
ARTICLE

Decoding the transcriptome of calcified
atherosclerotic plaque at single-cell resolution
Tom Alsaigh1,2,3,6, Doug Evans1,4, David Frankel5 & Ali Torkamani 1,4✉

Atherogenesis involves an interplay of inflammation, tissue remodeling and cellular trans-

differentiation (CTD), making it especially difficult to precisely delineate its pathophysiology.

Here we use single-cell RNA sequencing and systems-biology approaches to analyze the

transcriptional profiles of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs)

in calcified atherosclerotic core (AC) plaques and patient-matched proximal adjacent (PA)

portions of carotid artery tissue from patients undergoing carotid endarterectomy. Our

results reveal an anatomic distinction whereby PA cells express inflammatory mediators,

while cells expressing matrix-secreting genes occupy a majority of the AC region. Systems

biology analysis indicates that inflammation in PA ECs and VSMCs may be driven by TNFa

signaling. Furthermore, we identify POSTN, SPP1 and IBSP in AC VSMCs, and ITLN1, SCX and

S100A4 in AC ECs as possible candidate drivers of CTD in the atherosclerotic core. These

results establish an anatomic framework for atherogenesis which forms the basis for

exploration of a site-specific strategy for disruption of disease progression.
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The pathophysiology of atherosclerosis is exceptionally
complex and involves inflammation1, cellular
transdifferentiation2,3, and dynamic interactions between a

variety of cell types within the vascular wall4,5. For example, the
phenotypic landscape of VSMCs is understood to be quite
dynamic as these cells often participate in phenotype switching6

and contribute to the development of extracellular matrix pro-
ducing cells in atherosclerosis4. Many of these pathogenic pro-
cesses are mediated through molecular crosstalk between
VSMCs7, however, disease progression in general involves coor-
dinated genomic and molecular communication between the
plethora of immune cell subtypes and other cellular components
of the arterial wall8,9.

Evidence from genome-wide association studies (GWAS) sug-
gests a plurality of genetic drivers of atherosclerosis acting through
tissue-specific regulation10, underscoring the importance of unco-
vering cell-type specific genetic drivers of disease in order to expose
therapeutic opportunities. Efforts made using microarrays to
evaluate gene expression changes in patients with carotid artery
plaque have yielded important information11, however, these bulk
sequencing studies obscure the diverse plaque environment by
assessing complete transcriptome profiles without distinction
between predominant cell types contributing to gene expression.

More recent studies have advanced our understanding of the
rich cellular heterogeneity within the plaque environment
through single-cell transcriptomics approaches. For example, in
murine atherosclerotic aortas three distinct macrophage subsets
were identified, including inflammatory, Res-like, and TREM2hi
macrophages12, enhancing our understanding of macrophage
diversity within plaque. A predominance of T-cells in human
carotid plaque lesions has been shown, enriching our under-
standing of CD4 and CD8 subpopulations in atherosclerosis13. In
addition, immunophenotyping in carotid atherosclerosis revealed
fundamental differences between T-cells and macrophages from
symptomatic versus asymptomatic patients, including expansion
of the CD4+ T-cell subset and macrophages with varied phe-
notypes in symptomatic patients14. Smooth muscle cell lineage
tracing in concert with scRNAseq has identified TCF21 as
involved in a trajectory of phenotypic modulation whereby a
group of contractile smooth muscle cells shift gene expression to
comprise a distinct population of fibromyocytes15, raising the
exciting possibility that other genes may also influence pheno-
typic modulation in atherosclerosis. Phenotypic plasticity in
advanced human atherosclerotic lesions has recently been shown
to be modulated by stem cell pluripotency genes (KLF4 and
OCT4), regulating cellular transitions to phenotypically diverse
matrix-secreting cells such as osteogenic and chondrocyte-like
cells16. These studies all highlight critical mechanisms involved
with disease progression, however, no prior study has simulta-
neously performed single-cell analysis across the entire athero-
sclerotic plaque and proximal vascular wall within the same
patient without cell selection in mouse or human tissue.

Here we developed a strategy to allow for single-cell RNA
sequencing (scRNAseq) of atherosclerotic core (AC) plaques and
patient-matched proximal adjacent (PA) portions of the carotid
artery in their entirety, without preference for cell type, providing an
unbiased view of the disease transcriptome. This sample pairing and
preparation strategy, in concert with systems biology approaches, has
allowed us to describe the transcriptome and identify possible key
transcriptional drivers of disease processes in the vascular wall which
may lay the groundwork for future therapeutic opportunities.

Results
Tissue source and processing. Paired sections of tissue, including
both artery and plaque, were recovered from the atherosclerotic

core (AC) and proximally adjacent (PA) region of three patients
with asymptomatic type VII calcified plaques who underwent
carotid endarterectomy (Fig. S1a, Table S1). Due to the rich
cellular composition of carotid artery and plethora of debris in
plaque (i.e., lipid, fibrinogen, etc.), dissociation and generation of
single-cell suspensions amenable to single-cell RNA sequencing
were difficult. After tissue collection, enzymatic digestion, RBC
lysis, and filtration were the initial steps required to generate
single cells (see “Methods” and Fig. S1b). However, despite effi-
cient enzymatic dissociation and significant filtering of our
sample, we were still challenged by abundant plaque debris,
which ultimately resulted in poor single-cell capture rates. In
order to overcome this issue without isolating specific cell types
through cell-marker antibody labeling, we devised a strategy to
label all cells in the sample with a far-red excitation-emission live/
dead cell nuclear stain (DRAQ5). All cells in the sample were
stained, with debris being left unstained by the dye. Previous
studies have used nuclear staining in library preparation and
sequencing experiments to discriminate single versus doublet cells
during cell sorting without adverse effects for downstream
applications such as single-cell and bulk RNA sequencing17–20.
Subsequently, DRAQ5+ cells were manually gated and sorted
from the remainder of the debris using FACS. Cells isolated from
the entire filtered sample represented <1% of the total particles in
the sample (Figs. S2a–S2f). Viability of remaining cells was
assessed and was always >80% using this technique for cell
separation (see “Methods”). The cells were then processed for
single-cell sequencing.

Cell-type detection and assignment. The analytical approach in
this manuscript is depicted in Fig. 1a. Generation of single cells
from three patient-matched AC and PA samples (batched per
patient on a single NextSeq flow cell) yielded 51,981 cells total,
with an average of ~13,000 AC cells/patient and ~5000 PA cells/
patient. Cell number disparities are due to the difference in size of
the AC vs PA tissue itself. Given the abundance of AC versus PA
cells, down-sampling was performed to equalize the contribution
of each sample and condition to the unsupervised discovery of
cell types and to mitigate bias due to class imbalance. UMAP-
based clustering (see “Methods”) of this down-sampled dataset
reveals 15 distinct cell partitions (Fig. S1c, d), representing 17,100
cells total. In order to assign partitions to major cell types we
examined genes expressed in >80% of cells per partition and at a
mean expression count >2. A dotplot representing three marker
genes selected for each partition is presented in (Fig. S1e). A
comparison of VSMC marker genes used in our study with those
in the literature15 is provided (Fig. S1f). Cell-type labels assigned
to these 15 initial partitions based on these marker genes include:
T-lymphocytes (2 partitions), macrophages, VSMCs (2 parti-
tions), ECs (2 partitions), B-lymphocytes, natural killer T-cells,
B1-lymphocytes, mast cells, lymphoid progenitors, plasmacy-
toid dendritic cells, and an unidentified partition (Table S2).
Following doublet filtering using a marker-gene exclusion
method (see Supplemental Methods), removal of partitions with
too few cells for differential gene expression analysis (mast cells,
lymphoid progenitors, plasmacytoid dendritic cells, and the
unidentified partition), and merging of partitions assigned to
the same cell-type, we assessed differential gene expression
between AC and PA regions across the 6 remaining major cell
types: macrophages, ECs, VSMCs, NKT cells, T- and
B-lymphocytes (Fig. 1b–d, Fig. S4, Supplementary Data 1–6).
We performed a number of independent partitioning experi-
ments using various algorithmic variations to confirm the
reproducibility of these partitions and cell-label assignments
(see Supplemental Methods).
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Fig. 1 Data processing produces 6 main cell group partitions. a Schematic diagram of analytical steps from tissue dissociation to key driver analysis.
b, c UMAP visualization of 6 major cell types following doublet removal via gene exclusion criteria (see Supplemental Methods), separated by anatomic
location (b), and by cell type (c). d Dotplot depicting cell-type marker genes, resulting in the identification of macrophages, ECs, VSMCs, NKT cells, T- and
B-Lymphocytes. Dot size depicts the fraction of cells expressing a gene. Dot color depicts the degree of expression of each gene. n= 3 for PA and AC
groups.
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Differential gene expression—VSMC and EC. GWAS results
have highlighted biological processes in the vessel wall as key
drivers of coronary artery disease (CAD)21. Our prior work has
demonstrated the vascular wall to be involved in the most
impactful common genetic risk factor for CAD22. Our results
here also demonstrate extensive differential expression in these
cell types across anatomic locations compared to the remaining
cell types. Therefore, we chose to focus our efforts on dissecting
expression alterations in VSMCs and ECs in order to illuminate
pathogenic genomic signatures within these cell-types. As above,
each cell type is compared across anatomic location (Fig. 2a, e),
and the top differentially expressed genes are shown (Fig. 3b, f),
revealing interesting spatial and expression magnitude differences
between AC and PA cells.

VSMCs generate three subclusters in the UMAP plot. A large
fraction of PA VSMCs form a PA-specific VSMC subcluster. In
contrast, AC VSMCs form 2 separate clusters both of which are
intermingled with PA VSMCs. This suggests VSMCs occupy
three major cell states, including one completely distinct PA
subtype, and two that are predominantly AC VSMCs (Fig. 2a).
The top four upregulated genes in the AC are sparsely expressed
and include SPP1, SFRP5, IBSP, and CRTAC1 (Fig. 2b, c), while
APOD, PLA2G2A, C3, and MFAP5 are upregulated in many PA
VSMCs (Fig. 2b, d).

The spatial clustering of upregulated genes in AC VSMCs
suggests the presence of separate subpopulations of matrix-
secreting VSMCs involved with ECM remodeling (Fig. 2c).
SPP1 (osteopontin) is a secreted glycoprotein involved in bone
remodeling23 and has been implicated in atherosclerosis for
inhibiting vascular calcification and inflammation in the plaque
milieu24. IBSP (bone sialoprotein) is a significant component of
bone, cartilage, and other mineralized tissues25. CRTAC1 is a
marker to distinguish chondrocytes from osteoblasts and other
mesenchymal stem cells26,27. These findings suggest the
presence of cartilaginous and osseous matrix-secreting VSMCs
in the AC region. SFRP5, an adipokine that is a direct WNT
antagonist, reduces the secretion of inflammatory factors28 and
is thought to exert favorable effects on the development of
atherosclerosis29. The high expression of SFRP5 in the AC
suggests a deceleration of these inflammatory processes in the
core of the plaque, and an overall shift in the AC to calcification
and matrix remodeling.

Conversely, the upregulated genes in PA VSMCs are more
ubiquitously expressed by VSMCs in a PA-specific region of the
UMAP plot (Fig. 2d). C3 is highly differentially expressed in
many PA cells (Fig. 2d). Complement activation has long been
appreciated for its role in atherosclerosis30, with maturation of
plaque shown to be dependent, in part, on C3 opsonization for
macrophage recruitment and stimulation of antibody responses31.
Its predominance in our PA samples suggests complement
activation in atherosclerosis is anatomically driven by VSMCs
located adjacent to areas of maximal plaque build-up. PLA2G2A
(phospholipase A2 group IIA), also selectively expressed by this
group of cells, is pro-atherogenic, modulates LDL oxidation and
cellular oxidative stress, and promotes inflammatory cytokine
secretion32, further facilitating the inflammatory properties of this
group of VSMCs. Full differential expression results for VSMCs
are provided (Supplementary Data 5).

Overall, we identify increased calcification and ECM remodel-
ing by VSMCs in the AC versus pro-inflammatory signaling by
VSMCs in the PA. These differences in biological processes are
strongly supported further in the systems analyses below.

In contrast to VSMCs, for ECs we observe a more complete
separation of cells into two distinct subgroups (Fig. 2e). PA ECs
significantly outnumber the AC ECs (2316 vs 448 cells,
respectively), possibly due to intimal erosion and loss of

endothelial cell layer integrity during advanced disease5,33–35

resulting in fewer captured ECs in the AC. Cellular transdiffer-
entiation may also cause a subpopulation of ECs to lose common
EC marker expression, resulting in lower numbers of ECs
identified in AC compared to the PA counterpart. Histologic
assessment of AC plaque collected from our patients supports the
assertion of endothelial layer attenuation as the principal reason
for lower AC EC capture (Fig. S3b, c). In contrast to VSMCs,
there is a skew toward higher magnitude expression changes in
AC ECs vs PA ECs. The top four upregulated genes are ITLN1,
DKK2, F5, and FN1 in the AC and IL6, MLPH, HLA-DQA1, and
ACKR1 in PA ECs (Fig. 2g, h).

The upregulated genes in AC ECs again suggest a synthetic
profile. ITLN (omentin) is an adipokine enhancing insulin-
sensitivity in adipocytes36. Interestingly, circulating plasma
omentin levels were shown to negatively correlate with carotid
intima-media thickness37, inhibit TNF-induced vascular inflam-
mation in human ECs38, and promote revascularization39,
suggesting an anti-inflammatory and intimal repair role in AC
ECs. DKK2 further indicates intimal repair as it stimulates
angiogenesis in ECs40. The significant upregulation of FN1
(fibronectin) in this group further suggests active ECM remodel-
ing and may serve as a marker for mesenchymal cells and EMT-
related processes41.

Similarly to PA VSMCs, the upregulated genes in PA ECs
suggest an overall inflammatory profile. Central players in
inflammation and antigen presentation are upregulated specifi-
cally in PA ECs (Fig. 2h). IL6, a key inflammatory cytokine
associated with plaque42, is the most upregulated gene.
Furthermore, ACKR1, highly upregulated in many PA ECs, binds
and internalizes numerous chemokines and facilitates their
presentation on the cell surface in order to boost leukocyte
recruitment and augment inflammation43. Antigen presentation
on ECs via HLA-DQA1 (MHC class II molecule) may support
activation and exhaustion of CD4+ T-cells44,45 as previously
described. Full differential expression results for ECs are provided
(Supplementary Data 6).

Overall, we identify two main EC subtypes: synthetic ECs in
the AC that appear to participate in intimal repair, revasculariza-
tion, and ECM modulation, and inflammatory ECs in the PA
region that likely facilitate inflammation via antigen/chemokine
presentation and recruitment of immune cells, including CD4+
T-cells. These differences in biological processes are strongly
supported further in the systems analyses below.

Hallmark processes—VSMCs and ECs. In order to explore the
anatomic differences for these cell types further, gene set
enrichment analysis (GSEA) was used to asses hallmark processes
most significantly altered in VSMCs and ECs (Fig. 3a, b). Epi-
thelial to mesenchymal transition (EMT), oxidative phosphor-
ylation, and myogenesis gene upregulation were strongly enriched
in both AC VSMCs and ECs, collectively suggesting an increase
in cellular metabolic activity and proliferation. In contrast, a
distinctly inflammatory profile was seen in PA VSMCs and ECs,
with IFN gamma/alpha responses and TNFa signaling via NFkB
dominating the enriched processes in these groups of cells.
Because EMT and TNFa signaling were both shared and strongly
enriched processes in the two cell types, the gene signatures
associated with these hallmarks were further scrutinized through
generation of heatmaps consisting of leading-edge differentially
expressed genes from each hallmark process (EMT—Fig. 3c,
TNFa signaling via NFkB—Fig. S5a).

While overlapping at the hallmark level, separation of cells by
cell type as well as anatomic location in the EMT hallmark
heatmap suggests the overlapping processes are mediated by
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Fig. 2 Differential gene expression in VSMCs and ECs. a, e UMAP visualization of VSMCs (a) and ECs (e), separated by anatomic location. b, f Volcano
plots of the top differentially expressed genes in VSMCs (b) and ECs (f). Dotted lines represented q-value 0.5 and <−0.5 corresponding to PA and AC
cells, respectively. c, d UMAP visualization of the top 4 upregulated genes in AC VSMCs (c), and PA VSMCs (d). Gray-colored cells indicate 0 expression
of designated gene, while color bar gradient indicates lowest (black) to highest (yellow) gene expression level. g, h UMAP visualization of the top 4
upregulated genes in AC ECs (g), and PA ECs (h). Color scheme is similar to the above-described parameters. VSMCs= 3674 cells; ECs= 2764 cells.
n= 3 for PA and AC groups.
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distinct gene sets in each cell type. Moreover, analysis of EMT
hallmark genes further supports the presence of 2 cellular
subtypes of AC VSMCs as they appear to cluster into two distinct
groups of cells with dichotomous expression of contractile
(MYL9, TPM2, TAGLN, FLNA) versus synthetic/EMT (POSTN,

LUM, FBLN2, DCN, PCOLCE2, MGP, COL3A1) gene signatures
(Fig. 3c, d). These results indicate a group of VSMCs in the AC
may perform the contractile functions of the blood vessel wall,
while the other group of VSMCs may be involved with CTD and
ECM remodeling. Furthermore, cells with an ACTA2+ Thy1−

Fig. 2 (Continued)
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gene signature in Fig. 3c may be, in part, plaque-stabilizing
myofibroblasts (orange line), indicating that these contractile cells
may also have a large role in ECM remodeling.

In contrast to distinct subclustering of cells by EMT-related
genes, there appears to be a common gradient of genes involved
in inflammation and response to inflammation expressed
throughout the atherosclerotic tissue, with higher levels of

TNF-related inflammatory genes expressed in PA VSMCs and
ECs compared to AC cells, indicating a predominance of
inflammatory processes occurring in the PA region overall (Fig.
S5a). Collectively these genes (EIF1, FOS, JUN, JUNB, ZFP36,
PNRC1, KLF2, IER2, CEBPD, NFKBIA, GADD45B, EGR1,
PPP1R15A, and SOCS3), in addition to IL6 expression in PA
ECs, appear to coordinate the inflammatory response pathways in
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plaque and its adjacent structures. All cell types analyzed thus far
are coordinated along this gradient of inflammation.

Network analysis. To further dissect VSMC and EC anatomical
gene expression differences in order to identify candidate key
genes driving the significant hallmark processes, we reconstructed
gene co-expression networks using a partial correlation-based
approach (see “Methods”), defined modules by clustering, and
overlaid differential expression analysis results on these modules
to identify those enriched in genes differentially expressed
between AC and PA tissues.

Using this strategy, 31 and 39 distinct gene network modules
were generated in our VSMC and EC datasets, respectively (see
Supplemental “Methods”, Supplementary Data 7, 8). Of these, 8
modules in VSMCs, and 5 modules in ECs were enriched with
differentially expressed genes (p-value < 0.05, Fisher’s exact test,
see “Methods”). Furthermore, differentially expressed EMT-
related hallmark genes overlapped significantly and specifically
with a single VSMC and EC module. Differentially expressed
TNFa signaling via NFkB-related hallmark genes also overlapped
significantly with one VSMCs and EC module (p-value < 0.05,
Fisher’s exact test). No other hallmark processes overlapped with
generated network modules.

EMT hallmark in VSMCs and ECs from the atherosclerotic
core. The EMT gene signature generated from GSEA analysis of
network modules and the robust upregulation of genes found in
matrix-secreting cells in this cohort suggests the possibility of
CTD occurring and/or completing in the atherosclerotic core.
Therefore, in order to further characterize genes which may sti-
mulate CTD in AC VSMCs and ECs we examined gene co-
expression networks in conjunction with differential expression
data from the modules enriched with EMT hallmark genes. In
VSMCs we identified 9 genes (SPP1, IBSP, POSTN, MMP11,
COL15A1, FN1, COL4A1, SMOC1, TIMP1) whose expression was
significantly upregulated in AC cells and with strong network
connectivity (see “Methods”). Among these genes we identify
POSTN, SPP1, and IBSP as possible key gene drivers of CTD
processes in AC VSMCs due to their strong central connectivity
and high degree of differential expression in the network module
(Fig. 3e). POSTN (periostin) is expressed by osteoblasts and other
connective tissue cell types involved with ECM maturation46 and
stabilization during EMT in non-cardiac lineages47,48. POSTN,
SPP1, and IBSP are highly interconnected in our network and
likely serve as drivers of CTD by modulating other correlated
genes such as TIMP1, VCAN, TPST2, SMOC1, MMP11, FN1, and
COL4A1 (Fig. 3e), all genes which are involved with cellular
differentiation49 and extracellular matrix remodeling50,51.

In our EC network we identified 18 genes (ITLN1, FN1, OMD,
S100A4, SCX, PRELP, GDF7, TMP2, SERPINE2, SLPI, HEY2,
IGFBP3, FOXC2, RARRES2, PTGDS, TAGLN, LINC01235, and

COL6A2) whose expression was significantly upregulated in AC
cells and with strong network connectivity. Among these genes,
we identify ITLN1, S100A4, and SCX as possible gene drivers of
CTD in ECs associated with the AC (Fig. 3f). ITLN1 (omentin) is
highly upregulated in ECs associated with the atherosclerotic
core, and network data indicate it is strongly correlated with
genes involved with cellular proliferation and ECM modulation.
ITLN is also strongly correlated to OGN (osteoglycin) which
induces ectopic bone formation52, indicating that ITLN1 may
modulate ECs with osteoblast-like features in the atherosclerotic
core. SCX (scleraxin), a transcription factor that plays a critical
role in mesoderm formation, and the development of chondro-
cyte lineages53, as well as regulating gene expression involved
with ECM synthesis and breakdown in tenocytes54, is co-
expressed with IL11RA, an interleukin receptor implicated in
chondrogenesis55, as well as with a variety of genes involved with
cellular development and modulation of ECM structures. Thus,
SCX may modulate chondrocyte-like ECs in the AC. S100A4 is a
calcium-binding protein that is highly expressed in smooth
muscle cells of human coronary arteries during intimal
thickening56, and silencing this gene in endothelial cells prevents
endothelial tube formation and tumor angiogenesis in mice57.
Co-expression with HEY2, a transcription factor involved with
NOTCH signaling and critical for vascular development58, may
indicate an important role in repair via re-endothelialization of
plaque-denuded artery.

TNFa signaling via NFKB in proximally adjacent VSMCs and
ECs. Next, genes critical to stimulating TNFa signaling via NFkB
in PA VSMCs and ECs were evaluated. In the VSMC module we
identified 14 genes (APOLD1, MT1A, ZFP36, EGR1, JUNB, FOSB,
JUN, FOS, RERGL, MT1M, DNAJB1, CCNH, HSPA1B, and
HSPA1A) whose expression was significantly upregulated in PA
cells and with strong network connectivity. Among these genes
we identify immediate-early (IE) genes ZFP36, EGR1, JUNB,
FOSB, and FOS as critical response genes in this hallmark process.
Importantly, the paired-sample study design in which AC and PA
samples from the same patient are processed identically at the
same time ensures that these IE genes preferentially upregulated
in the PA region are critical for the inflammatory response and
not an artifact of tissue processing stressors.

In the EC module we identified two genes (IER2 and FOS)
whose expression was significantly increased in PA EC cells (Fig.
S5e), and are highly correlated with other critical transcription
factors in our network, including FOSB, JUNB, EGR1, and ZFP36,
further supporting this group of gene’s importance in the TNFa
signaling hallmark (Fig. S5d).

Evaluation of cellular subpopulations. Finally, in order to
identify and characterize refined subpopulations from each ana-
tomic region, we selected the 7 VSMC and 5 EC differentially

Fig. 3 Gene set enrichment analysis and gene co-expression networks identify key gene drivers of EMT hallmark biologic process. a, b Normalized
enrichment score (NES) ranking of all significant PA and AC Hallmarks generated from GSEA analysis of differentially expressed genes for VSMCs (a) and
ECs (b) (FDR q-value < 0.05). c Fully clustered on/off heatmap visualization of overlap between leading edge EMT hallmark genes generated by GSEA.
Heatmaps are downsampled and represent 448 cells from each cell type and anatomic location (1792 total cells). A dotplot corresponding to gene
expression levels for each cell type in the heatmap is included. Dot size depicts the fraction of cells expressing a gene. Dot color depicts the degree of
expression of each gene. d Volcano plot of differentially expressed genes between the two groups of VSMCs in (c). Dotted lines represented q-value<0.01
and normalized effect >0.5 and <−0.5. e, f Gene co-expression networks generated from VSMC Module 13 (d) and EC Module 1 (e) representing the EMT
hallmark from GSEA analysis. Genes are separated by anatomic location (red=AC genes, cyan= PA genes), differential expression (darker
shade= higher DE, gray= non-significantly DEGs), correlation with other connected genes (green line= positive correlation, orange line= negative
correlation) and strength of correlation (connecting line thickness). Significantly DEGs (q < 0.05) with high connectivity scores (>0.3) are denoted by a box
instead of a circle. n= 3 for PA and AC groups.
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expressed modules described above and biclustered cells and
genes (Fig. 4a, d). The likely biological functions of these sub-
populations were then inferred based on the genes differentially
expressed and subsequent gene ontology enrichment analysis
across these subpopulations. A continuous gene expression
model, based on the fraction of AC cells per subpopulation, and
subsequent gene ontology enrichment analysis was used to eval-
uate these cell subtype differences (Fig. 4b, c, e, f).

VSMCs. We identified four cell subpopulations of VSMCs with
some overlapping features in our analysis (Fig. 4a). The four
subpopulations appear to form a continuum of cell states, starting
with a population that consists exclusively of PA VSMCs (Fig. 4a,
green bar), characterized by genes involved in recruitment of
inflammatory mediators, with early signs of CTD. Specifically, C3
(opsonization and macrophage recruitment; normalized effect=
6.5, q= 1.74e−07) is highly differentially expressed in this sub-
population and likely augments PA inflammation and macro-
phage recruitment. This group of VSMCs also shows evidence of
early migratory and CTD-like qualities given the expression of
FBN1, SEMA3C, HTRA3, and C1QTNF3, (normalized effect=
2.77, 3.65, 4.0, 3.58, respectively; q= 6.93e−41, 1.25e−20, 2.53e
−05, 0.00012, respectively) genes that are both highly differentially
expressed in this cohort and with high signal strength in our net-
works (Fig. 4a, Supplementary Data 7). FBN1 (ECM component) is
strongly correlated with TGFBR3, SEMA3C, and CD248 (mod-
ulators of EMT-like processes)59–61. Interestingly, this group of cells
co-expresses IGSF10, a marker of early osteochondroprogenitor
cells62, TMEM119 (bone formation and mineralization; promotes
differentiation of myeloblasts into osteoblasts)63,64, and WNT11
(bone formation)65 (Supplementary Data 7).

On the other end of this continuum, we identify a subpopula-
tion of ~70% AC cells (Fig. 4a, red bar) that have elevated
expression of POSTN (osteoblasts; normalized effect=−2.206,
q= 3.60e−16), CRTAC1 (chrondrocytes; normalized effect=
−3.22, q= 3.91e−26), TNFRSF11B (bone remodeling; normal-
ized effect=−0.98, q= 7.31e−06)66, ENG (VSMC migration;
normalized effect= 0.87, q= 1.41e−13)67, COL4A2, and
COL4A1 (cell proliferation, association with CAD; normalized
effect=−0.98, −1.03 and q= 3.17e−15, 5.68e−11,
respectively)68,69. Collectively, the differential gene expression
data and the underlying biology behind our gene co-expression
networks support this group of cells as likely representing
synthetic osteoblast- and chondrocyte-like VSMCs which facil-
itate calcification and cartilaginous matrix-secretion and reside
largely in the AC.

Furthermore, gene ontology enrichment analysis provides a
clear progression from muscle system processes, extracellular
structure reorganization, and catabolic processes enriched in the
PA to processes involved with CTD such as ossification, fat cell
differentiation, and regulation of cell motility, adhesion, and
cellular transdifferentiation enriched in the AC (Fig. 4b, c). The
shift in cell states supports a continuum of cell state changes
leading to increased CTD in the atherosclerotic core.

ECs. Overall, we observe three EC subpopulations. Like VSMCs,
these cells display transitory properties as they move through a
continuum of cell states (Fig. 4d). First, there is a group com-
prised near exclusively of inflammatory PA ECs that is involved
in recruitment of inflammatory mediators (Fig. 4d, magenta bar).
This group has a greater number of cells expressing immune
genes such as the cluster of HLA genes, as well as CD74 (nor-
malized effect= 1.63, q= 2.07e−112), a gene which forms part of
the invariant chain of the MHC II complex and is a receptor for
the cytokine macrophage migration inhibitory factor (MIF)70.

The upregulation of MHC class II complex in this subset of PA
ECs complements our previous finding of CD4+ T-cell recruit-
ment to this subpopulation of PA ECs, leading to over-activation
and exhaustion via antigen-persistence.

The next group of cells is intermediate in its composition of
AC (67.5%) and PA (~32.5%) ECs with a mixed gene expression
profile with characteristics similar to each of the other two groups
of cells (Fig. 4d, green bar), likely representing dysfunctional ECs
that are in transition from the inflamed subtype to the CTD
subtype described below.

The final group of cells is largely comprised of ECs from the
AC (96.8%) (Fig. 4d, cyan bar) and is largely devoid of
endothelial-marker gene EMCN71 (normalized effect= 0.86,
q= 1.17e−09). Critical EMT genes identified earlier (ITLN1,
SCX, and S100A4) are predominantly expressed in this large
cluster of AC ECs alongside highly correlated genes OMD, OGN,
and CRTAC1, again indicating that this population of ECs likely
represents the main group of transdifferentiated ECs.

Gene ontology enrichment analysis further supports this shift in
EC cell state from cells primarily involved with immune response
(antigen processing and presentation, adaptive immune response,
etc.) to cell states predominantly involved with proliferation,
migration, vascular development, and angiogenesis (Fig. 4e, f).

Discussion
In this study, unbiased single-cell transcriptomics of calcified
atheromatous plaque in asymptomatic patients revealed 15 dis-
tinct cell types, including six major cell types; macrophages, ECs,
VSMCs, NKT cells, T-, and B-lymphocytes. When expression
signatures were contrasted across AC and PA plaque regions,
VSMCs and ECs demonstrated the greatest degree of anatomical
diversity. Our findings demonstrate that both VSMCs and ECs
likely contribute to increased calcification and ECM remodeling
activity in the AC. In the PA region, inflammatory signaling,
including recruitment of immune cells, is enriched in both cell
types (Fig.5). However, differing biological processes and CTD
molecular networks underly this convergent biology.

VSMC plasticity in response to injury and environmental cues
is central to vascular homeostasis and remodeling72. KLF4-
dependent modulation of phenotype switching in VSMCs was
shown to be pathogenic, and deletion of this gene in a murine
model of atherosclerosis reduced lesion size73, suggesting that
targeting modulators of CTD in atherosclerosis may be an
effective treatment strategy. Subsequent analysis has found KLF4-
dependent osteogenic SMC phenotypes contributing to plaque
calcification and a LGLSAL3+ SMC population with
chondrocyte-like gene signature that was decreased in SMC-KLF4
knockout16, underscoring the remarkable plasticity of cell types
encountered in plaque. Recent single-cell analysis of athero-
sclerotic plaque has similarly found a predominance of endo-
thelial cell transition to mesenchymal cells13. It is therefore
critical to unmask modulators of CTD, and to explore this phe-
nomenon in other cells of the vascular wall such as ECs. In our
study we identify groups of VSMCs that express both the core
VSMC marker genes and the transcription factors (i.e., SCX) and
effectors (i.e., IBSP, SPP1) of matrix-secreting cells, supporting
the notion of real CTD occurring and/or completing in the AC,
albeit without true lineage tracing in this dataset. CTD in the AC
to osteoblast- and chondrocyte-like cell states may be defined by
different molecular networks with correlated driver genes:
POSTN, SPP1, and IBSP in VSMCs, vs ITLN1, SCX, and S100A4
in ECs. While these groups of genes may promote CTD in their
respective cell types, their pathogenic versus protective role are
unclear and scrutinization of these genes will be critical to fully
appreciate their contribution to disease progression.
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Fig. 4 Evaluation of VSMC and EC subpopulations. a, d Biclustered heatmap visualization of all significant genes (q < 0.05) from VSMC (a) and EC (d)
modules enriched with differentially expressed genes. a 1224 VSMCs from each anatomic location (2448 cells total). Large color bar denotes PA (cyan)
and AC (orange) VSMCs. Small color bar above denotes distinct cell subpopulations (blue, forest green, lime green, brown, purple, magenta, red). d 448
ECs from each anatomic location (896 cells total) in. Large color bar denotes PA (blue) and AC (red) ECs. Small color bar above denotes distinct cell
subpopulations (cyan, green, magenta). A dotplot corresponding to gene expression levels for each cell subpopulation on the heatmap is included. Colored
dots next to specific genes correspond to critical genes related to the designated cell subpopulation. Continuous gene expression based gene ontology
enrichment analysis of biological function performed based on the fraction of AC cells per subpopulation of VSMCs (b, c) and ECs (e, f). n= 3 for PA and
AC groups.
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Similarly, while inflammatory signaling is enriched in the PA for
both cell types, the molecular networks engaged in inflammatory
signaling differs across VSMCs and ECs. Both cell types appear to
respond to inflammatory signaling via IE-mediated expression of
NFkB inhibitors;NFKBIA and TNFAIP2. However, VSMCs engage
in immune cell recruitment through expression of C3 (complement
component 3), whereas ECs engage in immune cell recruitment
through MHC class II presentation. A wide variety of other
inflammatory processes are activated in both cell types, converging
on TNFa signaling via NFkB in both cell types and IL6 signaling in
ECs—both likely augmented by vascular wall driven recruitment of
inflammatory mediators of early plaque development74.

Importantly, this study explores asymptomatic calcified
atheromatous plaque, offering detailed analysis of plaque burden,
but admittedly limits the conclusions that may be drawn
regarding plaque vulnerability and rupture as seen in sympto-
matic patients. However, illuminating the anatomic landscape of
calcified atheroma at single-cell resolution underscores the
intriguing possibility of employing site-specific therapies to cur-
tail disease progression. Given the recent focus on targeting
inflammation to impede atherogenesis75, our results highlight the
importance of targeting inflammatory mediators at the nidus of
disease, thereby halting the development of plaque and progres-
sion of blood vessel cells into pathogenic CTD. Similar strategies

Fig. 4 (Continued)
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may be contemplated for the CTD observed in our patients,
though it is unclear whether AC calcification is pathogenic or
stabilizing and protective.

The dataset in this study serves as a census for transcripts in
calcified atherosclerotic plaque, and important limitations
should be noted, including the inability to perform more
thorough histologic validation of our sample due to the limited
amount of tissue available, all of which must be processed to
maximize single-cell yield. The limited amount of tissue
obtained also posed challenges for spatial RNA identification of
critically discussed genes. In addition, it is not possible to
definitively prove the occurrence of CTD due to the lack of
lineage tracing ability in this sample, or the addition of other

validation studies in vitro, such as gene knock-down studies in
vascular cell lines which may provide robust evidence of iden-
tified CTD-stimulating genes. Our gene co-expression networks,
while implying correlation between genes and revealing
important insight into underlying biology, do not allow us to
identify key genes as definitive drivers of gene expression
without requisite functional assays. Last, the final definition of
subclusters was defined by re-clustering cells of the same cell-
type by specific hallmark gene sets and defining subclusters by
nested cuts of the hierarchical tree. This approach raises the
possibility of other unidentified nested subclusters.

Overall, our study provides anatomic insight into atherogenesis
by examining key cellular processes occurring in the atherosclerotic

Fig. 4 (Continued)
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core and adjacent arterial tissue and lays the groundwork for
continuing efforts to unravel the complexity of this disease.

Methods
Selection of patients. Identification and consenting of three patients with severe
carotid plaque formation requiring carotid endarterectomy occurred in colla-
boration with the Scripps Health Biorepository under IRB# 19-7332 approved by

the Scripps Institutional Review Board. Informed patient consent was obtained for
all samples collected. Patient characteristics and comorbidities are presented in
Table S1. Plaques were characterized by histopathology according to AHA classi-
fication scheme76. Briefly, near full thickness (except adventitia) sections of artery
and plaque were recovered from the atherosclerotic core, based on surgeon’s
determination of area of largest plaque burden, usually near the carotid bifurcation.
A section of artery located ~1 cm proximal to the AC was then recovered from the
same patient during the cut-down portion of the endarterectomy, resulting in 3

Fig. 4 (Continued)
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replicates of both PA and AC sections. These specimens were immediately trans-
ported for tissue processing.

Tissue processing and generation of single-cell suspensions. AC and PA
carotid artery from patients undergoing carotid endarterectomy was immediately
collected from the operating room and transferred on ice for tissue dissociation
(Fig. S1a, b). Samples were weighed, minced with surgical blades, then placed in
conical tubes with pronase (5000 U/ml) and collagenase II (0.1% solution). Tissue
was then incubated at 37 °C for 1 h with continuous gentle agitation. 30 min into
the incubation period, DNase I solution was added, and the entire solution
remained incubated for an additional 30 min. Pipetting mixture up and down every
10 min helped break tissue apart. After 1-h incubation was complete, 10% FBS+
Complete EC media (Cell Applications, Inc) was immediately added to dissociated
tissue to quench enzymatic activity. The sample was then inverted a few times and
then set down for 30 s, allowing all debris to settle at the bottom. The entire
solution was carefully transferred, without settled debris, to another conical tube
(use pipettor to transfer solution near debris pellet carefully, removing all solution
but leaving pellet at bottom of tube). Sample was then centrifuged at 500 × g for
5 min and supernatant discarded. Cell pellet was resuspended in 5 mL 1X RBC lysis
buffer and incubated at RT for 5 min. 30 mL 1X PBS was added to stop the reaction
and the sample was then spun immediately at 500 × g for 5 min at RT. The
supernatant was discarded, and cell pellet resuspended in 10 mL FACS buffer
composed of: 1X PBS, 2.5 mM EDTA, 25 mM HEPES, 1% FBS (heat-inactivated),
and 1% Pen-Strep. To wash excess reagents, the sample is centrifuged again at
500 × g for 5 min, supernatant discarded, then cell pellet is again resuspended in
2 mL FACS buffer. 2 μl of 5 mM DRAQ5 is added to each tube, and solution is
pipetted up and down a few times. Next, solution is triturated with P1000 and
entire sample sieved through 100 μM cell strainer fitted onto 50 mL conical tube.
This step is repeated next through a 40 μM cell strainer. The solution is placed on
ice and immediately transported for FACS. Cells were sorted on a MoFLo Astrios
EQ cell sorter (Beckman Coulter) with a 100 µm nozzle tip at a sheath pressure of
20 psi. Cells were distinguished from cellular debris by gating DRAQ5 positive
events and doublets excluded using appropriate FSC and SSC gating (Fig. S2a–f).
Cells isolated represented <1% of the total particles in the sample which was then
transported for evaluation of viability and subsequent sequencing.

Cells were then processed on the 10X Genomics Chromium single cell 3’ v3
gene expression platform. Cells were counted and checked for viability using a
Countess II Automated Cell Counter (Thermo Fisher). Sequencing libraries were
prepared as recommended in the user manual with cell target numbers ranging
between 6000 and 22,000 cells per sample. Completed sequencing libraries were
then sequenced on an Illumina NextSeq500 using 28 × 91 paired-end reads with 8
base i7 index reads to demultiplex different samples. Aggregating our 6 samples (3
patient-matched PA and AC samples) resulted in 51,981 cells, a sequencing depth
of 15,549 reads/cell, 1339 median genes/cell and 3776 UMI/cell.

Single-cell transcriptomics. We used a combination of publicly available tools
and custom scripts to process single-cell transcriptomic data. These methods have
been developed and refined by our lab for the analysis of single-cell transcriptomics
of human atherosclerotic plaque tissue, an extremely challenging tissue for single-
cell sequencing given the variable degree of cellular viability and cellular and

extracellular matrix heterogeneity present in plaque tissue from vascular wall to the
fatty plaque tissue itself. A combination of 10X Cell Ranger77, Monocle78, Seurat79,
and custom R and python scripts as well as pathway analysis tools are combined in
a comprehensive single-cell quality control and analysis pipeline. Data has been
deposited: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159677.
Please see Supplemental Methods and Figs. S6–S14 for more detailed data analysis
methods.

Cell set preparations, aggregation, and initial cell-type identification. Raw
single-cell sequencing data were processed independently per sample using the 10X
Genomic Chromium platform77. 10X Genomic’s Cell Ranger with default para-
meters for read mapping80, sample quality control, unique molecular identifier
filtration, normalization, and expression quantification. Further quality filtering is
performed by Seurat79 to remove cells with >10% mitochondrial mRNA (total
mRNA), in addition to cells with <200 or >4000 genes expressed. Quality control
resulted in a reduction of 6145 cells, down to 45,836 cells total prior to down-
sampling. Cell sets were then down-sampled to 17,100 cells to account for
imbalances in total cell counts across samples which may adversely influence
clustering analysis.

Aggregated cell sets were then further processed by Monocle for cell-type sub-
setting78. Dimensionality reduction was performed as standard via principal
component analysis in Monocle and UMAP partitioning is applied81, which we
have found to perform better than t-SNE in practice. Cell type assignment was a
largely manual process facilitated by partition level differential gene expression
analysis to identify 3 known marker genes per cell type that were expressed in
>80% of cells and at a mean expression count >2. At this point partitions were
assigned to cell types.

Doublet analysis and filtering. In order to identify and remove distressed cells, or
rare cell types and artifacts, we first estimated doublet-rates and attempted to filter
doublets using the Scrublet package82. However, we found that Scrublet and other
doublet detection packages were not effective at identifying doublets in highly
heterogenous samples like atherosclerotic plaque. Therefore, as an alternative we
identify doublets based on a combination of the inappropriate expression of cell-
type marker genes coupled with elevated read counts. Marker genes that should be
ubiquitously expressed (>90%) in one cell type (partition) and rarely expressed
(<10%) in other cell types (partitions) were used to mark potential doublet cells.
Cells with multiple inappropriate marker genes expressed (≥2) are tagged for
removal. For example, CD2 expression (cell adhesion molecule specific to T- and
NKT-cells) was detected at higher-than-expected levels in VSMCs (3%) and ECs
(2.1%), and thus these cells were excluded from analysis. An upward shift in read
counts across all doublets relative to the population average was used to validate
the doublet identification strategy. In addition, we perform gene co-expression
network reconstruction using a custom partial correlations approach (described
below), which is sensitive to rare outlying correlation events, and enables us to
detect inappropriate co-expression of genes. Inappropriate networks reflective of
unexpected cell-types were identified during the doublet detection process to
validate our filtration strategy. Remaining cells were re-clustered producing six
major partitions; macrophages, ECs, VSMCs, NKT cells, T- and B-lymphocytes
(Fig. 1c, d). Patient-specific cells are shown in Fig. S3a.

Fig. 5 Schematic of atherosclerotic plaque by anatomic location. Illustrates key hallmark processes in PA and AC VSMCs and ECs. Inflammatory gene
signatures shown in the PA portion, and matrix secreting genes up-regulated in the AC region. See main text for details.
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Differential gene expression analysis. Differential expression analysis was per-
formed using Monocle78, which uses a generalized linear regression model
approach, and was adjusted for patient-specific and other confounder effects as
covariates. Modeling includes an adjustment for patient identification as a cor-
rective term. In order to have commensurate measures of differential expression,
each gene’s expression level was normalized prior to fitting the model, allowing the
resulting model coefficient to be interpreted directly as that gene’s effect size
(normalized effect). The sign of the coefficient determines up- or down-regulation.
A corrected p-value was computed for each coefficient using Benjamini and
Hochberg. Consistency of gene expression differences at a biological process level
was evaluated by Gene Set Enrichment Analysis applied to single-cell gene dif-
ferential expression data ranked by normalized effect.

Gene networks. We reconstructed gene expression networks using a modified
Weighted Gene Co-Expression Network Analysis83 approach we developed using
partial correlations and applied to single-cell data. All pairwise gene-gene corre-
lations are computed with partial correlations adjusted for the rest of the genome
using a Penrose-Moore pseudo inverse with applied shrinkage parameter (uses the
R package corpcor). The resulting matrix is linearized and then subjected to a false
discovery analysis using R package fdrtool. Networks are reconstructed from the
resulting top 20,000 most significant partial correlations by applying an FDR
threshold to the pairwise co-expression edges (threshold estimated empirically
from the distribution) with modules defined by Louvain clustering using default
parameters81, where edge weights (distances) were set to the reciprocal of the
absolute partial correlation. Because clustering was performed using weighted
edges, FDR thresholds were relaxed and allowed to exceed 0.05 (mean FDR ~0.25).

Gene module network plotting and selection of significant modules. Network
plots were created using igraph’s built-in plotting functions. Cluster level plotting
with colorization schemes aiding in visual interpretation of gene-to-gene rela-
tionships was used. For module plots containing a greater number of genes (over
100), additional filtering was used to help elucidate each module’s significant gene-
to-gene relationships. For selected modules in the VSMC and EC cell types, module
subnetworks were constructed by filtering and maintaining genes that were in the
top 15 percent of those most connected within the network (higher ranked
strength), along with all the modules’ differentially expressed genes. This resulted
in modules on the order of 10 to 30 genes. Nodes were colorized gray for non-
differentially expressed genes, and a cyan to red gradient was used for positive to
negative normalized effect levels (qualified with q < 0.05). Dark red genes (nodes in
the network) were indicative of genes significantly upregulated in AC cells, while
dark cyan genes were lower expressing the AC cells.

In order to focus our analysis on key genetic drivers of calcified plaque build-up,
we chose to concentrate on selected modules exhibiting significant interactions
between DE genes. This was determined by first setting a threshold of p < 0.05 for
differential expression overlap between modules (determined by one-tailed Fisher
exact test). A contingency table was constructed for each module in the network
based on the overlap of significant DE genes to the module genes. Modules do not
overlap with each other due to the use of Louvain clustering. Modules with
disproportionate numbers of DE genes rank as the most significant, while those
with few or no DE genes rank as the least significant. This resulted in 8/31 modules
being selected for further investigation in the VSMC dataset, and 7/36 modules in
the EC dataset. Next, within each of these modules, genes were sorted by
normalized effect and q-value < 0.05 in order to better interrogate significantly
differentially expressed genes. After this, the gene list was sorted by strength of
connections, with >0.3 being used as a cutoff for genes to explore further, given the
greater correlations with other genes observed with higher strength score. Modules
with genes present satisfying these criteria moved forward with analysis. Within the
chosen modules, genes were again sorted by normalized effect and q < 0.05. Genes
with NE > 0.5 or <−0.5 were chosen and plotted, and those with signal strength
>0.3 were chosen for further examination.

Heatmaps. All heatmaps were constructed from gene expression data, with indi-
vidual cells plotted along the horizonal axis and genes plotted along the vertical
axis. Prior to plotting, expression data was converted to binary form (on/off), with
each gene plotted as on if the expression level of that gene had an RNA count of
two or more. A binary distance method was then used to drive hierarchical clus-
tering along both axes using complete-linkage clustering. All heatmaps are
accompanied by dot plots on the right side the heatmap, showing gene expression
levels for each of the cell subsets in the heatmap. These dot plots are scaled based
on the raw RNA counts.

Statistics and reproducibility. Wherever possible, commonly available tools and
statistical methods in performing computational analysis were used. Greater detail
may be found within the supplementary methods. For experimental reproduci-
bility, we overcame the lack of biological and technical replicates by aggregating
samples and then comparing the cell subtype transcriptional profiles of the 3
patient sample pairs, checking for consistency across samples, as well as confirming
the transcriptional homogeneity within cell types. This is the preferred approach in
detecting batch effects and is commonly used in single-cell pipelines. This method

did not require exotic cell dataset integration for discovering and defining cell type
clusters or phenotype identification.

The general approach starts with an examination of the sample level cell cluster
counts (Fig. S8b). The table demonstrates that each cluster contains significant cells
from all samples and are well represented. Further, there is spatial and graphical
separation between clusters (Fig. 1c, d). Key marker gene expression homogeneity
within clusters and across samples is shown by visually examining cell marker plots
(Fig. S4). This is further confirmed by the gene exclusion results (Fig. S9).

This demonstrates that the expression of key cell marker genes is well
represented across samples while remaining specific to cell types, confirming that
sample level biological and technical artifacts have minimal effect on our analysis.
Further details on partition level gene network and module level analysis may be
found in Supplementary Data 9–15.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The scRNAseq datasets generated during and/or analyzed during the current study are
available in the Gene Expression Omnibus (GEO) at the following address: https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159677.

Code availability
All analysis code related to the manuscript has been made publicly available at the
following address: https://github.com/TorkamaniLab/Carotid.Art.Dis.scRNA_Seq,
https://doi.org/10.5281/zenodo.7065390.
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