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A Hidden Markov Model reveals
magnetoencephalography spectral frequency-
specific abnormalities of brain state power and
phase-coupling in neuropathic pain
Camille Fauchon 1, Junseok A. Kim1,2, Rima El-Sayed 1,2, Natalie R. Osborne1,2, Anton Rogachov1,2,

Joshua C. Cheng1,2, Kasey S. Hemington1,2, Rachael L. Bosma1, Benjamin T. Dunkley3,4,5, Jiwon Oh6,

Anuj Bhatia1,7, Robert D. Inman2,8 & Karen Deborah Davis 1,2,9✉

Neuronal populations in the brain are engaged in a temporally coordinated manner at rest.

Here we show that spontaneous transitions between large-scale resting-state networks are

altered in chronic neuropathic pain. We applied an approach based on the Hidden Markov

Model to magnetoencephalography data to describe how the brain moves from one activity

state to another. This identified 12 fast transient (~80ms) brain states including the sen-

sorimotor, ascending nociceptive pathway, salience, visual, and default mode networks.

Compared to healthy controls, we found that people with neuropathic pain exhibited

abnormal alpha power in the right ascending nociceptive pathway state, but higher power and

coherence in the sensorimotor network state in the beta band, and shorter time intervals

between visits of the sensorimotor network, indicating more active time in this state. Con-

versely, the neuropathic pain group showed lower coherence and spent less time in the

frontal attentional state. Therefore, this study reveals a temporal imbalance and dysregulation

of spectral frequency-specific brain microstates in patients with neuropathic pain. These

findings can potentially impact the development of a mechanism-based therapeutic approach

by identifying brain targets to stimulate using neuromodulation to modify abnormal activity

and to restore effective neuronal synchrony between brain states.
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Neuropathic pain is a major healthcare challenge due to
limited efficacious therapies, and it is a tremendous bur-
den to individuals and the society1. Neuropathic pain is

characteristically experienced as intense pain with unpleasant
characteristics such as excruciating shooting, stabbing, or burn-
ing, and can be stimulus-evoked pain and also involve sensory
loss2. The alterations in brain activity in patients with central and
peripheral neuropathic pain are not well-defined, but growing
evidence suggest impairment of the dynamic organization of
neural network activity; considered to be brain microstates.

Converging findings indicate that neuropathic pain is asso-
ciated with abnormal brain structure and function3. Functional
magnetic resonance imaging has identified dysfunctions of brain
networks within the dynamic pain connectome (DPC)4 in several
chronic pain conditions that have a neuropathic pain component
such as multiple sclerosis5, ankylosing spondylitis6–8, chronic low
back pain9, and other neuropathic etiologies10,11. Moreover,
technologies that can examine brain activity at millisecond
resolution (i.e., electroencephalography and magnetoencephalo-
graphy (MEG)) have reported that people with chronic pain
exhibit altered neuronal oscillations at specific frequency
bands12,13, such as an increase in resting-state alpha-band
(8–13 Hz) spectral power13–17 and slower peak alpha
frequency14,17–19; some of which are ameliorated after successful
pain treatment20,21. Our group and others have identified that
alpha-band abnormalities in people with chronic pain were more
likely to occur if individuals had neuropathic pain attributes14,15.
Given these and other findings, alpha oscillations have been
proposed as a potential neuromarker of acute pain sensitivity22

and neuropathic pain3. There is also evidence for the involvement
of local neuronal activity and global functional connectivity
dysfunction in the other frequency bands, such as theta (4–8 Hz),
beta (13–30 Hz), and low gamma (30–60 Hz) frequencies23,24 in
all type of pain (e.g., neuropathic, nociceptive, nociplastic).

Disruptions in oscillating signals measured on the surface of
the scalp reflect dysrhythmic activity of neurons in the network,
which influence the effectiveness of neuronal coordination
between brain regions (akin to a bug in the neural code)25,26. This
is grounded in the concept that coherently oscillating neuronal
groups interact with greater efficiency27, and so such a disruption
could impact sensory and cognitive response to pathological
states28, including pain. Another fundamental neural mechanism
is phase-coupling or phase synchronization which refers to the
relationship between oscillation phases in different brain
regions29. Intrinsic resting-state brain networks have spectral
characteristics such that their activity are most pronounced in
one frequency band, but could also exhibit spontaneous fast
changing phase-coupling activity and this is thought to be an
important contribution to cognitive processes by regulating
neuronal communication30.

The Hidden Markov Model (HMM)31,32 approach is used to
reduce cortical activity at rest into sequences of transient, inter-
mittently reoccurring events, known as brain states. At each brain
state, large-scale networks are characterized by specific patterns of
power and phase-coupling, and these are factorized as a function
of frequency (i.e., spectrally resolved)33–35. This approach applied
to neuroimaging data was successfully used to characterize pro-
files of time-varying connectivity associated with opioid
analgesia36,37. Using MEG data, this method provided a fine
probabilistic estimation of when the different brain states are
active32,38. Thus the HMM approach can be used to reflect the
spontaneous micro-temporal brain dynamics at rest associated
with chronic pain conditions, given a choice of free parameters
and prior distributions. It remains unknown, however, whether
and how brain states are spatially, spectrally, and temporally
altered in neuropathic pain.

The aim of the present study was to determine whether there
are MEG brain microstates dysfunction associated with different
chronic pain conditions with a neuropathic character. To this
end, we applied an HMM statistical approach to examine resting-
state MEG data from 40 patients with central and peripheral
chronic neuropathic pain compared to 40 age- and sex-matched
HCs. MEG data were source-reconstructed to 36 dipoles covering
the entire DPC. Twelve-states HMM solution identified brain
microstates for networks of the DPC4 including the default mode
(DMN), salience (SN), ascending nociceptive pathway (ANP),
sensorimotor network (SMN), and other higher-order cognitive
networks. A prominent finding was that there were distinct
temporal and spectral properties abnormalities in the neuropathic
pain group that were characterized by higher alpha power in the
brain state identified for the right ANP network, and higher beta
power in the SMN. Also, in participants with neuropathic pain
compared with healthy controls (HCs), the interval of time
between transitions to (i.e., visits of) the SMN was shorter, and
their brain spent more active time in this state. These correla-
tional neuromarkers indicate that neuropathic pain may impair
the dynamic coordination of neural network activity. Our find-
ings provide support for using HMM to understand the organi-
zational framework underlying neural synchrony and detect the
functional consequences of neuropathic pain.

Results
Identification of 12 brain states using HMM in healthy indi-
viduals and those with neuropathic pain. We used concatenated
MEG resting-state data from 40 participants with neuropathic
pain (20 females and 20 males) and age/sex-matched healthy
subjects to map to a 36-region parcellation of the DPC4,14,15,39

using the time-delay embedded HMM methods developed by
Vidaurre et al32,34 (see methods). A central and free parameter in
HMM inference is the number of states, which must be chosen
before further evaluation. Here, we identified 12 HMM states in
both the chronic pain and HC groups (Fig. 1).

The HMM method is a mathematical framework used to
identify recurring states in brain functional data33. This allows for
the identification of brain-wide networks characterized by specific
patterns of power and phase-coupling connectivity, which are
spectrally resolved (i.e., power and phase-coupling modes that are
defined as a function of frequency). These patterns are also
temporally resolved, meaning that the method provides a
probabilistic estimation of when the different networks are active,
according to HMM assumptions. Importantly, while the spatial
and spectral description of the states is common to all subjects,
each subject has their own state time-course that represents the
probability of each HMM state being active at each instant.

We computed the HMM for 6 and then 12 states. The optimal
number of states is a compromise to select the highest number of
states while still having a reliable solution (see methods). Each
state of activity can be further partitioned into a set of functional
sub-states. The six-states solution provided state information that
was consistent with the 12-states solution except it failed to
convey relevant information about the separation of some
network states (see Supplementary Fig. 1). Some states from the
original 12-states analysis were fused into fewer states.

The HMM state distributions are patterns of covariance across
channels and time points within a certain window (i.e., channels
X time points by channels X time points). Principal component
analysis is used to reduce the size of the state covariance matrices
and aims to explain the highest possible amount of variance in the
time series (see Methods). This reduction explained on average
68% of variance (lowest and highest values across subjects were
61% and 72%, respectively).
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Description of brain states in healthy individuals and in neu-
ropathic pain. Spatial maps of power and phase-coupling con-
nectivity were each averaged across a wideband frequency range
(1–30 Hz) to describe the overall characteristics of each state.

We determined the regional power and functional connections
that are significantly stronger for one state compared to the other
states. To do this, we conducted nonparametric statistical testing
on the between-subject variability calculated from each indivi-
dual’s spectral information (i.e., power and connectivity; see
methods).

This yielded power maps of the brain regions that are
associated with statistically significant wideband spectral power
and connectivity in each state in both groups at rest. The pattern
of power activity and functional coherence in each state was
bilateral, in seven states but was lateralized to one hemisphere in
the other five states. The brain states in healthy individuals and
those with neuropathic pain corresponded to commonly observed
intrinsic resting-state brain networks in the DPC6,40, but since a
12-state solution is used in the model, some high-order networks
are divided in subnetworks. The brain states identified in both the
HC and neuropathic pain groups included: (1) the posterior and
anterior part of the DMN (post DMN, ant DMN); (3) Dorsal/
limbic attention; (4) fronto-parietal (FP); (5) motor-control; (6)
SN; (7) left and (8) right ascending nociceptive (i.e., sensory)
pathway networks (left and right ANP); (9) left and (10) right
operculo-insular networks (OP-insular); (11) sensorimotor
(SMN), and (12) visual networks (also see Supplementary Tables 1
and 2). Nodes showing significant power in each state tend to
accompany increases in phase-locking. Figure 2a shows large-
scale brain microstates organization (power and phase-coupling)
in HCs (i.e., the basal condition).

State-specific frequency bands. We next examined the state-
specific frequency bands. To do this, we factorized the frequency
bins (1–45 Hz) into four frequency bands using a data-driven
frequency decomposition32. We used non-negative matrix fac-
torization as the decomposing method. The approach identified
four modes corresponding roughly to the classical frequency

bands: Delta/theta (from 2 to 8 Hz), alpha (from 8 to 14 Hz), beta
(from 14 to 30 Hz), and low gamma (from 30 to 45 Hz).

As in Vidaurre et al.32, strong state-specific differences in the
gamma band could not be observed with this approach due to the
relatively low signal-to-noise ratio in higher-frequency bands, and
therefore, we only show results for the delta/theta, alpha, and
beta bands.

The average power across brain regions as a function of
frequency is shown in Fig. 2b. Some states have their power more
represented in one frequency band. In general, there was
variability in the dominant oscillation frequencies across states
in the DPC (Pcorrected < 0.001; permutation tests). We found that
theta/delta frequency bands were dominant oscillations in frontal
states (involved in cognitive functions) including the frontal
DMN, the dorsal attention, the FP and the operculo-insular
states. Alpha was largely limited to parietal and occipital regions,
and is dominant in the post DMN, the visual, the ANP states and
to a lesser extent the SN state (alpha/beta). The beta band was
prominent in the SMN and motor-control states.

In summary Fig. 2c, in both groups, the posterior DMN state
was characterized by strong power and coherence within the
alpha frequency band (dominant peak frequency ≈12 hz), and
was a dominant state compared to the others in term of power,
whereas the frontal DMN state was dominated by the delta/theta
frequency band (≈5 hz). The SMN state showed stronger power
in the beta band (≈20 hz), and the visual state was more
represented in the alpha band (≈9 hz).

Differences in spectral power and functional coherence in
healthy individuals and those with neuropathic pain. We next
examined the spatial distribution changes of power and con-
nectivity between neuropathic pain and HC groups using the
three previous frequency bands (i.e., delta/theta, alpha, beta
bands).

Spectral power. We first examined whether there were
abnormalities in spectral power in the patients with neuropathic
pain. We found that the neuropathic pain cohort exhibited higher

Fig. 1 Illustration of time-delay embedded Hidden Markov Model (TDE-HMM) approach applied on MEG data. MEG data preprocessing (Independent
component analysis (ICA) for artifact removal, source reconstruction, parcellation, leakage correction, and sign disambiguation—see Methods). We used a
linearly constrained minimum variance beamformer to extract a continuous time series for nodes of the dynamic pain connectome based on anatomical
3D T1 scans of each participant. Spontaneous cortical activity transiently organizes into frequency-specific phase-coupling networks. Principal component
analysis was applied for dimensionality reduction, and HMM inference was then used to identify the state time-courses (state probability) and the state
parameters in HCs and those with neuropathic pain. Each state was characterized as having its own distinct spatial, temporal, and spectral properties.
Individual power maps and phase-coupling patterns (networks) were estimated for active states and illustrated by their temporal features (i.e., fractional
occupancy, interval times, switching rates, and lifetimes). States were spatially defined and spectrally resolved according to the main frequency bands (i.e.,
delta/theta, alpha, beta, and low gamma).
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spectral power compared to the HC group in two instances: (1) at
alpha frequency in the right ANP (Cohen’s d= 0.662 [95.0%CI
0.137, 1.15]; p= 0.0044 two-sided permutation t test, 5000
bootstrap samples were taken; the confidence interval is bias-
corrected and accelerated), and (2) at beta frequency in the SMN
state (Cohen’s d= 0.678 [95.0%CI 0.217, 1.12]; p= 0.004) com-
pared to HCs (Fig. 3a). The averaged power did not change in the
other HMM states and frequency bands in neuropathic pain
compared with HC.

We next conducted a permutation analysis using network-
based statistic41,42 to identify local nodal changes of power in
these two brain states (SMN and right ANP) that were found to

be abnormal in neuropathic pain. This analysis indicated that at
the nodal level in the right ANP state, the neuropathic pain group
had higher alpha power in the right thalamus, primary
somatosensory cortex (S1), posterior insula (pINS), temporo-
parietal junction (TPJ), primary motor cortex (M1) and lower
power in the dorsolateral and prefrontal cortex (DLPFC), mid
PFC (mPFC), and left anterior insula (aINS) compared with HCs
(p < 0.01, corrected 5000 permutations, NBS method). In the
SMN state, the neuropathic pain group exhibited stronger beta
power bilaterally in the S1 and TPJ but had lower power in frontal
regions including the DLPFC, mPFC, dmPFC, subgenual anterior
cingulate cortex (sgACC), midcingulate cortex (MCC) and

Fig. 2 Brain states identified using an HMM show functional networks of spectral power and coherence in the DPC. a Brain regions with significant
power and phase-coupling are represented across a wideband frequency range (1–30 Hz) for the 12 estimated states in n= 40 healthy controls. Node
spectral power is relative to the temporal average, and node size is in relation to the mean power (Z score) across states (blue and red colors reflect power
that is lower or higher than the average over states, respectively). Edges between nodes show functional connectivity, and only significant and high-valued
connections are shown. Significant coherences were mainly found between active nodes in each state. The same 12 states were found in the patients
cohort, and the nodes’ repartition was similar across a wideband frequency range. b Spectral power averaged across all brain regions in brain states as a
function of frequency (green: delta/theta, blue: alpha, and red: beta). c Spectral profiles of the DMN (post. DMN: blue; ant. DMN: purple), SMN (green),
and visual (yellow) states, in terms of power averaged across brain regions, in comparison to the grand average (black line); Standard deviations are
represented. *P < 0.001; permutation P value, 5000 bootstrap samples. DMN Default mode network, ANP ascending nociceptive pathway, OP-insular
(operculo-insular), SMN sensorimotor, DPC dynamic pain connectome.
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somatosensory-motor area compared to HCs (Fig. 3 and
Supplementary Table 3).

Abnormal functional coherence in neuropathic pain. The
degree of synchronization between regions of the brain can be
tested directly using MEG functional connectivity assessment
(i.e., functional coupling), which can reflect certain aspects of
inter-regional neuronal communication driven by common cog-
nitive functions (i.e., cognitive complexity, see43,44). For MEG
this tends to mean assessment of phase synchrony between
oscillations in frequency bands of interest. We determined the
phase-coupling for both the neuropathic pain and HC groups.
We found that in some states, there are functional coherence
abnormalities related-to neuropathic pain at particular frequency
bands (p < 0.01, corrected 5000 permutations, NBS method).
Specifically, when comparing the neuropathic pain group to the
HCs, we found that the connectivity was higher in the SN state
between bilateral brain regions including the aINS, MCC, DLPFC,
mPFC, sgACC, posterior cingulate cortex (PCC), M1, S1, and
subcortical nodes in the alpha band, and was also stronger in the
SMN state between the DLPFC, PFC, sgACC, medial temporal
lobe (MTL) and subcortical regions in the beta band. In contrast,
we found that the functional coherence was lower in the dorsal
attention state between the sgACC, right aI, DLPFC, and limbic
regions in the delta/theta band (Fig. 4; see results details in
Supplementary Table 3).

These findings thus indicate that, in neuropathic pain, there are
atypical spatial distribution of power and connectivity in the
brain and that these brain state changes are characterized by
specific temporal features.

Temporal features of the brain functional states. The HMM
inference allows us to estimate the time course of the visits to

each of the brain states, which provides insight into the amount of
time spent in a state before moving into a new state. We used
several indices to represent the states’ temporal characteristics
(i.e., fractional occupancy, interval times, switching rate, transi-
tion probabilities, and life time, see Methods). These are not
biological measures and depends on prior HMM hyperpara-
meters such as the distribution of the transition probability
matrix. Thus, we examined only relative differences between the
states and between the chronic pain and HC groups.

In both the healthy and pain groups, all HMM states were on
average short-lived, with their life times typically lasting from
50–80 ms. The posterior DMN state had higher life times than the
other states in both groups. In addition, the two states related-to
the DMN (posterior and anterior) had higher interval times
(Fig. 5a). Thus, the visits of these two high order cognitive states
were temporally distinct compared to the other states (permuta-
tion testing, P < 0.001 for both states). This was especially
pronounced for the posterior DMN state (Fig. 5b). These results
are consistent with previous works32, however in our results the
fractional occupancy (i.e., reflecting the proportion of time spent
in each state) of the post DMN state was lower than other states
(Fig. 5c; permutation testing, P < 0.01). Overall, our findings
demonstrated that the DMN states last longer (especially the
posterior part) but are not revisited for longer periods and tend to
be visited less frequently than other states such as the visual or
SMN states.

We further found that state switching was a fast dynamic
phenomenon in terms of power and phase-locking information.
Specifically, we found states switched on average approximately
every 40 to 100 ms. The maximum fractional occupancy was
computed per subject and indicated that in all subjects, there was
a mixture of states and no single state was dominant (see Fig. 5d).
However, the state distribution was quite homogenous across

Fig. 3 Individuals with neuropathic pain had higher alpha power in the right ANP state and higher beta band power in the SMN state. Brain nodes in
neuropathic pain (NP) showing significant local power increased (red nodes) and decreased (blue nodes) in the a right Ascending nociceptive pathway
(ANP: higher alpha power in the right thalamus, primary somatosensory (S1), and motor cortex (M1), posterior insula (pINS), temporo-parietal junction
(TPJ) and lower power in the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (mPFC), and left anterior insula (aINS) and b sensorimotor
(SMN: S1 and TPJ, but had lower power in frontal regions including the DLPFC, mPFC, dorso-medial prefrontal cortex (dmPFC), subgenual anterior
cingulate cortex (sgACC), midcingulate cortex (MCC) and sensorimotor area (SMA) state compared with healthy controls (HCs) are depicted. The effect
size (Cohen’s d) between the average power of n= 40 healthy controls and n= 40 individuals with neuropathic pain is shown in the Gardner-Altman
estimation plots. 5000 bootstrap samples were taken; the confidence interval is bias-corrected and accelerated. Each dot on the brain maps represents a
brain region, and its size is in relation to the difference in spectral power between the neuropathic pain and control groups (i.e., proportional to the effect
size, larger dot means a stronger difference).
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subjects in both groups, although in some subjects there was
higher representation of some states than others. This inter-
individual variability demonstrates that subjects have different
degrees of state representation, possibly related to specific subject
traits.

Temporal abnormalities (i.e., time spent within or between
states) in neuropathic pain. We found that the maximum frac-
tional occupancy was lower in the neuropathic pain groups
compared to controls (Fig. 5d), meaning that for the neuropathic
pain group, less time was spent overall in active states (Cohen’s
d=−0.608 [95.0% CI −1.07, −0.137]; P= 0.0088). However, we
did not find any significant differences in the switching rate
between the neuropathic pain and healthy groups (two-sided
permutation t test p= 0.191).

In individuals with neuropathic pain, the proportion of time
spent (i.e., fractional occupancy) was higher in the SMN state
and lower in the dorsal attention state compared to HCs (two-
sided permutation t test, Cohen’s d > 0.519; P < 0.024). In
addition, the interval of time between visits of the SMN state
was shorter in neuropathic pain than in HCs (Cohen’s
d=−0.508 [95.0%CI −0.95, −0.0369]; P= 0.028), whereas
the period between visits in the dorsal attention network tended
to be longer in neuropathic pain than in HCs (Fig. 5e, f;
Cohen’s d= 0.414 [95.0% CI −0.0433, 0.872]; P= 0.069). The
life times of the states were not significantly different between
both groups, but the SMN tended to be longer in neuropathic

pain. This characterized neuropathic pain as an imbalance of
brain temporal dynamic between sensorimotor and frontal
states (see Supplementary Fig. 2).

Discussion
Neuropathic pain is a highly prevalent (4–8% of the population)
and disabling chronic pain condition. MEG affords excellent
sensitivity to probe neural function in those with neuropathic
pain14,15,44,45, and to examine abnormal alpha neural oscillations,
a potential sensitive neuromarker3. Here we examined abnorm-
alities in the spatiotemporal organization of brain states in
patients with neuropathic pain compared to age/sex-matched
HCs using a MEG data-driven analysis based on HMMs. Brain
states were defined in a full probabilistic approach using HMM,
as large-scale networks becoming active with distinct spatial and
spectral features that include both power and phase-coupling32,34

across selected brain regions of the DPC. Our study has two main
findings: First, we found that resting-state brain activity in MEG
can be described by 12 short-lived transient and reoccurring brain
states (i.e., time-varying neural processes) that switch about every
80 ms according to the HMM parameters selected. This highlights
the very fast dynamic changes of brain networks organization (in
term of power and phase-coupling), similar to the rapidly chan-
ging phase-coupling activity during tasks46. The finding of fast
timescales phenomenon of human brain activity at rest suggests
this as an essential element to support efficient cognitive
processes47.

Fig. 4 Coherence changes in individuals with neuropathic pain compared to HC group in specific frequency ranges. The brain maps show connections
(in blue) associated with significant changes between neuropathic pain and healthy control groups in one brain state; each dot (black) represents one brain
region. In the circular coherence plots, blue and red/yellow colors reflect respectively coherence that is lower and higher in neuropathic pain than in the
control group. In neuropathic pain patients, we found that the coherence was a higher in the salience (SN; left: S1, pINS, aINS, thalamus, caudate, mPFC,
MCC, sgACC; right: DLPFC, M1, medial temporal lobe (MTL), pINS, S1, posterior cingulate cortex (PCC), Precuneus, occipital lobe) state in the alpha band;
and b in the sensorimotor (SMN; dmPFC, mPFC, sgACC, MTL, pallidum, putamen, caudate Left: occi, TPJ, S1, M1, DLPFC, right: amygdala, S2) state in the
beta band, c whereas coherence was lower in the dorsal attention state (sgACC, MCC; right: aINS, DLPFC, pallidum, putamen) in the delta/theta compared
with healthy control. *P < 0.01, corrected 5000 permutations, network-based statistic method.
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Our second main finding is that neuropathic pain impairs the
dynamic coordination of neural network activity. Compared to
HCs, the neuropathic pain cohort exhibited shorter time intervals
between transitions to (i.e., visits of) the SMN and their brain
spent more active time in this state. Moreover, in the beta band,
patients had higher power and coherence in the SMN state.
Conversely, their brains showed lower coherence and spent less
time in the frontal attentional state. We hypothesized that these
findings illustrate an imbalance of temporal dynamics between
sensorimotor and frontal microstates in neuropathic pain that
may contribute to abnormal pain regulation in these patients.

In the alpha-band, neuropathic pain was associated with higher
power in the ANP and stronger phase-coupling connectivity in
the SN, two major brain networks involved in the conscious pain
experience4,6,48 (see Figs. 3–5 and Supplementary Table 3).

The findings in this study suggest that the HMM method can
capture the complex and rich brain dynamics underpinning
neuropathic pain. Thus, HMM offers correlational markers to
characterize the neuropathology of neuropathic pain as a
dynamic alteration process and detect its functional con-
sequences. This result can inform hypothesis generation for
future studies that can potentially lead to developing a
mechanism-based therapeutic approach. For example, identifying

new brain targets that can be stimulated offers the hope of
modifying or resetting abnormal activity using neuromodulation
to restore effective communication between brain states.

Transient, dynamic brain events (i.e., microstates of high
amplitude activity) are a fundamental mode of neural
functioning49. MEG recordings provide a sensitive insight into
micro- and macroscopic neural circuits that dynamically form
and dissolve to underpin cognitive functions, by measuring the
magnetic fields generated by neuronal current flow in the brain.
We found that the brain network functioning in HCs and those
with neuropathic pain could be temporally segregated into 12
consistent and connected patterns of brain activity during the
scanning time. They correspond to commonly observed func-
tional resting-state networks (at the spatial level within the
DPC4,6) including the DMN, SMN, visual, frontoparietal, atten-
tional, and ANP. The spatial maps primarily showed patterns that
are in line with the previous work32,33,50 that examined the large-
scale UK Biobank data. This provides confidence in the gen-
eralizability of the HMM in our study which had a modest
sample size.

Of note is that we do not claim this 12-states solution to be
more biologically relevant than 6 (see Supplementary Fig. 1), but
rather that different numbers of states offer different levels of

Fig. 5 Brain states temporal features: chronnectome in healthy controls and disturbances associated with neuropathic pain. a Distribution of state life
times, b distribution of interval times between state visits, and c fractional occupancies (proportion of time spent in each state) are depicted for the n= 40
healthy controls group. The two states related to the default mode network (DMN) have distinct temporal features compared with the other states. The
posterior DMN state had higher lifetimes, and both posterior and anterior DMN states had higher interval times, but the proportion of time spent in the
posterior DMN state was lower compared to the other states (P < 0.01). In n= 40 participants with neuropathic pain, d the maximum fractional occupancy
was lower, and e the sensorimotor (SMN) was more frequently active compared with n= 40 healthy controls. f The proportion of time spent was higher in
the SMN state and lower in the dorsal attention state compared to healthy controls. Standard deviations are shown. *P < 0.01; permutation P value, 5000
bootstrap samples. DMN Default mode network, SMN sensorimotor, HC healthy control, NP neuropathic pain.
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detail of brain dynamics. The visual verification confirms some
consistency in the two-level analysis and was not a surprising
result given the known asymmetry of the brain, with related states
fused into one.

In our study, consistent with previous works32,51, the DMN
was subdivided into two higher-order cognitive brain states,
corresponding to the anterior (e.g., mPFC, ACC, dlPFC) and
posterior (e.g., PCC, precuneus) subdivisions of the DMN. These
two DMN states or subnetworks had particularly high power and
coherence in comparison with other states and were distinguished
from each other because they operated at two different frequency
bands. The posterior DMN state was most pronounced within the
alpha frequency band (≈12 hz), whereas the anterior DMN state
was most activated in the delta/theta frequency band (≈5 hz).
These two distinct functional systems and their functioning
within different frequency bands may reflect different intrinsic
timescales that have been proposed to specialize within the
temporal domain52. These subsystems are composed of two
central nodes within the structural core of the brain, the PCC and
the medial prefrontal cortex, both highly anatomically connected.
They are actively involved in the construction of self-relevant
mental simulations by integrating prior experiences, the PCC
maintains a sense of self-consciousness that is engaged in self-
referential mental thoughts during rest53, and is related to posi-
tive empathy from others54.

We also found that the temporal dynamics of the anterior and
posterior DMN were both different compared with the other
states, in that they exhibited higher active time (i.e., life time), but
were not revisited for longer periods and tended to be visited less
frequently than other states such as the visual or SMN states. This
result differs from the previous work of Vidaurre et al.32 who did
not find significant differences in fractional occupancy of these
two states compared with the other states.

The sensitivity and specificity of neurophysiological indices
derived from MEG show promise to potentially assess neuro-
pathic pain3,13–15,44,45. However, averaging data over the dura-
tion of test recording may result in losing major features of these
transient neural signals. This limitation is not present in the
neural modeling using HMM, which provides a deeper under-
standing of the origin of signal abnormalities within the brain. In
this paper, we combined both MEG recording and HMM
methods to determine the impact of neuropathic pain on
dynamic neural activity and identify information about the neural
impairment underlying neuropathic pain.

Abnormalities in neural oscillations are an indication of
pathology—putative oscillopathies—and several atypical oscilla-
tory signatures of neuropathic pain have been reported. Previous
studies have demonstrated that there is pathological slowing and
increased power of the peak alpha frequency in chronic neuro-
pathic pain, associated with higher trait pain intensity in nodes of
the SN (TPJ) and the ANP (posterior insula)3,14,15,55. Our find-
ings are consistent with these previous findings and suggest that
the largest spectral power difference in alpha amplitude between
people with neuropathic pain and HCs occurs during the active
state composed of nodes of the right ANP, including higher
power in regions particularly involved in the discriminative
somatosensory aspects of pain (e.g., TPJ, the posterior insula, S1,
and M1), and lower power in regions involved in the modulation
of nociceptive information (e.g., the DLPFC, mPFC, and anterior
insula; see Fig. 3 and Supplementary Table 3)4,48,56.

Interestingly, alpha activity is thought to reflect active control
of information flow in the working brain through functional
inhibition of task-irrelevant regions57. It has also been proposed
to represent different brain attentive states, which have a bias
either toward external or internal processing58. Therefore, the
observed changes in alpha power when the ANP state is active

could indicate abnormalities of neural resources allocation in the
resting brain of people with neuropathic pain, which change the
system toward processing information inwardly, rather than
controlling sensory gating (i.e., external processing through sen-
sory channels).

In the same vein, we found atypical functional coherence over
the brain microstates in neuropathic pain. Post hoc analyses
showed that the most affected connections were in the salience
state in alpha (increased) and in the dorsal attention state in
delta/theta frequency band (decreased), between regions of
polymodal cortices compared to HCs (see Fig. 4 and Supple-
mentary Table 3). These well-known foci of attentional processes
are greatly altered in neuropathic pain15,45,59. A recent electro-
encephalography study has also shown abnormalities in brain
microstates related to attentional function in patients with
chronic pain60. Brain state changes in the oscillatory commu-
nication between regions may represent a shift in the micro-
temporal brain dynamics. Therefore, neuropathic pain may
impact the brain's capacity to maintain proper synchronization of
neural assemblies related to attentional load at rest. It has been
suggested that this pronounced dysregulated coupling could be an
indicator of neuropathic pain3. This also demonstrates the utility
of a data-driven method to determine which connections are
most affected and may inform hypotheses of future studies tar-
geting dysrhythmic activity.

We have recently reported extensive reorganization of the
sensorimotor subsystem, such as hyper-connectivity of the SMN,
and altered hub topology in chronic pain6. The abnormal SMN
beta power activity could be due to cortical plasticity after a
lengthy period of nociceptive input61, or it could also serve as a
compensatory mechanism to maintain sensory perception. The
beta band plays a crucial role in the establishment of canonical
resting-state networks62, and therefore can be seen to be impor-
tant for information processing within and across cortical
circuits63. Although the neurophysiological meaning behind beta
band discrepancies is unclear, it illustrates that neuropathic pain
has an impact on the overall dynamic orchestration of neural
activity63.

We found that the subjective experience of chronic neuro-
pathic pain results from pathological brain states interactions, but
also from their temporal dynamic organization. The hetero-
geneity of clinical sequelae of neuropathic pain is thought to be
driven by diffuse and widespread structural and functional
damages, particularly in the SMN and descending anti-
nociceptive pathway, affecting communication between distal,
functionally specific regions involved in the control and mod-
ulation of pain6,23. Therefore, it has been proposed that chronic
pain results from an imbalance between pain input evoking the
somatosensory cortex and brain regions involved in pain control
(i.e., inhibition through subgenual anterior cingulate cortex)23. A
balance between areas involved in pain input and pain suppres-
sion requires temporal organization, which can be characterized
by the state active duration and the interval of time between visits
to brain microstates.

We observed that in individuals with neuropathic pain com-
pared with HCs, the proportion of time spent and the frequency
of visits to the sensorimotor state was higher, whereas these
temporal aspects was lower in the dorsal attention state (e.g.,
sgACC mediated pain inhibition), illustrating a pathological
imbalance of the brain temporal dynamic (Fig. 5d–f; Supple-
mentary Fig. 2). This imbalance was also noticeable in the beta
spectral power (with higher and lower power, respectively in
somatosensory nodes and frontal nodes). All of these changes
contribute to impaired routing of information flow between brain
areas of the DPC4 involved in pain somatosensory-motor pro-
cessing and pain suppression12 at rest in people with neuropathic
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pain, who feel pain in the absence of stimulation. The SMN is
widely used as a target in neuromodulation through brain
stimulation64, and one possible extrapolation of our findings to
explain its analgesic effect can be that the stimulation could
restore a proper balance of activity between brain states (i.e.,
between pro- and anti-nociceptive subsystems).

The HMMmethodological approach overcomes the limitations
of clustering and sliding-window approaches regarding the
selection of the optimal window size and clustering
dimensionality65. This work focused on lower frequency bands
(1–45 Hz), due to the relatively low signal-to-noise ratio in
higher-frequency bands (see methodological considerations in the
methods section and here32), but we would expect that there are
state-specific differences in gamma, because of its role in cogni-
tive processes related-to-pain. Comparing our results with
Vidaurre et al.32, we observed a number of similarities and only
very few exceptions as described above. These mismatches can be
explained not only by the different sample sizes, but also by the
different ages of the sample. The brain parcellation was also
different because we based our analysis on nodes of the DPC. The
HMM can capture the heterogeneity of the time-dynamic varia-
tion of the neuronal activity by considering in the same frame-
work of analysis the variability between individuals in a
population. We also note that we examined only relative differ-
ences between the states (i.e., relative to other states or other
subjects). This is because the absolute value of the temporal
features must be interpreted with caution given the state exclu-
sivity assumption of the HMM. Thus, this is not necessarily a
physiologically meaningful feature of the brain because the state
temporal information depends on the choices of prior parameters
such as the distribution of the transition probability matrix.

Neuropathic pain continues to be a challenge to treat clinically.
In conclusion, characterizing neuropathic pain based on elec-
trophysiological measures may contribute to better subtyping,
better diagnostic measures, and better treatments for patients
suffering from this type of chronic pain. The present results
demonstrate that the HMM approach for MEG data can capture
the complex and rich temporal dynamics of brain microstates
underpinning neuropathic pain. We propose that the subjective
experience of chronic neuropathic pain results from a patholo-
gical imbalance in the dynamic spatiotemporal organization of
brain states. This can have implications for the development of a
mechanism-based therapeutic approach by identifying specific
brain targets to stimulate using neuromodulation to modify
abnormal activity and restore effective neuronal synchrony
between brain states.

Methods
Participants. This study included 40 patients diagnosed with neuropathic pain (20
males (mean age in years ± SD= 41.4 ± 8.3) and 20 females (mean age in years ±
SD= 42.7 ± 9.3); range [24–63]) and 40 age- and sex-matched HCs (20 males
(mean age= 40.9 ± 9.6), 20 females (mean age= 41.6 ± 8.1); range [24–59]). All
participants provided informed, written consent to procedures approved by the
Research Ethics Boards of the University Health Network, and St. Michael’s
Hospital. Participants were asked to refrain from caffeine and alcohol on the day of
testing. The inclusion criteria for the patients included (1) chronic pain for a
duration of 6 months or longer (mean pain duration in years ± (SD) in
females= 12.7 ± 8.3; and males= 12.8 ± 8.0), (2) moderate-to-severe average pain
intensity over a month (i.e., trait pain) rated on a scale from 0 (no pain) to 10
(worst pain imaginable), and (3) presence of clinical symptoms typical of neuro-
pathic pain (diagnosed based on medical history; details are provided in Supple-
mentary Note 1).

Preprocessing of MEG data. We acquired, prior to the MRI scan, a 5-minute
resting-state MEG scan with a 306 channel Elekta Neuromag TRIUX system, with
a sampling rate of 1000 Hz and a DC bandpass of 330 Hz. The patients selected for
analysis did not report any movement or muscle disorders that may have created
artifacts. Fiducial reference points were marked at the nasion and bilateral pre-
auricular positions for motion correction and registration to the MRI anatomical

scan66. MRI scanning was done with a 3 T device fitted with an eight-channel
phase array head coil (GE Medical Systems) to acquire a high-resolution T1-
weighted anatomical scan (3D IR-FSPGR sequence; 180 axial slices; TR, 7.8 ms; TE,
3 ms; flip angle, 15°; 256 × 256 matrix; voxel size, 1 mm3). Participants were
scanned sitting in an upright position in the MEG with their eyes open and fixated
on a cross on a screen in front of them inside a dark room. Instructions were to
stay still, relax, avoid structured thinking and to let their mind wander. The
position of the participant’s head was monitored continuously through 5 head
position indicator coils. We used the spatiotemporal signal space separation
algorithm67, implemented in the MaxFilter program of the MEG system, for
artifact removal and head movement correction.

This analysis depends on several toolboxes and software packages (freely
available). The preprocessing and source-space parcellation analyses are performed
using the Fieldtrip, SPM, FSL(v5.0), and some part of the OHBA Software Library
(OSL; https://ohba-analysis.github.io/osl-docs/), using the most adapted tool for
each step of the preprocessing and analysis.

MEG resting-state data were preprocessed using previous published
methods14,15. We used the Fieldtrip toolbox (http://www.fieldtriptoolbox.org/) run
on MATLAB software and data were downsampled to 300 Hz, bandpass filtered at
1 to 150 Hz, a notch filter was applied at 60 and 120 Hz. The first and last
10 seconds of the recorded data were removed, leaving 280 s of resting-state data
for each participant. Independent component analysis was used (runica function)
to remove artifacts associated with cardiac artifacts, eye blinks, breathing and
muscle activity, as identified by visual inspection. For each individual, fiducial
points (i.e., nasion and bilateral pre-auricular) were identified on the anatomical T1
image, and these were used to co-register the participant’s resting-state MEG data
to their own MRI anatomical image. After co-registration, each individual
preprocessed data is warped into a template brain. The anatomical image was then
segmented using statistical parametric mapping, resulting in a geometrical
representation of the brain which was then used in a realistically shaped single-shell
forward model68. We used a linearly constrained minimum variance beamformer69

to extract a continuous time series for 36 nodes of the DPC4,6,14,15,39,45 covering
the entire cortex (cortical and subcortical regions of interest used as virtual sensors
for the atlas-guided beamforming are derived from the MNI coordinates listed in
Supplementary Table 1). The DPC concept is a well-accepted description of the
system of brain regions that shape the overall experience of pain including the SN,
DMN, and ascending and descending nociceptive pathways4,70.

Bad segments were removed manually and a symmetric multivariate leakage
correction for MEG connectomes was applied using the technique described
in ref. 71.

The time-delay embedded HMM. The HMM statistical approach is composed of
two components: The first is a Markov chain, a sequence of short-time stationary
events characterizing the evolution of neuronal activity. The second component of
the model, a set of output distributions, hides this sequence of states from the
observer, which controls how the sequence of states is converted into a sequence of
MEG observations.

In this study, we used a Time Delay Embedded HMM32 to characterize
spectrally resolved networks characterized by power-spectral densities and phase-
locking. It infers a multivariate Gaussian distribution describing a delay-embedding
of the source time-courses and is appropriate for application to large-scale brain
networks inferred from parcellated source-space MEG data. HMM is a probabilistic
model assuming that brain time series is composed of a sequence of states such
that, at each time point, only one state is active. Importantly, the probability of a
state being active at time point t is modeled to be dependent on which state was
active at time point t−1 (i.e., it is order-one Markovian).

The HMM is inferred using the HMM-MAR toolbox https://github.com/
OHBA-analysis/HMM-MAR, through the hmmmar.m function (details about the
options can be found here https://github.com/OHBA-analysis/HMM-MAR/wiki/
User-Guide#-hmm-marmodel-estimation)

Data processing. The HMM state distribution was applied to the concatenated
data of all subjects to obtain a group estimation of the states (i.e., HCs and neu-
ropathic pain), but importantly the individual information of a state time course is
still available.

Since the beamforming process is done for each subject independently, the sign
of source-localized MEG data is arbitrary and can be inconsistent across subjects.
This can lead to the suppression of connectivity between any pair of regions at the
group level. Therefore, this is crucial to resolve the ambiguity of the source polarity,
and for that, we applied the sign-flipping algorithm described in32.

The source-reconstructed time courses for each parcel were time-delay
embedded using L lags. Here, we covered a window of 15 time points around the
time point of interest (L= 15), with values between −7 and 7. Then, the HMM is
run on a principal component analysis aiming to explain the highest possible
amount of variance in the time series. In general, fewer components will bias the
HMM towards lower frequencies because lower frequencies tend to explain more
variance in the data. We used twice PCs as the number of regions (i.e., 72 PCs).
This explains on average 68% of the variance.
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Observation model. We used the same option settings as in32, and the observation
model for each of the 12-states is defined as a multivariate normal distribution. The
oscillatory signals are emphasized within the MEG source-space data, and only the
covariance matrix within each state is modeled (i.e., zero mean). The brain activity
is modeled over a certain time window, thus the observation model corresponded
to the autocovariance matrix across brain regions within such window. Here we
used a window of 50 ms and 36 × 2 PCs to be better able to capture higher-
frequency differences.

Stochastic inference. The HMM analyses can be very computationally intensive,
thus we adapted the stochastic inference batch settings and used Linux work-
stations with an Intel Xeon E5 CPU clocked at 1.90 GHz running in parallelization
and 16 Gb of RAM.

Run-to-run variability. To test the stability of the HMM results across several runs
of the inference, the HMM is run multiple times and the result of each iteration is
compared using the free-energy value. The model with the lowest free-energy can
be taken as the one which best explains the data without becoming too complex.
We repeated the HMM inference ten times and the analysis proceeded with the
iteration with the lowest free energy.

Extracting spectral information. Once the HMM model is trained and the state
time courses obtained, we estimated the spectral content of the model, i.e., power-
spectral density and coherence. To do that, we used a nonparametric estimation,
using a state-wise multitaper approach, which provided power and spectral
coherence for each frequency bin between 1 and 45 Hz (introduced in ref. 34).

The spectral information computed contains (states by frequency bins by
channels by channels) a lot of values. This is an overwhelming amount of
information for ease of interpretation. For this reason, power and spectral
coherence information for each state were factorized into different frequency
bands. We performed this frequency decomposition in a data-driven way as in
Vidaurre et al.32, we applied the factorization to the spectral estimation data of each
subject. To do that, we used non-negative matrix factorization as the decomposing
method and asked for four modes or frequency bands (instead of having for
instance 300 frequency bins). Note that this estimation depends on an optimization
process with a random initialization; therefore, we inspected the spectral profiles
visually and rerun if the frequency modes were too unclear. The non-negative
matrix factorization was run several times, and the solution with the most clearly
unimodal modes (i.e., with just one peak per mode) was the chosen one. Four
bands solution was the one chosen, instead of three or five, because the result gave
stable decomposition matching reasonably with the classical frequency range used
in the literature (i.e., delta/theta, alpha, beta, gamma).

HMM global temporal statistics. The HMM inference provides the state time
courses indicating the probability of each state to be active at each time point, and
the description of the probability distribution of each state. We computed the
following temporal metrics to interrogate the results and characterize the dynamic
properties of the brain states: (1) the transition probabilities from any state to any
other state, without considering the persistence probabilities (i.e., the probability to
remain in the same state); (2) the state time fractional occupancies, which refers to
how much time each subject spends in each state (i.e., the average state probability
across time, per subject); (3) the state switching rates for each subject, and can be
understood as a measure of stability per subject; (4) the state lifetimes, which
reflects the temporal stability of the states; (5) the state interval times containing
the number of time points between visits.

Statistical analysis. We performed nonparametric statistical testing to investigate
which spectral information (functional coherence or power) was either significantly
stronger for any given state with respect to the other states, or significantly different
in the neuropathic pain group compared with HCs. We calculated the spectral
information for each subject separately and then used this between-subject varia-
bility to run a standard permutation testing analysis.

At each permutation, we shuffled the target power or functional connection
value across states. By running 5000 permutations, we created (for each power and
functional connection value) a null distribution of differences between each state’s
value and the mean value of the other states, which we then used to produce a P
value per activation value and functional connection, corrected for multiple
comparisons.

To examine group differences in the spectral information we compared the
entire group of patients with neuropathic pain with the group of HCs using two-
sided permutation t test, 5000 bootstrap samples were taken. To do that, we
shuffled (5000 times) the group belonging to the subjects and compared the
original difference between groups to the distribution of differences after
permutation. Effect sizes for the peak alpha were computed with the Cohen d, and
the confidence intervals were bias-correlated and accelerated. In addition, to avoid
false-positive results due to pure chance, when appropriate, we corrected the P
value for multiple comparison according to the number of states x frequency bands
using false discovery rate (FDR) with the Benjamin–Hochberg method at
FDR 0.05.

Finally, we used permutation analysis using Network-based statistic41,42 (NBS
toolbox; https://www.nitrc.org/projects/nbs) to identify local nodal changes of
power and coherence between neuropathic pain and HCs in brain states and
frequency bands associated with neuropathic pain abnormalities.

Permutation analysis using a network-based statistic approach is increasingly
being used to identify differences in large-scale brain connectivity networks. The
NBS is a nonparametric statistical method to deal with the multiple comparisons
problem when there are a large number of connections and is well-suited for
identifying connections that may be associated with a between-group difference
(i.e., patient vs control) in clinical studies42. The method is used to control the
family-wise error rate (FWER), and the NBS exploits the extent to which the
connections comprising the contrast are interconnected to offer a substantial gain
in power. FWER-corrected p-values are calculated for each set of interconnected
regions of interest using permutation testing. Moreover, NBS was used at the nodal
level because of the expected nonnormal distribution of differences in brain
microstates measures.

Statistical analyses were performed using MATLAB software (R2019b, Math-
Works, Naticks), the estimation statistics72 package under Python (https://github.
com/ACCLAB/DABEST-python; for more details also see https://www.
estimationstats.com) and GraphPad Prism (version 7.03; www.graphpad.com).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The MEG data that support the findings of this study are available upon reasonable
request from the corresponding author (Dr. Karen Davis). The data are not publicly
available due to third-party restrictions and patient privacy issues of the institution.
Source data underlying figures are provided in Supplementary Data 1.

Code availability
All analyses were done using freely available tools in MATLAB. The code used to
conduct the analysis in this paper can be found at: https://github.com/OHBA-analysis/
HMM-MAR Information can also be found here: OHBA Software Library (OSL; https://
ohba-analysis.github.io/osl-docs/). Furthermore, we used the scripts previously published
by Vidaurre et al.32 using the OHBA toolbox, which is freely available. The script
containing the entire pipeline is available from the original work of Vidaurre et al.32

(https://github.com/OHBA-analysis/HMM-MAR/blob/master/examples/
NatComms2018_fullpipeline.m) which can be used to reproduce the methodological
approach.
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