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UnMICST: Deep learning with real augmentation
for robust segmentation of highly multiplexed
images of human tissues
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Upcoming technologies enable routine collection of highly multiplexed (20–60 channel),

subcellular resolution images of mammalian tissues for research and diagnosis. Extracting

single cell data from such images requires accurate image segmentation, a challenging

problem commonly tackled with deep learning. In this paper, we report two findings that

substantially improve image segmentation of tissues using a range of machine learning

architectures. First, we unexpectedly find that the inclusion of intentionally defocused and

saturated images in training data substantially improves subsequent image segmentation.

Such real augmentation outperforms computational augmentation (Gaussian blurring). In

addition, we find that it is practical to image the nuclear envelope in multiple tissues using an

antibody cocktail thereby better identifying nuclear outlines and improving segmentation. The

two approaches cumulatively and substantially improve segmentation on a wide range of

tissue types. We speculate that the use of real augmentations will have applications in image

processing outside of microscopy.
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The cell types, basement membranes, and connective
structures that organize tissues and tumors are present on
length scales ranging from subcellular organelles to whole

organs (<0.1 to >104 µm). Microscopy using Hematoxylin and
Eosin (H&E) complemented by immunohistochemistry1 has long
played a primary role in the study of tissue architecture2,3.
Moreover, clinical histopathology remains the primary means by
which diseases such as cancer are staged and managed clinically4.
However, classical histology provides insufficient molecular
information to precisely identify cell subtypes, study mechanisms
of development, and characterize disease genes. High-plex ima-
ging (Supplementary Table 1)5–9 of normal and diseased tissues
(sometimes called spatial proteomics) yields subcellular resolu-
tion data on the abundance of 20–60 antigens, which is sufficient
to identify cell types, measure cell states (quiescent, proliferating,
dying, etc.) and interrogate cell signaling pathways. High-plex
imaging also reveals the morphologies and positions of acellular
structures essential for tissue integrity in a preserved 3D envir-
onment. High-plex imaging methods differ in resolution, field of
view, and multiplicity (plex), but all generate 2D images of tissue
sections; in current practice, these are usually 5–10 µm thick.

When multiplexed images are segmented and quantified, the
resulting single cell data are a natural complement to single cell
RNA Sequencing (scRNASeq) data, which have had a dramatic
impact on our understanding of normal and diseased cells and
tissues10,11. Unlike dissociative RNASeq, however, multiplex tis-
sue imaging preserves morphology and spatial information.
However, high-plex imaging data are substantially more chal-
lenging to analyze computationally than images of cultured cells,
the primary emphasis of biology-focused machine vision systems
to date. In particular, single cell analysis of imaging data requires
segmentation, a computer vision technique that assigns class
labels to an image in an instance or pixel-wise manner to sub-
divide it. The resulting segmentation mask is then used to
quantify the intensities of different markers by integrating
fluorescent signal intensities across each object (cell) identified by
the mask or across a shape (usually an annulus) that outlines or is
centered on the mask12. Extensive work has gone into the
development of methods for segmenting metazoan cells grown in
culture, but segmentation of tissue images is a more difficult
challenge due to cell crowding and the diverse morphologies of
different cell types. Recently, segmentation routines that use
machine learning have become standard, paralleling the wide-
spread use of convolutional neural networks (CNNs) in image
recognition, object detection, and synthetic image generation13.
Architectures such as ResNet, VGG16, and more recently, UNet
and Mask R-CNN14,15 have gained widespread acceptance for
their ability to learn millions of parameters and generalize across
datasets, as evidenced by excellent performance in a wide range of
segmentation competitions, as well as in hackathon challenges16

using publicly available image datasets17,18.
In both cultured cells and tissues, localizing nuclei is an opti-

mal starting point for segmenting cells since most cell types have
one nucleus (cells undergoing mitosis, muscle and liver cells and
osteoclasts are important exceptions), and nuclear stains with
high signal-to-background ratios are widely available. The
nucleus is generally quite large (5–10 µm) relative to the resolu-
tion of wide-field fluorescence microscopes (~0.5 µm for a 0.9
numerical aperture – NA – objective lens), making it easy to
detect at multiple magnifications. Nuclei are also often found at
the approximate center of a cell. There are advantages to using
additional markers during image acquisition; for example
Schüffler et al.19 used multiplexed IMC data and watershed
methods for multi-channel segmentation. However, it is not clear
which proteins are sufficiently widely expressed in different cell
types and tissues to be useful in segmentation. Methods based on

random forests such as Ilastik and Weka20,21 exploit multiple
channels for class-wise pixel classification via an ensemble of
decision trees to assign pixel-wise class probabilities in an image.
However, random forest models have far less capacity for learning
than CNNs, which is a substantial disadvantage. Thus, the pos-
sibility of using CNNs with multi-channel data to enhance nuclei
segmentation has not been widely explored.

A wide variety of metrics are used to quantify the performance
of segmentation routines. These can be broadly divided into pixel
and instance-level metrics; the former measures overlap in the
shape and position of segmentation masks at the pixel level
whereas the latter measures whether there is agreement in the
presence or absence of a mask. The sweeping intersection over
union (IoU; the Jaccard Index)16 is an example of a pixel-level
performance metric; it is calculated by measuring the overlap
between a mask derived from ground truth annotation and a
predicted mask based on the ratio of the intersection of the pixels
to their union. The greater the IoU, the higher the accuracy, with
an ideal value of 1 (although this is very rarely achieved). The F1-
score is an example of an instance-level metric that uses the
weighted average of the precision (true positives normalized to
predictions) and recall (true positives normalized to ground
truth). A ‘positive’ in this case is commonly scored as 50% overlap
(at the pixel level) between a predicted mask and the ground
truth. It, therefore, accommodates substantial disagreement about
the shape of the mask. In this context, it is important to note that
supervised learning relies on the establishment of a ground truth
by human experts. As described in detail below, for tissue ima-
ging, the reported level of agreement among human experts for
pixel-level annotation is only about 0.6 (at an IoU of 60%),
suggesting that experts are themselves unable to determine the
precise shape of segmentation masks (and the cells they repre-
sent). Not surprisingly, interobserver agreement is substantially
higher (0.7–0.9) when evaluated using an instance level metric
such as F1 score because it is relatively simple to decide whether a
nucleus is present or not. As mentioned above, segmentation
masks in high-plex imaging are commonly used to compute the
integrated intensities of antibodies against nuclear, cytoplasmic,
and cell-surface proteins and this places a premium on correctly
determining the shape of the mask. Thus, the use of stringent
pixel-level metrics such as IoU is essential for evaluating seg-
mentation accuracy in single-cell analysis of multiplex tissue
images.

The accuracy of segmentation by humans and computational
methods is crucially dependent on the quality of the original
images. In practice, many images of human and murine tissues
have focus artefacts (blur) and images of some cells are saturated
(with intensities above the linear range of the camera). This is
particularly true of whole-slide imaging in which up to
1000 sequentially acquired image tiles are used to create mosaic
images of specimens as large as several square centimeters. Whole
slide imaging is a diagnostic necessity22 and essential to achieve
sufficient power for rigorous spatial analysis23. However, many
recent papers addressing the segmentation of tissue images
restrict their analysis to the clearest in-focus fields. This is logical
because, in the setting of supervised learning, it is easier to obtain
training data and establish a ground-truth when images are clear
and inter-observer agreement is high. In practice, however, all
microscopy images of tissue specimens have issues with focus: the
depth of field of objective lenses capable of high resolution
imaging (high NA lenses) is typically less than the thickness of the
specimen so that objects above and below the plane of optimal
focus are blurred. Images of human biopsy specimens are parti-
cularly subject to blur and saturation artefacts because the tissue
sections are not always uniformly co-planar with the cover slip.
Since most research on human tissues is incidental to diagnosis or
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treatment, it is rarely possible to reject problematic specimens
outright. Moreover, reimaging of previously analyzed tissue sec-
tions is rarely possible due to tissue disintegration. Thus, image
segmentation with real-world data must compensate for common
image aberrations.

The most common way to expand training data to account for
image artefacts is via computational augmentation24 which
involves pre-processing images via random rotation, shearing,
flipping, etc. This is designed to prevent algorithms from learning
irrelevant aspects of an image, such as orientation. To date, focus
artefacts have been tackled using computed Gaussian blur to
augment training data25–27. However, Gaussian blur is only an
approximation of the blurring inherent to any optical imaging
system having limited bandpass (that is—any real microscope)
plus the effects of refractive index mismatches and light
scattering.

In this paper, we investigate ways to maximize the accuracy of
image segmentation by machine learning algorithms in multi-
plexed tissue images containing common imaging artefacts. We
generate a set of training and test data with ground-truth anno-
tations via human curation of multiple normal tissues and tumors,
and use these data to score segmentation accuracy achieved on
three deep learning networks, each of which was independently
trained and evaluated: UNet, Mask R-CNN, and Pyramid Scene
Parsing Network (PSPNet). The resulting models comprise a family
of Universal Models for Identifying Cells and Segmenting Tissue
(UnMICST) in which each model is based on the same training
data but a different class of ML network. Based on our analysis we
identify two ways to improve segmentation accuracy for all three
networks. The first involves adding images of nuclear envelope
staining (NES) to images of nuclear chromatin acquired using
DNA-intercalating dyes. The second involves adding real aug-
mentations, defined here as intentionally defocused and over-
saturated images (collected from the same specimens), to the
training data to make models more robust to the types of
artefacts encountered in real tissue images. We find that augmen-
tation with real data significantly outperforms conventional
Gaussian blur augmentation, offering a statistically significant
improvement in model robustness. Across a range of tissue types,
improvements from adding NES data and real augmentations are
cumulative.

Results
Data sets and ground truth annotation of nuclear boundaries.
One challenge in supervised machine learning on tissue images
is a lack of sufficient freely-available data with ground truth
labeling. Experience with natural scene images14 has shown that
the acquisition of labels can be time consuming and rate
limiting28. It is also well established that cells in different types
of tissue have nuclear morphologies that vary substantially from
the spherical and ellipsoidal shape observed in cultured cells29.
Nuclear pleomorphism (variation in nuclear size and shape) is
even used in histopathology to grade cancers30. To account for
variation in nuclear morphology we generated training, vali-
dation, and test datasets from seven different tissue and tumor
types (lung adenocarcinoma, non-neoplastic small intestine,
normal prostate, colon adenocarcinoma, glioblastoma, non-
neoplastic ovary, and tonsil) found in 12 cores from EMIT
(Exemplar Microscopy Images of Tissue31, RRID:
SCR_021052), a tissue microarray assembled from clinical dis-
cards. The tissues had cells with nuclear morphologies ranging
from mixtures of cells that were large vs. small, round cells vs.
narrow, and densely and irregularly packed vs. organized in
clusters. A total of ~10,400 nuclei were labeled by a human
expert for nuclear contours, centers, and background. In

addition, two human experts labeled a second dataset from a
whole-slide image of human melanoma32 to establish the level
of inter-observer agreement and to provide a test data set that
was disjoint from the training data.

Evaluating the performance of ML segmentation algorithms
and models. We implemented and then evaluated two semantic
and one instance segmentation algorithms that are based on deep
learning/CNNs (UNet, PSPNet, and Mask R-CNN, respectively).
Semantic segmentation is a coarse-grained ML approach that
assigns objects to distinct trained classes, while instance seg-
mentation is fine grained and identifies individual instances of
objects. We trained each of these models (UnMICST-U,
UnMICST-P, and UnMICST-M, respectively) on manually
curated and labeled data from seven distinct tissue types. The
models were not combined, but were tested independently in an
attempt to determine which network exhibited the best
performance.

We evaluated performance using both pixel- and instance-level
metrics including the sweeping intersection over union (IoU)
threshold described by Caicedo et al.16, which is based on images
of cell lines, and implemented in the widely used COCO
dataset33. The IoU (the Jaccard Index) is calculated by measuring
the overlap between the ground truth annotation and the
prediction via a ratio of the intersection to the union of pixels
in two masks. The (IoU) threshold is evaluated over a range of
values from the least stringent, 0.55, to most stringent, 0.816.
Unlike a standard pixel accuracy metric (the fraction of pixels in
an image that were correctly classified), IoU is not sensitive to
class-imbalance. IoU is a particularly relevant measure of
segmentation performance for analysis of high-plex images.
When masks are used to quantify marker intensities in other
channels, we are concerned not only with whether a nucleus is
present or not at a particular location but whether the masks are
the correct size and shape.

Examples of instance-level metrics are true positives (TP)
and true negatives (TN), which classify predicted objects based
on whether they overlap by 50% or greater, otherwise they
are deemed as false positives (FP) and false negatives (FN). The
frequencies of these four states are used to calculate the F1-score
and average precision (AP). The F1-score is the weighted average
of precision (true positives normalized to predictions) and recall
(true positives normalized to ground truth), and AP considers the
number of true positives, total number of ground truth, and
predictions.

The accuracy expected for these methods was determined by
having multiple human experts label the same set of data and
determine the level of inter-observer agreement. We assessed
inter-observer agreement using both the F1-score and sweeping
IoU scores with data from whole-side images of human
melanoma32. For a set of ~4900 independently annotated nuclear
boundaries, two experienced microscopists achieved a mean F1-
score of 0.78 (Supplementary Information 1) and an IoU of 60%
at a threshold of 0.6. In the discussion, we compare these data to
values obtained in other recently published papers and address
the discrepancy in F1-scores and IoU values. We also discuss how
these values might be increased to achieve super-human
performance24,34.

Real augmentations increase model robustness to focus arte-
facts. To study the impact of real and computed augmentations
on the performance of segmentation methods, we trained models
with different sets of data involving both real and computed
augmentations and then tested the data on images that were
acquired in focus, out of focus or blurred using a Gaussian kernel.
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Where dataset sizes were unbalanced, we supplemented such
instances with rotation augmentations. We assessed segmentation
accuracy quantitatively based on IoU and qualitatively by visual
inspection of predicted masks overlaid on image data. Real aug-
mentation involved adding additional empirical, rather than
computed, training data having the types of imperfections most
commonly encountered in tissue. This was accomplished by
positioning the focal plane 3 µm above and below the specimen,
resulting in de-focused images. A second set of images was col-
lected at long exposure times, thereby saturating 70–80% of
pixels. Because blurred and saturated images were collected
sequentially without changing stage positions, it was possible to
use the same set of ground truth annotations. For computed
augmentations, we convolved a Gaussian kernel with the in-focus
images using a range of standard deviations chosen to cover a
broad spectrum of experimental cases (Fig. 1a). In both scenarios,
the resulting models were evaluated on a test set prepared in the
same way as the training set.

In an initial set of studies, we found that models created using
training data augmented with Gaussian blur performed well on
Gaussian blurred test data. However, when evaluated against test
data involving defocused and saturated images, we found that
Gaussian blur augmentation improved accuracy only slightly
relative to baseline models lacking augmentations (Fig. 1b). In
contrast, the use of training data supplemented with real
augmentations increased the fraction of cells retained at an IoU
threshold of 0.6 by 40–60%. Statistically significant improvement
was observed up to an IoU cutoff of 0.8 with all three learning
frameworks (UnMICST-U, UnMICST-M, and UnMICST-P
models). To perform a balanced comparison, we created two
sets of training data having equal numbers of images. The first set
contained the original data plus computed 90- and 180° rotations,
and the second set contained original data plus defocused data
collected from above and below the specimen. Again, we found
that models trained with real augmentations substantially
outperformed rotationally augmented models when tested on

Fig. 1 Comparing the use of real augmentations (defocused and overexposed images) and Gaussian blur. a Schematic diagram showing the approach
comparing test images on models trained with Gaussian-blurred or defocused image data. Higher contrast probability maps signify more confidence—
areas of interest are highlighted with red arrows. Corresponding probability maps indicate a model trained with defocused images performs better on
defocused test images than a Gaussian-blurred model. Scale bar denotes 20 μm. b Plots show that incorporating real augmentations (red curve) into the
training set is statistically significantly superior to training sets with Gaussian blur (yellow curve) and without real augmentations (blue curve) for
UnMICST-U, UnMICST-M, and UnMICST-P. Simulating defocused images with Gaussian blur is only marginally better than not augmenting the training
data at all. c Comparing UnMICST-U model accuracy when the training dataset size was held constant by replacing defocused augmentations (red curve)
with 90 and 180° rotations (blue curve). Error bars are standard error of mean.
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defocused test data (Fig. 1c). Thus, training any of the three
different deep learning architectures with real augmentation
generated models that outperformed models with computed
augmentation using test data that contained commonly encoun-
tered artefacts.

Addition of NES improves segmentation accuracy. When we
stained our TMA panel (the Exemplar Microscopy Images of Tis-
sues and Tumors (EMIT) TMA) we found that antibodies against
lamin A and C (Fig. 2a) (which are different splice forms of LMNA
gene) stained approximately only half as many nuclei as antibodies
against lamin B1 (Fig. 2b) or lamin B2 (Fig. 2c) (products of the
LMNB1 and LMNB2 genes). Staining for the lamin B receptor
(Fig. 2e) exhibited poor image contrast. A pan-tissue survey showed
that a mixture of antibodies for nucleoporin NUP98 (Fig. 2d) and
lamin B2 conjugated to the same fluorophore (Alexafluor-647)
generated nuclear envelope staining (NES) for nearly all nuclei

across multiple tissues (Fig. 2f–h). We judged this to be the optimal
antibody cocktail. However, only some cell types, epithelia in col-
orectal adenocarcinoma for example, exhibited the ring-like struc-
ture that is characteristic of nuclear lamina in cultured epithelial
cells. The nuclear envelope in immune and other cells has folds and
invaginations35 and in our data, NES staining could be irregular and
diffuse, further emphasizing the difficulty of finding a broadly useful
NES stain in tissue.

The value of NES images for model performance was assessed
quantitatively and qualitatively. In images of colon adenocarci-
noma, non-neoplastic small intestine, and tonsil tissue, we found
that the addition of NES images resulted in significant
improvements in segmentation accuracy based on IoU with all
three learning frameworks; improvements in other tissues, such
as lung adenocarcinoma, were more modest and sporadic (Fig. 3a,
Lung). For nuclear segmentation of fibroblasts in prostate cancer
tissue, UnMICST-U and UnMICST-M models with NES data
were no better than models trained on DNA staining alone. Most
striking were cases in which NES data slightly decreased
performance (UnMICST-P segmentation on prostrate fibroblasts
and UnMICST-U segmentation of glioblastoma). Inspection of
the UnMICST-P masks suggested that the segmentation of well-
separated fibroblast nuclei was already optimal with DNA images
alone (~60% of nuclei retained at IoU of 0.6), implying that the
addition of NES images afforded little improvement. With
UnMICST-U masks in glioblastoma, the problem appeared to
involve atypical NES morphology, which is consistent with a high
level of nuclear pleomorphism and the presence of giant cells,
both of which are well-established features of high-grade
glioblastoma36,37. We also note that NES data alone was inferior
to DNA staining as a sole source of training data and should
therefore be used in combination with images of DNA
(Supplementary Information 2). Thus, adding NES to training
data broadly but not universally improves segmentation accuracy.

Combining NES images and real augmentation has a cumu-
lative effect. To determine whether real augmentation and NES
would combine during model training to achieve superior seg-
mentation precision relative to the use of either type of data alone,
we trained and tested models under four different scenarios
(using all three learning frameworks; Fig. 4). We used images
from the small intestine, a tissue containing nuclei having a wide
variety of morphologies, and then extended the analysis to other
tissue types (see below). Models were evaluated on defocused
DNA test data to increase the sensitivity of the experiment. In the
first scenario, we trained baseline models using in-focus DNA
image data and tested models on unseen in-focus DNA images.
With tissues such as the small intestine, which are challenging to
segment because they contain densely-packed nuclei, scenario A
resulted in slightly under-segmented predictions. In Scenario B
and for all subsequent scenarios, defocused DNA images were
included in the test set, giving rise to contours that were sub-
stantially misaligned with ground truth annotations and resulted
in higher undersegmentation. False-positive predictions and
imprecise localizations of the nuclei membrane were observed in
areas devoid of nuclei and with very low contrast (Fig. 4a). When
NES images were included in the training set (Scenario C),
nuclear boundaries were more consistent with ground truth
annotations, although false-positive predicted nuclei still
remained. The most robust performance across ML frameworks
and tissues was observed when NES images and real augmenta-
tion were combined: accurate nuclear boundaries were generally
well aligned with ground truth annotations in both shape and in
size. Observable differences in the placement of segmentation
masks were reflected in improvements in IoU: for all three deep

Fig. 2 Comparing different nuclear envelope stains in colon
adenocarcinoma. Showcasing a lamin A/C, b lamin B1, c lamin B2,
d NUP98, and e the lamin B receptor in the same field of view. Lamin B1 and
B2 appear to stain similar proportions of nuclei while lamin A/C stains
fewer nuclei. The stain against the lamin B receptor was comparatively
weaker. Lamin B2 (f) and NUP98 (g) are complementary and, when used in
combination, maximize the number of cells stained. h Composite of lamin
B2 (purple) and NUP98 (green). Scale bar denotes 100 μm.
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Fig. 3 NES with DNA improves nuclear segmentation. NES – nuclear envelope staining. Assessing the addition of NES as a 2nd marker to DNA on
segmentation accuracy on a per tissue and per model basis. a Variable IoU plots comparing the DNA-only model (blue curve) and the DNA+NES model
(red curve) across frameworks. Adding NES increased accuracy for densely packed nuclei such as colon, small intestine, tonsil, and to some extent, lung
tissue. Error bars are standard errors of mean. b Representative grayscale images of tissues stained with DNA and NES comparing their variable
morphologies, followed by UnMICST-U mask predictions (green) overlaid onto ground truth annotations (purple). In tissue with sparse nuclei, such as
fibroblasts from prostate tissue, NES did not add an additional benefit to DNA alone. In tissues where NES does not exhibit the characteristic nuclear ring,
as in glioblastoma, the accuracy was similarly not improved. Scale bar denotes 20 μm.
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learning frameworks, including NES data and real augmentations
increased the fraction of nuclei retained by 50% at an IoU
threshold of 0.6 (Fig. 4b). The accuracy of UnMICST-P (blue
curve) trained on in-focus DNA data alone was higher than the
other two baseline models at all IoU thresholds, suggesting that
UnMICST-P has a greater capacity to learn. UnMICST-P may
have an advantage in experiments in which staining the nuclear
envelope proves difficult or impossible.

Combining NES and real augmentation is advantageous across
multiple tissue types. To determine if improvements in seg-
mentation would extend to multiple tissue types we repeated the

analysis described above using three scenarios for training and
testing with both in-focus (Fig. 5a) and defocused images
(Fig. 5b). Scenario 1 used in-focus DNA images for training (blue
bars), scenario 2 used in-focus DNA and NES images (red bars),
and scenario 3 used in-focus DNA and NES images plus real
augmentation (green bars). While the magnitude of the
improvement varied with tissue type and test set (panel a vs b),
the results as a whole support the conclusion that including both
NES and real augmentations during model training confers sta-
tistically significant improvement in segmentation accuracy with
multiple tissue types and models. The accuracy boost was greatest
when models performed poorly (e.g., in scenario 1 where models
were tested on defocused colon image data; Fig. 5b, blue bars), so

Fig. 4 Combination of NES and real image augmentations on segmentation performance. NES - nuclear envelope staining. aModels trained with in-focus
DNA data alone produced probability maps that were undersegmented, especially in densely-packed tissue such as small intestine (Scenario A). When
tested on defocused data, nuclei borders were largely incorrect (Scenario B). Adding NES restored nuclei border shapes (Scenario C). Combining NES and
real augmentations reduced false positive detections and produced nuclei masks better resembling the ground truth labels (Scenario D). Scalebar denotes
20 μm. Table legend shows conditions used for each scenarios A–D. Yellow arrow indicates a blurry cell of interest where accuracy improves with NES and
real augmentation. b Graphs compare the accuracy represented as the number of cells retained across varying IoU thresholds with all models from
UnMICST-U (top), UnMICST-M (center), and UnMICST-P (bottom). In all models, more nuclei were retained when NES and real augmentations were used
together during training (yellow curves) compared to using NES without real augmentations (red curves) or DNA alone (blue curves). Error bars are
standard error of mean.
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that segmentation accuracy became relatively uniform across
tissue and cell types. As a final test, we re-examined the whole
slide melanoma image described above (which had not been
included in any training data) and evaluated IoU, AP, and F1-
scores. The data were consistent regardless of metric and showed
that all three models benefitted from the inclusion of training data
that included NES images and real augmentations (Supplemen-
tary Information 3). The improvement in accuracy, however, was
modest and similar to lung adenocarcinoma. We attribute this to
the fact that, like lung adenocarcinoma, melanoma has less dense
regions, which our baseline models already performed well on.

Applying UnMICST to highly multiplex whole-slide tissue
images. To investigate the overall improvement achievable with a
representative UnMICST model, we tested UnMICST-U with and
without real or computed augmentations and NES data on all six
tissues as a set, including in-focus, saturated, and out-focus
images (balancing the total amount of training data in each case).
A 1.7-fold improvement in accuracy was observed at an IoU of
0.6 for the fully trained model (i.e., with NES data and real
augmentations; Fig. 6a). Inspection of segmentation masks also
demonstrated more accurate contours for nuclei across a wide
range of shapes. The overall improvement in accuracy was sub-
stantially greater than any difference observed between semantic
and instance segmentation frameworks. We, therefore, focused
subsequent work on the most widely used framework: U-Net.

We also tested a fully trained UnMICST-U model on a 64-plex
CyCIF image of non-neoplastic small intestine tissue from the
EMIT TMA (Fig. 6b). Staining intensities were quantified on a
per-cell basis, and the results visualized using Uniform Manifold
Approximation and Projection (UMAP; Fig. 6c). Segmentation
masks were found to be well-located with little evidence of under
or over-segmentation (Fig. 6d). Moreover, whereas 21% of cells
with segmented nuclei stained positive (as determined by using a
Gaussian-mixture model) for the immune cell marker CD45, and
53% stained positive for the epithelial cell marker E-cadherin, less
than 3% were positive for both. No known cell type is actually
positive for both CD45 and E-cadherin, and the very low
abundance of these double-positive cells is evidence of accurate
segmentation. When we examined some of the 830 double
positive cells (blue dashed circle in Fig. 6c) we found multiple
examples of a CD3+ T cell (yellow arrowheads; light yellow dots
in Fig. 6e) tightly associated with or between the epithelial cells of
intestinal villi (green kiwi-like structure visible in Fig. 6e). This is
consistent with the known role of the intestinal epithelium in
immune homeostasis38. In these cases, the ability of humans to
distinguish immune and epithelial cells relies on prior knowledge,
multi-dimensional intensity features and subtle differences in
shape and texture—none of which were aspects of model training.
Thus, future improvements in tissue segmentation are likely to
require the development of CNNs able to classify rare but
biologically interesting spatial arrangements, rather than simple

Fig. 5 Assessing different training strategies on (a) in-focus and (b) defocused test data for different tissue types. a In all tissue types apart from GBM,
the addition of NES (pink bars) and the use of real augmentations combined with NES (green bars) in training data offered superior accuracy compared to
using DNA alone (blue bars). bWhen the models were tested on defocused data, all tissues (including GBM unexpectedly) showed benefits resulting from
using NES (pink bars) combined with real augmentations (green bars). The line plot indicates highest accuracy achieved for each tissue when tested on in-
focus data from panel (a).
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Fig. 6 Applying UnMICST models to highly multiplexed image data. a Accuracy improvement of UnMICST-U models trained with and without NES
(nuclear envelope staining) as compared to DNA alone, and real augmentations as compared to computed blur (GB; Gaussian blur). To balance training
dataset size, GB was substituted for NES data and computed 90/180° rotations were substituted for real augmentations. Error bars are standard error of
mean. b A 64-plex CyCIF image of a non-neoplastic small intestine TMA core from the EMIT dataset. Dashed box indicates region of interest for panels
(d, e). c UMAP projection using single cell staining intensities for 14 marker proteins (see methods). The color of the data points represents the intensity of
E-cadherin (top left) or CD45 (bottom left) across all segmented nuclei. Density-based clustering using HDBSCAN identified distinct clusters (each
denoted by a different color) that were positive for either E-cadherin or CD45 as well as a small number of double-positive cells (blue dashed circle).
d Enlarged region of yellow dashed box from b showing segmentation mask outlines (magenta) overlayed onto DNA channel (green). e Composite image
of DNA, E-cadherin, and CD45 of the same region. Nuclei centroids from segmentation denoted by brown dots. Cells positive for both E-cadherin and
CD45 (from blue dashed circle in panel c are marked with yellow arrows and yellow dots. Inset: enlarged view of boxed region showing overlapping
immune and epithelial cells.
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extensions of the general purpose segmentation algorithms
described here.

Some tissues still pose a challenge for nuclei segmentation. Of
all the tissue types annotated and tested in this paper, non-
neoplastic ovary was the most difficult to segment (Supplemen-
tary Information 4a) and addition of ovarian training data to
models trained on data from other tissues decreased overall
accuracy (Supplementary Information 4b). We have previously
imaged ovarian cancers at even higher resolution (60×/1.42NA
sampled at 108 nm pixel size)39 using optical sectioning and
deconvolution microscopy; inspection of these images reveals
nuclei with highly irregular morphology, poor image contrast,
and dense packing (Supplementary Information 4c) unlike colon
adenocarcinoma (Supplementary Information 4d). Thus, addi-
tional research, possibly involving different NES antibodies, will
be required to improve performance with ovarian and other
difficult to segment tissues. Until then, caution is warranted when
combining training data from tissues with very different nuclear
morphologies.

Discussion
This paper makes four primary contributions to the growing
literature on the segmentation of tissue images, which is an
essential step in single-cell data analysis. First, it explicitly con-
siders training and test data that contain the types of focus and
intensity artefacts that are commonly encountered in whole-slide
images, particularly images of human tissues acquired in the
course of clinical care and treatment. This contrasts with other
recent papers that focus on optimal fields of view. Second, it
shows that it is often possible to increase segmentation accuracy
by including additional data (NES) on nuclear envelop mor-
phology, and it proposes a broadly useful antibody cocktail.
Third, and most significantly, it shows that the addition of real
augmentations comprising defocused and saturated images to
model training data improves segmentation accuracy to a sig-
nificant extent whereas augmentations based on Gaussian blur-
ring provide substantially less benefit. These results extend to
deep learning frameworks based on instance segmentation
(UnMICST-M) and on semantic segmentation (UnMICST-U and
UnMICST-P). Finally, using newly generated labeled training
data for multiple tissue types, it shows that real augmentation and
NES combine to improve the robustness and accuracy of seg-
mentation across many tissues; these improvements are directly
applicable to the real-world task of segmenting high dimensional
tissue and tumor images. The magnitude of improvement
observed by the inclusion of NES data or real augmentation is
substantially greater than the differences observed between ML
frameworks. UnMICST models, therefore, represent a good
starting point for performing image segmentation on rapidly
growing tissue data repositories. Errors remaining when multi-
plexed images are segmented using optimized UnMICST models
appear to have a subtle biological basis. The development of
additional physiology-aware machine-learning models may be
necessary to reduce these apparent errors.

One of the surprises in the current work was the seemingly low
level of agreement achieved by two human experts annotating the
same image data; we estimated that only 60% of the annotated
nuclei between annotators had an overlap of 60% or greater (0.6
IoU threshold). Poor agreement is almost certainly a consequence
of our use of a stringent sweeping IoU scoring criterion that
measures the fraction of pixels that overlap between two seg-
mentation masks. The alternative, and widely-used F1 score,
which determines whether two observers (or an observer and a
machine) agree on the presence of a nucleus, achieves inter-

observer and automated segmentation accuracy of 0.78, which is
comparable to the highest F1-scoring tissue reported for
Mesmer40, another deep learning model applied to tissue images.
Moreover, our results with IoU values are similar to those
recently reported by Kromp et al.17 (when IoU thresholds are
adjusted to enable direct comparison). The authors of Cellseg41

also report comparable segmentation accuracies and note the
difficulty of achieving a high IoU value with cells that vary dra-
matically in shape and focus.

It would therefore appear that many studies have achieved
similar levels of inter-observer agreement and that our results are
not an outlier, even though we include problematic data. This
points to a fundamental challenge for all supervised learning
approaches whose solution is not immediately clear. Collection of
precise 3D data followed by the imposition of different levels of
blurring and addition of intensity artefacts will be needed to
understand the origins of inter-observer disagreement in tissue
images and achieve higher quality training and test data. It also
seems likely that practical improvements in segmentation are
likely to come from combining recently described advances. For
example, Greenwald et al.40 use a clever community-based
approach to acquire much more training data than in the cur-
rent work, Kromp et al.17 combine tissue images with ground
truth annotation acquired from cultured cells (by a team of
undergraduate students), whereas the current work focuses on the
use of NES and real augmentations to improve the robustness of
segmentation algorithms across the board.

From a machine learning perspective, the value of adding
additional image channels to training data is self-evident.
Experimental feasibility is not always so clear. A key tradeoff is
that the greater the number of fluorescence channels used for
segmentation, the fewer the channels available for the collection
of data on other markers. Fortunately, the development of highly
multiplexed imaging has made this less relevant because collec-
tion of 20–40 or more image channels (each corresponding to a
different fluorescent antibody) has become routine. This makes it
straightforward to reserve two channels for segmentation. The
cost-benefit ratio of adding extra segmentation data will be dif-
ferent in high content screening of cells in multi-well plates, for
which inexpensive reagents are generally essential than in tissue
imaging. In tissues, the morphology of nuclear lamin changes
with disease state42, cell type, activation state and numerous other
biological processes. While these challenges segmentation rou-
tines, imaging lamins is also likely to provide valuable biological
information, further arguing for routine collection of these data43.
To allow others to build on the current work, we are releasing all
training and test images, their segmentation masks and annota-
tions, and real augmentations for multiple types of tissue (tonsil,
ovary, small intestine and cancers of the colon, brain, lung,
prostate) via the EMIT resource; models are released as compo-
nents of the UnMICST model resource (see data availability and
code availability information).

The most immediately generalizable finding from this work is
that real augmentation outperforms computed augmentation
generated using Gaussian kernels. Blurring and image saturation
are an inevitable consequence of the limited bandwidth of optical
systems, the thickness of specimens relative to the depth of field,
light scattering, diffraction, the use of non-immersion objective
lenses and consequent refractive index mismatches, and a variety
of other physical processes. Real out-of-focus blur also differs
when the focal plane is above and below the specimen. Areas for
future application of real augmentations could include inhomo-
geneous light sources and stage jitter. It will undoubtedly be
useful to determine kernels for more effective computed aug-
mentation, but collecting real augmentation data imposes a
minimal burden in a real-world setting. Our observation that real
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augmentation outperforms computed augmentation may also
have general significance outside of the field of microscopy: with
any high-performance camera system, real out-of-focus data will
inevitably be more complicated than Gaussian blur.

Methods
Sample preparation for imaging. To generate images for model training and
testing, human tissue specimens from multiple patients were used to construct a
multi-tissue microarray (HTMA427) under an excess (discarded) tissue protocol
approved by the Institutional Review Board (IRB) at Brigham and Women’s
Hospital (BWH IRB 2018P001627). One or two 1.5 mm diameter cores were taken
from tissue regions with the goal of acquiring one or two examples of different
healthy or tumor types including non-neoplastic medical diseases and secondary
lymphoid tissues such as tonsil. Slides were stained with reagents from Cell Sig-
naling Technologies (Beverly MA, USA) and Abcam (Cambridge UK) as shown in
Table 1.

Before imaging, slides were mounted with 90% glycerol and a #1.5 coverslip.
Prior to algorithmic evaluation, the images were split into three mutually disjoint
subsets and used for training, validation, and testing.

Acquisition of image data and real augmentations. The stained TMA was imaged
on a INCell 6000 (General Electric Life Sciences) microscope equipped with a 20×/
0.75 objective lens (370 nm nominal lateral resolution at 550 nm wavelength) and a
pixel size of 0.325 µm per pixel. Hoechst and lamin-A647 were excited with a 405
and 642 nm laser, respectively. Emission was collected with the DAPI (455/50 nm)
and Cy5 (682/60 nm) filter sets with exposure times of 60 and 100 ms, respectively.
Whole-slide imaging involved acquisition of 1215 tiles with an 8% overlap, which is
recommended for stitching in ASHLAR, a next generation stitching and registra-
tion algorithm for large images (https://github.com/labsyspharm/ashlar). To gen-
erate defocused data, we acquired images from above and below the focal plane by
varying the Z-axis by 3 µm in both directions. To generate saturated images of
DNA staining, a 150 ms exposure time was used. These two types of suboptimal
data were then used for real augmentation during model training, as
described below.

Representative cores for lung adenocarcinoma, non-neoplastic small intestine,
normal prostate, colon adenocarcinoma, glioblastoma, non-neoplastic ovary, and
tonsil were extracted from image mosaics and down-sampled by a factor of 2 to
match the pixel size of images routinely acquired and analyzed in MCMICRO31.
Images were then cropped to 256 × 256-pixel tiles, and in-focus DNA and NES
were imported into Adobe Photoshop to facilitate human annotation of nuclear
boundaries. We labeled contours and background classes on separate layers while
swapping between DNA and NES as necessary. To save time, we drew complete
contours of nuclei and filled these in using the Matlab imfill operation to generate
nuclei centers. For nuclei at the image borders where contours would be
incomplete, we manually annotated nuclei centers. As described by Ronneberger
et al. (2015), a fourth layer was used to mark areas between clumped cells. These
additional annotations made it possible to specifically penalize models that
incorrectly classified these pixels. During image review, we observed that certain
nuclei morphologies appeared more frequently than others. To account for this
imbalance, we annotated only characteristic nuclei of each tissue type in each image
in an effort to balance the occurrence of nuclei shapes in our training, validation,
and test sets. For example, small intestine and colon images displayed both round
and elongated nuclei, and since the former shape was already present in other
tissues (such as lung) in our dataset, we only annotated the latter shape for small
intestine and colon tissues. Full dense annotations on a held-out test dataset were
validated by a second annotator and measured using the F1-score. The F1-score
evaluation between both annotated ground truths was high and demonstrated
excellent agreement (Supplementary Information 1).

Because original, defocused, and saturated images of DNA were all acquired in
the same image stack, it was possible to use a single registered set of DNA
annotations across all augmented image channels. To produce the training set, each
image was cropped into 64 × 64 patches, normalized to use the full dynamic range,
and further augmented using 90° rotations, reflections, and 20% upscaling.
Consistent with the training set, the validation and test sets also include defocused
and saturated examples but were not augmented with standard transformations.
The ratio of data examples present in the training, validation, and test set split was

0.36:0.24:0.4. For a fair comparison across models, the same dataset and split were
used for the three deep learning frameworks described in this manuscript
(Supplementary Table 2).

Model implementation. To facilitate model training, three distinct state-of-the-art
architectures were separately, trained, implemented, and evaluated. They are, in no
particular order, UNet, Mask R-CNN, and PSPNet and were adopted from their
original references without modification to their architecture. UNet was selected for
its prior success in the biomedical domain, Mask R-CNN was selected for its ability
to perform both object detection and mask generation, and PSPNet was selected for
its capacity to integrate image features from multiple spatial scales. Training,
validation, and test data were derived from 12 cores in 7 tissues and a total of
10,359 nuclei in the composition of colon – 1142; glioblastoma (GBM) – 675; lung
– 1735; ovarian – 956; fibroblast – 922; small intestine – 1677; tonsil – 3252. To
maintain consistency of evaluation across segmentation algorithms, segmentation
accuracy was calculated by counting the fraction of cells in a held out test set that
passed a sweeping Intersection over Union (IoU) threshold. The NES channel was
concatenated to the DNA channel as a three-dimensional array as input into each
architecture.

UnMICST-U model training. A three-class UNet model14 was trained based on
annotation of nuclei centers, nuclei contours, and background. The neural network
is comprised of 4 layers and 80 input features. Training was performed using a
batch size of 32 with the Adam Optimizer and a learning rate of 0.00005 with a
decay rate of 0.98 every 5000 steps until there was no improvement in accuracy or
~100 epochs had been reached. Batch normalization was used to improve training
speed. During training, the bottom layer had a dropout rate of 0.35, and L1 reg-
ularization was implemented to minimize overfitting44,45 and early stopping.
Training was performed on workstations equipped with NVidia GTX 1080 or
NVidia TitanX GPUs.

UnMICST-M model training. Many segmentation models are based on the Mask
R-CNN architecture15, Mask R-CNN has previously exhibited excellent per-
formance on a variety of segmentation tasks. Mask R-CNN begins by detecting
bounding boxes of nuclei and subsequently performs segmentation within each
box. This approach eliminates the need for an intermediate watershed, or
equivalent, segmentation step. Thus, Mask R-CNN directly calculates a seg-
mentation mask, significantly reducing the overhead in traditional segmentation
pipelines. We adopted a ResNet5046 backbone model in the UnMICST-M
implementation and initialized the weights using pretrained values from the
COCO object instance segmentation challenge33 to improve convergence
properties. For efficient training, we upsampled the original input images to
800 × 800-pixels and trained a model for 24 epochs using a batch size of 8. The
Adam optimizer, with a weight decay of 0.0001 to prevent overfitting, was
exploited with a variable learning rate, initially set to 0.01 and decreased by a
factor of 0.1 at epochs 16 and 22. Training was performed on a compute node
cluster using 4 NVidia TitanX or NVidia Tesla V100 GPUs. For evaluation and
comparison, we used the model with the highest performance on the validation
set, following standard practice.

UnMICST-P model training. We trained a three class PSPNet model47 to extract
cell nuclei centers, nuclei contours, and background from a wide variety of tissue
types. PSPNet is one of the most widely used CNNs for the semantic segmentation
of natural scene images in the computer vision field. The network employs a so-
called pyramid pooling module whose purpose is to learn global as well as local
features. The additional contextual information used by PSPNet allowed the seg-
mentation algorithm to produce realistic probability maps with greater confidence.
We used ResNet101 as a backbone. Training of the network was performed using a
batch size of 8 with an image size of 256 × 256-pixels for 15,000 iterations or until
the minimum loss model was obtained. A standard cross entropy loss function was
used during training. Gradient descent was performed using the Adam optimizer
with a learning rate of 0.0001 and a weight decay parameter of 0.005 via L2
regularization. Batch normalization was employed for faster convergence, and a
dropout probability of 0.5 was used in the final network layer to mitigate over-
fitting. The model training was performed on a compute cluster node equipped
with NVidia Tesla V100 GPUs.

Table 1 Antibodies used for immunofluorescence staining.

Target Fluorochrome Species Clone Vendor Cat. No. RRID

DNA Hoechst 33342 NA NA CST 4082 AB_10626776
Lamin B2 Alexafluor 647 Rabbit EPR9701(B) Abcam ab200427 AB_2889288
NUP98 Alexafluor 647 Rabbit C39A3 CST 13393 AB_2728831
Lamin B1 Alexafluor 488 Rabbit EPR8985(B) Abcam ab194106 AB_2728786
Lamin A/C Alexafluor 488 Mouse 4C11 CST 8617S AB_10997529
Lamin B receptor Alexafluor 488 Rabbit E398L Abcam ab201532 AB_2889290
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Analysis of multi-dimensional data. For the analysis shown in Fig. 6, a 64-plex
CyCIF image of non-neoplastic small intestine tissue from the EMIT TMA (https://
www.synapse.org/#!Synapse:syn22345748/) was stained with a total of 45 anti-
bodies as described in protocols https://www.protocols.io/view/ffpe-tissue-pre-
treatment-before-t-cycif-on-leica-bji2kkge and https://doi.org/10.17504/protocols.
io.bjiukkew. Images were segmented using the UnMICST-U model trained on
DNA with NES data and real augmentations. Mean fluorescence intensities across
45 markers for 27,847 segmented nuclei were quantified as described in ref. 31.
E-cadherin positive and CD45 positive cells were identified using Gaussian-mixture
models on log-transformed data. For multivariate clustering, log-transformed
mean intensities of all single cells of 14 selected protein markers (E-cadherin, pan-
cytokeratin, CD45 CD4, CD3D, CD8, RF3, PML, GLUT1, GAPDH TDP43, OGT,
COLL4, an EPCAM) were pre-processed using Uniform Manifold Approximation
and Projection (UMAP)48 and clustered using Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN)49. Clusters expressing a high
level of both E-cadherin and CD45 were identified and overlaid on a false-colored
image showing the staining of DNA, E-cadherin, and CD45.

Data availability
To allow others to build on the current work, we are releasing all training, validation and
test images, their annotations, and real augmentations for multiple types of tissue (tonsil,
ovary, small intestine and cancers of the colon, brain, lung, prostate) via the EMIT
resource; models for training and inference are released as components of the UnMICST
model resource. Source data for graphs in main figures can be found in Supplementary
Data 1.xlsx.

Code availability
The code and instructions used for training and implementing the UnMICST models can
be found at: https://labsyspharm.github.io/UnMICST-info/
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