L., P.B., and S.R.; methodology, K.L. P.M., S.M., and P.B.; experi-
ments, K.L.; code development, K.L., J.K., and P.B.; experimental design, K.L., P.B., and
F.F.; writing/editing, K.L., P.M., P.B., and S.R.; reviewing, K.L., P.M., P.B., S.M., J.P., and
S.R.; supervision, P.B. and S.R.; funding acquisition. S.R.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-022-04080-7.

Correspondence and requests for materials should be addressed to Stefan Remy.

Peer review information Communications Biology thanks Eric Yttri, Marcus Ghosh and
the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Primary Handling Editors: Daniel Bendor and Luke R. Grinham. Peer reviewer reports
are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04080-7 ARTICLE

COMMUNICATIONS BIOLOGY | (2022) 5:1267 | https://doi.org/10.1038/s42003-022-04080-7 | www.nature.com/commsbio 15

https://www.biorxiv.org/content/10.1101/363820v1
https://arxiv.org/abs/1503.02406
https://arxiv.org/ftp/arxiv/papers/2204/2204.02842.pdf
https://arxiv.org/ftp/arxiv/papers/2204/2204.02842.pdf
https://doi.org/10.5281/zenodo.7087194
https://doi.org/10.1038/s42003-022-04080-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	Identifying behavioral structure from deep variational embeddings of animal motion
	Results
	VAME: variational animal motion embedding
	Identification of behavioral motif structure
	Motif transitions and behavioral dynamics
	Quantitative comparison of VAME with MotionMapper and AR-HMM

	Discussion
	Methods
	VAME workflow: overview and installation
	VAME workflow: initializing a new VAME project
	VAME workflow: egocentric alignment and pre-processing
	VAME workflow: training the model and evaluation
	VAME workflow: model inference
	VAME workflow: visualization and post-processing
	VAME workflow: pitfalls and downstream analysis
	Animals
	Experimental setup, data acquisition and preprocessing
	Variational animal motion embedding
	Variational autoencoder
	Variational lower bound of VAME
	Motif identification
	Manually assigned labels and scoring
	Human phenotype classification task
	Statistics and reproducibility

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information

