
ARTICLE

A ventral stream-prefrontal cortex processing
cascade enables working memory gating dynamics
Shijing Yu1, Sarah Rempel 1, Negin Gholamipourbarogh1 & Christian Beste 1✉

The representation of incoming information, goals and the flexible processing of these are

required for cognitive control. Efficient mechanisms are needed to decide when it is important

that novel information enters working memory (WM) and when these WM ‘gates’ have to be

closed. Compared to neural foundations of maintaining information in WM, considerably less

is known about what neural mechanisms underlie the representational dynamics during WM

gating. Using different EEG analysis methods, we trace the path of mental representations

along the human cortex during WM gate opening and closing. We show temporally nested

representational dynamics during WM gate opening and closing depending on multiple

independent neural activity profiles. These activity profiles are attributable to a ventral

stream-prefrontal cortex processing cascade. The representational dynamics start in the

ventral stream during WM gate opening and WM gate closing before prefrontal cortical

regions are modulated. A regional specific activity profile is shown within the prefrontal

cortex depending on whether WM gates are opened or closed, matching overarching con-

cepts of prefrontal cortex functions. The study closes an essential conceptual gap detailing

the neural dynamics underlying how mental representations drive the WM gate to open or

close to enable WM functions such as updating and maintenance.
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For decades, executive functions and cognitive control pro-
cesses have been subject to neuroscience research and refer
to a set of functions necessary for goal-directed behavior.

According to current taxonomies, there are three major classes of
executive functions—working memory processes, interference
control, and cognitive flexibility processes1. Each of these entities
has been subject to intense research, and the neurophysiological
processes (e.g., as measured using EEG) have been intensively
investigated.

Regarding working memory (WM) functions, considerable
research has explained the processes involved in WM main-
tenance (i.e., how information is kept in WM). Substantially less
research is evident regarding the neurophysiological processes
involved in WM gating processes—how information enters WM
and how this process is controlled. Computational models suggest
that WM content is regulated by an input-gating mechanism2,3.
When the gate is open, the updating of WM content is possible;
when the gate is closed, WM content is relatively stable and
resistant to interfering information. The decision when to open or
close the working memory gate depends on the utility of the
information presented4. The detection of relevant information
leads to the opening of the gate5. As opposed to this, when goal-
unrelated information is detected and likely disrupting ongoing
behavior, the gate is closed6. These gate opening and closing
dynamics are central for goal-directed behavior, which depends
on the arbitration between different states of cognitive persistence
and flexibility7–9. Despite this importance, only recently, the
behavioral and neurophysiological mechanisms underlying WM
gate opening and closing processes have come more into
focus3,10–12. Rac-Lubashevsky and Kessler13 proposed a
reference-back paradigm to manipulate and measure WM gating
processes (see “Methods” for details). There, WM gate opening is
indicated by a switch from WM maintenance to updating, while
WM gate closing is indicated by a switch from updating to
maintenance. Previous studies using this paradigm consistently
reported higher reaction time (RT) cost and lower accuracy cost
in gate closing than in gate opening3,11–13. According to the
prefrontal cortex basal ganglia working memory (PBWM) model,
the default mode of the WM gate is the closed state (i.e., main-
tenance state). The low accuracy cost in gate closing is intuitive as
the closing process is a switch from updating (high demanding
status) to maintenance (low demanding default status). The high
RT cost in gate closing can be explained by the previous finding
that switching from a more challenging task to an easier task
takes longer than the other way around14. Neurophysiological
evidence also suggests different patterns between WM gate
opening and closing processes4,10,11. These differences are likely
to be driven by the information representing a change from the
goal of the immediate past to the goal evident in the current
situation (trial). Specifically, when the WM gate is closed, i.e., the
goal is maintained, an upcoming stimulus requiring updating will
trigger the WM gate to open. On the contrary, when the WM gate
is open, an upcoming stimulus requiring maintenance will trigger
the gate to close. Therefore, the mental representations driving
the WM gating processes are not simply stimulus-related but also
tightly related to the WM gate states (open or closed). The
representations examined in this study thus contain comparative
information about the immediate past relative to the current
stimulus information and the rule to be applied. These complex
representations are central for cognitive framings of working
memory processes which further guide other cognitive processes
(e.g., cognitive control and goal-directed behavior)15–17. While
previous work mostly studied representations when information
has already entered WM (i.e., is actively maintained in WM
buffers), the conceptually relevant question regarding the reg-
ulation of representations’ access to WM has not yet been

answered: How are representations affected during WM gate
opening/closing and what neurophysiological processes and
neuroanatomical structures are implied in this process?

The advent of sophisticated multivariate pattern analysis
(MVPA) methods applied to neurophysiological (EEG) data
likely answers this conceptually relevant question that is also
informative for cognitive science frameworks focusing on WM
gating processes. MVPA, also known as multi-voxel pattern
analysis, can decode the difference between experimental condi-
tions based on the observed neural patterns18,19 and is suitable to
answer questions on how mental representations are handled
during cognitive operations18–27. Especially when applying tem-
poral generalization MVPA suitable to examine when and for
how long representations are activated, it is possible to distinguish
activity patterns in the temporal generalization matrix with dif-
ferent conceptual implications23,24. The current study uses tem-
poral generalization MVPA in a well-established experimental
approach3,11,12 to capture the representational dynamics of WM
gate opening and closing processes on a neurophysiological
(EEG) level. The representational dynamics is only possible to
capture using MVPA23 because more traditional event-related
potentials (ERPs) cannot capture the full information being evi-
dent in the EEG signal (i.e., its multivariate nature)28, and no
generalization of processes captured can be tested across time and
content23, which is, however, necessary when being interested in
cognitive constructs (e.g., working memory) where the temporal
stability of a representation plays an essential role. However,
when considering decoding the complex representations during
WM gate opening and gate closing processes, it is essential to
note that WM dynamics reflect distributed processes in multiple
regions of the temporal, parietal, and prefrontal cortices2,11,29.
These spatial properties of the EEG signal thus need to be con-
sidered in detail. This, again, has repercussions on the choice of
neurophysiological (EEG) data analysis methods because the
EEG, due to the volume conduction effect, reflects a mixture of
signals from various brain regions30,31. The best way to approach
this is to perform a blind source separation method—indepen-
dent component analysis (ICA)30. Considering that WM pro-
cesses are distributed across cortical structures29, there may be
different neurally independent components of processes also
involved in WM gate opening and closing and its representational
dynamics. It is possible that dissociable spatial activity profiles in
the EEG reveal distinct temporal representational dynamics. To
capture this, it is necessary to combine ICA and MVPA (i.e., to
apply MVPA on isolated independent spatial activity profiles
constituting the EEG).

Importantly, this combination of methods can still not inform
about the functional neuroanatomical structures associated with
this dynamic, since scalp recorded EEG data is not directly reflect
the generating functional neuroanatomical structure due to the
inverse problem32. To solve this, source localization methods are
necessary. For time periods in which evident decoding of the
representational content in an independent component during
WM gate opening and closing processes was possible, we apply
source localization methods to delineate which functional neu-
roanatomical structures are associated with the processes24.
Likely, temporal, parietal, and prefrontal regions are associated
with these dynamics as these regions are also involved in main-
taining WM content2,29. However, it is elusive whether these
cortical regions reveal a specific temporal cascade in the pattern
of activity modulations while handling the WM representational
content during gate opening and closing processes.

To summarize, the current study aims to combine EEG signal
decomposition (ICA), temporal generalization multivariate pat-
tern analysis (MVPA), and source localization to provide a
comprehensive picture of the neurophysiological mechanisms
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underlying the temporal stability of WM representations during
WM gate opening and closing. This is not only relevant to better
understand the neural processes of WM gating but will also
inform cognitive frameworks on working memory gating pro-
cesses because these frameworks do currently not make explicit
assumptions about the temporal dynamics representations during
WM gating.

Results and discussion
Behavioral data—replication of previous studies. The beha-
vioral performance of four conditions (i.e., switch_reference,
nonswitch_reference, switch_comparison, and non-
switch_comparison) is shown in Fig. 1a and b. The four condi-
tions represent different trial types defined by two factors. One
factor differentiates trials/stimulus between reference and com-
parison that reference stimulus provide the crucial information
for upcoming tasks, hence should be maintained in WM, oppo-
sitely, comparison stimulus contains no reference information
and should be removed fromWM after the task is completed. The
other factor indicates a (non)switch process between reference
and comparison trials. With a switch process, the WM gate
changes its states from open to closed when switching from
comparison to reference trials, and from open to closed when
switching from reference to comparison trials (see “Methods” for
details). Figure 1c and d illustrates the switching costs during gate
opening and closing processes using accuracy and RT. The WM
gating processes were calculated as

Gate opening ¼ switch reference� nonswitch reference ð1Þ

Gate closing ¼ switch comparison� nonswitch comparison ð2Þ

Namely, the behavioral indices of gate opening and closing
were calculated as the switching cost of reference trials and
comparison trials. That is, the reference trials required partici-
pants to update the reference information; hence a switch_-
reference stimulus triggered the gate opening, while a
nonswitch_reference stimulus reflected the open status of the
gate. Similarly, the comparison trials required participants to
maintain the information. Therefore, the switch_comparison
stimulus triggered the gate closing (from updating to main-
tenance), while a nonswitch_comparison trial represents the
closed status of the gate. In both gating computations, the
nonswitch trials reflect a baseline of the gate status.

Following the two formulas (Eqs. 1 and 2), the switch cost of
the accuracy of the gate opening (−3.17 ± 3.99%) was significant
larger compared to the gate closing (0.61 ± 3.94%; t(32)=−3.22,
p= 0.003, Cohen’s d=−0.56). The switch cost of the RT during
the gate opening (22.80 ± 31.72 ms) were significant lower than it
during gate closing (74.16 ± 40.35 ms; t(32)=−6.53, p < 0.001,
Cohen’s d=−1.14). These behavioral data replicate previous
findings using the same task3,10–12 showing that the WM gate
opening process is associated with a higher cost of accuracy but
lower cost of reaction time compared with the WM gate closing
process. According to Schneider and Anderson14, the RT cost of
switching from an easier task to a more challenging task is larger
than the other way around due to impaired performance after a
difficult trial. This, together with the lower cost of accuracy in
WM gate closing, suggests that WM gate closing is easier than
WM gate opening. Gate opening enables new, behaviorally
relevant information for goal-directed behavior5. Gate closing is
necessary to shield ongoing behavior from distracting
information6. Gate opening and closing processes are thus
relevant for the arbitration between cognitive persistence and
flexibility states, necessary to achieve longer-range behavioral
goals7–9. This arbitration is reflected in complex neurophysiolo-
gical dynamics of multiple independent neural activity profiles as
outlined below.

Multiple independent neural activity profiles reflect WM gate
opening and closing. To account for a complex and possibly
spatially independent neural dynamics during working memory
gate opening and closing, we used group independent compo-
nent analysis (Group-ICA) to decompose the EEG data from the
four conditions (i.e., switch_reference, nonswitch_reference,
switch_comparison, nonswitch_comparison). The algorithmic
and statistical reliability of group independent components
(ICs) were estimated using the ICASSO method33. Details on
these procedures are provided in the “Methods” section. The
ICASSO results showed that the average stability (Iq) of the IC
components was 0.92 ± 0.07 for the switch_reference condition,
0.98 ± 0.01 for the nonswitch_reference condition, 0.96 ± 0.03
for the switch_comparison condition, and 0.97 ± 0.01 for the
nonswitch_comparison condition. Supplementary Fig. 1 shows
the 2D visualization of components similarity in ICASSO
algorithm for all four conditions. Also, the result of the R-index
calculation that the quality of the clustering demonstrated was
higher with 20 clusters (equal to the number of components)
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Fig. 1 Behavioral results for gate opening and gate closing. Behavioral results derive from N= 33 participants. Plots a and b reveal the accuracy and
reaction time (RT) in each condition, respectively. Plots c and d show the switching costs of accuracy and RT. For each box, the central line indicates the
median value, the bottom edge of the box indicates the 25th percentiles, and the top edge indicates the 75th, and each dot represents an outlier identified
by Matlab’s ‘boxchart’ function.
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than with fewer for all conditions. As shown in Supplementary
Fig. 2, the 20 clusters that show the best clustering quality had
the lowest values of R-indices in all four conditions (i.e.,
switch_reference, nonswitch_reference, switch_comparison,
nonswitch_comparison). After extracting reliable group com-
ponents for gate opening and gate closing conditions using
ICASSO, we applied CORRMAP as a clustering technique to
find spatially similar components between different task con-
ditions of gate closing and gate opening, because the compo-
nents of different conditions could occur with arbitrary scales
and orders and it is necessary to match components between
conditions. The CORRMAP procedure extracted 7 pairs of
homogeneous ICs between switch_reference trials and non-
switch_reference trials for the gate opening condition (see
Table 1) and 5 pairs of homogeneous ICs between switch_-
comparison trials and nonswitch_comparison trials for the gate
closing condition (see Table 2). The stability of each IC calcu-
lated from the ICASSO, and the similarity represented by the
correlation of ICA inverse weights of each pair (calculated by
CORRMAP), are also presented in Tables 1 and 2. The stabilities
of most ICs were relatively high except for the 20th IC in the
switch-reference condition, which was at 0.65 (all the rest Iq ≥
0.88). Due to that, we excluded the 7th pair of ICs in gate
opening conditions (i.e., IC 20 for the switch_reference condi-
tion and IC 19 for the nonswitch_reference condition) from
further analysis. The similarities of the remaining IC pairs were
also relatively high (all between 0.92 and 0.99). Figure 2a and b
shows the topographies of the remaining ICs. The back-
projected activity (i.e., averaged from all channels) for each IC
is shown in Fig. 2c–f. The sum of percentage of power accounted
for (ppaf) of the activities back-projected from the above-
selected ICs was also calculated and results showed in each
condition, it was higher than 89%. It suggests that the selected
ICs were sufficient and likely to reconstruct the original EEG
signals. The ppaf of the back-projected activities of individual
ICs are presented in Supplementary Tables 1 and 2. Since these
results demonstrate that there multiple independent compo-
nents constituting activity underlying WM gate opening and
closing (and not only one component for each) the findings
suggest that WM gate opening and closing is not constituted by
a single neural process. Rather, multiple neural processes are
important, which also reveal a complex (nested) temporal
dynamics as show below. Previous study of our group also
revealed that by using Group-ICA and ICASSO, the EEG signal
can be decomposed into components carrying different infor-
mational aspects or processing codes relevant for perception-
action integration34.

Nested representational dynamics during WM gating. To
examine the representational dynamics of the isolated activity in
detailed, we applied MVPA on each isolated and back-projected
IC pairs reflecting gate opening and closing. Two analyses were
executed at the single-subject level for each pair: a binary classi-
fication across time to identify the time points showing different
patterns between IC pairs and a temporal generalization analysis
to characterize the temporal dynamics of the representational
content at the component ERP. The binary classification perfor-
mance across time and the temporal generalization matrix are
shown in Fig. 3 and Supplementary Fig. 3. The binary classifi-
cation performance of all IC pairs was significantly higher than
the chance level (p < 0.05). However, evident area under the curve
(AUC) peaks of binary classification and temporal generalization
clusters representing significant AUC values (AUC > 0.5, p < 0.05)
were only detected in some IC pairs, i.e., IC pairs 3 and 4 in the
gate opening condition, and IC pairs 1, 4, and 5 in the gate closing
condition. Therefore, we only present the MVPA performance of
the abovementioned IC pairs in Fig. 3. Please refer to Supple-
mentary Fig. 3 for the MVPA performance of the rest IC pairs.

For the IC pair 3 of the gate opening conditions, the AUC
curve of the binary classification across time (Fig. 3a) revealed
one peak of 0.96 at 371 ms after stimulus onset. The temporal
generalization of IC pair 3 showed a cluster of significant above-
chance off-diagonal activity between 250 and 500 ms (Fig. 3c).
Another smaller peak of 0.76 was also observed around 668 ms
after stimulus onset, and the corresponding temporal general-
ization revealed a small cluster of significant off-diagonal activity
between 600 and 800 ms. In the binary classification step, two
peaks were observed for the IC pair 4 of gate opening conditions.
The first one reached an AUC value of 0.80 at 664 ms, and the
corresponding temporal generalization cluster also centralized
around 650 ms after stimulus onset with an off-diagonal activity
of ~300 ms (Fig. 3d). The second peak was slightly lower but
reached an AUC value of 0.74, which was evident at 1070 ms after
stimulus onset. The second peak’s corresponding temporal
generalization cluster (i.e., off-diagonal activity) was observed
around 900 to 1400 ms after stimulus onset.

For gate closing IC pairs (Fig. 3b), the AUC curve of the binary
classification of IC pair 1 showed a peak of 0.98 at 352 ms after
stimulus presentation and an off-diagonal activity (temporal
generalization) of ~250 ms. For IC pair 4, two peaks of the AUC
curve were detected in the binary classification, corresponding to
the two clusters showing significant high performance in the
temporal generalization. The first peak reached 0.92 at 527 ms
after stimulus onset, and the corresponding temporal general-
ization cluster expanded from around 400 ms to around 750 ms

Table 1 Independent component (IC) stability and IC pair similarity in the gate opening condition.

Pair index 1 2 3 4 5 6 7

IC index (Iq) Switch reference IC 2 (0.92) IC 5 (0.96) IC 7 (0.95) IC 8 (0.96) IC 11 (0.94) IC 18 (0.90) IC 20 (0.65)
Nonswitch reference IC 18 (0.97) IC 6 (0.97) IC 8 (0.98) IC 20 (0.98) IC 14 (0.97) IC 5 (0.98) IC 19 (0.98)

Similarity 0.95 0.95 0.99 0.92 0.98 0.95 0.96

Table 2 Independent component (IC) stability and IC pair similarity in the gate closing condition.

Pair index 1 2 3 4 5

IC index (Iq) Switch comparison IC 7 (0.98) IC 8 (0.97) IC 15 (0.96) IC 19 (0.88) IC 20 (0.93)
Nonswitch comparison IC 15 (0.98) IC 6 (0.97) IC 12 (0.97) IC 19 (0.98) IC 17 (0.97)

Similarity 0.96 0.94 0.95 0.97 0.96
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after stimulus onset. The second peak reached 0.85 at 980 ms after
stimulus onset, and the corresponding temporal generalization
cluster spread from 800 ms to 1300 ms. The AUC performance of
the binary classification using the IC pair 5 data in the gate
closing also reached a peak of 0.97 at 785 ms after stimulus onset.
The temporal generalization showed a cluster of significant
classification performance (AUC > 0.5, p < 0.05) around 600 to
1000 ms after stimulus onset.

As abovementioned and can be seen in Fig. 3a and b, the
different independent components show an alternating pattern of
activity—especially during theWM gate closing dynamic (Fig. 3b).
Thus, there is a pattern of recurrent and nested higher and lower
activation in the individual ICs and the associated representa-
tional dynamic (Fig. 3c–g). The two independent spatial neural
activity profiles occurring ~400 ms after presented stimulus
information explain significant neural activity proportions during
WM gate opening. During WM gate closing, three independent
spatial neural activity profiles, again occurring ~400 ms after
stimulus information, accounted for large proportions of the
neural activity. This shows that WM gate opening and closing

processes revealed a similar temporal dynamic. However, gate
closing processes depend on slightly more complex neural
dynamics than gate opening processes. This aspect is, at present,
not covered in the conceptual account of WM gate opening and
closing. The interpretation is corroborated by the more nested
temporal pattern of activations of the representations during WM
gate closing than gate opening. During WM gate closing, the
identified ICs showed a systematic temporal pattern whereby the
peak in classification accuracy based on one IC was followed by a
peak in classification accuracy based on another IC. In this
respect, gate closing reveals a dynamic of an intermittent
activation of representational contents, which could be assigned
to independent neuronal activity patterns. This pattern was less
evident during WM gate opening processes (see AUC curve in
Fig. 3a).

A ventral stream-prefrontal cortex cascade in nested WM
gating representational dynamics. Source localization using the
sLORETA software package35 was used to examine which func-
tional neuroanatomical structures are associated with the

Switch_reference

Nonswitch_reference Nonswitch_comparison

Comparison

Non-
switch

Switch

Switch_comparison

a.

c.

e.

b.

d.

f.

Reference

Fig. 2 Similar independent component (IC) pairs and corresponding ERPs for gate opening and closing conditions. Plots a and b show similar IC pairs in
gate opening and closing conditions. Each column shows one pair of similar ICs, with the first row representing switch trials and the second-row
representing nonswitch trials. Arbitrary units are applied to the scale of the IC topographies. Plots c–f present the component ERPs corresponding to each
ICs from plots a and b.
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representational dynamics captured in the different independent
components and their temporal modulation, as outlined in the
above section and Fig. 3. The source localization analysis tracks
how brain regions from the ventral stream pathway to the pre-
frontal cortex are activated during WM gate opening. The results
of the source localization analysis are shown in Fig. 4.

During working memory gate opening (Fig. 4a), representa-
tional content reflected between 250 and 500 ms in IC pair 3 was
associated with significant activity modulations in the ventral
stream encompassing the lingual gyrus (BA19) and the superior
temporal gyrus (BA22). No significant sources could be obtained
for the off-diagonal activity between 600 and 800 ms. For the
representational dynamics during gate opening processes
reflected by IC pair 4 (Fig. 4b) centralized around 650ms after
stimulus onset, significant bilateral source activity was found
extending large parts of the anterior portions of the inferior,
middle, and superior temporal cortices (BA20, BA21, BA22).
Moreover, large parts of the inferior and dorsolateral prefrontal
cortex revealed bilateral activity modulations. These modulations
included the inferior frontal gyri (BA47) and the middle and
superior frontal gyri, including frontopolar cortices (BA9, BA10,
BA11, BA47). In addition, the right inferior parietal regions
(BA40) revealed activity modulations. For the other representa-
tional dynamics during gate opening processes reflected by IC
pair 4 around 900 to 1400 ms after stimulus onset, no significant
source was detected by sLORETA analysis. The representational
dynamics during WM gate opening processes thus start in the
ventral stream and extends to frontal cortical regions. Theoretical
approaches to prefrontal cortex functioning indicate that
frontopolar regions play a role in branching control36–38,
enabling them to maintain a state/information that may be

useful in the future and revert to a pending task or episode
following the completion of an ongoing one36. Such branching
processes are assumed to precede processes guiding action
selection36. Considering that the decision to open a WM gate
depends on the estimated utility of information4, the involve-
ment of cortical regions for which other theoretical concepts
have stated are central to estimating whether a response option
is useful seems reasonable. The current findings thus provide a
conceptual link between WM gating processes and an informa-
tion approach to prefrontal cortex function36 in that cognitive
branching is increased during working memory gating, opening
representational dynamics. Interestingly, the frontopolar region
is closely connected to regions in the temporal cortex37,39,40,
shown to be associated with the representational content
processing before the representations during WM gate opening
and closing become associated with prefrontal regions. It may be
speculated that such structural connections underlie the
observed ventral stream-prefrontal cortex cascade in WM gating
representational dynamics. Notably, frontopolar regions have
not been reported to be associated with WM maintenance29.
Thus, the dynamics of WM gating processes cannot be directly
inferred from knowledge about the mechanisms of WM
maintenance.

During working memory gate closing (Fig. 4c–e), representa-
tional content reflected by IC pair 1 at 352 ms after stimulus
presentation with a temporal generalization of ~250 ms was
mostly associated with activity modulations in left-sided anterior
temporal cortices (BA20, BA21). For IC pair 4, the first temporal
generalization from around 400 ms to around 750 ms after
stimulus onset was associated with bilateral activity modulations
in temporal cortices (BA20, BA21, BA22) and the lingual gyrus
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Fig. 3 MVPA results for selected independent component (IC) pairs of gating conditions. Plots a and b show the binary classification performance of
gate opening and closing conditions separately. The shaded error bars represent standard deviation. Plots c–g illustrate the temporary generalization of
each IC pair. Only time points with significant (p < 0.05) classification performance computed by cluster-based permutation test with N= 33 samples are
presented in color.
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(BA19) as well as the precuneus. Moreover, bilateral medial and
superior frontal regions revealed activity modulations (BA6, BA8,
BA9, BA32). The second temporal generalization cluster between
800 ms and 1300 ms after stimulus presentation was associated
with activity modulations in frontopolar and orbito-frontal
cortices (BA10, BA11, BA46, BA47). For IC pair 5, no significant
activity clusters in the sLORETA analysis were found. The
representational dynamics during WM gate closing start in the
ventral stream and extends to frontal cortical regions, similar to
WM gate opening processes. During WM gate closing, and as
opposed to WM gate opening, the representational dynamics
were associated with bilateral medial and superior frontal regions
revealed activity modulations (BA6, BA8, BA9, BA32) between
400 and 750 ms after stimulus presentation. Gate closing is
initiated when distracting or conflicting information is detected6.
Medial and superior prefrontal regions have consistently been
associated with conflict monitoring processes41–43. From that
perspective, it is reasonable that representational dynamics during
WM gate closing are associated with medial and superior frontal
cortex activity. This conflict-related process is not evident during
the representational dynamics associated with WM gate opening
(see above). Crucially, frontopolar and orbitofrontal regions were
also modulated in the representational dynamics during WM gate
closing processes, but later (i.e., between 800 and 1300 ms) and

the direction of activity as revealed by the sLORETA contrast was
negative. The data suggest that cognitive branching36,37,44 is
downregulated during the gate closing representational dynamics,
probably a consequence of conflict monitoring. This is sub-
stantiated by the finding that the same extracted independent
component (IC) was associated with representational dynamics in
earlier time conflict-monitoring-related windows (i.e., between
400 and 750 ms) and later time windows (i.e., between 800 and
1300 ms), revealing a decrease of activity in brain regions thought
to be involved in cognitive branching. From the above, it appears
that WM gate opening and closing processes differ in their
involvement of prefrontal cortical areas. During WM gate
opening, frontopolar, orbito-frontal, and dorsolateral prefrontal
regions were activated (BA9, BA10, BA11, BA47). This was not
the case during WM gate closing. By the source localization
analysis directly contrasting WM gate opening and closing
processes for the extracted independent components revealing
temporal stability of the representational content between 400
and 750ms after stimulus presentation (see Fig. 5), it is shown
that frontopolar, orbito-frontal, and dorsolateral prefrontal
regions (BA9, BA10, BA11, BA47) and regions in the medial
frontal cortex encompassing the anterior cingulate cortex
(BA24, BA32) were differentially activated between gate opening
and closing.

Gate opening IC pair 3 (250 ~ 500 ms)

Gate closing IC pair 4 (400 ~750 ms)

Gate closing IC pair 4 (800 ~ 1300 ms)

Gate closing IC pair 1 (225 ~ 475 ms)

Gate opening IC pair 4 (500 ~ 800 ms) 

d.

a.

b.

c.

e.
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Fig. 4 Source localization of working memory gating dynamics. The title indicates the independent component (IC) pair and the time window selected for
sLORETA analysis for each plot (a–e). The temporal generalization result of this IC pair is presented on the left in each plot from (a) to (e) with a red circle
marking the cluster utilized for sLORETA. The source of the working memory gating dynamics is illustrated from five orientations (from left to right: lateral-
left, medial-left, lateral-right, medial-right, and bottom) presented on the right in each plot from (a) to (e). The color bar represents the critical t-values
using N= 33 samples. The color key on the right of each plot from (a) to (e) denotes t-values.
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Despite differences between working memory gate opening
and closing discussed above, there are also commonalities
between both processes. During gate opening and closing,
representational content is first modulated between 250 and
500 ms, and the represented content is stable for ~250 ms. Of
note, ventral stream cortical areas (lingual gyrus (BA19), superior
temporal gyrus (BA22), and anterior temporal cortices (BA20,
BA21) were associated with this dynamic in WM gate opening
and closing. The ventral stream pathway processes what kind of
information is coded in the presented stimuli45,46. During WM
gating, stimulus-related content is thus evident for 250 ms in
ventral stream pathways. Moreover, the regions identified are also
modulated during WM maintenance16,29. During WM gate
closing, the shielding process of WM content is also initiated in
ventral stream pathways. The decision when to open or close the
working memory gate depends on the utility of the information
presented4. This utility estimation depends on what stimulus is
detected and how it differs from the reference stored in WM.
Therefore, it seems reasonable that WM gate opening and closing
processes start within the ventral stream before other cortical
regions are involved in WM gate opening and closing
representation dynamics.

Taken together, using different EEG analysis methods, we
traced the path of mental representations along the human cortex
during WM gate opening and closing. Working memory gate
opening and closing revealed a temporally nested representational
dynamics depending on multiple independent neural activity
profiles. These activity profiles are attributable to a ventral
stream-prefrontal cortex processing cascade. The representational
dynamics start in the ventral stream during WM gate opening
and WM gate closing before prefrontal cortical regions are
modulated. A regional-specific activity profile is shown within the
prefrontal cortex depending on whether WM gates are opened or
closed, matching overarching concepts of prefrontal cortex
functions. The study closes an essential conceptual gap detailing
the neural dynamics underlying how mental representations drive

the WM gate to open or close to enable WM functions such as
updating and maintenance

Methods
Participants. The study runs a quantitative, within-subject manipulation of
experimental conditions. Data of Rempel et al.11 (N= 24 student individuals) and a
newly-collected dataset (N= 18 student individuals) were chosen for this study
(N= 42 individuals in total; 13 males, mean age 25.62 ± 5, all right-handers). To
ensure a high quality of the group independent component analysis (ICA), we
excluded N= 9 participants with an insufficient trial number (<50) for each
condition after EEG segmentation. The final sample comprised N= 33 participants
(9 males with a mean age of 25.77 ± 5.01). There was no randomization due to the
within-subject design. The sample is comparable to other studies examining
representational dynamics of neurophysiological activity using MVPA25,26. All
participants had normal or corrected-to-normal vision, normal hearing capabilities,
and no neurological and psychiatric disorders history. Participants of the newly
collected data performed two other paradigms on the day of the experiment
unrelated to the current study. The IRB of the TU Dresden approved the studies.
Written informed consent was obtained from all individuals. All procedures fol-
lowed the Declaration of Helsinki.

Task. Rac-Lubashevsky and Kessler3 developed the Reference Back Task to
investigate WM gating mechanisms. The task further develops the classical N-back
task, which measures and manipulates WM gating processes. In this task, letters are
presented, and participants are asked to decide whether the letter is identical to the
letter presented N trials earlier. For this purpose, letters are displayed in blue or red
frames (see Fig. 6). Only the letters X and O are used. Unlike in the N-back task,
the further development by Rac-Lubashevsky and Kessler3 requires deciding
whether each letter is identical to the letter that was last presented in a red frame. If
a letter is presented in a blue frame, participants have to compare the letter only
with the letter last presented in a red frame and not update WM.

In contrast, for letters presented in a red frame, participants must compare the
letter with the letter last presented in a red frame and update WM. The presented
letter then becomes the new reference. Trials with a red frame are referred to as
reference trials, and trials with a blue frame are defined as comparison trials. Further
aspects of a trial are relevant to investigating different gating mechanisms—a switch
from a reference to a comparison trial or vice versa. If, on the other hand, two trials of
the same kind follow each other (i.e., reference to reference or comparison to
comparison), it is defined as a nonswitch trial. These two aspects (trial type,
switching) result in four possible conditions: switch_reference, nonswitch_reference,
switch_comparison, and nonswitch_comparison. In the task, ‘N’ (i.e., the distance to
the referenced WM item and the distance to the referenced WM item) is not

3 

0

-3 

Fig. 5 Source difference of working memory gating dynamics between 400 and 750ms. The source difference was computed using gate opening
independent component (IC) pair 4 and gate closing IC pair 4. The source difference of the working memory gating dynamics is illustrated from five
orientations (from left to right: lateral-left, medial-left, lateral-right, medial-right, and bottom). The color bar represents the critical t-values using
N= 33 samples. The color key on the right denotes t-values.

Trial type Reference Comparison Reference Reference Comparison Comparison Reference

Switching Switch Switch Nonswitch Switch Nonswitch Switch

Response Left (different) Left (different) Left (different) Left (different) Right (same) Right (same)

Gating Closing Opening
Remains
open

Closing
Remains
closed

Opening

XO XX O O O

Fig. 6 An example of the reference-back task. The arrow indicates the stimulus presentation order.
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controlled. However, this does not confound the computation of gating behavior: The
reference-back task component in the paradigm is, simply speaking, used to compare
the current stimulus with the previous red-framed stimulus. As explained by Rac-
Luashevsky et al.13, ‘… this feature makes the reference-back similar to a 1-back task,
since they both require maintaining only one item in WM’. According to Watter
et al.47, the matching process (i.e., comparing the current stimulus with the reference)
is independent of ‘N’. Thus, theoretically and empirically, the systematic differences in
the distance to the referenced WM item among conditions do not confound the
computation of behavioral performance in each condition and the computation of
gating parameters.

Procedure. First, participants were welcomed and seated in the EEG lab, the
informed consent form was signed, and the EEG cap was prepared. Participants
performed the task on a 19-inch computer monitor with a light gray background.
Participants were asked to place their left index finger on the left control key of a
standard QWERTY keyboard and their right index finger on the right control key.
Standardized instructions were given, and a practice run of 60 trials was conducted
to familiarize participants with the task. Each block consisted of 60 trials, with
participants completing 16 blocks (960 trials in total). A fixation cross was dis-
played for 800 ms before each trial, and the screen turned blank for 1000 ms. The
stimuli X or O were presented with either a red or a blue frame. All blocks started
with a reference trial that required no response. The stimuli of each trial (X or O)
were randomly selected. The presentation of the target stimulus ended with a
keypress, regardless of whether the response was correct or incorrect or when the
response was not given within 1400 ms. Participants had to indicate whether the
stimulus (X or O) was the exact (match) or different (mismatch) compared to the
stimulus that appeared in the last red frame (i.e., the last reference trial). ‘Same’ was
indicated by pressing the right control button, whereas ‘different’ was indicated by
pressing the left control button with the respective index finger. The response
mapping (left/right) was balanced, and the order of correct responses was rando-
mized. In 75% of trials, the type of trial (reference or comparison) was identical to
the last trial (nonswitch); 25% of trials were different (switch).

EEG recordings and pre-processing. The EEG was recorded from 60 equidistant
Ag/AgCl electrodes at a sampling rate of 500 Hz using QuickAmp and BrainAmp
amplifiers (Brain Products GmbH, Germany). The ground and reference electrodes
coordinates were theta= 58, phi= 78 and theta= 90, phi= 90, respectively. After
recording, the EEG data were pre-processed using the BrainVision Analyzer
2 software (Brain Products GmbH, Germany). First, the raw data was down-
sampled to 256 Hz, and Infinite Impulse Response (IIR) filters with a high-pass of
0.5 Hz, and a low-pass of 40 Hz were applied at a slope of 48 dB/oct. After that,
defective channels were discarded, and the remaining channels were re-referenced
to an average reference.

Further, a manual raw data inspection was employed to remove technical
artifacts, and an independent component analysis was employed to remove regular
artifacts like eye movements, blinks, and pulse artifacts. Afterward, the discarded
channels were interpolated using a spherical method. After these EEG pre-
processing steps, we segmented the continuous data into single trials according to
the stimulus onset. The time window of each trial began the 2000 ms before
stimulus onset and ended at 2000 ms after stimulus onset. After segmentation, an
automatic artifact rejection was processed to remove the residual artifacts, and only
trials meeting the following criteria survived: difference of values in an interval of
200 ms is <200 μV; the amplitude is between −200 and 200 μV; the activity in an
interval of 100 ms is larger than 0.5 μV. Subsequently, a baseline correction was
applied on each trial using a baseline window of −200 ~ 0ms locked to the
stimulus. Baseline-corrected trials without artifacts and with a correct response in
1500 ms after stimulus onset were categorized into four conditions as in the
behavioral data.

Independent component analysis. We used Group-ICA to decompose the EEG
data from the four conditions above. In the standard ICA model (applied to single-
subject data), different sets of components would be estimated in different orders
and scales, and it would be impossible to extract the corresponding components
across subjects. Applying Group-ICA addresses this issue. Using the equation
C=WX, a Group-ICA tries to extract independent brain sources (C), indicating
homogeneous neurophysiological activation of Group EEG data (X) across sub-
jects. W represents the de-mixing matrix. X is the single-trial EEG data because
mathematically, for ICA implementation, a certain number of time points are
required, and average data does not have sufficient time points. The Group-ICA
approach combines data from all subjects’ observations, estimates aggregate
components directly, and then reconstructs estimated components back to indi-
vidual data for group analysis48. For this purpose, first, the EEG data are com-
pressed to 1… L factors with principal component analysis to reduce
computational load. In the current study, we considered a threshold for the per-
centage of eigenvalues retaining (98%), and the results showed that by selecting 20
principal components (default number of components in EEGIFT toolbox), the
amount of this retaining for all subjects was higher than the threshold. Individual
principal components are then concatenated to an aggregate dataset. Afterward,
ICA (Infomax method) estimates W using the aggregate components.

This step of Group-ICA estimates the algorithmic and statistical reliability of a
group independent component using the ICASSO method33. Because the starting
point for learning is chosen at random for several ICA algorithms and the sample
size is finite, results may vary between runs, even for the same data. To acquire
valid estimations of the IC structure, it is thus required to execute the algorithm
numerous times with various data distributions and initial values. Bootstrap is a
method for changing the distribution of time points across several Group-ICA
runs. According to Himberg et al.33,49, the ICASSO consists of the following steps:

At first, parameters for the estimation algorithm are selected. These parameters
relate to the ICA algorithm and not the ICASSO. The number of components, the
number of iterations, and other parameters are examples of this. We used Infomax
as an ICA algorithm and the default parameters that were selected in the Group-
ICA toolbox. Because the performance of the different algorithms is not
remarkably different when applied to aggregate EEG time domain data, changing
the algorithm and parameters would not affect the results50. After selecting the ICA
algorithm and its parameters, the estimation is run N times on the bootstrapped
data. We applied ICA 50 times on the group independent components estimated
for each condition.

Afterward, mutual similarities between all the estimates are computed. As the
measure of similarity, we use the absolute value of the linear correlation coefficient
between the independent components. The estimates are clustered according to
their mutual (dis)similarities. In principle, the clustering method can be freely
selected. We applied the default agglomerative hierarchical method of the Group-
ICA toolbox for clustering. According to Himberg et al.33, the most reasonable
initial number of ICASSO clusters would equal the data dimension n. Since we had
applied principle component analysis on the data before ICASSO and we had
extracted 20 principle components, we selected 20 for the number of final ICASSO
clusters. We computed the R-index to mathematically further validate that the
number of final clusters was optimal. The R-index approach is used to select the
number of disjoint ICASSO clusters51. It is a quantitative measure that can be
computed knowing only the similarity matrix. The algorithm to calculate the
R-index searches for compact and well-separated clusters and the minimum of it
suggests the best partition. The lowest number of the R-index shows the best
clustering qualification for the data.

The clustering can be visualized as a 2D plot or as a dendrogram. In the current
study, we visualized clusters as a similarity 2D plot to have a better visualization of
the cluster compactness. The clustering of the estimates is expected to reveal
information about the estimation’s reliability (robustness). The compactness of the
clusters shows their reliabilities. A compact cluster develops when a similar
estimate appears repeatedly despite the randomization. Also, for each ICASSO
cluster, an index (Iq) was defined to show its compactness. Iq was calculated as a
difference between intra and inter-cluster components’ similarity49. By defining a
threshold for Iq, compact clusters with cluster indices higher than the threshold
correspond to reliable estimations. The Iq threshold for defining reliable
components in the current investigation was 0.8552. Finally, each cluster is
represented by a single ICA estimate, with the IC representing the highest number
of similarities to other cluster points.

Thus, the parameter choice in the ICASSO was clearly constrained by
mathematical procedures. After that, for the ICs representing compact clusters, the
Group-ICA algorithm performed a back-reconstruction to retrieve individual
components. We used the EEGIFT toolbox to implement the Group-ICA
application (http://icatb.sourceforge.net/.EEGIFT).

After extracting group components for gate opening and closing conditions, we
applied a clustering technique to find spatially similar components between two
task conditions. CORRMAP53 is a clustering method that classifies ICs similar to
one or a few templates (http://www.debener.de/corrmap). The component
similarity is measured using a correlation procedure that selects components that
pass a defined threshold. The template is compared with all component maps from
all datasets by calculating a correlation value. All components with an absolute
correlation that equals to or greater than the threshold are selected to be part of the
cluster. CORRMAP is just a clustering method and can be used for finding spatially
similar brain-related sources. From a mathematical point of view, it is the similarity
of data distributions that is estimated, and it does not matter whether an artifact
template is used for comparison (the initial implementation of CORRMAP) or
whether a cognitive IC is used. Each of the reliable components of two different
conditions (based on the ICASSO results) was considered as the template of each
CORRMAP cluster separately, and the spatially similar ICs from all conditions
with a correlation coefficient higher than the threshold were classified. Because the
CORRMAP clustering only depends on the selected template and not its origin
(i.e., artifact or brain-related component), we used brain-related sources to extract
similar cognitive ICs among different conditions. We considered the threshold of
correlation between independent component topographies to be 0.9. For each
template, we set a maximum of three representing components of each group to
find the most similar components. This prevented CORRMAP clustering from
finding similar overlapping components.

Multivariate pattern analysis. Two MVPA analyses were executed at the single-
subject level for each IC pairs reflecting gate opening and closing using the MVPA-
light toolbox54: a binary classification across time and a temporal generalization
analysis. For each trial, only signals from 0 to 1500ms after stimulus onset were fed
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into the MVPA as we only considered the post-stimulus processes. Before the MVPA
for each participant and each IC pair was conducted, under-sampling was performed
to balance the number of trials in two classes to avoid an overfitting problem. The
removed trials during under-sampling processes were randomly selected.

Binary classification and temporal generalization analyses were done separately
for each individual and IC pair using the same classifier and parameter settings. We
used the default linear discriminant analysis classifier in the MVPA-Light toolbox
to contrast two conditions. Since the signal-noise ratio increases after ICA, we used
this more time-efficient approach instead of a suggested support vector machine
method. A five-fold cross-validation method was applied twice for binary
classification and temporal generalization. Specifically, the dataset is randomly split
into 5 folds in each cross-validation process. In each iteration step, one fold was
used as the testing dataset and the rest as the training dataset. Cross-validation was
repeated once. The final performance of cross-validation was averaged from the
two repetitions.

Cluster-based permutation tests were run on both MVPA performances
represented by the AUC values to identify the time points showing significant
classification performance. All cluster-based permutation tests were based on the non-
parametric Wilcoxon tests on each time point (for binary classification across time
and time generalization). The null value for AUC was at a chance level of 0.5. The
reference distribution of the permutation test was computed with 1000 random
draws. The threshold for the Wilcoxon tests was 0.05. The cluster-level statistics were
computed using the sum of all Wilcoxon test values within time points.

Source localization analysis. To examine the functional neuroanatomical sources
associated with gate opening and gate closing sub-processes identified by different
IC pairs, sLORETA (standardized low-resolution brain electromagnetic tomo-
graphy) was conducted35 on back-projected data only for the IC pairs showing
significant temporary generalization performance in MVPA process. sLORETA
was conducted to extract the differential modulations for each IC pair between gate
opening and gate closing conditions. The time points selected for the ICs accord to
the temporary generalization results in the MVPA process. There is converging
evidence from EEG/(f)MRI and EEG/TMS studies that the source provided by
sLORETA is reliable55–57. sLORETA has also been shown to be usable in IC-
decomposed EEG data and when interested in the sources of different ICs58.
sLORETA partitions the intracerebral volume into 6239 voxels (using the MNI152
template), resulting in a spatial resolution of 5 mm. The basis of this partitioning
step is a realistic head model. For each of the voxels, the standardized current
density is calculated. According to the theoretical framework underlying the design
of the reference back paradigm, gate opening processes can be calculated by
contrasting reference_switch and reference_nonswitch trials. Gate closing pro-
cesses can be calculated by contrasting comparison_switch with compar-
ison_nonswitch trials. These different contrasts were calculated for the time period
showing temporal generalization in the MVPA analysis. For the statistical com-
parisons, the voxel-based sLORETA images for the different contrasts were cal-
culated using the sLORETA-built-in voxel-wise randomization tests based on
statistical non-parametric mapping (SnPM) (2500 permutations were used). Voxels
with significant differences (p < 0.05, corrected for multiple comparisons) between
contrasted conditions were located in the MNI-brain (www.unizh.ch/keyinst/
NewLORETA/sLORETA/sLORETA.htm). EEG source reconstruction is limited in
its spatial resolution and the findings reported may require validation by functional
imaging. Yet, in the context of the current study in which we are interested in how
the temporal process of neural activity evolves across different brain structures,
EEG source localization is the best way to go, because the time resolution of EEG is
combined with a reasonable spatial resolution of this methods.

Statistics and reproducibility. We used IBM SPSS Statistics 28.0.1.1 for the analysis
of the behavioral data with a sample size of N= 33. The mean and standard deviation
are given for the descriptive statistics. Mean RTs and mean accuracy (percentage of
correct responses) were analyzed for every participant and each condition to calculate
gate closing and gate opening. Only trials with correct responses were analyzed.
According to Kolmogorov–Smirnov tests, all behavioral variables included in the
analyses were normally distributed (all p > 0.120). A paired sample t-test was used to
analyze the differences between gate opening and gate closing for the behavioral data.
The sample size is larger than previous studies using the same experimental setup11

and similar to recent studies using EEG-based MVPA25–27. All information about the
statistical comparison can be found in the above sections and the results. All custom
analysis codes have been deposited in OSF.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying figures can be downloaded from https://osf.io/jw6v2/59.

Code availability
Custom code used to process the data can be found at https://osf.io/jw6v2/59.
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