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Meta-connectomic analysis maps consistent,
reproducible, and transcriptionally relevant
functional connectome hubs in the human brain
Zhilei Xu 1,2,3, Mingrui Xia 1,2,3, Xindi Wang1,2,3, Xuhong Liao4, Tengda Zhao1,2,3 & Yong He 1,2,3,5✉

Human brain connectomes include sets of densely connected hub regions. However, the

consistency and reproducibility of functional connectome hubs have not been established to

date and the genetic signatures underlying robust hubs remain unknown. Here, we conduct a

worldwide harmonized meta-connectomic analysis by pooling resting-state functional MRI

data of 5212 healthy young adults across 61 independent cohorts. We identify highly con-

sistent and reproducible connectome hubs in heteromodal and unimodal regions both across

cohorts and across individuals, with the greatest effects observed in lateral parietal cortex.

These hubs show heterogeneous connectivity profiles and are critical for both intra- and

inter-network communications. Using post-mortem transcriptome datasets, we show that as

compared to non-hubs, connectome hubs have a spatiotemporally distinctive transcriptomic

pattern dominated by genes involved in the neuropeptide signaling pathway, neurodeve-

lopmental processes, and metabolic processes. These results highlight the robustness of

macroscopic connectome hubs and their potential cellular and molecular underpinnings,

which markedly furthers our understanding of how connectome hubs emerge in develop-

ment, support complex cognition in health, and are involved in disease.
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Functional connectome mapping studies have identified sets
of densely connected regions in large-scale human brain
networks, which are known as hubs1. Connectome hubs

play a crucial role in global brain communication1,2 and support
a broad range of cognitive processing, such as working memory3

and semantic processing4. Growing evidence suggests that these
highly connected brain hubs are preferentially targeted by many
neuropsychiatric disorders5–8, which provides critical clues for
understanding the biological mechanisms of disorders and
establishing biomarkers for disease diagnosis8,9 and treatment
evaluation10 (refs. 1,2,11,12 for reviews).

Despite such importance, there is considerable inconsistency in
anatomical locations of functional connectome hubs among
existing studies. For example, components of the default-mode
network (DMN) have been frequently reported as connectome
hubs, yet the spatial pattern is highly variable across studies. In
particular, several studies have shown highly connected hubs in
the lateral parietal regions of the DMN7,8,13,14, whereas others
have reported midline structures of the DMN15–19. Several works
have identified primary sensorimotor and visual regions as con-
nectome hubs13,14,16–19, yet others did not replicate these
findings7,8,15. Subcortical regions, such as the thalamus and
amygdala, have also been inconsistently reported as hubs8,15,16,18

and non-hubs7,13,14,17,19. Thus, the consistency and reproduci-
bility of functional connectome hubs have been difficult to
establish to date, which can be attributed to inadequate sample
size and differences in imaging scanner, imaging protocol, data
processing, and connectome analysis strategies. Here, we aimed to
establish a harmonized meta-analysis model to identify robust
functional connectome hubs in healthy young adults by com-
bining multiple cohorts with uniform protocols for data quality
assurance, image processing, and connectome analyses.

Once the robust connectome hubs are identified, we will fur-
ther examine their genetic signatures. It has been well demon-
strated that the connectome architecture of the human brain is
inheritable, such as functional connectivity of the DMN20 and the
cost-efficiency optimization21. Moreover, the functional con-
nectomes can be regulated by genotypic variation both during
rest22 and in cognitive tasks23, especially involving the DMN22,23

and frontoparietal network (FPN)23. Growing evidence also
suggests spatial correspondence between transcriptomic profiles
and connectome architectures24–26 (ref. 27 for review). Thus, we
reasoned that the robust macroscopic connectome hubs could be
associated with microscopic genetic signatures. Elucidating these
genetic signatures will substantially benefit our understanding of
how connectome hubs emerge in development, function in
complex cognition, and are involved in disease.

To address these issues, we provided, to the best of our
knowledge, the first worldwide harmonized meta-connectomic
analysis of functional brain hubs by pooling a large-sample

resting-state functional MRI (rsfMRI) dataset of 5212 healthy
young adults (aged 18–36 years, 2377 males) across 61 inde-
pendent cohorts. We identified highly consistent and repro-
ducible functional connectome hubs in multiple heteromodal and
unimodal regions, with the most robust findings occurring in
several lateral parietal regions. These connectome hubs showed
unique and heterogeneous connectivity profiles to provide sup-
port for both intra- and inter-network communications. To
uncover the genetic signatures underlying these connectome
hubs, we conducted machine learning approaches to distinguish
connectome hubs from non-hubs using transcriptomic data from
the Allen Human Brain Atlas (AHBA), explored their develop-
mental evolutions using the BrainSpan Atlas, and assessed their
neural relevance by contextualizing them relative to established
neuroimaging patterns. We demonstrated that these robust
connectome hubs were associated with a spatiotemporal tran-
scriptomic pattern dominated by genes enriched for the neuro-
peptide signaling pathway, neurodevelopmental processes, and
metabolic processes.

Results
Identifying consistent connectome hubs using a harmonized
meta-analysis model. Prior to the meta-analysis, we constructed
a voxelwise functional connectome matrix for each individual by
computing the Pearson’s correlation coefficient between pre-
processed rsfMRI time series of all pairs of gray matter voxels
(47,619 voxels). Then, the functional connectivity strength (FCS)
of each voxel was computed as the sum of connection weights
between the given voxel and all the other voxels. This resultant
FCS map was further normalized with respect to its mean and
standard deviation across voxels7. For each cohort, we performed
a general linear model on these normalized FCS maps to reduce
age and sex effects. As a result, we obtained a mean FCS map and
its corresponding variance map for each cohort that were used for
subsequent meta-analyses.

To identify the most consistent connectome hubs, we
conducted a voxelwise random-effects meta-analysis on the mean
and variance FCS maps of the 61 cohorts. Such an analysis
addressed the across-cohort heterogeneity of functional con-
nectomes, resulting in a robust FCS pattern (Fig. 1a) and its
corresponding standard error (SE) map (Fig. 1b). Then, we
identified consistent connectome hubs whose FCS values were
significantly (p < 0.001, cluster size > 200mm3) higher than the
global mean (i.e., zero) using a voxelwise Z value map computed
by dividing the FCS map by the SE map. To determine the
statistical significances of these observed Z values, a nonpara-
metric permutation test28 with 10,000 iterations was performed.
Finally, we estimated voxelwise effect sizes using Cohen’s dmetric
computed by dividing the Z value map by the square root of the
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Fig. 1 Identifying consistent connectome hubs using a harmonized meta-analysis model. a, b Robust FCS pattern (a) and its corresponding variance
(standard error, SE) map (b) estimated using a harmonized voxelwise random-effects meta-analysis across 61 cohorts. c The most consistent functional
connectome hubs (p < 0.001, cluster size > 200mm3). White spheres represent hub peaks. a–c a.u. arbitrary unit. d Hub voxels’ distribution in eight large-
scale brain networks. Insets depicts the seven large-scale cortical networks29. SUB subcortical network, LIMB limbic network.
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cohort number (Fig. 1c). According to prior brain network
parcellations29,30, these identified hub voxels (15,461 voxels) were
spatially distributed in multiple brain networks, including the
DMN (27.5%), dorsal attention network (DAN) (16.5%), FPN
(15.9%), ventral attention network (VAN) (15.6%), somatomotor
network (SMN) (14.4%), and visual network (VIS) (9.9%)
(Fig. 1d). Using a local maxima localization procedure, we
identified 35 robust brain hubs across 61 cohorts (Fig. 1c and
Table 1), involving various heteromodal and unimodal areas.
Specifically, the most robust findings resided in several lateral
parietal regions, including the bilateral ventral postcentral gyrus,
supramarginal gyrus, and angular gyrus.

The identified connectome hubs are reproducible across
cohorts and individuals. During identifying the above highly
consistent connectome hubs, the random-effects meta-analysis
revealed high heterogeneity of FCS across cohorts (Fig. 2a). The
cumulative distribution function plot shows more than 95%
voxels with I2 (heterogeneity score) exceeding 50% (Fig. 2b),
indicating high heterogeneity across cohorts in almost all brain
areas (see also Supplementary Fig. 1). To determine whether the
connectome hubs identified here are dominated by certain
cohorts or are reproducible across cohorts and individuals, we
performed a leave-one-cohort-out validation analysis and an
across-subject/cohort conjunction analysis.

Leave-one-cohort-out validation analysis. We repeated the above
harmonized meta-analysis hub identification procedure after
leaving one cohort out at a time. Comparing the identified hubs
using all cohorts (Fig. 1c) with those after leaving one cohort out
obtained extremely high Dice’s coefficients (mean ± sd:
0.990 ± 0.006; range: 0.966-0.997). For hub peaks, leaving one
cohort out resulted in very few displacements (mostly fewer than
6 mm, Fig. 2c, d). Thus, connectome hubs identified using the 61
cohorts were not dominated by specific cohorts.

Across-subject/cohort conjunction analysis. We defined the top N
(N= 15,461, which is the voxel number of hubs in Fig. 1c) voxels
with the highest FCS values of a subject or a cohort as con-
nectome hubs for that subject or that cohort. Then, for each
voxel, we assessed hub occurrence probability values across
subjects and cohorts. The identified hubs using all cohorts were
highly overlapped with the top N voxels with the highest hub
occurrence probability values both across all subjects and across
all cohorts, indicated by a high Dice’s coefficient (Dice= 0.867,
Fig. 2e; Dice= 0.924, Fig. 2f). When the identified hubs using all
cohorts were compared with the top N voxels with the highest
hub occurrence probability values across randomly selected
subjects or across randomly selected cohorts, the Dice’s coeffi-
cient approached 99% of its maximum value after exceeding
510 subjects (Fig. 2g) and 35 cohorts (Fig. 2h), respectively. This

Table 1 Highly consistent functional connectome hubs.

No. Hub Location MNI coordinates Cohen’s d FCS SE

x y z

1 Right PFt PFt (superoanterior BA 40) 60 −21 45 6.267 1.072 0.022
2 Left PFt PFt (superoanterior BA 40) −60 −24 36 6.151 0.949 0.020
3 Right PF PF (posterior BA 40) 60 −27 24 5.785 1.239 0.027
4 Left SCEF Supplementary and cingulate eye field 0 0 51 5.635 1.000 0.023
5 Left PGi PGi (inferior BA 39) −51 −66 30 5.168 1.075 0.027
6 Left PFop PF opercular (inferoanterior BA 40) −63 −27 18 5.160 1.095 0.027
7 Left 43 Area 43 −57 3 3 4.927 1.114 0.029
8 Right 6r Rostral area 6 57 6 0 4.916 1.184 0.031
9 Right PGi PGi (inferior BA 39) 54 −60 30 4.739 1.007 0.027
10 Right 8BL Area 8B lateral 21 36 51 4.655 0.713 0.020
11 Right 7PC Area 7PC 36 −45 54 4.414 0.712 0.021
12 Left 9p Area 9 posterior −15 45 45 4.199 0.639 0.019
13 Right 6v Ventral area 6 54 9 33 4.037 0.766 0.024
14 Left 8Av Ventral area 8A −39 18 48 3.990 0.561 0.018
15 Left AIP Anterior intra-parietal area −33 −45 45 3.474 0.567 0.021
16 Right FST Fundus of the superior temporal area 54 −60 0 3.156 0.729 0.030
17 Right 9m Area 9 middle 3 54 24 3.128 0.609 0.025
18 Left 31pv Area 31p ventral −3 −51 33 3.049 0.784 0.033
19 Right VIP Ventral intra-parietal complex 18 -63 57 2.984 0.572 0.025
20 Right 6a Area 6 anterior 33 3 63 2.975 0.454 0.020
21 Left FOP4 Frontal opercular area 4 −33 21 6 2.858 0.828 0.037
22 Right 5mv Area 5m ventral 12 −30 45 2.822 0.701 0.032
23 Right 46 Area 46 36 42 30 2.779 0.656 0.030
24 Left 10v Area 10v 0 57 −9 2.769 0.731 0.034
25 Left p9-46v Area posterior 9-46v −42 36 27 2.591 0.561 0.028
26 Left V3A Area V3A −15 −90 33 2.575 0.684 0.034
27 Left TE1a Area TE1 anterior −63 −15 −15 2.527 0.595 0.030
28 Right TE1a Area TE1 anterior 60 −9 −21 2.494 0.580 0.030
29 Right IFSa Anterior inferior frontal suleus 48 39 12 2.468 0.480 0.025
30 Left 7Am Medial area 7A −12 −60 60 2.461 0.475 0.025
31 Right V3A Area V3A 18 −87 36 2.442 0.645 0.034
32 Right V4 Fourth visual area 24 −63 −9 2.339 0.446 0.024
33 Left 6a Area 6 anterior −24 3 63 2.317 0.331 0.018
34 Left VMV1 Ventromedial visual area 1 −18 −60 −6 1.937 0.397 0.026
35 Left FEF Frontal eye fields −45 −9 57 1.412 0.640 0.058

BA Brodmann area.
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indicated that the identified connectome hubs were highly
reproducible both across cohorts and across individuals.

Validation analysis demonstrated that the above results did not
depend on analysis parameters, such as the connection threshold
(Supplementary Figs. 2 and 3), and were not driven by the size of
the brain network to which they belong31 (Supplementary Fig. 4),
suggesting the robustness of our main findings.

Connectome hubs have heterogeneous functional connectivity
profiles. Next, we further examined whether these robust brain
hubs (Fig. 1c and Table 1) have distinctive functional connectivity
profiles that represent their unique roles in network commu-
nication. To gain detailed and robust functional connectivity
profiles of each hub region, we conducted a seed-to-whole-brain
connectivity meta-analysis in a harmonized protocol again. For
each of the 35 hub regions, we obtained an estimated Cohen’s d
effect size map that characterizes the robust whole-brain con-
nectivity pattern relevant to the seed region across the 61 cohorts
(Fig. 3). We then divided the connectivity map of each hub into
eight brain networks according to prior parcellations29,30,
resulting in an 8×35 connectivity matrix with each column
representing the voxel percentage of each of the eight networks
connected with a hub.

Hierarchical clustering analysis on the connectivity matrix
clearly divided the 35 hubs into three clusters (Fig. 4a, b). Cluster
I consists of 21 hubs that are primarily connected with extensive
areas in the DAN, VAN, FPN, and SMN (orange, Fig. 4c). Cluster
II consists of four hubs that are densely connected with VIS
(green, Fig. 4c). Cluster III consists of 10 hubs that have robust
connections with the DMN and LIMB (blue, Fig. 4c). Of
particular interest is that within Cluster III, a left posterior
middle frontal hub called ventral area 8A (8Av) shows a
distinctive connectivity profile in contrast to the other nine hubs,
manifested as having robust connections with bilateral frontal
FPN regions (Fig. 3 and Supplementary Fig. 5). This implies that
the left 8Av hub is a key connector between the DMN and FPN,
which can be supported by the recent finding of a control-default
connector located in the posterior middle frontal gyrus32.

Although both Cluster I and III hubs are connected with
subcortical structure (Fig. 4c), they are connected with different
subcortical nuclei (Supplementary Fig. 6). Finally, whereas all
hubs possess dense intranetwork connections, most also retain
substantial internetwork connections (Supplementary Fig. 7),
which preserves efficient communication across the whole brain
network feasible.

Transcriptomic data distinguishes connectome hubs from non-
hubs. A supervised machine learning classifier based on
XGBoost33 and 10,027 genes’ transcriptomic data from the
AHBA34 was trained to distinguish connectome hubs from non-
hubs (Fig. 5a). The sensitivity, specificity, and accuracy rate of the
XGBoost classifier were stably estimated by repeating the training
and testing procedure 1000 times. This classifier performed better
than chance in all 1000 repetitions and achieved an overall
accuracy rate of 65.3% (Fig. 5b). In cross-validation, connectome
hubs and non-hubs were classified with a sensitivity of 71.1% and
specificity of 63.4%, respectively. The testing procedure yielded a
comparable sensitivity of 69.7% and specificity of 62.0%. After
training the classifier, each gene’s contribution to the optimal
prediction model was determined. We noted that some key genes
contributed two or three orders of magnitude more than other
genes (Fig. 5c and Supplementary Data 1). The contributions of
the top 300 genes with the greatest contributions to the XGBoost
classifier were consistent between the first 500 repetitions and the
second 500 repetitions (Pearson’s r= 0.958, p < 10−6, Fig. 5d),
suggesting a high reproducibility.

To exclude the XGBoost model’s potential bias relating to the
mostly contributed key genes, we replicated the above classifica-
tion results using another machine learning model based on the
support vector machine (SVM) that was trained using only the
top N key genes with the greatest contributions to the XGBoost
classifier (Fig. 5e). Because no data were available to determine
how many key genes were sufficient to train an SVM classifier,
we examined the count N from 100 to 300. The SVM classifier
achieved a very high peak accuracy rate of 91.8% with
approximately the top 150 key genes in the easiest classification
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task (Fig. 5f) and also achieved a reasonable peak accuracy rate
of 67.8% with approximately the top 150 key genes even in the
most difficult classification task (Fig. 5g). By contrast, SVM
classifiers trained using 150 randomly selected genes performed

worse than that using the top 150 key genes in all 1000
repetitions (Fig. 5h).

Validation analyses showed that the XGBoost and SVM
classifiers trained using surrogate hub identification maps with
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the spatial autocorrelations being corrected performed no better
than the chance level (Supplementary Fig. 8), confirming that the
performance of the XGBoost and SVM classifiers was not driven
by the effects of spatial autocorrelation inherent to the hub
localization and the transcriptomic data. Thus, these robust
connectome hubs were apparently associated with a transcrip-
tomic pattern dominated by approximately 150 key genes.

Connectome hubs have a spatiotemporally distinctive tran-
scriptomic pattern. Gene Ontology (GO) enrichment analysis
using GOrilla35 demonstrated that the above 150 key genes were
mostly enriched in the neuropeptide signaling pathway (fold
enrichment (FE)= 8.9, uncorrected p= 1.2 × 10−5, Supplemen-
tary Data 2). GO enrichment analysis using the ranked 10,027
genes according to their contributions to the XGBoost classifier
also confirmed the most enriched GO term of the neuropeptide
signaling pathway (FE= 5.7, uncorrected p < 10−6, Supplemen-
tary Data 3). The ranked 10,027 genes were also associated with
the developmental process (FE= 1.2), cellular developmental
process (FE= 1.3), anatomical structure development (FE= 1.3),
and neuron projection arborization (FE= 13.7) (uncorrected

ps < 5.5 × 10−4, Supplementary Data 3). We speculated that
connectome hubs have a distinctive transcriptomic pattern of
neurodevelopmental processes in contrast to non-hubs.

We repeated the GO enrichment analysis of the above 150 key
genes using DAVID36,37 and confirmed the mostly enriched GO
term of the neuropeptide signaling pathway (FE= 8.7, uncor-
rected p= 5.8 × 10−4, Supplementary Data 4). In addition, there
were 10 GO terms associated with metabolic process, such as the
positive regulation of cellular metabolic process (FE= 1.4,
uncorrected p= 0.031, Supplementary Data 4). Disease associa-
tion analysis demonstrated metabolic disease associated with the
greatest number of key genes (60 genes, FE= 1.2, uncorrected
p= 0.094, Supplementary Data 5). Accordingly, it is rational to
speculate that connectome hubs have a distinctive transcriptomic
pattern of metabolic processes in contrast to non-hubs.

To confirm the above two speculations of GO enrichment
analysis results, we examined transcription level differences between
hub and non-hub regions for genes previously implicated in key
neurodevelopmental processes38 (Supplementary Data 6) and main
neuronal metabolic pathways39 (oxidative phosphorylation40 and
aerobic glycolysis41, Supplementary Data 7). Permutation tests
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revealed hub regions with significantly higher transcription levels
for genes associated with dendrite development, synapse develop-
ment, and aerobic glycolysis than non-hub regions (one-sided
Wilcoxon rank-sum tests, Bonferroni-corrected ps ≤ 0.032, Fig. 6a).
In addition, hub regions had a weak trend of lower transcription
levels for genes associated with axon development, myelination, and
neuron migration, and a higher transcription level for genes
associated with oxidative phosphorylation (Fig. 6a). These differ-
ences in transcription level were consistent with our speculations of
GO enrichment analysis results.

These above transcriptomic results were derived from the
AHBA, an adult transcriptomic dataset. To explore their
developmental evolutions, we inspected the developmental
trajectory of transcription level in hub and non-hub regions
respectively using the BrainSpan Atlas42. We observed diverging
developmental trajectories of transcription level between hub and
non-hub regions in these key neurodevelopmental processes and
main neuronal metabolic pathways (Fig. 6b and Supplementary
Fig. 9a). The magnitude of differences in developmental trajectory
between hub and non-hub regions continuously exceeds the
median absolute deviation of transcription level across brain
regions during some periods (Fig. 6c and Supplementary Fig. 9b),
suggesting a trend of greater difference than expected. Specifi-
cally, hub regions have higher transcription levels for neuron
migration during the late-fetal period, higher transcription levels
for dendrite and synapse development from the late-childhood to
mid-adolescence period, and lower transcription levels for axon
development and myelination from the mid-childhood to late-
adolescence period than non-hub regions. These results are in
agreement with the observation of primary somatosensory,
auditory, and visual (V1/V2) cortices with lower synapse density
but higher myelination than the prefrontal area43,44. Moreover,
hub regions have higher transcription levels than non-hub
regions for aerobic glycolysis since the early childhood period.
These transcriptome analyses achieved convergent results
between the AHBA and BrainSpan Atlas.

Together, functional connectome hubs have a spatiotemporally
distinctive transcriptomic pattern in contrast to non-hubs, which
is dominated by genes involved in the neuropeptide signaling
pathway, neurodevelopmental processes, and metabolic
processes.

Neural contextualization of connectome hubs’ transcriptomic
pattern. To assess the neural relevance of the above identified
transcriptomic pattern underlying functional connectome hubs,
we contextualized it relative to prior established neuroimaging
maps. The identified transcriptomic pattern is dominated by
genes with the highest enrichment for the neuropeptide signaling
pathway. Considering that neuropeptides are a main type of
indirect neurotransmitter widely distributed in the human central
nervous system and their vital role in modulating direct excitatory
and inhibitory transmission45, it is rational to speculate that there
are apparent differences in neurotransmitter systems between hub
and non-hub regions. Using neurotransmitter maps derived from
positron emission tomography and single photon emission
computed tomography46, we found that hub regions have higher
density of GABAa, glutamate, mu opiod, cannabinoid, dopamine
D2, and serotonin receptor and norepinephrine transporter but
lower density of dopamine transporter and fluorodopa than non-
hub regions (one-sided Wilcoxon rank-sum tests, Bonferroni-
corrected ps ≤ 0.015, Fig. 7a).

Growing evidence has suggested a striking spatial correspon-
dence between transcriptomic profile and structural connectivity
in the human brain27. We speculated that the above differences in
microscale transcriptome between hub and non-hub regions in

key neurodevelopmental processes may result in differences in
macroscale structural connectivity profile. Using a fiber length
profiling dataset47, we observed that hub regions possess more
fibers with a length exceeding 40 mm but less fibers with a length
shoter than 40 mm (one-sided Wilcoxon rank-sum tests,
Bonferroni-corrected ps ≤ 0.007, Fig. 7b), suggesting a more
intricate fiber configuration in hub regions.

The above transcriptome analyses have shown a higher
transcription level of oxidative phosphorylation and aerobic
glycolysis in hub regions than in non-hubs. We validated this
observation using a metabolism dataset derived from positron
emission tomography48 and found that hub regions not only have
a higher metabolic rate than non-hubs in oxidative phosphoryla-
tion (indicated by the cerebral metabolic rate for oxygen) and
aerobic glycolysis (indicated by the glycolytic index), but also
have more blood supply (indicated by the cerebral blood flow)
(one-sided Wilcoxon rank-sum tests, Bonferroni-corrected ps <
0.001, Fig. 7c). This is in agreement with prior observations of a
tight coupling between FCS and blood supply1,49.

In addition, we also noted that the above 150 key genes are
enriched for several psychiatric disorders (FE= 3.5, uncorrected
p= 5.5 × 10−4, Supplementary Data 5). This finding is in
accordance with prior observations of hub regions being
preferentially targeted by neuropsychiatric disorders5–8. This
implies that connectome hubs may have different susceptibility to
neuropsychiatric disorders in contrast to non-hubs. We validated
it by performing an association analysis between the effect size of
connectome hub and the effect size of cortical thickness atrophy
in neuropsychiatric disorders50. We observed that the Cohen’s d
of connectome hub is negatively correlated with the Cohen’s d of
cortical thickness atrophy in 22q deletion syndrome (Pearson’s
r=−0.292, uncorrected p= 0.009) and autism spectrum disorder
(Pearson’s r=−0.333, uncorrected p= 0.019) but positively
correlated with the Cohen’s d of cortical thickness atrophy in
bipolar disorder (Pearson’s r= 0.418, uncorrected p= 0.003) and
schizophrenia (Pearson’s r= 0.247, uncorrected p= 0.040)
(Fig. 7d). This suggests that connectome hubs have a trend of
higher susceptibility to cortical thickness atrophy in bipolar
disorder and schizophrenia but lower susceptibility to cortical
thickness atrophy in 22q deletion syndrome and autism spectrum
disorder than non-hubs.

Discussion
Using a worldwide harmonized meta-connectomic analysis of
5212 healthy young adults across 61 cohorts, we provided, to the
best of our knowledge, the first description of highly consistent
and reproducible functional connectome hubs in the resting
human brain. Using transcriptomic data from the AHBA and
BrainSpan Atlas, we reported that these robust connectome hubs
have a spatiotemporally distinctive transcriptomic pattern in
contrast to non-hub regions. These results advanced our knowl-
edge of the robustness of macroscopic functional connectome
hubs and their potential cellular and molecular substrates.

Extant reports have shown largely inconsistent and less
reproducible hub localizations7,8,13–19, which may arise from high
heterogeneity in the included subjects, data acquisition, and
analysis strategies across studies. To diminish these potential
confounding factors, we employed stringent participant inclusion
criteria that included only healthy young adults aged 18–36 years
and adopted harmonized data preprocessing and connectome
analysis protocols across cohorts. Nevertheless, the random-
effects meta-analysis revealed high heterogeneity among cohorts
in almost all brain areas, which implied that heterogeneity of
imaging scanners and/or imaging protocols could be an impor-
tant cause for inconsistent and less reproducible results across
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prior studies. Thus, our study was indispensable by conducting a
harmonized random-effects meta-analysis model in which both
intracohort variation (i.e., sampling errors) and intercohort het-
erogeneity were considered51. In addition, our validation results
showed that the spatial distribution of functional connectome
hubs was relatively stable when using more than 510 subjects and

35 cohorts, demonstrating that 5212 subjects from 61 cohorts
were adequate to minimize the effects of both sampling errors
and heterogeneity among cohorts. Considering only dozens of
subjects in most prior studies7,8,13–15,17,19, the low statistical
power attributed to inadequate subjects could be another cause
for prior inconsistent and less reproducible hub localizations.
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Finally, we used harmonized image processing and connectome
analysis protocols across cohorts, which avoided methodological
variation and reduced potential methodological defects that have
not been resolved in prior studies. See an extension discussion in
Supplementary Note 1.

The present results demonstrated that the 35 highly consistent
and reproducible connectome hubs show heterogeneous func-
tional connectivity profiles, forming three clusters. Twenty-one
hubs (Cluster I) are connected with extensive areas in the DAN,
VAN, FPN, and SMN. Previous investigations indicated that they
are core regions of the DAN (left AIP, right 7PC, left 7Am,
bilateral PFt, left FEF, bilateral 6a, right 6v, and right FST)29,52,
VAN (left 43, left FOP4, right 46, right 6r, right PF, left PFop, left
SCEF, right 5mv)29,52, and FPN (left p9-46v and right IFSa)29,53.
In addition, hub regions involved in the sensorimotor pathway
(right VIP, right FST, left 7Am, and left FEF)54 are also connected
with the visual association cortex, acting as connectors between
the VIS and the SMN, DAN, and VAN. Information flow along
the primary visual, visual association, and higher-level sensor-
imotor cortices is undertaken by the four occipital hubs (Cluster
II) left VMV1, right V4, and bilateral V3A that are all densely
connected with the VIS and portions of the SMN, DAN, and
VAN. This is supported by the report of their dense connections
with both the visual system and SMN region the frontal eye field,
DAN region the superior parietal cortex, and VAN region the
parietal operculum and anterior insula55 and also aligns with the
role of their homologous regions in the non-human primate
cerebral cortex54. The remaining 10 hubs (Cluster III) are all
located in canonical DMN regions56. One of them, the left 8Av
hub, is robustly connected with both DMN and lateral prefrontal
FPN regions, acting as a connector between the DMN and FPN.
This can be supported by the recent finding of a control-default
connector located in the posterior middle frontal gyrus32 and may
also be a case of the hypothesis of parallel interdigitated
subnetworks57 where the posterior middle frontal gyrus is con-
nected with a subnetwork of the DMN and some regions of the
FPN. This observation offers a crucial complementary inter-
pretation to the conventional assumption that the DMN is
anticorrelated with other networks56. Considering that commu-
nication between the DMN and other networks is of particular
relevance to neuropsychiatric disorders58, such as autism spec-
trum disorders59, we speculated that the left 8Av hub may be a
promising target region for therapeutic interventions.

We demonstrated that these robust brain hubs have a spatio-
temporally distinctive transcriptomic pattern dominated by genes
with the highest enrichment for the neuropeptide signaling
pathway. Because neuropeptides are a main type of indirect
neurotransmitter that is widely distributed in the human central
nervous system45, robust neuropeptide signaling pathways are
indispensable for efficient synaptic signal transduction that sus-
tains dense and flexible functional connections of hub regions.
This is also supported by our observation of differences in neu-
rotransmitter receptor and transporter density between hub and
non-hub regions. In addition, hub regions have higher tran-
scription levels for main neuronal metabolic pathways in contrast

to non-hubs. This is reasonable because massive synaptic activ-
ities in hub regions demand high material and metabolic costs,
which is in accordance with our observation of more blood
supply and higher oxidative phosphorylation and aerobic glyco-
lysis levels in hub regions. This is also consistent with prior
observations of a tight coupling between FCS and blood
supply1,49.

We found that connectome hubs possess a spatiotemporally
distinctive transcriptomic pattern of key neurodevelopmental
processes in contrast to non-hubs. Specifically, connectome hubs
have higher transcription levels for dendrite and synapse devel-
opment and lower transcription levels for axon development and
myelination during childhood, adolescence, and adulthood. These
findings are compatible with previous observations of the pre-
frontal area having higher synapse density but lower myelination
than primary somatosensory, auditory, and visual (V1/V2)
cortices43,44. Higher transcription levels for dendrite and synapse
development in hub regions are necessary for the overproduction
of synapses that will be selectively eliminated based on the
demand of the environment and gradually stabilized before full
maturation60, which has been proposed as the major mechanism
of creating diverse neuronal connections beyond their genetic
determination60. Lower transcription levels for axon development
and myelination will prolong the myelination period in hub
regions, which characterizes a delayed maturation phase61.
Marked delay of anatomical maturation in human prefrontal and
lateral parietal cortices has been frequently observed both in
human development62,63 and in primate evolution61, which
provides more opportunities for social learning to establish
diverse neuronal circuits that contribute to our complex63 and
species-specific61 cognitive capabilities. We also observed higher
transcription levels for neuron migration in hub regions from
mid-fetal period to early infancy. This is in agreement with the
report of extensive migration of young neurons persisting for
several months after birth in the human frontal cortex64. Mean-
while, the migration and final laminar positioning of postmitotic
neurons are regulated by common transcription factors65, which
suggests that a higher transcription level for neuron migration in
hub regions facilitates the construction of more intricate inter-
laminar connectivity. These microscale divergences of key neu-
rodevelopmental processes may result in a more intricate
macroscale structural connectivity proflie in hub regions.

Human neurodevelopment is an intricate and protracted pro-
cess, during which the transcriptome of the human brain requires
precise spatiotemporal regulation38. Thus, in addition to con-
tributing to our complex cognitive capabilities, the spatiotemporal
differences in transcriptomic pattern of neurodevelopment
between hub and non-hub regions may also increase brain con-
nectome’s susceptibility to neuropsychiatric disorders61,63, which
means small disturbance in the magnitude or the timing of this
transcriptomic pattern may have long-term consequences on
brain anatomical topography or functional activation. This is in
line with the result of several psychiatric disorders being the most
significant disease associated with the top 150 key genes and is
also supported by our observation of differences in susceptibility

Fig. 7 Neural contextualization of connectome hubs’ transcriptomic pattern. a–c Differences between hub (red) and non-hub (blue) regions in density of
neurotransmitter receptor and transporter (a, hub voxels n= 15,461, non-hub voxels n= 32,158), fiber number for different fiber length bins (b, hub
vertices n= 25,944, non-hub vertices n= 33,195), and metabolic rate for oxygen, aerobic glycolysis, and blood supply (c, hub regions n= 29, non-hub
regions n= 60). For each violin plot, dashed gray lines depict the 25th and 75th percentiles, solid gray line depicts median value. The statistical
significances of one-sided Wilcoxon rank-sum tests were determined by 1000 permutation tests and were labeled with Bonferroni-corrected p values.
*p < 0.05, **p < 0.01, ***p < 0.001. a.u. arbitrary unit. d Regression plot of the Cohen’s d value of connectome hub versus the Cohen’s d value of cortical
thickness atrophy across 68 cortical areas for eight disorders. Positive Cohen’s d value indicates thinning of cortical thickness in patients. Each dot
represents one cortical area. The statistical significances of Pearson’s correlation coefficients were determined by 1000 permutation tests and were labeled
with uncorrected p values.
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to cortical thickness atrophy in neuropsychiatric disorders
between hub and non-hub regions. This implies that uncovering
the intricate transcriptomic pattern, diverse neuronal circuits,
anatomical topography, and functional activation of connectome
hubs provide crucial and promising routes for understanding the
pathophysiological mechanisms underlying neurodevelopmental
disorders, such as autism spectrum disorders38,59 and
schizophrenia5,38,61,63.

Of note, we conducted transcriptome–connectome association
analysis using machine learning approaches in which non-linear
mathematical operations were implemented rather than linear
operations, such as linear correlation24, linear regression25, or
partial least squares26. It has been argued that observations of
transcriptome–connectome spatial association have a high false-
positive rate through linear regression66 and linear correlation67

and may be largely shifted toward the first principal component
axis of the dataset through partial least squares68. These investi-
gations imply that prior transcriptome–connectome association
results by linear mathematical operations may include high false-
positive observations that are independent of connectome mea-
surements, such as genes enriched for ion channels24–26. By
contrast, high reproducibility across different machine learning
models and across different GO enrichment analysis tools and
convergent results from the AHBA and BrainSpan Atlas made it
very unlikely that our findings were false-positive observations.

Some results of the present study should be interpreted cau-
tiously because of methodological issues. First, we identified the
robust connectome hubs using preprocessed rsfMRI data with
global signal regression because of its great promise in mini-
mizing physiological artifacts on functional connectomes69.
Validation analysis demonstrated that hub distribution identified
without global signal regression was more likely derived from
physiological artifacts rather than by ongoing neuronal activity
(Supplementary Note 2 and Supplementary Fig. 10). Second, we
conducted a voxel-based connectome analysis in order to directly
compare our results with the extant voxel-based reports7,8,14–19

and increase the sensitivity of identifying spatially focal (e.g.,
voxel-sized) hubs70. The effects of parcellation-based70 and
surface-based71 analysis on hub localizations should be resolved
in future studies. Third, the AHBA dataset only includes partial
human genes, of which approximately half were excluded in data
preprocessing34, which may have induced incomplete observa-
tions in our data-driven analysis. Finally, our transcriptomic
signature results addressed only the association between con-
nectome hubs and transcriptomic patterns and did not explore
causation between them. Exploring more detailed mechanisms
underlying this association is attractive and may be practicable for
non-human primate brains in future studies.

Methods
Dataset. We collected a large-sample rsfMRI dataset (N= 7202) from public data-
sharing platforms and in-house cohorts, which consists of 73 cohorts from Asia,
Europe, North America, and Australia. Data of each cohort were collected with
participants’ written informed consent and with approval by the respective local
institutional review boards.

Image preprocessing and quality control. We first reviewed T1-weighted
structural MRI data for all participants with the assistance of a neuroradiologist
and a clinical neurologist to confirm no identifiable lesion or structural abnorm-
ality (e.g., regional atrophy and posterior cranial fossa arachnoid cyst). All rsfMRI
data for the remaining participants were preprocessed routinely using SPM12
v6470 and GRETNA72 v2.0.0 with a uniform pipeline. For each individual, we
discarded the first 10 s’ volumes for magnetic field stabilization and the partici-
pant’s adaptation to the scanner. Next, slice-timing was corrected within each
volume. To correct for head motion, all volumes were realigned to the mean image.
Participants with significant head motion (translation above 3 mm or rotation
above 3° in any direction) were excluded from the subsequent analyses. Then, all
volumes were normalized to the 3-mm isotropic space of the Montreal Neurolo-
gical Institute (MNI) using the EPI template provided by SPM12. The normalized

volumes were spatially smoothed using a 6-mm full-width at half-maximum
Gaussian kernel. After that, the time series of each voxel underwent the procedure
of linear trend removal, nuisance signal regression (24 head motion parameters,
white matter, cerebrospinal fluid, and global brain signals), and temporal band-pass
filtering (0.01–0.1 Hz). Finally, scrubbing was performed to minimize head motion
effects73. Specifically, volumes with framewise displacement exceeding 0.5 mm and
their adjacent volumes (1 back and 2 forward) were replaced with linearly inter-
polated data. We excluded participants with more than 25% interpolated volumes.
Notably, slice-timing was not corrected in the Human Connectome Project cohort
due to multiband acquisition74. For participants with more than one rsfMRI scan,
we used only one of them. To reduce the potential effects of development and aging
on our results, we restricted our analysis to healthy young adults aged 18 to 36
years. To ensure sufficient statistical power, twelve cohorts were discarded due to
having fewer than 10 participants that passed quality controls. After these stringent
quality controls, we included preprocessed rsfMRI data of 5212 healthy young
adults (2377 males) from 61 independent cohorts in the final analysis. The sample
size and age ranges of each cohort were summarized in Fig. 8. Supplementary
Data 8 provides detailed information on the individual cohorts.

Identifying robust functional connectome hubs using a harmonized meta-
analysis. For each individual, we constructed a voxelwise functional connectome
matrix by computing the Pearson’s correlation coefficient between preprocessed
rsfMRI time series of all pairs of voxels within a predefined gray matter mask
(47,619 voxels). The gray matter mask was divided into seven large-scale cortical
networks29 and a subcortical network30. The cerebellum was not included due to
largely incomplete coverage during rsfMRI scanning in most cohorts. Negative
functional connections were excluded from our analysis due to neurobiologically
ambiguous interpretations75. To further reduce the bias of signal noise and
simultaneously avoid the effect of potential sharing signals between nearby voxels,
both weak connections (Pearson’s r < 0.1) and connections terminating within
20 mm were set to zero76. We validated the threshold of weak connections using
0.05 and 0.2 (Supplementary Figs. 2 and 3). For each voxel, we computed the FCS
as the sum of connection weights between the given voxel and all the other voxels.
We further normalized this resultant FCS map with respect to its mean and
standard deviation across voxels7.

For each cohort, we performed a general linear model on these normalized FCS
maps to reduce age and sex effects. For each voxel, we constructed the general
linear model as:

FCSi ¼ β0 þ βAge � Agei �MeanAge
� �þ βSex � Sexi þ εi ð1Þ

FCSi, Agei, Sexi, and εi indicate the FCS, age, sex, and residual of the ith
individual, respectively. MeanAge indicates the mean age of that cohort. β0
indicates the mean FCS of that cohort. The general linear model exported a mean
FCS map and its corresponding variance map for each cohort.

The mean and variance FCS maps of the 61 cohorts were submitted to a
random-effects meta-analysis model51 to address across-cohort heterogeneity of
functional connectomes. A short summary of the random-effects meta-analysis was
provided in the following section. The detailed computational procedures are
described in the book51. This resulted in a consistent FCS pattern (Fig. 1a) and its
corresponding SE map (Fig. 1b). We compared the FCS of each voxel with the
average of the whole brain (i.e., zero) using a Z value and estimated effect size using
Cohen’s d metric51:

Z ¼ FCS� 0
SE

ð2Þ

d ¼ Z
ffiffiffi
k

p ð3Þ

k is the number of cohorts in the meta-analysis.
In line with a previous neuroimaging meta-analysis study77, we performed

10,000 one-sided nonparametric permutation tests28 to assign a p value to the
observed Z value. For each iteration, after randomizing the spatial correspondence
among cohorts’ mean FCS maps (the spatial correspondence between a cohort’s
mean FCS map and its variance map was not changed), we repeated the
computation procedure of the random-effects meta-analysis for each voxel and
extracted the maximum Z value of all voxels to construct a null distribution. A p
value was assigned to each voxel by comparing the observed Z value to the null
distribution. For a statistical significance level below 0.05, this p value closely tracks
the Bonferroni threshold28.

Finally, we defined functional connectome hubs as brain regions with a p value
less than 0.001 and cluster size greater than 200 mm3 (Fig. 1c). The thresholds of p
value and cluster size were similar with the activation likelihood estimation
algorithm77. We extracted MNI coordinates for each local peak Z value terminating
beyond 15 mm within each brain cluster using the wb_command -volume-extrema
command in Connectome Workbench v1.4.2.

Random-effects meta-analysis. For each voxel, Mi, SDi, and Ni indicate the mean
and standard division value and the participant number of the ith cohort,
respectively. The original weight assigned to the ith cohort is the inverse of its
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variance:

Wi ¼
Ni

SDi
2 ð4Þ

The heterogeneity between cohort means was calculated as:

Q ¼ ∑WiMi
2 � ∑WiMi

� �2

∑Wi

ð5Þ

The expected value of Q is the degrees of freedom:

df ¼ k� 1 ð6Þ
where k is the number of cohorts in the meta-analysis. Therefore, the estimated
variance of the cohort mean distribution was calculated as:

T2 ¼ Q� df

∑Wi � ∑Wi
2

∑Wi

ð7Þ

The percentage of total variability that reflects heterogeneity among cohorts was
calculated as:

I2 ¼ Q� df
Q

´ 100% ð8Þ
The weight assigned to the ith cohort was updated as:

Wi
� ¼ 1

SDi
2

Ni
þ T2 ð9Þ

The result of the random-effects meta-analysis was calculated as:

M� ¼ ∑Wi
�Mi

∑Wi
� ð10Þ

The variance of M* was estimated as:

VM� ¼ 1
∑Wi

� ð11Þ
The standard error of M* was calculated as:

SEM� ¼
ffiffiffiffiffiffiffiffiffi
VM�

p ð12Þ
This random-effects meta-analysis model exported a mean value M*, its

corresponding standard error value SEM*, and the heterogeneity score I2.

Mapping seed-to-whole-brain connectivity maps of functional connectome
hubs. We modeled each hub seed region as a sphere with a 6-mm radius centered
on the hub peak and computed Pearson’s correlation coefficients between the seed
region’s preprocessed rsfMRI time series and the time series of all gray matter
voxels. The time series of the seed region was computed by averaging the time
series of all gray matter voxels in the seed sphere. These correlation coefficients
were further transformed to Fisher’s z for normality.

For each cohort, we performed a general linear model on these Fisher’s z value
maps to reduce age and sex effects. For each voxel, we constructed the general
linear model as:

Fisher’s zi ¼ β0 þ βAge � Agei �MeanAge
� �þ βSex � Sexi þ εi ð13Þ

Fisher’s zi, Agei, Sexi, and εi indicate the Fisher’s z, age, sex, and residual of the
ith individual, respectively. MeanAge indicates the mean age of that cohort. β0
indicates the mean Fisher’s z value of that cohort. The general linear model
exported a mean Fisher’s z value map and its corresponding variance map for each
cohort.

The mean and variance Fisher’s z value maps of the 61 cohorts were
submitted to the random-effects meta-analysis model51 to address across-
cohort heterogeneity of functional connections, resulting in a robust Fisher’s z
pattern and its corresponding SE map. We compared the Fisher’s z value of
each voxel with zero using a Z value and estimated effect size using Cohen’s d
metric51:

Z ¼ Fisher’s z � 0
SE

ð14Þ

d ¼ Z
ffiffiffi
k

p ð15Þ

k is the number of cohorts in the meta-analysis.
We performed 10,000 one-sided nonparametric permutation tests28 to assign a

p value to the observed Z value. For each iteration, after randomizing the spatial
correspondence among cohorts’ mean Fisher’s z value maps (the spatial
correspondence between a cohort’s mean Fisher’s z value map and its variance map
was not changed), we repeated the computation procedure of the random-effects
meta-analysis for each voxel and extracted the maximum Z value of all voxels to
construct a null distribution. Then, we assigned a p value to each voxel by
comparing the observed Z value to the null distribution.

Finally, we defined the most consistent functional connectivity map as brain
regions with a p value less than 0.001 and cluster size greater than 200 mm3

(Fig. 3). To illustrate the left 8Av hub’s connectivity map, we also mapped its
contralateral region the right 8Av region’s connectivity map (Supplementary
Fig. 5).

Hierarchical clustering analysis on connectivity maps of functional con-
nectome hubs. To address the effect of network size, we first divided the most
consistent functional connectivity map of each hub into eight brain networks

Cohort M/F

Age (years)
18 21 24 27 30 33 36

Fig. 8 Enhanced box plot of the age ranges of each cohort. Vertical black
lines depict the median value. Left and right edges of the incrementally
narrower boxes depict the lower and upper fourths, eighths, sixteenths, etc.
M/F males/femals.
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mentioned above and represented the functional connectivity profile of a hub as
the voxel percentage of each of the eight networks connected with it. Thus, we
obtained an 8×35 connectivity matrix with each column representing the voxel
percentage of each of the eight networks connected with a hub (Fig. 4a). Then, the
8×35 connectivity matrix was submitted to a hierarchical clustering model to
obtain an agglomerative hierarchical cluster tree (Fig. 4a) that indicates the simi-
larity of these functional connectivity profiles. We implemented hierarchical
clustering model using the linkage function from MATLAB R2013a with default
parameters.

Identifying transcriptomic pattern underlying functional connectome hubs.
We trained machine learning classifiers based on XGBoost33 and SVM to distin-
guish connectome hubs from non-hubs using transcriptomic features from the
preprocessed AHBA dataset34 (Fig. 5). The original AHBA dataset consists of
microarray expression data of more than 20,000 genes in 3702 spatially distinct
brain samples taken from six neurotypical adult donors78. Only two out of six
donors were sampled from both hemispheres and the other four were sampled
from only the left hemisphere. Because no statistically significant hemispheric
difference was identified in the original AHBA dataset78, a prior study34 provided a
publicly available preprocessed AHBA dataset that includes 10,027 genes’ tran-
scriptomic data from 1285 left cortical samples. Preprocessing steps taken by the
study34 mainly include probe-to-gene re-annotation, intensity based data filtering,
probe selection, accounting for individual variability, and gene filtering. Of the
1,285 samples, 382 were identified as hub samples and 776 as non-hub samples
according to their MNI coordinates and the hub identification map in Fig. 1c. The
remaining 127 samples were not included in our analysis because they were out of
our gray matter mask. The brain samples used in our analysis are listed in Sup-
plementary Data 9.

We built a supervised machine learning classifier based on XGBoost, a scalable
tree boosting system with state-of-the-art resource efficiency and superior
performance in many machine learning challenges33, to distinguish hub samples
from non-hub samples using 10,027 genes’ transcriptomic data from the
preprocessed AHBA dataset. We used equal amounts of positive samples (hub
samples) and negative samples (non-hub samples) in the classifier training
procedure to ensure that the optimal classifier was unbiased toward any type of
sample. To balance the time complexity and the prediction accuracy, we trained the
classifier with 300 randomly selected hub samples and 300 randomly selected non-
hub samples and tested it with the remaining 82 hub samples and 476 non-hub
samples (Fig. 5a). Each gene’s contribution to the optimal prediction model was
determined after training the classifier. Based on previous experience79, we
performed a 30-fold cross-validation procedure to identify the optimal number of
model training iterations. The sensitivity, specificity, and accuracy rate of the
XGBoost classifier and each gene’s contribution to the classification results were
stably estimated by repeating the randomly selecting training samples, cross-
validation, and classifier training and testing procedures 1000 times. We
implemented XGBoost using the XGBoost package33 v1.2.0.1 in R 4.0.2 with
following parameters: nrounds= 1500, early_stopping_rounds= 50, eta= 0.05,
objective= “binary:logistic”.

To exclude the XGBoost model’s potential bias relating to mostly contributed
key genes, we reproduced classification results using another machine learning
model based on SVM (Fig. 5e). Instead of using all 10,027 genes’ transcriptomic
features, we only used genes with the greatest contributions to the XGBoost
classifier to train the SVM classifier. If the key genes with the greatest contributions
to the classification results are independent of the XGBoost model, the SVM
classifier will achieve a comparable or higher accuracy rate than the XGBoost
classifier because of the exclusion of redundant genes whose contribution to the
classification results is negligible. In line with the XGBoost model, we used equal
amounts of hub samples and non-hub samples in the classifier training procedure.
For the easiest classification task, the SVM classifier was trained to distinguish all
382 hub samples from 382 non-hub samples with the highest rate to be correctly
classified by the XGBoost classifier. For the most difficult classification task, the
SVM classifier was trained to distinguish all 382 hub samples from 382 non-hub
samples with the lowest rate to be correctly classified by the XGBoost classifier. To
balance the time complexity and the prediction accuracy, we performed a 382-fold
cross-validation procedure to obtain the optimal SVM classifier. We implemented
SVM using the svm function from the scikit-learn package80 v0.23.2 in Python 3.8.3
with default parameters.

To exclude the potential effect of spatial autocorrelation inherent to the
transcriptomic data and the hub localization, we repeated the above described
XGBoost and SVM classifiers training and testing procedures using surrogate hub
identifications with the spatial autocorrelations being corrected using a generative
model81. As shown in Supplementary Fig. 8a, we first constructed a surrogate Z
value map with the spatial autocorrelation being corrected using a generative
model81 based on the unthresholded Z value map corresponding to the hub
identification map in Fig. 1c. Then, for the 1158 AHBA brain samples within our
gray matter mask, we assigned the 382 samples with the highest surrogate Z values
as hub samples and the 776 samples with the lowest surrogate Z values as non-hub
samples. For the XGBoost classifier, we trained the classifier with 300 randomly
selected surrogate hub samples and 300 randomly selected surrogate non-hub
samples using 10,027 genes’ transcriptomic data from the preprocessed AHBA

dataset and tested it with the remaining 82 surrogate hub samples and
476 surrogate non-hub samples. We performed a 30-fold cross-validation
procedure to identify the optimal number of model training iterations. We
implemented XGBoost using the XGBoost package33 v1.2.0.1 in R 4.0.2 with
following parameters: nrounds= 1,500, early_stopping_rounds= 50, eta= 0.05,
objective= “binary:logistic”. For the SVM classifier, we built a supervised SVM
classifier through a 382-fold cross-validation procedure to distinguish all
382 surrogate hub samples from 382 randomly setected surrogate non-hub samples
using the transcriptomic data of the top 150 genes listed in Supplementary Data 1.
We implemented SVM using the svm function from the scikit-learn package80

v0.23.2 in Python 3.8.3 with default parameters. Finally, we repeated the surrogate
hub identification generating, XGBoost classifier training and teseting, and SVM
classifier training procedures 1000 times.

The top 150 key genes (Supplementary Data 1) mostly contributed to the
classification results were submitted to GO enrichment analyses using GOrilla35

and DAVID36,37 v6.8. We conducted two GO enrichment analyses using GOrilla.
The first analysis used the 150 key genes as the target list and all 10,027 genes as the
background list. The second analysis used the ranked 10,027 genes according to
their contributions to the XGBoost classifier. Of note, we performed GO
enrichment analyses for all three ontology categories: biological process, molecular
function, and cellular component. However, only analysis for biological process
yielded significant GO terms. We repeated GO enrichment analysis for biological
process using DAVID with the 150 key genes as the target list and all 10,027 genes
as the background list. In addition, we also performed GO enrichment analysis for
disease association using DAVID with the 150 key genes as the target list and all
10,027 genes as the background list.

Based on GO enrichment analysis results, we tested transcription level
differences for gene sets involved in key neurodevelopmental processes38

(Supplementary Data 6) and main neuronal metabolic pathways39 (oxidative
phosphorylation40 and aerobic glycolysis41, Supplementary Data 7) between
connectome hubs and non-hubs through one-sided Wilcoxon rank-sum test. In
line with prior studies38,41, we used the first principal component of each gene set’s
transcription level to plot and to perform the statistical analysis (Fig. 6a). For
illustration purposes, we normalized the first principal component of each gene
set’s transcription level respect to its minimum and maximum values across all
brain samples to the range 0–1.

To explore developmental details, we inspected the developmental trajectory of
transcription level of the above gene sets (Supplementary Data 6 and 7) in hub and
non-hub regions respectively using the BrainSpan Atlas42. The normalized
BrainSpan Atlas was generated using 524 brain samples from 42 donors aged from
eight post-conceptional weeks to 40 postnatal years, including 52,376 genes’
transcriptomic data from 11 neocortical areas and five additional regions of the
human brain. The brain regions used in our analysis are listed in Supplementary
Data 10. We plotted the developmental trajectory using locally weighted regression
by smoothing the first principal component of each gene set’s transcription level
against log2[post-conceptional days] as in a prior study38 (Fig. 6b). For most
developmental periods, there are only no more than five hub brain samples and 10
non-hub brain samples at a specific age (Supplementary Fig. 11). Such small simple
size makes it practically impossible to determine the statistical significance level of
difference in transcription level between hub and non-hub regions at a specific age.
We compared the magnitude of differences in developmental trajectory between
hub and non-hub regions to the median absolute deviation of transcription level
across brain regions at a specific age (Fig. 6c). The magnitude of differences in
developmental trajectory exceeding the median absolute deviation indicates a trend
of greater difference in transcription level between hub and non-hub regions than
expected at a specific age. Of note, considering apparent transcriptomic differences
compared to the neocortex38, we excluded the striatum, mediodorsal nucleus of the
thalamus, and cerebellar cortex in the developmental trajectory analysis but not the
amygdala and hippocampus whose developmental trajectories of transcription level
are more similar to those of the neocortex than to those of other subcortical
structures38. Analysis using only neocortical regions revealed similar results
(Supplementary Fig. 9).

Contextualizing functional connectome hubs’ transcriptomic pattern using
established neuroimaging patterns. We assessed the neural relevance of the
above identified transcriptomic pattern underlying functional connectome hubs by
contextualizing it relative to established neuroimaging patterns of
neurotransmitter46, cortical fiber length47, brain metabolism48, and cortical
thickness atrophy in neuropsychiatric disorders50.

The JuSpace toolbox46 provided 15 neurotransmitter receptor and transporter
density maps in the MNI volume space. For each of the 15 density maps, we tested
difference in density between hub and non-hub voxels through one-sided
Wilcoxon rank-sum test (Fig. 7a). For illustration purposes, we normalized the
density value respect to its median and median absolute deviation across voxels.

The cortical fiber length profiling dataset47 provided fiber number data across
different length bins in a standard brain surface space. We resampled the identified
hub distribution mask in Fig. 1c from the MNI volume space to the standard brain
surface space provided by the dataset47 and tested difference in fiber number
between hub and non-hub vertices for each length bin through one-sided Wilcoxon
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rank-sum test (Fig. 7b). For illustration purposes, we normalized the fiber number
value respect to its mean and standard deviation across voxels.

The brain metabolism dataset provided by the positron emission tomography
study48 was assigned to 82 Brodmann areas in a standard brain surface space and
seven subcortical structures in the MNI volume space. We first resampled the
identified hub distribution mask in Fig. 1c from the MNI volume space to the
standard brain surface space provided by the dataset48 and identified Brodmann
areas with more than 50% vertices within the hub distribution mask as hub regions.
Then, we identified subcortical structures with more than 50% voxels within the
hub distribution mask as hub regions. After that, we examined differences between
hub and non-hub regions in metabolic measurements of blood supply (the cerebral
blood flow), oxidative phosphorylation (the cerebral metabolic rate for oxygen),
and aerobic glycolysis (the glycolytic index) through one-sided Wilcoxon rank-sum
test (Fig. 7c).

The Cohen’s d value of cortical thickness atrophy in neuropsychiatric disorders
was assigned to 68 cortical areas in a standard brain surface space50. We first
resampled the unthresholded Cohen’s d map of connectome hub in Fig. 1c from
the MNI volume space to the standard brain surface space provided by the
dataset50 and computed the Cohen’s d value for each of the 68 cortical areas by
averaging Cohen’s d value across vertices within each cortical area. Then, we
computed Pearson’s correlation coefficient between the Cohen’s d value of
connectome hub and the Cohen’s d value of cortical thickness atrophy across 68
cortical areas for each of the eight disorders (Fig. 7d). To reduce the potential
effects of development on our results, we used cortical thickness atrophy data from
adults for the attention deficit hyperactivity disorder, bipolar disorder, major
depressive disorder, and obsessive-compulsive disorder.

Statistics and reproducibility. We performed statistical analyses using
MATLAB R2013a. The statistical significances of brain clusters in Figs. 1c and 3
and Supplementary Figs. 2c, 3c, 5, and 10a were determined by comparing the
observed Z values with their corresponding null distributions constructed by
above mentioned 10,000 one-sided nonparametric permutation tests28. To
determine the statistical significances of one-sided Wilcoxon rank-sum tests in
Figs. 6a, 7a–c and Supplementary Fig. 10e, we constructed 1000 surrogate hub
identification maps with the spatial autocorrelations being corrected using a
generative model81 and repeated calculating rank-sum statistics using these
surrogate hub identification maps to construct a null distribution. Then, p values
of these rank-sum statistics were determined by comparing the observed values
with their corresponding null distributions and were Bonferroni-corrected.
Surrogate hub identification maps for Figs. 6a and 7a–c were constructed based
on the hub identification map in Fig. 1c. Surrogate hub identification maps for
Supplementary Fig. 10e were constructed based on the hub identification map in
Supplementary Fig. 10a. To determine the statistical significances of Pearson’s
correlation coefficients in Fig. 7d, we constructed 1000 surrogate maps of the
unthresholded Cohen’s d map in Fig. 1c with the spatial autocorrelations being
corrected using a generative model81 and repeated calculating Pearson’s corre-
lation coefficients using these surrogate Cohen’s d maps to construct a null
distribution. Then, p values of these Pearson’s correlation coefficients were
determined by comparing the observed values with their corresponding null
distributions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The MRI data of the first 60 cohorts listed in Supplementary Data 8 are available at the
International Neuroimaging Data-sharing Initiative (http://fcon_1000.projects.nitrc.org),
Brain Genomics Superstruct Project82 (https://doi.org/10.7910/DVN/25833), Human
Connectome Project (https://www.humanconnectome.org), MPI-Leipzig Mind-Brain-
Body Project (https://openneuro.org/datasets/ds000221), and Age-ility Project (https://
www.nitrc.org/projects/age-ility). The MRI data of the PKU cohort are under active use
by the reporting laboratory and will be available from the corresponding author upon
reasonable request. The preprocessed AHBA dataset is available at https://doi.org/10.
6084/m9.figshare.6852911. The normalized BrainSpan Atlas dataset is available at http://
brainspan.org/static/download.html. The neurotransmitter receptor and transporter
density maps provided by the JuSpace toolbox46 are available at https://github.com/
juryxy/JuSpace. The fiber length profiling dataset47 is available at https://balsa.wustl.edu/
study/1K3l. The cortical thickness atrophy dataset provided by the ENIGMA Toolbox50

is available at https://github.com/MICA-MNI/ENIGMA. Numerical source data to
reproduce all figure panels is available at https://doi.org/10.6084/m9.figshare.21194128.

Code availability
The code to reproduce the results and visualizations of this manuscript is available on
Zenodo83. Software packages used in this manuscript include MATLAB R2013a (https://
www.mathworks.com/products/matlab.html), SPM12 v6470 (https://www.fil.ion.ucl.ac.
uk/spm/software/spm12), GRETNA72 v2.0.0 (https://www.nitrc.org/projects/gretna),

Connectome Workbench v1.4.2 (https://www.humanconnectome.org/software/
connectome-workbench), cifti-matlab v2 (https://github.com/Washington-University/
cifti-matlab), R 4.0.2 (https://www.r-project.org), XGBoost package33 v1.2.0.1 (https://
cran.r-project.org/web/packages/xgboost), Python 3.8.3 (https://www.python.org), and
scikit-learn package80 v0.23.2 (https://scikit-learn.org). Online analysis tools used in this
manuscript include GOrilla35 (http://cbl-gorilla.cs.technion.ac.il) and DAVID36,37 v6.8
(https://david.ncifcrf.gov).
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