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Functional orderly topography of brain networks
associated with gene expression heterogeneity
Wei Liu1, Ling-Li Zeng 1, Hui Shen1, Zong-Tan Zhou1 & Dewen Hu 1✉

The human cerebral cortex is vastly expanded relative to nonhuman primates and rodents,

leading to a functional orderly topography of brain networks. Here, we show that functional

topography may be associated with gene expression heterogeneity. The neocortex exhibits

greater heterogeneity in gene expression, with a lower expression of housekeeping genes, a

longer mean path length, fewer clusters, and a lower degree of ordering in networks than

archicortical and subcortical areas in human, rhesus macaque, and mouse brains. In parti-

cular, the cerebellar cortex displays greater heterogeneity in gene expression than cerebellar

deep nuclei in the human brain, but not in the mouse brain, corresponding to the emergence

of novel functions in the human cerebellar cortex. Moreover, the cortical areas with greater

heterogeneity, primarily located in the multimodal association cortex, tend to express genes

with higher evolutionary rates and exhibit a higher degree of functional connectivity mea-

sured by resting-state fMRI, implying that such a spatial distribution of gene expression may

be shaped by evolution and is favourable for the specialization of higher cognitive functions.

Together, the cross-species imaging and genetic findings may provide convergent evidence

to support the association between the orderly topography of brain function networks and

gene expression.
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As the fruit of billions of years of evolution, the human
brain has developed a hierarchical organizational infra-
structure that remains similar to some extent among

mammals, including the neocortex, archicortex, and subcortical
areas1,2. On this basis, almost all mammalian brains demonstrate
orderly topography in their functional networks, in which higher
cognitive functions are primarily regulated by the neocortex
rather than the archicortical and subcortical areas3,4. The spatial
and topological layout of functional brain networks are highly
heritable, likely due to genome blueprint5–7. However, the
underlying molecular architecture that supports such functional
topography of brain structures is poorly understood.

While the basic layout of cortical areas can be traced back to
the homologous brain regions in rodents and non-human pri-
mates, the human brain has undergone remarkable changes in the
process of evolution, with the human cerebral cortex being vastly
expanded relative to non-human primates and rodents and dis-
proportionately composed of multimodal association areas8,9.
The multimodal association areas and their structural and func-
tional connections in the human brain, primarily constituting
cognitive functional networks, such as the frontoparietal network,
salience network, and default-mode network, play an essential
role in higher-order brain functions10–12. Most recent studies
suggest that the development of higher-order cognitive networks
in recent human brain evolution is associated with specific gene
expression profiles13–15. The highly consistent transcriptional
architecture in neocortex is correlated with resting-state func-
tional connectivity13, and genetic and evolutionary uncoupling of
structure and function in different transmodal systems may
support the emergence of complex forms of cognition15. How-
ever, the pattern of gene expression in the human brain to sup-
port the emergence of higher-order brain functions remains to be
determined.

The availability of genome-wide spatial patterns of gene
expression data provide a great opportunity to understand the
relationship between gene expression and the anatomical and
functional organization of the mammalian brain16–19. Over the
past decade, a number of transcriptome studies focusing on
human brain region-related changes in gene expression profiles
have been published. Recent studies performing resting-state
functional magnetic resonance imaging (fMRI) have revealed that
functional connectivity networks can be recapitulated using cor-
related gene expression in post-mortem brain samples20. Further
studies reported that some genes could influence connectivity
strength between network hubs of the human connectome21, and
human-accelerated genes could play a role in the expansion of
higher-order cognitive networks7 using comparative tran-
scriptomics analysis. These findings imply that the emergence of
orderly functional networks in the human brain may be the result
of changes at the genetic level.

We hypothesized that there might be gene expression het-
erogeneity in various brain structures associated with the func-
tional orderly topography of brain networks. Here, we measured
gene expression heterogeneity with two metrics, i.e., the pro-
portion of housekeeping genes occupying all expressed genes and
topology indices of the gene expression networks. Housekeeping
genes (HKGs) are usually expressed at relatively constant rates
for the basic molecular and cellular function of neurons22,23;
thus, the lower proportion of HKGs expressed in brain structures
may suggest their higher functional diversity. Topological indices
of the gene expression networks in brain structures, including
mean path length, clustering coefficient and eigen entropy, offer
possibilities to understand how genes work together to perform
diverse functions24. In particular, we compared the heterogeneity
of gene expression in multimodal cortex with that of unimodal
cortex to investigate the role of gene expression in the

specialization of higher-order cognitive function in human brain
evolution. Then, we studied the association of the expression
heterogeneity of brain structures and the hierarchical archi-
tecture of functional connectivity networks to reveal the basic
principle by which the brain is organized throughout evolu-
tionary history, at least across rodents, rhesus macaques, and
humans.

Results
The proportion of HKG expression is lower in the neocortex
than in the archicortex and subcortex. We constructed the gene
expression networks for all brain samples by combining human
gene expression data from the Allen Institute for Brain Science
(http://human.brain-map.org/) and large-scale protein interaction
data (see the Methods section). The gene expression data were
obtained from six adult brains (two included both hemispheres,
and four included one hemisphere) for a total of 3702 brain
samples25. Considering individual differences and different
numbers of samples among donors, we analysed and compared
the gene expression networks between human brain samples.
Based on the gene expression networks, we extracted the per-
centages of HKGs and specific genes that were expressed in
almost all brain samples26 and expressed in only one or two
samples27, respectively. Although the values of these indicators
are variable in different donors, their distribution in the neocortex
to archicortex and subcortex are basically the same across all
donors. We took Brain #1 as an example to show the analysis
results, since it has the highest number of samples of all donors.

The percentages of HKGs are mapped to the samples of Brain
#1 (Fig. 1a). The samples with relatively low percentages of HKGs
were primarily located in the neocortex of the human brain.
Similar results were obtained in the other five human brain
samples (Supplementary Fig. 1 and Supplementary Data 1). As
shown in Fig. 1b, in Brain #1, the HKG percentages in the
neocortex were significantly lower than those in the archicortex
and subcortex (both P-values < 0.001 in two sample t-tests). Not
surprisingly, the genes expressed in the neocortex tended to have
lower gene expression levels and higher expression specificity
than those in the archicortex and subcortex (Supplementary
Data 1).

The HKG percentages were mapped to the main structures of
Brain #1 (Fig. 1c). Interestingly, the cerebellum exhibited a
relatively lower mean HKG percentage than the cerebral nuclei,
interbrain, and brainstem. However, after dividing the cerebellum
by interior structures, significant differences were observed in the
HKG percentages between the cerebellar cortex and cerebellar
deep nuclei. The cerebellar cortex, including the lateral hemi-
sphere (33.60 ± 1.58%) and paravermis (33.61 ± 1.76%), exhibited
a lower HKG percentage than the cerebellar deep nuclei
(39.70 ± 4.74%). Thus, significant differences in expression may
exist between the different subregions of the cerebellum,
coinciding with their functions. According to previous studies,
the cerebellum in humans not only plays an important role in
motor control, which is mainly executed by the cerebellar deep
nuclei, but is also involved in certain higher-order cognitive
functions, such as attention and language, which are executed by
the cerebellar cortex28,29.

To investigate the relationship of the HKG percentage and
evolution, we analysed the evolutionary rate of gene expression
(see the Methods section) to measure the selective constraints on
the brain regions involved. As shown in Fig. 1d, the HKG
percentages in the samples of Brain #1 were found to decrease as
the average evolutionary rates of gene expression increased.
Similar results were observed in the samples of the other five
brains. These results imply that the brain regions with lower HKG
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percentages show a higher average evolutionary rate under less
evolutionary pressure than the other regions.

Newly developed brain regions exhibit increased heterogeneity
in their internal expression networks. Considering that genes
usually function together through the interaction of their pro-
ducts, we hypothesized that the heterogeneity of gene expression
in different brain structures may affect the organizational struc-
ture of the gene expression networks, thus showing different
topological properties. To analyse the gene expression hetero-
geneity from a network perspective, we computed three typical
topological indices of the gene expression networks, including the
mean path length, clustering coefficient and eigen entropy, to
measure the overall navigability, modularity, and order of the
networks (see the Methods section and Supplementary Data 2).
In general, a longer mean path length, smaller clustering coeffi-
cient and larger eigen entropy of a network may suggest that it is
sparser, contains fewer clusters and is more disorderly, and thus
shows greater heterogeneity of gene expression.

The gene expression networks in the neocortex exhibited greater
heterogeneity, with longer mean path lengths, smaller clustering
coefficients and larger eigen entropies, than those in the archicortex
and subcortex (Fig. 2a, b). Meanwhile, significant correlations were
observed among the three topological indices and the average
evolutionary rate of genes. We found that the mean path lengths in
the brain samples increased as the average evolutionary rates of
genes increased, as shown in Fig. 2c. Our results revealed that the
orderness of the gene expression networks in the brain regions
presented a downwards trend from the subcortex to the archicortex
to the neocortex, consistent in all six brains. Previous studies have
reported that the eigen entropy of the whole-brain network in the
human connectome is associated with the neurodevelopment and
ageing of individuals30. Considering the theory of evolution of life
systems that the development of organisms and a highly complex
brain is a process of diminishing entropy30,31, such brain
organization may be the result of evolution.

Brain regions with greater expression heterogeneity were pri-
marily located in the multimodal association cortex of the
human brain. To investigate the heterogeneity of interconnected
networks in the neocortex, we integrated the gene expression data
of brain samples from six adult individuals through the standard
process described in previous studies32 (see Supplementary
Methods for details) and mapped them to seven networks of the
cerebral cortex33. According to the gene expression heterogeneity,
seven brain networks showed orderly topography from the
multimodal association cortex to the unimodal primary cortex.
The multimodal association cortex, including frontoparietal
control, attention, and default networks, showed reduced gene
expression similarity within networks compared to the visual,
motor, and limbic networks (Fig. 3a, see the Methods section),
while the higher-order cognitive functional networks consistently
exhibited larger differences in gene expression than the visual and
motor networks (Fig. 3b). Meanwhile, the gene expression het-
erogeneity within networks was found to be positively correlated
with the corresponding standard error of gene expression levels
(R= 0.87, P= 0.01). The multimodal association cortex con-
tained a lower standard error of gene expression levels than the
unimodal primary cortex, implying that its gene expression is
more heterogenous, as shown in Fig. 3c. These results indicated
that the multimodal association cortex exhibited greater expres-
sion heterogeneity, not only in the lower expression similarity
within networks but also in the greater dispersion degree of gene
expression levels.

Brain regions with greater expression heterogeneity tended to
be connected to more regions in the functional connectivity
networks. To explore whether genes with highly consistent cortical
patterns across individuals drive this functional organization, we
compared the gene expression with resting-state functional con-
nectivity MRI data from the Human Connectome Project34,35. We
generated a region-level functional connectivity matrix C averaged
across 50 subjects using linear correlations of 116 regions from the

Fig. 1 Gene expression characteristics of human brain samples. a The percentage of HKGs mapped to the brain samples of Brain #1. The proportion of
HKG expression to that of other specific genes was considerably higher in the archicortex and subcortex than in the neocortical areas. The HKG percentage
cut-off to best distinguish the neocortex and the archicortex and subcortex of Brain #1 was set at 32.45% and 35.90%, respectively. b The mean value and
standard deviation of the number of expressed genes and HKG percentage in the neocortex, archicortex and subcortex of Brain #1. c The percentage of
HKGs mapped to the main structures of Brain #1. The structures in the neocortex, archicortex and subcortex are marked in red, yellow and blue,
respectively. CCx cingulate neocortex, FCx frontal neocortex, Icx insular neocortex, Ocx occipital neocortex, PCx parietal neocortex, TCx temporal
neocortex, Hipp hippocampal proper, DG dentate area, PHG parahippocampal gyrus, S subiculum, CN cerebral nuclei, STR striatum, CB cerebellum, HTH
hypothalamus, THM thalamus, MD medulla, M midbrain, Pn pons. d The average evolutionary rate of gene expression was negatively correlated with the
HKG percentage in the samples of Brain #1.
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automated anatomical labelling (AAL) atlas36 (see the Methods
section). Then, we computed the topological properties of the
functional connectivity networks in the human brain, including the
degree and betweenness coefficient of each brain region.

We compared the properties of the gene expression networks
with those of the functional connectivity networks in the human
brain. The degree of brain regions in the functional connectivity
networks was negatively correlated with the HKG percentage

Fig. 2 Topological properties and the relationship of the gene expression networks. a The mean path length and b clustering coefficient mapped to all
brain structures in Brain #1. The gene expression networks in the neocortex have longer mean path lengths and smaller clustering coefficients than those in
the archicortex and subcortex. The mean path length cut-offs to best distinguish the neocortex, archicortex and subcortex of Brain #1 are 2.8073 and
2.7939, respectively, while the cut-offs of the clustering coefficient are 0.2065 and 0.2089, respectively. c The mean path length was negatively correlated
with the HKG percentage and clustering coefficient and positively correlated with the evolutionary rate of expressed genes and eigen entropy of the gene
expression networks in the samples of Brain #1.

Fig. 3 The expression heterogeneity of seven networks in the human cerebral cortex. a Mean correlation coefficient of gene expression of samples
within each network. b The hierarchical clustering of gene expression between networks. c The standard error of gene expression levels in samples of each
network and their corresponding distribution. DN default-mode network, dATN dorsal attention network, vATN ventral attention network, FPN frontal
parietal network, LMB limbic network, Mot motion network, Vis visual network.
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(R=−0.39, −0.25, −0.31, −0.20, −0.20, and −0.33 for Brains
#1–6, respectively, all with P < 0.01) and positively correlated with
the mean path length of the gene expression network (R= 0.35,
0.31, 0.37, 0.16, 0.25, and 0.32 for Brains #1–6, respectively,
P < 0.01). Thus, brain regions densely connected to other regions
in the functional connectivity networks are primarily located in
the neocortex of the human brain and tend to exhibit greater
expression heterogeneity, with lower proportions of HKGs and
longer mean path lengths in their expression networks (Fig. 4 and
Supplementary Fig. 2). These results suggested that the brain
regions with greater expression heterogeneity tend to be closely
related to each other to perform more interdependent functions.

The gene expression patterns in the mouse and rhesus macaque
brain are similar to the human brain. Subsequently, based on
the expression data from the Allen Institute mouse brain atlas
from a 56-day-old male C57BL/6 J mouse brain37 and protein
interactions in the mouse brain, we established the gene expres-
sion networks in 73 structures of the adult mouse brain (see the
Method and Supplementary Data 3). We identified 570 HKGs
that were expressed in 72 or 73 structures. Most of the HKGs
(33.68–79.65%) in the mouse brain are homologous to the HKGs
in human Brains #1–6. Mouse brain regions with lower HKG
proportions tended to be newly developed, as shown in Fig. 5a.
Focusing on the isocortex of the mouse brain, the ‘perirhinal area’
exhibited the lowest percentage of HKGs, followed by the ‘pre-
limbic area’, with values of 29.17% and 30.76% (Supplementary
Fig. 3), respectively, consistent with those of previous evolu-
tionary analyses across species38. In particular, the mouse cere-
bellum has the highest HKG proportion (44.90%), suggesting that
there may be significant evolutionary differences in the cere-
bellum between humans and mice39. We found that the mean
path length and eigen entropy of the gene expression networks in
the isocortex (4.09 ± 0.09 and 5.13 ± 0.10, respectively) were sig-
nificantly higher than those in the cerebral nuclei (3.83 ± 0.10 and
4.96 ± 0.05, respectively), indicating that the brain structures that
evolved later exhibit greater heterogeneity than those that evolved
earlier. The cerebral nuclei, including striatum and pallidum, is a
part of mouse cerebrum. Based on resting-state functional MRI
data of forty-eight male C57BL/6 J mice40,41, we established the
functional connectivity networks of the mouse brains (see the

Methods section) and found a negative correlation between the
HKG percentage in gene expression and region degree in func-
tional connectivity networks (R=−0.53, P= 0.01, Fig. 5b),
confirming the results obtained from the human brains.

Furthermore, we generated the expression networks by
integrating the gene expression data of the adult rhesus macaque
specimen from the NIH Blueprint Non-Human Primate Atlas42

with interaction data from the STRING database and the
functional connectivity networks based on monkey functional
MRI data (see Method and Supplementary Data 4). We found
that the gene expression networks in the neocortex tended to have
greater heterogeneity, with a lower HKG percentage, longer mean
path length and higher functional degree, than those in the
archicortex and subcortex (Fig. 5c, d), in line with the results
obtained from the human brain.

Discussion
Our combined comparative neuroimaging and genetic findings
suggest that heterogeneous changes in gene expression may play
an important role in the formation of the functional topography
in the human brain. Based on the multiresolution gene expression
networks in human brain samples, and the structure and region
levels in rhesus macaque and mouse brains, the heterogeneity of
gene expression in the neocortex was found to be significantly
greater than those in the archicortex and subcortex, associated
with the functional orderly topography of brain networks. The
results obtained from the different resolution networks and dif-
ferent individuals are consistent, implying that such gene
expression patterns in the brain are robust and inherent. Based on
the abagen toolbox43, we examined the influence of methodolo-
gical variability on our results and found that the change trend of
the expression heterogeneity from the neocortex to the subcortex
is consistent under different standardizing workflows (see Sup-
plementary Methods and Supplementary Data 5). In particular,
the increased heterogeneity of gene expression in multimodal
association areas may potentially regulate the specialization of
higher-order cognitive functions in human brain evolution,
compatible with prior observations of high expression of
evolution-related genes in these brain areas7 and increased
transcriptional complexity in the frontal lobe of the human
brain44.

Fig. 4 Comparison of the gene expression networks and the functional connectivity network in human brains. The degree of the functional connectivity
network was significantly negatively correlated with the HKG percentage and positively correlated with the mean path length of the gene expression
network in Brain #1. FC functional connectivity, GE gene expression.
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The neocortex is the seat of higher cognitive functions45 and
involved in complex cognitive functions through cortical
circuits46, cortical-subcortical47 and cortical-cerebellar circuits48.
Previous studies reported that spatial patterns of gene expression
may reflect the hierarchical organization49 and spatial gradients
of intrinsic dynamics in neocortex50. Our results indicated that
the genes expressed in the neocortex tend to have higher varia-
bility, lower gene expression levels and higher expression speci-
ficity than those in the archicortex and subcortex. This is because
there is a higher proportion of non-HKGs, including specific
genes, expressed in the neocortex than in the archicortex and
subcortex. As reported, HKGs are involved in basic cell main-
tenance and, therefore, are expected to maintain constant
expression levels in all cells and conditions51 and have a relatively
low evolutionary rate52. In contrast, specific genes have more
variable expression patterns and reduced expression levels53. We
found a similar trend of gene expression in the cerebral cortex of
the human brain, with higher expression variability of genes in
the multimodal association cortex than in the unimodal primary
cortex.

Evolutionary changes in structures of the human brain relative
to other mammalian brains can arise from the emergence of new
genes but more from quantitative expression changes in
mRNA54. Comparative transcriptome studies of the human and
chimpanzee brain indicated that the acceleration signal is clearly
more pronounced in the PFC, a region involved in high order,
partly human-specific cognitive processes such as abstract
thinking and planning, than in other brain regions55. In our
studies, the increased heterogeneity of the gene expression net-
works from the archicortex and subcortex to neocortex was found
to be closely correlated with the average evolutionary rate of
expressed genes, implying that the spatial architecture of gene

expression is very likely the product of natural selection. Simi-
larly, its associated functional orderly topography of the brain is
commonly believed to be shaped under the pressure of
evolution11,56. The structures in the neocortex expressed more
non-HKGs to perform their complex functions under short-term
evolutionary pressure, while the structures in the archicortex and
subcortex reduced their proportion of specifically expressed genes
to maintain the stability of their functions under long-term
evolutionary pressure. Such an organization mode of brain net-
works may contribute to the functions of neocortical areas being
implemented effectively and flexibly, while the critical functions
of archicortical and subcortical areas are performed steadily and
systematically.

Characterization of the human brain from a network per-
spective has become a powerful tool for inspecting the structural
and functional architectures of the brain57,58. Previous findings
have suggested the large-scale network organization of the human
connectome can enable the efficient processing of information
and thus support complex brain functions10,21,59–61. Weighted
gene co-expression network analysis was applied to build co-
expression networks, so as to identify modules of co-regulated
genes16 or examine the systems level organization of lineage-
specific gene expression differences44. Cellular network has
topological robustness against accidental failures62 and the ana-
lysis based on gene connectivity may observe the overall con-
servation of gene co-expression modules between the species63.
Our results further provide insights into the molecular bases of
brain organization and put the changes in gene expression het-
erogeneity observed into a systems level context. Our analyses
showed that increased expression of non-HKGs in the neocortex
was associated with changes in the topological properties of the
gene expression networks. The gene expression networks in the

Fig. 5 Comparison of the gene expression network and the functional connectivity network in mouse and rhesus macaque brains. a The HKG
percentages mapped to the regions of the mouse brain. The HKG percentage in the neocortex is lower than those in the archicortex (including the olfactory
area and hippocampal formation) and subcortex (cerebral nuclei and brainstem). The regions of interest are marked in purple. All hybridization images
were obtained from the Allen Mouse Brain Atlas. b HKG percentage of gene expression and the degree of functional connectivity in the structures of the
mouse brain. c The HKG percentage of gene expression and the degree of functional connectivity in the structures of rhesus macaque brains. d Diagram of
the main structures in the rhesus macaque brain. This picture is generated based on the D99 brain template74. The description of brain structures can be
found in Supplementary Methods.
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neocortex are sparser, contain fewer clusters and are more dis-
orderly than those in the archicortex and subcortex. The dis-
tribution of the topological indices of the gene expression
networks in the neocortex to archicortex and subcortex was
basically consistent across all donors (Supplementary Fig. 4).
Such organization possibly contributes to the genes expressed in
neocortex involving more diverse functions than those in the
archicortex and subcortex at the expense of partial efficiency. The
regions in the neocortex exhibited significantly different topolo-
gical properties both in the gene expression networks and func-
tional connectivity networks compared with those in the
archicortex and subcortex to support greater expression hetero-
geneity in the neocortical areas from the network prospective.
The brain regions with greater expression heterogeneity densely
connected to other regions in the functional connectivity net-
works, supporting that the neocortex possesses a mosaic of
regions, central to its information-processing capabilities11.
Meanwhile, our comparative analyses showed that the higher-
order cognitive functional networks exhibited greater expression
heterogeneity than the sensorimotor networks, in accord with the
notion about the rapid expansion of multimodal association areas
in the human brain relative to other mammals56,64.

In this study, we observed a similar orderly topology of gene
expression heterogeneity in the human, rhesus macaque, and
mouse brains. However, the distributions of gene expression
heterogeneity in the brain structures of rhesus macaques and
mice are not completely consistent with those of humans. For
example, the human cerebellar cortex displayed greater gene
expression heterogeneity than the cerebellar deep nuclei, which
has not been observed in the mouse brain. Such human-distinct
patterns in spatial gene expression coincide with emerging cog-
nitive functions in the human cerebellar cortex28,29, possibly
related to the differences in cognitive abilities between humans
and other mammals. Due to the limitation of the sampling
fineness of the gene expression dataset in the macaque brain, we
have not yet found unique expression characteristics in the
macaque brain compared with those in the human brain and
mouse brain.

Due to the limitation of brain sampling resolution in different
species, this study mainly focused on the global intraspecies dif-
ferences in gene expression heterogeneity in brain structures,
while interspecies regional-matched differences need to be ana-
lysed when more datasets are available. At the same time, indi-
vidual differences were observed in the gene expression
characteristics and topological properties between the structures
of different individuals within the species. Therefore, differences
among brains must be considered in further investigation when
the gene expression data of more individuals become available.

Methods
Gene expression data of human brains. Publicly available gene expression data
from six human postmortem donors (one female and five males), aged 24–57 years
(M= 42.5, SD= 13.38), were obtained from the AHBA and downloaded after the
updatedmicroarray normalization pipeline implemented inMarch 2013 (http://human.
brain-map.org). The dataset consists of normalized expression data detected by 58,692
probes taken from 3702 spatially distinct tissue samples. Before tissue dissection, donor
brains underwent anatomical MRI scanning and alignment to MNI space by the Allen
Institute. Available samples were prepared for microarray expression analyses by the
Allen Institute via macrodissection for cortical areas or laser dissection for subcortical
regions24. For additional information on structural imaging data as well as microarray
preprocessing and normalization procedures, refer to the AHBA technical white paper
(help.brain-map.org/display/humanbrain/Documentation). The expression level of each
gene from all probes was averaged if there were multiple probes for the same gene. The
resulting dataset contained 29,180 unique mRNA probes, providing transcriptional data
of human brains.

Gene expression networks of human brains. If two genes were expressed in a
given brain sample and available in the integrated human protein interaction
network, then both genes were included in the gene expression network of the

sample. The integrated protein interaction dataset was established by merging the
previous material65 with the iRefIndex database66 (Supplementary Data 6). By
integrating the expression data and large-scale protein interaction data, we estab-
lished the gene expression networks for samples from six human brains. For each
sample, we obtained a matrix corresponding to its gene expression network, where
nodes represent the genes expressed in the sample and edges represent that their
gene products can interact.

The evolutionary rate of genes. The evolutionary rate is a measurement used to
quantify the speed of evolutionary change. The selective pressure is assumed to be
defined by the ratio dN/dS. dS represents the synonymous substitution rate
(changing the amino acid), and dN represents the nonsynonymous substitution
rate (keeping the amino acid). Under purifying selection, natural selection prevents
the replacement of amino acids, so dN will be lower than dS. Values of dN/dS <1,
=1, and >1 indicate negative purifying selection, neutral evolution, and positive
selection, respectively. We calculated the dN/dS values for all genes expressed in
the human brains to characterize their evolutionary rates. The synonymous and
nonsynonymous substitution rates between humans and mice were obtained from
Ensembl (http://www.ensembl.org/biomart/martview/).

Topological properties of networks. Distance in networks is measured with the
path length, and the shortest path, the path with the smallest number of links
between the selected nodes, has a special role. The mean path length represents the
average of the shortest paths between all pairs of nodes and offers a measure of a
network’s overall navigability62. Cellular functions are likely to be carried out in a
highly modular manner. The average clustering coefficient characterizes the overall
tendency of the nodes to form clusters or groups67. The closer the local clustering
coefficient is to 1, the more likely that the network will form clusters. The eigen
entropy of networks was defined as the entropy of the normalized largest eigen-
vector of an adjacency matrix30. For a network with n genes, its adjacency matrix
can be represented as Aijði; j ¼ 1 � nÞ, which describes the interacting relation-
ships of the genes in the networks. If gene i interacts with gene j, Aij= 1; otherwise,
Aij= 0. We assumed that the eigenvector of matrix A corresponding to the largest
eigenvalue λk is rk. By dividing by the sum of all eigen vectors, we normalized this
vector to obtain its energy concentration, i.e., Ik ¼ rk

∑
n

i¼1
rk
. The eigen entropy of this

network is defined as Sp ¼ �∑n
k¼1 Ik ln Ik , which can reflect the degree of ordering

in each network. A smaller eigen entropy of a network corresponds to a higher
degree of ordering of the network.

Gene expression similarity within and between networks. The similarity of
gene expression within a network is defined as the mean value of the correlation
coefficient of gene expression between any two samples from this network. The
similarity of gene expression between networks is defined as the mean value of the
correlation coefficient of gene expression between a pair of samples from two
different networks.

Functional connectivity of the human brains. Functional connectivity was ana-
lysed using resting-state functional MRI data from 50 randomly selected subjects
from the Human Connectome Project (HCP, http://www.humanconnectome.org/
documentation/S500/). The HCP minimal preprocessing pipeline was used for the
resting-state fMRI data68, which includes artefact removal, motion correction69

and registration to a standard space (see Supplementary Methods for details). The
AAL atlas, which divided the whole brain into 116 regions, was used for the region-
to-region functional connectivity measures in the current study36. We evaluated
the functional connectivity between each pair of regional averaged time courses
using Pearson’s correlation coefficient and then standardized the functional con-
nectivity matrix with Fisher’s Z-transform. Significant functional correlations were
selected using one-sample t-test (P < 0.05, Bonferroni correction), resulting in the
binary 116 × 116 symmetric connectivity matrix C of the functional connectivity
network in human brains (Supplementary Data 7).

The gene expression network of the mouse brain. We established the expression
networks in mouse brain structures based on the Allen Institute mouse brain atlas,
which offers finely sampled whole-genome expression data37. According to the
Allen Reference Atlas, a 56-day-old male C57BL/6 J mouse brain was partitioned
into 73 structures and 12 regions. We computed the expression levels of 719,905
genes in 73 brain structures contained in the coronal planes. Based on the
expression intensity in each voxel, we obtained the expression levels of genes in
73 structures by averaging across all voxels in the brain structures. The expression
levels in the mouse in situ hybridization data from the Allen Mouse Brain Atlas
were quantified using a metric called expression energy (fraction of stained
volume × the average intensity of staining) as previously described37. In total, 2873
genes were found to be expressed in at least one structure by selecting genes with
fractions expressing pixels above 0.02 to omit genes with extremely low expression.
We downloaded 33,145 protein interactions among 8499 mouse gene products
from the BIOGRID database. By integrating the gene expression data and protein
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interactions in the mouse brain, we established interaction networks in 73 struc-
tures of the adult mouse brain.

Functional connectivity of mouse brains. Resting-state fMRI data of anaes-
thetized mice were collected from fifty male C57BL/6 J mice (Janvier, Le Genest-St
Isle, France) between 10 and 13 weeks old weighing 30.6 ± 1.9 g (mean ± SD),
which are publicly available on the central.xnat.org repository in Analyze 7.5
format (Project ID: fMRI_ane_mouse). Then, the following steps were performed:
(1) slice timing correction; (2) motion correction; (3) normalization with an in-
house EPI template; (4) spatial smoothing using a 0.4-mm full width half-
maximum Gaussian kernel; (5) linear detrending and bandpass temporal filtering
(0.01–0.3 Hz); (6) regression of nuisance variables, including the six parameters
obtained by rigid body head motion correction, global signals, and their first
temporal derivatives. The functional connectivity between each pair of regional
averaged time courses was evaluated using Pearson’s correlation coefficient and
then standardized to Z scores. Significant functional correlations were selected to
obtain the binary 22 × 22 symmetric connectivity matrix of the functional con-
nectivity network in mouse brains (Supplementary Data 8).

Gene expression network of adult rhesus macaque brains. We downloaded the
original gene expression CEL files of the three 48-month specimens generated
serially across a complete hemisphere from adult rhesus macaques from the NIH
Blueprint Non-Human Primate (NHP) Atlas (http://www.blueprintnhpatlas.org)
and extracted normalized and processed the expression levels of all genes based on
the R language program. Interaction data of rhesus macaques were obtained from
the STRING database (version 10.5). Based on the expression data and protein
interactions in the rhesus macaque brain, we established the gene expression
networks and analysed their gene expression characteristics and topological
properties.

Functional connectivity of adult rhesus macaque brains. The monkey fMRI data
were from PRIME-DE, an open resource for non-human primate imaging (http://
fcon_1000.projects.nitrc.org/indi/indiPRIME.html)70. The neuroimaging data were
collected from a group of 12 male anaesthetized rhesus macaque monkeys at the
University of Western Ontario71,72. The resting-state experiments were conducted on a
7 T MRI scanner equipped with a 40-cm gradient coil set of 80mT/m strength, and a
custom-made 24-channel phased array receive coil with an 8-channel transmit coil was
used. Resting-state images were acquired using a 2-dimensional multiband and EPI
sequence. The preprocessing steps were performed using SPM8 for each monkey. The
first 10 time points were dismissed to account for magnetic saturation. Then, the
following steps were performed: (1) slice timing correction; (2) motion correction; (3)
normalization with the INIA19 template (1.0-mm isotropic voxels)73; (4) spatial
smoothing using a 2-mm full width half-maximum Gaussian kernel; (5) linear
detrending and bandpass temporal filtering (0.01–0.3Hz); (6) regression of nuisance
variables, including the six parameters obtained by rigid body head motion correction,
global signal, and their first temporal derivatives. Based on the D99 template of the
macaque brain37, we selected significant functional correlations to obtain the binary
304 × 304 symmetric connectivity matrix of the functional connectivity network in
macaque brains and standardized it with a Z-transform (Supplementary Data 9).

Statistics and reproducibility. The gene expression heterogeneity indices in dif-
ferent brain regions were expressed as mean ± standard deviation and compared
using Student’s t-tests. The correlation between different indices was analyzed
using the Pearson method in the Matlab software. All tests were two-sided and
p < 0.05, was considered to indicate statistical significance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The expression data used in this study are available via the Allen Institute for Brain Atlas (see
http://brain-map.org/). The interactions in human, rhesus macaque and mouse are available in
Supplementary Data 8, STRING and BIOGRID database. Resting-state fMRI data of humans,
rhesus macaques, and mice can be found in http://www.humanconnectome.org/documentation/
S500/, http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html, and central.xnat.org, respectively.
The authors declare that the data supporting the findings of this study are available within the
article, its supplementary information, and upon request.

Code availability
Custom MATLAB code to analyse the gene expression characteristics and the topological
properties of networks in this work is available at https://github.com/angelnudt/gene-
expression-heterogeneity-analysis.git.
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