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Machine learning multi-omics analysis reveals
cancer driver dysregulation in pan-cancer cell lines
compared to primary tumors
Lauren M. Sanders 1,2✉, Rahul Chandra3, Navid Zebarjadi2,4, Holly C. Beale 2,4, A. Geoffrey Lyle 2,4,

Analiz Rodriguez5, Ellen Towle Kephart 2, Jacob Pfeil1,2, Allison Cheney 2,4, Katrina Learned1,2,

Rob Currie 1,2, Leonid Gitlin6, David Vengerov7, David Haussler 1,2,9, Sofie R. Salama 1,8,9 &

Olena M. Vaske 2,4,9✉

Cancer cell lines have been widely used for decades to study biological processes driving

cancer development, and to identify biomarkers of response to therapeutic agents. Advances

in genomic sequencing have made possible large-scale genomic characterizations of col-

lections of cancer cell lines and primary tumors, such as the Cancer Cell Line Encyclopedia

(CCLE) and The Cancer Genome Atlas (TCGA). These studies allow for the first time a

comprehensive evaluation of the comparability of cancer cell lines and primary tumors on the

genomic and proteomic level. Here we employ bulk mRNA and micro-RNA sequencing data

from thousands of samples in CCLE and TCGA, and proteomic data from partner studies in

the MD Anderson Cell Line Project (MCLP) and The Cancer Proteome Atlas (TCPA), to

characterize the extent to which cancer cell lines recapitulate tumors. We identify dysre-

gulation of a long non-coding RNA and microRNA regulatory network in cancer cell lines,

associated with differential expression between cell lines and primary tumors in four key

cancer driver pathways: KRAS signaling, NFKB signaling, IL2/STAT5 signaling and

TP53 signaling. Our results emphasize the necessity for careful interpretation of cancer cell

line experiments, particularly with respect to therapeutic treatments targeting these impor-

tant cancer pathways.
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Tumor-derived cell lines provide a robust model environ-
ment for testing treatment hypotheses, identifying bio-
markers of response to therapies, and studying underlying

cancer biology. Cancer cell line models grow quickly, are com-
paratively cost-effective, and are readily available. Their integra-
tion into preclinical research has led to remarkable advances in
cancer characterization and treatment1.

However, additional genomic characterization of cancer cell
lines has indicated that the transition from in vivo to in vitro may
introduce key genomic alterations. One of the first groups to
compare tumor and cell line used microarray gene expression
profiles to identify breast cancer cell lines that seemed to be
genetically inappropriate models for breast carcinoma2. As
mutation detection has become more accurate, multiple studies
have reported that head and neck cancer cell lines tend to harbor
more mutations than their tumors of origin3,4. A recent study
showed that colorectal cancer cell lines recapitulate colorectal
tumor subtypes, but that cell lines have more mutations than
tumors5. In general, the current consensus concerning cancer cell
lines as primary tumor models is that cell lines share many of the
original tumor characteristics, but can harbor genetic changes of
poorly characterized significance; and that some cancer cell lines
may not even be molecularly appropriate or representative
models for their tumor of origin6.

Nevertheless, cancer cell lines continue to be widely used in
cancer research and therapeutic discovery. As the focus on
molecularly targeted therapeutics grows, so does the need to
thoroughly characterize how cancer cell lines diverge phenoty-
pically from tumors due to their in vitro growth environment6. It
is essential that preclinical researchers know which biological
pathways behave similarly in vivo and in vitro, and even more
importantly, which pathways demonstrate altered activity as a
result of alterations in environmental signals and stressors in the
in vitro growth setting. If a key pathway behaves differently in cell
lines as compared to primary tumors, preclinical testing of a drug
targeting that pathway will not accurately predict patient tumor
response.

In order to characterize the specific pathway alterations that
occur between primary tumors and tumor-derived cell lines, we
analyze three types of high-throughput molecular data from The
Cancer Genome Atlas (TCGA) and the Cancer Cell Line Ency-
clopedia (CCLE). We perform transcriptomic analysis of bulk
RNA sequencing of TCGA and CCLE samples and identify a set
of differentially expressed genes. We integrate micro-RNA
sequencing from the same projects and identify an interaction
network of micro-RNA (miRNA), long non-coding (lncRNA)
and protein-coding genes that is aberrantly expressed in cell lines
compared to tumors. This network implicates four key cancer
driver pathways that are often the subject of preclinical drug
evaluation in cell lines, but whose activity in cell lines is not
representative of original tumors. We use proteomic quantifica-
tion data from the same studies to demonstrate that the aberrant
cancer driver pathway expression observed in cell lines extends to
the proteomic level. We also demonstrate similar findings in
separate datasets of single-cell RNA sequencing from tumors and
cancer cell cultures.

Results
Support vector machine classifier identifies a set of genes dif-
ferentially expressed between primary tumors and tumor-
derived cell lines. We hypothesized that genes with differential
expression between the TCGA and CCLE datasets would repre-
sent differences in biological pathway activity. In order to identify
novel sources of variation within these datasets, we eliminated
immune-related genes because it is already known that cancer cell

lines are unable to recapitulate the immune signatures of the
primary tumors7 (see “Methods”, Supplementary Fig. 1 and
Supplementary Data 1, Tab 2).

We then used a support vector machine (SVM) linear classifier
within the Python sklearn module to identify genes (features)
which are the most useful and important for classifying a new
tumor or cell line based on a trained model8. Feature
identification using SVM allowed us to identify the set of genes
that best differentiate between tumor and cell line regardless of
whether each gene is more highly expressed in the tumor group
or the cell line group. The SVM approach has been shown to
eliminate noisy results in a high-dimensional gene expression
comparison, by drawing out the greatest sources of variation
across all samples9,10. In order to ensure robust results, we
repeated the classification on fifty different random 80/20 test/
training splits of the data. After sorting the genes by their SVM-
assigned feature importance coefficients, we merged the top 10%
of genes from all fifty classifications, resulting in 1854 genes that
were in the top 10% of most important genes for each
classification (Supplementary Data 1, Tab 1). These genes
included 54 lncRNA and 1799 protein-coding genes.

In order to characterize the functional significance of our
SVM-derived gene set, we performed gene set enrichment
analysis (GSEA) on the 1799 protein-coding genes using the
Hallmark cancer pathway set from the Molecular Signatures
Database (mSigDB v7.0)11. We found 27 gene sets with
significant enrichment in the SVM-derived differentially
expressed protein-coding genes (Fig. 1a and Supplementary
Data 1, Tab 3).

Since lncRNA play known regulatory roles in normal tissue
and in cancer, we hypothesized that the 54 differentially
expressed lncRNA may be involved in regulating the differentially
expressed coding genes, and may compose an interaction network
with aberrant expression in cell culture. In order to characterize
the functional interactions of these lncRNA, we employed
miRNet, a tool that integrates multiple interaction databases for
identification of lncRNA-miRNA and miRNA-gene regulatory
networks12. miRNet identified 227 miRNA with known interac-
tions to the 54 lncRNA. In turn, these 227 miRNA had 580
known gene targets among the 1799 differentially expressed
coding genes (P value < 7.8−27, hypergeometric test). GSEA of the
580 coding genes revealed 24 Hallmark gene sets with significant
enrichment (P value < 0.05, Fig. 1b and Supplementary Data 1,
Tab 3). Strikingly, 20 of these Hallmark pathways overlapped
with the enriched pathways from the coding genes GSEA (Fig. 1c
and Supplementary Data 1, Tab 3), indicating that the set of
SVM-derived important lncRNA is closely involved in many of
the same pathways as the set of SVM-derived important
coding genes.

We categorized the pathways into 6 categories (cellular
response, development, cancer driver, metabolism, blood, and
immune). Notably, our results (Supplementary Data 1, Tab 3)
recapitulate the findings of a recent study by Yu and colleagues
which found key differences in developmental, cell cycle, and
immune pathways between cell lines and tumors7. In this study,
we were particularly interested in the five cancer driver pathways
which overlapped between the coding genes GSEA and the
lncRNA-derived GSEA, as these molecular pathways are most
likely to be the focus of preclinical trials in cancer cell lines.

Four main types of cancer driver pathways exhibit differential
expression and protein levels in cancer cell lines compared to
primary tumors. The five cancer driver pathways with significant
enrichment in both SVM-derived coding genes and lncRNA-
related genes are KRAS Signaling Up and Down, P53 pathway,
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IL2/STAT5 signaling, and TNFA signaling via NFKB (Fig. 2a).
With respect to KRAS signaling, since both pathways are a result
of activated KRAS signaling, all subsequent analysis focuses on
KRAS Signaling Up, which represents genes upregulated as a
result of activated KRAS signaling. We focused on upregulated
genes since most therapeutic approaches focus on reducing the
activity of targeted genes13.

Interestingly, all four pathways show much higher overall
expression in tumors than in cell lines (Fig. 2b). As a control, we
also examined the gene expression of the Hallmark PI3K-AKT-
mTOR pathway, a cancer driver pathway that was not
significantly enriched in SVM-derived genes (P value < 0.426).
This pathway did not show differential expression between CCLE
and TCGA (Supplementary Fig. 2). We also verified that this
signal was not a disease-specific artifact by repeating the SVM
after subsetting the data to the disease with the largest number of
samples in TCGA (BRCA) and the smallest number of samples
(DLBC). The same four cancer driver pathways were identified in
both analyses (Supplementary Data 1, Tab 4). These four
pathways overall have similar correlation between tumor and
cell line samples when evaluated on a disease-specific basis
(Fig. 2d). We also verified that this signal is not related to tumor
purity by performing ESTIMATE14 tumor purity measurements
on all TCGA samples and repeating the SVM comparison on the
solid tumor types with the highest (KIRC) and lowest (PRAD)
ESTIMATE scores (Supplementary Fig. 3). The four cancer driver
pathways were identified as differentially expressed in both
analyses (Supplementary Data 1, Tab 5).

We next examined whether the downregulation of these
pathways extended beyond gene expression into protein activity.
Proteomics quantification of many CCLE and TCGA samples was

performed using Reverse Phase Protein Array (RPPA) in the MD
Anderson Cell Lines Project (MCLP) and The Cancer Proteome
Atlas (TCPA)15,16. Because the RPPA data include fewer than 250
proteins, we identified through literature review proteins that are
normally highly expressed downstream of each cancer driver
pathway, and examined their levels in the RPPA Level 4
Normalized cell line and tumor data (Fig. 2c). PIK3R1 (antibody
PI3KP85) is activated subsequent to KRAS signaling, and Cyclin
D1 (antibody CYCLIND1) is activated downstream of the P53
pathway17,18. STAT5 (antibody STAT5ALPHA) represents the
protein counterpart of the STAT5 gene. The antibody
NFKBP65_pS536 binds to phosphorylated p65, one of the two
protein subunits of NFKB. Phosphorylation of p65 is one of
several molecular mechanisms known to activate the NFKB
pathway19,20.

We noted significantly lower protein expression of PIK3R1,
Cyclin D1, and STAT5 in the cell-line data, consistent with our
gene expression results in the corresponding pathways. This
carries important implications for the applicability of preclinical
drug tests against these targets in cancer cell lines. Interestingly,
the phosphorylation level of p65 is higher in cell lines than
tumors, opposite the gene expression of the NFKB signaling
pathway. This suggests that p65 phosphorylation may be playing
a different role in cell lines, and underscores the importance of
examining multiple types of data to elucidate complex molecular
interactions.

Because activation of the KRAS and TP53 pathways is
associated with mutations in the KRAS and TP53 genes21,22, we
investigated whether there is a correlation between diseases with
heavy mutation burden in these genes and diseases with higher
correlation between tumor and cell line, with the assumption that

Fig. 1 Workflow for support vector machine (SVM) classification of samples from TCGA and CCLE to assign feature importance to all genes. a GSEA
pathway enrichment results of 1799 protein-coding genes in the overlap of the top 10% most important genes in 50 independent SVM classifications.
b GSEA pathway enrichment results of 580 protein-coding genes linked by miRNet databases to the 54 lncRNAs found in the overlap of the top 10% most
important genes in 50 independent SVM classifications. c Overlap of pathways from the protein-coding gene GSEA and the lncRNA-based GSEA.
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cell lines derived from mutated tumors maintain those mutations.
We found that there is no correlation between mutational burden
and tumor-cell-line correlation; in fact, in the case of the TP53
pathway, there is a slight inverse correlation between the two
factors (Supplementary Fig. 4). To further investigate the effect of
KRAS and TP53 mutation status on the differentially expressed
cancer driver pathways, we subset the TCGA and CCLE datasets
to samples carrying a non-silent KRAS or TP53 mutation and
repeated the SVM analysis (see “Methods”). In both the KRAS-
mutant and TP53-mutant analysis, all four cancer driver path-
ways were again identified as differentially expressed in tumor
compared to cell line. These results indicate that dysregulation of

these pathways occurs in cancer cell lines regardless of the
mutational status of the primary tumor, and is unrelated to the
activating DNA mutations.

Dysregulation of a lncRNA-miRNA regulatory network in
cancer cell lines is potentially associated with underexpression
of key cancer pathways. Because the four cancer driver pathways
were derived in the context of lncRNA-related gene expression,
we hypothesized that cell-line-specific dysregulation of lncRNA-
based regulation programs may be associated with aberrant
pathway-level gene expression. lncRNAs control gene expression

Fig. 2 KRAS signaling, TP53 pathway, IL2/STAT5 signaling, and NFKB signaling are significantly enriched for genes with reduced expression in CCLE
compared to TCGA. a GSEA results for the cancer driver pathways which overlap with SVM-derived genes. P values are shown for the significance of gene
overlap with SVM-derived protein-coding genes, and for genes linked by miRNet to SVM-derived lncRNA. b Heatmaps showing expression of SVM-
identified genes in four cancer driver pathways in TCGA compared to CCLE. The samples shown are a random subset with equal representation from each
dataset in each disease. c Boxplots showing overall protein quantification of representative proteins from each of the four cancer driver pathways in
TCPA (n= 5607) and MCLP (n= 646) datasets (two-sided Mann–Whitney significance test; *P value < 0.05, **P value < 0.01, ***P value < 0.001).
d Boxplots show pairwise Spearman correlation scores between all CCLE and TCGA RNA-seq samples in each disease type, for all four cancer driver
pathways. Plots are sorted by mean correlation.
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in a tissue-specific manner, and one of their key regulatory
mechanisms is by sequestering or “sponging” miRNA through
base pairing interactions23–25. miRNA directly affect gene
expression by binding mRNA and targeting them for
degradation26–28. In this method of expression control, lncRNA
regulate miRNA, while miRNA regulate gene expression (Fig. 3a).

To investigate potential non-coding RNA dysregulation in cell
lines as compared to tumors, we focused on the 54 lncRNA
identified as differentially expressed through the SVM classifica-
tion (Fig. 1 and Supplementary Data 1, Tab 1). We used miRNet
databases to link the 54 differentially expressed lncRNA to the 4
differentially expressed cancer driver pathways via shared miRNA
interactions (Supplementary Data 2). Via miRNet, we found that
77 miRNA have known interactions both with genes in the four
cancer driver pathways, and with 11 of the differentially expressed
lncRNA (11 lncRNA: LBX2-AS1, CERS6-AS1, DLGAP1-AS1,
H19, IQCH-AS1, LINC00240, LINC00665, LINC00707,
LINC00847, LINC00622, LIMD1-AS1). With the exception of
LINC00707, 10 of the 11 lncRNA are significantly underexpressed
in CCLE (Fig. 3b, c). We hypothesized that the reduced cell-line
expression of these lncRNA may be associated with
expression changes in the downstream miRNA regulatory
network, which in turn may be associated with aberrant
expression of the four cancer driver pathways being controlled
by the miRNA network.

In order to investigate this hypothesis, we leveraged publicly
available miRNA sequencing (miRNAseq) data from CCLE and
TCGA. We used the ComBat method to correct for experimental
batch effects (see “Methods” and Supplementary Fig. 5)29. Sixty-
nine of the 77 miRNA were quantified in both miRNAseq
datasets, so we used these miRNA for all downstream

analyses (Supplementary Data 4, Tab 1). We calculated the
log fold change (LFC) in expression between CCLE and TCGA
for these 69 miRNA. Notably, over half of the miRNA (n= 43)
are more highly expressed in cell lines than tumors. Cytoscape
was used to visualize the lncRNA-miRNA-coding gene network
colored by gene type or by LFC (Fig. 4a, b and Supplementary
Data 4, Tab 2)30.

In keeping with the lncRNA “sponge” regulatory model, the
lncRNA are underexpressed in cancer cell lines, which could
be involved with the observed overexpression of a majority of the
miRNA whose expression is known to be kept in check by these
lncRNA. The aberrant overexpression of inhibitory miRNA could
explain the observed underexpression of key genes in four
important cancer driver pathways in cancer cell lines. Consistent
with this idea, we noted several miRNA with higher expression in
cell lines that are known to play roles in regulation of the four
cancer driver pathways. mir-497, mir-195, mir-148a, and mir-152
directly inhibit genes in the KRAS/RAF/MEK/ERK pathway31,32.
The TP53 pathway is repressed by mir-339, and the TP53-
associated gene TP53INP1 is regulated by mir-9233,34. mir-519d
directly represses STAT3, a key gene in the IL2/STAT5 signaling
pathway35. The NFKB pathway is activated by mir-301a, which
has lower expression in cell lines compared to tumors, in keeping
with lower NFKB activity in cell lines36.

Because lncRNA and miRNA are known for cell-type-specific
expression, we hypothesized that the observed dysregulation of
lncRNA-miRNA expression networks is caused by biological
selection for a subset of cancer cells which are more likely to
survive the cell-line derivation process and thrive in a cell culture
setting. Consistent with this hypothesis, both stem cell and
epithelial cell-specific lncRNA and miRNA display reduced

Fig. 3 Long non-coding RNA associated with four cancer driver pathways are significantly underexpressed in cancer cell lines. a In the “sponge” model
of lncRNA gene expression regulation, lncRNA competitively inhibit miRNA which would otherwise be responsible for inhibiting mRNA. b Heatmap
showing expression of 11 lncRNAs with miRNA-dependent associations to protein-coding genes in the four cancer driver pathways. The samples shown are
a random subset with equal representation from each dataset in each disease. c Boxplots showing expression of the 11 lncRNA associated with four cancer
driver pathways. All samples from both datasets are shown. (Two-sided Mann–Whitney significance test; *P value < 0.05, **P value < 0.01, ***P
value < 0.001).
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expression in cancer cell lines. Specifically, CCLE samples have
reduced expression of H19, a lncRNA strongly associated with the
cancer stem cell state37, but show increased expression of mir-1
and mir-206, which promote cellular differentiation by blocking
anti-differentiation signaling targets38,39. In addition, CCLE
samples show reduced expression of CERS6-AS1, IQCH-AS1,
and LINC00240, lncRNA implicated in mediating tight junctions
or extracellular matrix interactions, which are features of
epithelial and endothelial cells40–43. At the same time, CCLE
samples have comparatively high expression of mir-9, which
directly represses E-cadherin, a well-known epithelial marker44.
E-cadherin repression is known to induce the epithelial-
mesenchymal-transition, a process which plays a role in cancer
progression from an epithelial state to a motile and invasive
metastatic state45. CCLE samples display reduced expression of E-
cadherin/CDH1, and higher expression of mesenchymal markers,
including N-cadherin/CDH2, MUC1, and claudins CLDN1,
CLDN2, CLDN346 (Supplementary Fig. 6).

The observed reduced epithelial and stem cell expression in
cancer cell lines suggests that cancer cell culture conditions select
for the subset of cancer cells with a mesenchymal, invasive and
metastatic phenotype. Overall, these results indicate that selection
against specific cancer cell types in tumor-derived cell lines may
cause global downregulation of key cell-type-specific lncRNA,
potentially allowing overexpression of a variety of miRNA, many
of which play important roles in regulating cancer signaling
pathways. However, more work is needed to fully investigate this
hypothesis.

In light of recent research identifying a panel of 110 CCLE cell
lines with the highest correlation to their primary tumor samples,
the TCGA-110-CL7, we examined whether these cell lines show
more representative expression of the 4 cancer driver pathways.
We repeated the SVM after subsetting the CCLE dataset to the
TCGA-110-CL and the TCGA dataset to the tumor types in
the TCGA-110-CL (Supplementary Data 1, Tab 6). Interestingly,
the same four cancer driver pathways were again identified as
differentially expressed (Supplementary Fig. 7). However, several
metabolic, cellular response and developmental pathways that
were identified in the original analysis were not identified here,
including Hedgehog signaling, apical junction, and fatty acid
metabolism (Supplementary Data 1, Tab 3). Overall, these results
indicate that while the TCGA-110-CL cell-line panel is indeed
more representative of its primary tumors by overall gene
expression, our pathway-level examination reveals that caution
must still be used when interpreting results involving targeting
these four cancer driver pathways. This result is consistent with
our hypothesis that the dysregulation of cancer driver signaling is
driven by a loss of cellular heterogeneity overall in cancer
cell lines.

Single-cell RNA-seq analysis of hepatocellular carcinoma cell
lines and tumor samples highlights that the differences in the
expression of key cancer pathways are tumor-specific. In order
to further investigate the hypothesis that our results are driven by
the selection of a specific malignant cell type in cancer cell line
derivation, we leveraged previously published single-cell RNA
sequencing (scRNAseq) data from hepatocellular carcinoma
(HCC) cell lines and patient samples. Within the scRNAseq
patient tumor data, we differentiated the malignant cells from the
normal cell infiltrate (e.g., immune and stromal cells; Supple-
mentary Data 3, Tab 1), in order to assess the impact of tumor
purity on the observed cancer driver pathway dysregulation.

We used publicly available scRNAseq data from HCC cell lines
HuH1 and HuH747 and from seven samples biopsied from two
different HCC patients48. We assigned cell types based on the

expression of published gene markers (Fig. 5a and Supplementary
Data 3, Tab 1).

To see whether we could recapitulate the findings of our bulk
RNA sequencing data analysis, we performed differential expres-
sion analysis between the cell line and tumor-cell populations.
GSEA of the top 100 genes identified the KRAS, TP53, TNFA via
NFKB, and IL6/STAT3 signaling pathways as enriched in genes
differentially expressed in HCC tumor cells (P value < 0.05), very
similar to the bulk RNA sequencing analysis (Fig. 5b).

We then removed the non-malignant cells from the HCC
tumor data and repeated the differential expression analysis and
GSEA (Fig. 5c and Supplementary Data 3, Tab 2). We observed
that the P53 Pathway and TNFA signaling via NFKB remained
significantly enriched with P value < 0.05, whereas the KRAS
signaling and IL6/STAT3 signaling pathways were only signifi-
cantly enriched with a less stringent P value < 0.1. These results
indicate that the observed overexpression of the TNFA signaling
via NFKB and P53 Pathway in bulk RNA sequencing data from
tumor samples is likely not related to tumor purity, whereas the
observed KRAS signaling and IL2/STAT5 signaling overexpres-
sion may be in part attributable to lower tumor purity. We were
unable to investigate the observed lncRNA and miRNA
expression dysregulation due to the low sequencing depth of
single-cell RNA sequencing data and low overall expression of
non-coding RNA.

Finally, we leveraged the HCC scRNAseq data to investigate
our hypothesis that cancer cell culture conditions select for the
subset of cancer cells with a mesenchymal, invasive, and
metastatic phenotype. We evaluated three well-known molecular
subtypes of HCC tumors: S1 subtype is invasive and characterized
by poor survival; S2 subtype tumors are larger, with poor survival;
and S3 subtype is lower grade, with overall better survival49.
These three subtypes are all represented in the seven scRNAseq
HCC patient samples48.

We wanted to see whether these three subtypes were also
fully represented in the HCC cell-line data. We evaluated the
expression of gene signatures associated with each subtype in
the HCC cell line and malignant tumor cells, and observed
higher overall expression of the S1 signature in cell lines, with
higher expression of S2 and S3 signatures in the tumor samples
(Fig. 5d). The enrichment of each signature in the top 100
differentially expressed genes in each sample is shown in Fig. 5e
(Supplementary Data 3, Tab 2). The HCC cell-line population is
only enriched for the most invasive, metastatic subtype S1,
while the HCC tumor cells display variable enrichment for each
subtype. These results are consistent with our hypothesis that
cancer cell culture conditions select for the most invasive cell
subtypes.

A limitation of the HCC analysis is that cancer and cell-line
samples were not matched from the same patients. Therefore, we
performed the same analysis using two sets of matched brain
tumor and cell-line samples (melanoma brain metastases;
Supplementary Figs. 8 and 9, respectively). We again observe
enrichment of the same four cancer driver pathways, with the
exception of the KRAS signaling pathway in the first analysis.

Discussion
The ability to model and manipulate cancer cells has empowered
therapeutic discovery since the derivation of the first cancer cell
line50. Two-dimensional cancer cell cultures have enabled
researchers to discover how cancers arise, characterize cancer cell
types and growth patterns, and identify effective pharmaceuticals
through drug screens1. Today, personalized tumor-derived 2D
and 3D cultures are increasingly in use for the identification of
precision therapies for individual patients51–53. The rise of
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Fig. 4 Dysregulation of lncRNA-miRNA regulatory network causes downregulation of key cancer driver pathways in tumor-derived cell lines. a Types
of genes are identified by color and positioning in the Cytoscape graph. Gene interactions from miRNet databases are denoted by gray lines. lncRNA are on
the left, miRNA in the center, and differentially expressed protein-coding genes from each of the four cancer driver pathways are on the right side of the
graph. b Positive LFC (purple) denotes higher expression in CCLE. Negative LFC (green) denotes higher expression in TCGA.
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precision medicine and small-molecule inhibitor development
brings an urgent need for molecular characterization of the cell
culture models used widely for therapeutic development. Large-
scale genomic efforts such as The Cancer Genome Atlas (TCGA)
and the Cancer Cell Line Encyclopedia (CCLE) have enabled
comprehensive comparison of cancer cell cultures and primary
tumors.

Here, we provide a comparative multi-omic analysis of cancer
cell lines and primary tumors by leveraging several types of
genomic data from large public compendia. Our gene expression
analysis reveals reduced expression of key cancer driver pathways,
including KRAS signaling, TP53 pathway, IL2/STAT5 signaling,
and NFKB signaling in cancer cell lines. These results are reca-
pitulated in a comparative analysis of protein levels for key
proteins from each pathway. Our analysis indicates the need for
caution when interpreting in vitro preclinical testing results of
inhibitors targeting these pathways.

In fact, the consequences of preclinical testing in cell lines
against these pathways have already been felt. For example,
during preclinical testing several MDM2/TP53 small-molecule
inhibitors displayed potent cancer cell-line inhibitory activity, but

could only achieve partial tumor regression in xenograft
models54. Subsequent optimization of these compounds led to
success in clinical trials, but initial results in cell lines did not
predict in vivo results. Targeting both wild-type and mutant
KRAS in cancer has been notably unsuccessful; in particular,
several high-throughput screens of KRAS-mutant cancer cell lines
identified compounds which subsequently only partially reduced
tumor volumes in xenograft models55,56. In contrast, targeting the
cholesterol biosynthesis pathway, which is not differentially
expressed in cancer cell lines by our analysis, has been promising
both in vitro and in vivo through the usage of the statin family of
drugs57,58. In addition, targeted inhibition of cyclin-dependent
kinases (CDKs) by agents such as PD-0332991/palbociclib has
been promising in phase I and II clinical trials, and this drug was
originally identified in cancer cell lines59,60. CDKs are active
during cell cycle entry from G0 and during the G2M checkpoint
pathway, which were not differentially expressed in cancer cell
lines by our analysis. We note that apart from the four cancer
driver pathways identified as dysregulated in cell lines, preclinical
testing in cell lines can in many cases reliably predict in vivo
responses.

Fig. 5 Single-cell RNA sequencing analysis of hepatocellular carcinoma tumor samples and cell lines. a Single-cell RNA sequencing data clustering of
hepatocellular carcinoma (HCC) cell line and tumor cells. b Gene set enrichment analysis of genes differentially overexpressed in all HCC tumor cells
compared to HCC cell-line cells (P value < 0.05). c Gene set enrichment analysis of genes differentially overexpressed in only malignant HCC tumor cells
compared to HCC cell-line cells (P value < 0.1, red line denotes P value < 0.05 cutoff). d Heatmap showing relative expression of genes from HCC
molecular subtype gene signatures, in HCC cell line and tumor single-cell samples. e Heatmap showing −log10 P values for enrichment of differentially
expressed genes in each HCC sample overlapping with the gene signatures for each HCC molecular subtype.
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To identify potential causes of dysregulation of cancer driver
signaling in cell lines, we analyzed the expression of lncRNA and
miRNA implicated in regulation of these pathways. In cell lines,
we found reduced expression of a set of lncRNA predicted to
regulate a downstream network of regulatory miRNA, which are
in turn overexpressed. Several of these miRNA are directly
involved in specific inhibition of these cancer driver pathways,
linking their overexpression to the observed reduced expression
of cancer driver pathways.

We speculate that our results may indicate a partial loss of
cancer stem cells in cancer cell culture due to the presence of
serum in culture media. All CCLE cell lines were cultured in
RPMI or DMEM media with 10% fetal bovine serum61. It is well
known that the presence of serum in culture media encourages
cellular differentiation, and cancer cell lines grown in serum-free
conditions contain larger populations of cancer stem cells62,63.
This hypothesis is supported by the markedly lower expression of
stem cell-specific lncRNA in cell culture, and higher expression of
pro-differentiation miRNA. Because cancer stem cell populations
are known for their chemoresistance, and even small populations
are thought to be capable of tumor recurrence64–66, it is essential
that preclinical models accurately model the response of cancer
stem cells to potential therapeutics.

A recent study by Yu et al. also included a pan-cancer analysis
of TCGA and CCLE data, finding that tumor type is not a large
factor in overall tumor-cell-line correlation, but that some cell
lines are poor models of their primary tumor type and tumor
purity plays a large part in tumor-cell-line correlations7. Our
study provides additional information by identifying the set of
genes which accounts for the highest variation between human
tumors and cell culture models, and by identifying specific,
clinically important cancer driver pathways which are poorly
recapitulated in cancer cell culture models. Additionally, our
finding of global cancer driver pathway dysregulation in cell lines
may help to explain biologically the previous study’s finding of
low correlation between some tumors and cell lines. We inves-
tigated the TCGA-110-CL cancer cell-line panel identified in the
previous study, which has a higher overall cell-line-tumor gene
expression correlation. The same four cancer driver pathways
were identified by an SVM comparing these cell lines to disease-
matched primary tumors, and in particular, the KRAS pathway
had the lowest overall cell-line-tumor correlation. This indicates
that even this subset of cancer cell lines does not fully recapitulate
the cancer driver signaling of primary tumors, and studies on
these pathways must be interpreted with caution.

In light of this finding that tumor purity impacts the correlation
between tumor and cell line7, we sought to assess the impact of
tumor purity on our cancer driver pathway dysregulation findings
by leveraging single-cell RNA sequencing data from HCC patients
and cell lines. The TP53 and NFKB pathways remained sig-
nificantly enriched in HCC tumor cells compared to cell lines when
normal infiltrating cells were removed from the tumor-cell popu-
lation, while the KRAS and IL6/STAT3 pathways were only sig-
nificantly enriched with a less stringent statistical cutoff. These
results indicate that the KRAS and IL2/STAT5 findings from the
TCGA-CCLE gene expression comparison may be partially due to
lower tumor purity. Moreover, this analysis indicates that normal
cell infiltrate contributes a molecular signature to bulk gene
expression data and highlights the utility of single-cell data. Finally,
we found that the HCC cell lines most closely resemble the most
invasive and metastatic HCC subtype, unlike the HCC tumor cells
which resemble all three HCC subtypes, consistent with our
hypothesis that cancer cell culture selects for the most invasive
malignant cells. We saw similar results in an analysis of matched
melanoma brain metastasis cell lines and tumors. A caveat of this
analysis is that it focuses on only two types of solid tumor; a

broader investigation of single-cell RNA sequencing data in this
context frommultiple tumor types and cell lines will be informative
when those data become available.

Taken together, our results underscore the need for caution
when interpreting preclinical cancer testing results in multiple
model types, and point to specific signaling networks which can
serve as litmus tests for the accuracy of past and future cancer
laboratory models. We suggest several potential solutions to
improve the efficacy of tumor-derived cell lines. Cancer cell
culture in serum-free conditions may improve the maintenance of
tumor stem cell populations and reverse the dysregulation of
important regulatory gene networks. Specific efforts to model the
immune microenvironment in cancer-derived organoids may
improve cancer driver pathway expression related to the tumor
microenvironment. A potential solution may be genetic manip-
ulation of tumor-derived models with an emphasis on preserving
or rescuing the intrinsic cancer driver pathway expression which
is most at risk for dysregulation. Overall, this study provides
much-needed genomics-based considerations for future pre-
clinical cancer model development and result interpretation.

Methods
RNA sequencing data. Gene expression transcripts per million (TPM) matrices
from TCGA (n samples= 10,535) and CCLE (n samples= 933) were downloaded
from the UCSC Xena browser. These data were processed uniformly through the
TOIL UCSC RNA sequencing data processing pipeline (TCGA on v2.0.8; CCLE
on v3.3.4) to remove technical batch effects67. Both datasets were normalized by
log2(TPM+ 1) and duplicate genes were averaged. Genes not expressed in 80% of
samples were removed, and 20% of the lowest varying remaining genes were
removed, leaving 46865 remaining genes. Both datasets were subset to the 19
overlapping cancer types for subsequent analysis (BRCA, LUSC, LIHC, DLBC,
THCA, PRAD, OV, STAD, BLCA, KIRC, UCEC, COAD, SARC, CESC, SKCM,
PAAD, HNSC, ESCA, GBM). All heatmaps use a random subset of samples from
each dataset with equal numbers from each disease. The random subset method is
used because the CCLE data holds approximately 1/10 the number of samples as
the TCGA data, making it impossible to visually detect gene expression differences
in heatmaps containing all samples from both datasets.

Mutation data. TCGA somatic mutation data were downloaded from UCSC Xena
(xena.ucsc.edu). CCLE somatic mutation data were downloaded from the Broad
Institute CCLE Database (portals.broadinstitute.org/ccle/data).

micro-RNA sequencing data. TCGA micro-RNA (miRNA) Illumina sequencing
read counts data were downloaded from the Genomic Data Commons Data
Portal68. CCLE Nanostring probe miRNA quantification data were downloaded
from the Broad Institute CCLE database: https://portals.broadinstitute.org/ccle/
data69. For dataset comparability, miRNA naming formats were harmonized, and
duplicates were averaged. Because different miRNA sequencing methods were used
in each dataset, ComBat was used to batch-correct the data29. Pre- and post-batch
effect correction data were then log2(count+ 1) normalized for downstream
visualization and analysis. Supplementary Fig. 5 shows pre- and post-batch effect
correction expression distributions of several housekeeping genes to validate suc-
cessful correction70,71.

RPPA data. Level 4 Reverse Phase Protein Array (RPPA) data for the TCGA and
CCLE samples were downloaded from the The Cancer Proteome Atlas (TCPA)
portal (https://tcpaportal.org/tcpa/download.html and http://tcpaportal.org/
mclp/#/download). Both datasets were subset to the 16 overlapping cancer types for
subsequent analysis (BLCA, BRCA, COAD, DLBC, HNSC, KIRC, LGG, LIHC,
LUAD, OV, PAAD, PRAD, SARC, SKCM, STAD).

Single-cell RNA sequencing data. Hepatocellular carcinoma (HCC) circulating
tumor cell and cell line 10x Genomics single-cell RNA sequencing datasets were
downloaded from the Gene Expression Omnibus (accession GSE103867). The cell-
line cells were selected based on the expression of ALDH1A1, based on the original
study findings (see Fig. 4, Zheng et al.23). HCC tumor 10x Genomics single-cell
RNA sequencing datasets from seven samples from two patients were downloaded
from the Gene Expression Omnibus (accession GSE112271). All single-cell gene
expression data analysis was performed using scanpy (v1.6.7) in Python (v3.6.8).
The datasets were combined, and cells expressing >5000 genes and/or >30 mito-
chondrial genes were excluded, leaving 52,630 cells. Leiden clustering was per-
formed using the top 40 Principal Components, cell types assigned based on cell-
type markers (Supplementary Data 3, Tab 1), and the top 100 upregulated genes in
the primary tumors were derived by a Wilcoxon rank-sum test. Primary patient-
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derived melanoma brain metastasis tissue (CI0000035650 and CI0000035270) were
obtained from the UAMS Tissue Biorepository and Procurement Core within a few
hours of surgical removal where tumors were cultured and bio-banked. Consent
was obtained from all patients prior to surgery (IRB# 228443). A board-certified
neuropathologist confirmed all tumor histopathological diagnoses. Tumors were
harvested intraoperatively with myriad device which mechanically dissociates the
tumor (NICO corporation, Indianapolis, IN, USA). Tumor specimens were then
digested with collagenase solution. Cells were then prepared for single-cell
sequencing using the 10x Genomics platform (10x Genomics, Pleasanton, CA,
USA) as previously described72. The remaining cells, following digestion, were
cultured in Roswell Park Memorial Institute culture medium (RPMI) containing
10% fetal bovine serum (FBS) and 1% (v/v) antibiotic/antimitotic. Early passage
cells (<P3) were grown to confluency and then harvested for single-cell RNA
sequencing analysis as described above.

Statistical gene selection via support vector machine. In Python (v3.6.8), the
sklearn module (v0.21.2) was used with linear kernel to train a support vector
machine (SVM) on 50 random 80/20 splits of the merged TCGA-CCLE gene
expression dataset, in which 50 different training sets (and corresponding test sets)
were resampled from the same data. The top 10% of genes from each training run
based on the magnitude of their feature weights coefficients were merged in a non-
duplicate manner, to account for variation in prediction results based on the
training and corresponding test set, resulting in 1858 genes. Gene set enrichment
from this analysis revealed 26/100 enriched pathways were immune-related, so a
non-redundant immune gene list was created by merging all genes from the 26
enriched immune pathways (Supplementary Data 1, Tab 1). A second SVM ana-
lysis was conducted on a set of 50 random 80/20 splits of the merged TCGA-CCLE
gene expression dataset with the immune-related gene list removed, and the top
10% of genes from each run based on feature importance coefficients were merged,
resulting in 1854 genes which were used in all downstream analysis. We verified
that the cancer driver pathway signal identified in the second SVM analysis is not
related to immune signaling by calculating pairwise correlation between SVM-
identified cancer driver genes and the immune genes which were removed from the
analysis (mean= 0.1, Supplementary Fig. 1).

Statistics and reproducibility. Expression comparisons of individual genes between
datasets were performed using a two-sided Mann-Whitney significance test with
significance defined as P value < 0.05. Significantly enriched gene sets were identified
using gene set enrichment analysis11 with FDR q-value < 0.05. For bulk RNA-seq,
heatmaps are generated using seaborn clustermap method in Python with z-scores
calculated per gene. For single-cell RNA-seq, heatmaps are generated using scanpy
heatmap method in Python with values scaled between 0 and 1. Figures were pro-
duced using pandas v0.25.3, matplotlib v3.0.3, and seaborn v0.9.0 in Python v3.6.8.
Numerical data used to generate figures are available here: https://drive.google.com/
drive/u/1/folders/16pqRgDIxS0Wj_H9rIwyjB11a0IE6TAXH All data were used for
each figure, except when otherwise indicated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The TCGA and CCLE processed gene expression data are publicly available at UCSC
Xena (xena.ucsc.edu). The processed micro-RNA sequencing data are publicly available
at the Genomic Data Commons and the Broad Institute CCLE database
(portals.broadinstitute.org/ccle/data). The protein quantification data are publicly
available at the The Cancer Proteome Atlas (TCPA) portal (tcpaportal.org/tcpa/
download.html and tcpaportal.org/mclp/#/download). The mutation data are publicly
available at UCSC Xena and the Broad Institute CCLE database. The hepatocellular
carcinoma single-cell RNA sequencing data are publicly available at the following
accessions: GSE103867 and GSE112271. The brain tumor single-cell RNA sequencing
data are publicly available at the following Gene Expression Omnibus accession:
GSE213519.
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