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Multiscale neural gradients reflect transdiagnostic
effects of major psychiatric conditions on cortical
morphology
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It is increasingly recognized that multiple psychiatric conditions are underpinned by shared

neural pathways, affecting similar brain systems. Here, we carried out a multiscale neural

contextualization of shared alterations of cortical morphology across six major psychiatric

conditions (autism spectrum disorder, attention deficit/hyperactivity disorder, major

depression disorder, obsessive-compulsive disorder, bipolar disorder, and schizophrenia).

Our framework cross-referenced shared morphological anomalies with respect to cortical

myeloarchitecture and cytoarchitecture, as well as connectome and neurotransmitter orga-

nization. Pooling disease-related effects on MRI-based cortical thickness measures across six

ENIGMA working groups, including a total of 28,546 participants (12,876 patients and 15,670

controls), we identified a cortex-wide dimension of morphological changes that described a

sensory-fugal pattern, with paralimbic regions showing the most consistent alterations across

conditions. The shared disease dimension was closely related to cortical gradients of

microstructure as well as neurotransmitter axes, specifically cortex-wide variations in ser-

otonin and dopamine. Multiple sensitivity analyses confirmed robustness with respect to

slight variations in analytical choices. Our findings embed shared effects of common psy-

chiatric conditions on brain structure in multiple scales of brain organization, and may provide

insights into neural mechanisms of transdiagnostic vulnerability.

https://doi.org/10.1038/s42003-022-03963-z OPEN

A full list of author affiliations appears at the end of the paper.

COMMUNICATIONS BIOLOGY |          (2022) 5:1024 | https://doi.org/10.1038/s42003-022-03963-z | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03963-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03963-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03963-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03963-z&domain=pdf
http://orcid.org/0000-0002-7973-6752
http://orcid.org/0000-0002-7973-6752
http://orcid.org/0000-0002-7973-6752
http://orcid.org/0000-0002-7973-6752
http://orcid.org/0000-0002-7973-6752
http://orcid.org/0000-0001-8288-7757
http://orcid.org/0000-0001-8288-7757
http://orcid.org/0000-0001-8288-7757
http://orcid.org/0000-0001-8288-7757
http://orcid.org/0000-0001-8288-7757
http://orcid.org/0000-0003-4375-6572
http://orcid.org/0000-0003-4375-6572
http://orcid.org/0000-0003-4375-6572
http://orcid.org/0000-0003-4375-6572
http://orcid.org/0000-0003-4375-6572
http://orcid.org/0000-0001-9822-048X
http://orcid.org/0000-0001-9822-048X
http://orcid.org/0000-0001-9822-048X
http://orcid.org/0000-0001-9822-048X
http://orcid.org/0000-0001-9822-048X
http://orcid.org/0000-0002-9804-7653
http://orcid.org/0000-0002-9804-7653
http://orcid.org/0000-0002-9804-7653
http://orcid.org/0000-0002-9804-7653
http://orcid.org/0000-0002-9804-7653
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0001-7218-7810
http://orcid.org/0000-0002-4461-3568
http://orcid.org/0000-0002-4461-3568
http://orcid.org/0000-0002-4461-3568
http://orcid.org/0000-0002-4461-3568
http://orcid.org/0000-0002-4461-3568
http://orcid.org/0000-0002-0945-5779
http://orcid.org/0000-0002-0945-5779
http://orcid.org/0000-0002-0945-5779
http://orcid.org/0000-0002-0945-5779
http://orcid.org/0000-0002-0945-5779
http://orcid.org/0000-0003-2998-6849
http://orcid.org/0000-0003-2998-6849
http://orcid.org/0000-0003-2998-6849
http://orcid.org/0000-0003-2998-6849
http://orcid.org/0000-0003-2998-6849
http://orcid.org/0000-0002-9486-1439
http://orcid.org/0000-0002-9486-1439
http://orcid.org/0000-0002-9486-1439
http://orcid.org/0000-0002-9486-1439
http://orcid.org/0000-0002-9486-1439
http://orcid.org/0000-0001-9256-6041
http://orcid.org/0000-0001-9256-6041
http://orcid.org/0000-0001-9256-6041
http://orcid.org/0000-0001-9256-6041
http://orcid.org/0000-0001-9256-6041
www.nature.com/commsbio
www.nature.com/commsbio


Mental illness refers to a wide range of psychiatric con-
ditions affecting individuals, families, and health sys-
tems at large1. While conventional psychiatric nosology

classifies mental illness into distinct categories mainly based on
descriptive symptoms and behaviors2, high co-occurrence of
symptoms across disorders as well as transdiagnostic risk factors
have prompted reconceptualization of mental illnesses along
symptom dimensions3–8. Investigation of transdiagnostic effects
may, thus, benefit detailed characterization of shared alterations
across different psychiatric conditions and may identify direct
brain-behavior associations that capture multiple symptom clas-
ses and mask clinical heterogeneity.

The shared components across major psychiatric diagnosis
may be more clearly distinguishable at the neural level4,9, as
behavioral characterization likely involves complex interactions
with society and the environment10. Structural magnetic reso-
nance imaging (MRI), in particular, offers high spatial precision
to help resolve the pattern of shared transdiagnostic effects across
the cortical surface4,11–16. Prior case-control studies have repor-
ted reproducible patterns of structural alterations in cohorts with
psychiatric diagnoses relative to controls17–21, often pointing to
widespread changes in cortical morphology in these conditions.
More recently, efforts have been expanded to a transdiagnostic
perspective, aiming to identify structural compromise that is
shared across different diagnoses22–24. To ensure the sensitivity of
such efforts and to strengthen reproducibility, it becomes
increasingly relevant to pool these investigations across multiple
sites. One such initiative, spearheaded by the Enhancing Neu-
roImaging Genetics through Meta-Analysis (ENIGMA) con-
sortium, has aggregated MRI and phenotypic data in thousands
of healthy individuals and those with a psychiatric diagnosis25.
Moreover, dedicated ENIGMA working groups have confirmed
neuroanatomical disruptions in major psychiatric indications,
including autism spectrum disorder (ASD)26, attention deficit
hyperactivity disorder (ADHD)27, major depressive disorder
(MDD)28, obsessive-compulsive disorder (OCD)29, bipolar dis-
order (BD)30, and schizophrenia (SCZ)31, pointing to widespread
changes in cortical morphology in each of these different con-
ditions. Also fostered by the open dissemination of condition-
related effect size maps through the primary ENIGMA papers
and their aggregation within the recently developed ENIGMA
toolbox32, it has now become possible to systematically study
these effects.

In addition to providing robust evidence of neuroanatomical
signatures associated with each of these conditions, an emerging
body of studies has pooled data across different indications to
identify shared anomalies of psychiatric conditions33,34. In an
effort to identify factors contributing to the topography of cross-
disorder brain changes, a recent study has taken this approach
one step further and examined associations to postmortem gene
expression data, searching for spatially co-varying gene lists that
may carry susceptibility to transdiagnostic disease effects. This
study revealed that transdiagnostic effects may generally be more
marked in regions with greater expression of CA1 pyramidal
genes that were suggested to play a role in regulating cortical
thickness. Beyond these molecular risk factors, a broad range of
cellular, metabolic, and functional properties of brain regions may
contribute to regional susceptibility, but such an association
remains underexplored. An influential theory, also referred to as
the “structural model”, posits that the internal microstructural
and connectional markup of different brain regions, in particular
their laminar differentiation and cortico-cortical connectivity
patterns, may represent mesoscale features associated with the
potential of a region to show plasticity, and to be susceptible to
pathological processes35. According to this framework, para-
limbic cortices with low laminar differentiation and associated

connectivity profiles may be more susceptible to effects of neu-
rological as well as psychiatric disorders. Here, we tested this
approach by aligning transdiagnostic effects with maps of
microstructural variations derived from both in vivo imaging and
3D postmortem histology36–39. In recent work, the application of
nonlinear eigenvector decomposition techniques to imaging and
histology datasets identified a sensory-fugal gradient that radiates
from sensory and motor areas with strong laminar differentiation
and higher myelination towards heteromodal association and
paralimbic regions with less clear lamination and lower myelin
content. Of note, similar yet not completely corresponding gra-
dients have also been derived from the analysis of intrinsic
functional connectivity patterns obtained from resting-state
functional MRI38–40. In line with foundational neuroanatomical
conceptualization35,41,42, an emerging literature has underscored
a correspondence between such data-driven sensory-fugal gra-
dients and region-to-region variations in cortical plasticity and
genetic control40,43–47, suggesting that these likely help under-
stand susceptibility to common brain disorders as well40,43,48–52.

Examining associations between shared morphological altera-
tions and receptor architecture may provide additional opportu-
nities for the contextualization of transdiagnostic effects. In the
healthy brain, neurotransmitter systems are indeed broadly
implicated in region-to-region variations of synaptic plasticity,
neural dynamics, and inter-network communication. Moreover,
recent initiatives have aggregated maps outlining the spatial dis-
tributions of different neurotransmitter systems in vivo, based on
positron emission tomography (PET) and single photon com-
puted emission tomography (SPECT) studies sensitive to different
receptor and transporter types53–59. Such mapping can comple-
ment microstructural and functional connectivity contextualiza-
tion of transdiagnostic findings, promising insights into
additional molecular factors contributing to regional suscept-
ibility. Beyond the mapping of regional variations in the receptor
architecture of the neurotypical brain, neurotransmitter imbal-
ances have been described in several psychiatric conditions. Work
in SCZ and depression, for example, implicated a role of dopa-
mine and serotonin60–63, and more recent work in BD and SCZ
demonstrated associations between neurotransmitter and func-
tional network imbalances64.

Here, we studied the association between multiscale neural
organization and transdiagnostic effects on cortical morphology
across six major psychiatric conditions (ASD, ADHD, MDD,
OCD, BD, and SCZ). Aggregating data from thousands of
patients and healthy controls previously studied across several
ENIGMA working groups26–31, we defined the shared effect using
principal component analysis. The robustness of the shared effect
was further cross-validated based on openly aggregated effect size
maps from the ENIGMA toolbox32. The shared dimension was
contextualized across multiple neural scales. This involved sys-
tematic assessment of spatial associations to (i) in vivo mye-
loarchitecture and intrinsic functional connectivity, (ii)
postmortem 3D cytoarchitecture, and (iii) in vivo maps of neu-
rotransmitter distributions. Notably, in addition to assessing
specific associations, we also adopted supervised machine learn-
ing to identify joint spatial associations between the above neural
features and the common dimension of morphological altera-
tions. Multiple sensitivity analyses verified robustness of our
findings.

Results
Study overview and participants. We obtained case-control
maps of cortical thickness differences in patients relative to
controls, resulting from several ENIGMA working groups
aggregated by a previous study that included a total of 28,546
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participants across 145 independent cohorts (1821 ASD, 1815
ADHD, 2695 MDD, 2274 OCD, 1555 BD, 2716 SCZ; 15,670 site-
matched controls Supplementary Table 1)33. We then associated
principal dimensions of morphological with (i) in vivo mye-
loarchitecture and functional connectivity gradients obtained
from the Human Connectome Project (HCP)65, (ii) postmortem
cytoarchitecture, by cross-referencing data to a ultra-high reso-
lution 3D histological human brain model66, and (iii) in vivo
neurotransmitter topographies provided by PET/SPECT
studies53–59. Approaches are openly available and replicable via
the ENIGMA toolbox (https://enigma-toolbox.readthedocs.io)32.
See Methods for more details.

Shared dimensions of structural alterations across psychiatric
conditions. Following standardized ENIGMA protocols (http://
enigma.ini.usc.edu/protocols/imaging-protocols/), gray matter
thickness for 68 cortical regions of the Desikan–Killiany atlas67

was calculated, and meta-analytic between-group differences in
cortical thickness were assessed using inverse variance-weighted
random-effects models (Fig. 1a)33. Using principal component
analysis adopted in a recent study33, we estimated the shared
disease dimensions explaining structural alterations across six
conditions (Fig. 1b). The first dimension/component explained
55.7% of variance, and differentiated sensory/motor systems
having positive scores from transmodal/paralimbic areas with
negative scores (for details, and information on the other
dimensions/components, see Supplementary Fig. 1a). Stratifying
the first dimension according to intrinsic functional
communities68, it indeed differentiated somatomotor/visual from
default/frontoparietal/limbic networks (Fig. 1b). Similar spatial
patterns were observed across an atlas of the putative primate
cortical hierarchy41, differentiating idiotypic/unimodal from
heteromodal/paralimbic levels.

Several sensitivity analyses confirmed and further expanded
these findings. Firstly, scores on the principal dimension
translated into mean effect size of morphological alterations
across case-control analyses, with paralimbic regions showing the
strongest atrophy in patients relative to controls, while sensory/
motor regions showed the least gray matter alterations (Supple-
mentary Fig. 1b). Compared to the dimensional analysis that
highlighted paralimbic as well as sensory/motor regions with
opposite ends, this analysis confirmed that paralimbic regions are
most vulnerable to the impact of neuropsychiatric conditions, and
primary motor cortex is least vulnerable. Secondly, we directly
ran principal component analysis on previously reported effect
size maps (Cohen’s d) concatenated across disorders, sourced
from the ENIGMA toolbox32 (Supplementary Fig. 1c). The first
principal dimension was highly similar to ours (r= 0.552, spin-
test pspin < 0.001), suggesting robustness. Thirdly, the shared
disease effect resembled the effects of each condition, with the
strongest spatial similarity to SCZ and BD, followed by MDD,
ADHD, ASD, and OCD (spin-test followed by false discovery rate
(FDR) correction, pspin-FDR < 0.001; Supplementary Fig. 2), indi-
cating that the shared effect captured structural alterations from
each condition. Fourthly, we re-evaluated the shared dimension
using leave-one-condition-out procedure (see Methods), and
observed largely consistent results with the shared effect based on
all conditions (r > 0.9, pspin-FDR < 0.001; Supplementary Fig. 3),
indicating that a single condition with strong meta-analytic
profile did not determine the shared disease effect. Finally, we
associated three alternative shared disease maps (including
principal dimension (see Fig. 1b), mean effect (see Supplementary
Fig. 1b) of meta-analytic profiles, and principal dimension of
Cohen’s d map (see Supplementary Fig. 1c)) with previously
published maps of cortical expansion and functional

reconfiguration69 to examine whether the shared disease dimen-
sion reflects evolutionary expansion. We found low-to-moderate
correlations (r=−0.256, pspin= 0.036 for shared disease dimen-
sion; r=−0.193, pspin= 0.087 for mean effect size; r= -0.480,
pspin < 0.001 for principal component of Cohen’s d maps).

Associations with cortical myeloarchitecture and functional
connectivity gradients. To assess in vivo micro- and macroscopic
properties of the shared disease dimension on cortical morphology,
we first examined its spatial association with myeloarchitecture and
intrinsic functional connectivity gradients38,40 (see Methods; Fig. 1c).
The microstructural gradient was derived from inter-regional simi-
larity matrices of intracortical profiles of myelin-sensitive MRI38,
and runs from sensory/motor regions with high laminar differ-
entiation and high intracortical myelin content towards paralimbic
cortices with reduced laminar differentiation and low myelin
content38. The intrinsic functional gradient was derived from
resting-state functional MRI connectivity. While it also runs from
sensory/motor to transmodal areas, it finds its apex in the hetero-
modal default mode and frontoparietal networks, and not in para-
limbic cortices40. Associating the patterns of shared dimension with
these two in vivo gradients, we observed a negative association with
the microstructural gradient (r=−0.400, pspin-FDR= 0.042) and a
negative trend with the functional connectivity gradient (r=−0.247,
pspin-FDR= 0.090; Fig. 1c). In other words, transdiagnostic mor-
phological alterations follow sensory-fugal gradients of cortical
organization, in particular, the microstructural gradient that differ-
entiates sensory/motor areas with high myelination and distinct
lamination from paralimbic areas with low myelin content and
reduced laminar differentiation.

Cytoarchitectonic associations. We furthermore examined asso-
ciations of the shared disease effect with inter-regional variations in
cortical cytoarchitecture37, using BigBrain, a 3D histological recon-
struction of a postmortem human brain66,70. We calculated cortex-
wide variations in cytoarchitecture using two alternative approaches.
First, we obtained intracortical intensity profiles and calculated their
statistical moments, i.e., mean, SD, skewness, and kurtosis (Fig. 2a,
b). In both classic cytoarchitecture analysis and more recent work,
these features have been shown to relate to inter-areal micro-
structural differentiation39,71. In particular, the skewness moment
describes a robust spatial transition from areas with low laminar
differentiation and negative skewness to those with high laminar
differentiation and positive skewness71–73. Moreover, we computed
externopyramidization74, describing a gradual shift of intensity
profiles across cortical layers that has been suggested to also dif-
ferentiate areas on the lower end of the cortical hierarchy from those
that are higher up due to hierarchical shifts in laminar projection
profiles75 (Fig. 2a, b). Notably, while both skewness and externo-
pyramidization describe overall sensory-fugal patterns, they do so in
complementary ways (r= 0.015, pspin= 0.506), with skewness dif-
ferentiating mainly prefrontal and posterior cingulate regions from
visual, auditory, and frontocentral regions while externopyr-
amidization clearly differentiates postcentral and visual regions from
the rest of the brain. Importantly, however, spatial correlations
between these features and the principal disease dimension indicated
relations to both features (skewness: r= 0.400, pspin-FDR= 0.015;
externopyramidization: r= 0.472, pspin-FDR= 0.015; Fig. 2c). In
other words, transdiagnostic cortical thickness decreases were more
likely in paralimbic regions with low skewness and low externo-
pyramidization, independently confirming that those areas with low
laminar differentiation were more likely to show transdiagnostic
cortical alterations. In addition to the associations with BigBrain
cytoarchitectural features, we additionally examined associations of
the shared disease effect with intracortical profile moments and
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externopyramidization calculated from in vivo myelin-sensitive MRI
i.e., T1w/T2w measures obtained from the HCP database. We
observed largely consistent results (Supplementary Fig. 4), suggest-
ing robustness.

Associations with distributions of neurotransmitter systems.
Neurotransmitter contextualization leveraged JuSpace53, an open
access toolbox that disseminates in vivo PET/SPECT data sensitive to
ten different transmitters/transporters/receptors from independent
studies in healthy human adults54–59 (Fig. 3a). Associating the shared
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dimension with cortex-wide neurotransmitter maps, we observed
positive associations with D2 and 5-HT1b receptor densities (D2:
r= 0.280, pspin-FDR= 0.035; 5-HT1b: r= 0.349, pspin-FDR= 0.025),
and negative correlations with dopamine transporter and 5-HT1a
receptor density (DAT: r=−0.240, pspin-FDR= 0.041; 5-HT1a:
r=−0.307, pspin-FDR= 0.033; Fig. 3b). The results indicate that
common cortical alteration patterns across psychiatric and neuro-
developmental conditions may be reflected by serotonergic and
dopaminergic systems. More specifically, higher transdiagnostic
cortical atrophy was related to higher 5-HT1a and lower 5-HT1b, as
well as higher DAT and lower D2 receptor density.

Associations of multiscale features with other shared dimen-
sions. We investigated associations of other principal components
of cortical morphological alterations (Supplementary Fig. 1a),
instead of first principal component, to multiscale neural features.
We found that the first dimension showed significant associations
to cytoarchitecture/microstructure features, while the second
dimension showed higher (and inverted) associations to the
functional gradient (Supplementary Table 2). The results indicate
that the first principal dimension represents a more sensory-
paralimbic axis, and the second dimension is a more sensory-
heteromodal axis. In addition to cortical thickness, we investigated
a shared disease dimension based on the surface area. The
dimension showed a somatomotor-visual/frontoparietal pattern
(Supplementary Fig. 5), which was different from the shared effect
based on cortical thickness (r=−0.030, pspin-FDR= 0.446). The
surface area-based shared dimension was significantly associated
with SERT (r= 0.274, pspin-FDR= 0.029), 5-HT2a (r=−0.297,

pspin-FDR= 0.011), and GABAa (r=−0.325, pspin-FDR= 0.005;
Supplementary Table 3), suggesting higher sensitivity to ser-
otonergic and GABAergic systems.

Machine learning prediction of the shared disease effect. As a
final analysis, we used supervised machine learning to predict the
first shared dimension using the above multiscale features. Speci-
fically, we leveraged least absolute shrinkage and selection operator
(LASSO) regression76 with five-fold nested cross-validation77–80 to
predict the cross-condition effect using concatenated multiscale
features (see Methods; Fig. 4a). Repeating the analysis for 100 times
with different training and test dataset subsplits, we could reliably
predict the spatial pattern of the shared disease dimension
(mean ± SD, r= 0.518 ± 0.044, mean absolute error (MAE)=
0.828 ± 0.039, permutation-test pperm < 0.001; Fig. 4b). Cytoarchi-
tectural skewness and externopyramidization, followed by D2 and
5-HT1b receptors, as well as the microstructural gradient were
frequently selected across cross-validations and repetitions
(Fig. 4a). When considering each psychiatric condition separately,
we could find significant prediction performances, but the features
selected diverged across conditions (Supplementary Fig. 6).

Discussion
The current work determined cortex-wide variations in suscept-
ibility to morphological alterations across six major psychiatric
conditions (i.e., ASD, ADHD, MDD, OCD, BD, and SCZ), and
cross-referenced these spatial patterns against multiscale cortical
organization. Specifically, complementing earlier case-control
MRI studies performed separately in common neuropsychiatric
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correlations between the features and shared effects are shown on scatter plots. The distributions of correlation coefficients across 1000 spin-tests are
reported with histograms, and the actual r-values are represented with red bars. SD standard deviation, spin-FDR spin-test followed by false discovery rate.
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conditions17,26–31,81, we applied dimensional decomposition to
cortical morphological data. We identified a shared dimension
that followed a sensory-paralimbic pattern of increasing sus-
ceptibility to morphological alterations in paralimbic regions,
which was robust across different data and approaches, and
consistent with prior work on shared functional imbalances82,83.
Albeit prior functional connectivity-based findings highlighted
heteromodal association and our structural morphological
alterations highlighted paralimbic regions, the findings converge
that higher order brain areas are vulnerable to multiple psy-
chiatric conditions. Expanding from a prior study that repor-
ted transdiagnostic effects to be highest in brain regions
expressing genes for pyramidal CA1 cells, pointing already to
potentially increased susceptibility of limbic allocortices33, here,

we characterized the transdiagnostic effects across multiple scales
of neural organization. Specifically, we contextualized the shared
disease effect on MRI-derived morphology with respect to (i)
in vivo MRI measures sensitive to cortical myeloarchitecture and
intrinsic functional connectivity38,40, (ii) postmortem measures
of cytoarchitecture, in particular laminar differentiation37,39,66,71,
and (iii) in vivo PET/SPECT maps of cortical neurotransmitter
systems53–59. Moreover, and in addition to studying specific
associations between shared disease effects and individual fea-
tures, we employed a supervised machine learning paradigm to
synergistically assess the utility of multiscale neural features in
explaining the shared disease effect. Our findings emphasize that
microstructurally determined gradients, differentiating sensory/
motor and paralimbic cortices38,40,84 can help to compactly

b. Association with shared effect

a. Schema of neurotransmitter systems
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Fig. 3 Associations of neurotransmitter systems with shared disease effect. a Schema of neurotransmitter systems of transmitters, transporters, and
receptors. b Spatial correlations of each neurotransmitter map with shared effect are shown on scatter plots. The distributions of correlation coefficients
across 1000 spin-tests are reported with histograms, and actual r-values are reported with red bars. The spider plot shows correlation coefficients. Cortex-
wide spatial maps of the transmitter systems are reported on brain surfaces. FDOPA 18 F fluorodopa, DAT dopamine transporter, NAT noradrenaline
transporter, SERT serotonin transporter, spin-FDR spin-test followed by false discovery rate.
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describe cortex-wide susceptibility to transdiagnostic effects of
common mental health conditions. Overall heightened suscept-
ibility was furthermore associated with two neurotransmitter
markers, serotonin, and dopamine. Altogether, our work exten-
ded prior work in terms of (i) demonstrating robustness of a
shared disease dimension across psychiatric conditions via mul-
tiple sensitivity analyses, (ii) providing a framework that inte-
grates multiscale neural organization with the transdiagnostic
disease effect on cortical morphology, and (iii) assessing the
synergistic value of different cortical features to explain the
shared effect, which may advance our understanding of neuro-
pathology in psychiatry, and may inform the development of
diagnostic and treatment strategies that cut across traditional
disease boundaries.

Whether our findings also suggest a shared disease mechanism
remains to be established. Prior histopathological assessments in
people with ASD, MDD, OCD, BD, and SCZ have reported
common cellular alterations, in particular, reduced neuronal and
glial densities as well as neuronal size in different cortical
areas85–92. Moreover, a growing literature has shown shared
genetic risk factors across major psychiatric conditions93. Studies
have implicated genes involved in several synaptic pathways93, for
example, common gene variants in cell adhesion and glutamate
receptor pathways in ASD and SZ94–98, as well as those in cal-
cium signaling in BD and SZ99. Together, the studies suggest that
shared cellular and molecular risk factors may influence struc-
tural plasticity and lead increased disease susceptibility of psy-
chiatric conditions93, providing the rationale of investigating
multiscale neural properties. As the first analysis, we defined the
in vivo microstructural cortical gradient using a recently-
introduced procedure38, which identified axes of cortico-cortical
differentiation based on the similarity of myelin-sensitive MRI
profiles sampled across cortical depths. In healthy adults and
adolescents38,71, this approach has revealed a robust sensory-fugal
cortical gradient running from sensory/motor areas with marked
laminar differentiation and high myelin content towards para-
limbic cortices with low overall myelination and rather agranular
cortical profiles. By showing an association between the shared
dimension and this microstructural gradient, we demonstrated a
heightened susceptibility of paralimbic cortices to disease-related
cortical thickness changes. Several features of the paralimbic
cortex may underscore its increased susceptibility. On the one
hand, paralimbic architecture may permit an increased potential
for brain plasticity. This includes a lower neuronal density in
paralimbic regions compared to eulaminate cortices, as well as
increased dendritic arborization and synaptic density35. Com-
pared to other regions, paralimbic areas also continue to express
developmental markers long into adulthood, such as growth-
associated protein GAP-43100. Furthermore, paralimbic cortices

have a protracted myelination and lower myelin content relative
to sensory/motor areas. The role of intracortical myelination in
plasticity is likely complex, but several streams of evidence point
to the role of myelin acting as a buffer against plasticity. In
addition to acting as an insulator for electrical transmission,
myelin associated growth inhibitors limit activity and experience-
induced axon sprouting, with downstream effects on synaptic
plasticity101. Reduced myelin content, together with increased
complexity of dendritic arborization in transmodal and para-
limbic regions may render cortical microstructure in these regions
more susceptible to pathological alterations, which would echo
observations in other conditions. For example, the core patho-
logical substrates of drug-resistant temporal epilepsy is thought to
be localized in limbic/paralimbic regions102–104, and prior work
has suggested rather specific changes in myelin and micro-
structural proxies in these areas105,106. Similar findings have been
observed in neurodegenerative conditions such as Alzheimer’s
disease45,107,108, where pathology spreads from disease epicenters
in paralimbic allocortices to invade more widespread cortical/
subcortical networks, but also depression109 and autism110,111.
These findings collectively indicate that cellular and molecular
features of paralimbic cortices and their cortico-cortical pathways
promote brain plasticity as well as higher metabolic activity, and
are, thus, likely more vulnerable to both developmental as well as
acquired disruptions than other regions, supporting the hypoth-
esis that their cortical type predisposes to a heightened vulner-
ability for an impact of neuropsychiatric conditions on alterations
in brain morphology35.

Studying a postmortem 3D model of the human brain,
BigBrain66, we obtained supporting confirmation for the above
association between cortical microstructure and disease-related
susceptibility. In particular, we discovered similarly marked
associations between the shared disease dimension and laminar
profile skewness as well as externopyramidization, two com-
plementary features tapping into depth-dependent shifts in the
distribution in cell densities39,74. In prior work, profile skewness,
in particular, was found to discriminate unimodal granular cor-
tices from agranular/dysgranular paralimbic regions at a cortex-
wide level71, and accurately delineated the iso-to-allocortical axis
in the mesiotemporal lobe system72. Studying typical adolescent
development, changes in profile skewness of myelin-sensitive
MRI contrasts have furthermore been reported to spatially co-
localize with expression patterns of genes enriched in
oligodendrocytes71. As a complementary feature of the laminar
organization, externopyramidization indexes the ratio of neuronal
densities between supragranular and infragranular cortical layers.
It increases when the cortex is cytoarchitectonically more dif-
ferentiated, which happens in primary areas with a marked layer
474. Thus, the association of these cortical depth-dependent
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Fig. 4 Association between the shared disease effect and multiscale features using machine learning. a Probability of the selected features across five-
fold nested cross-validations and 100 repetitions for predicting the shared disease effect. The frequently selected features are reported with asterisks.
b Linear correlation between actual and predicted values of the effects is shown on a scatter plot. The black line indicates mean correlation and the gray
lines represent the 95% confidence interval for 100 iterations with different training/test datasets. SD standard deviation, FDOPA 18 F fluorodopa, DAT
dopamine transporter, NAT noradrenaline transporter, SERT serotonin transporter, MAE mean absolute error.
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cytoarchitectural features with the shared disease effect confirms
the in vivo findings with ultra-high-resolution cytoarchitecture
data suggesting that paralimbic areas, sensitive to transdiagnostic
cortical alterations, are less laminarly differentiated. Furthermore,
prior cellular and transcriptomic studies indicate regional sus-
ceptibility of synaptic elements as well as mutated genes in
schizophrenia112,113 and bipolar disorder114. Indeed, major
depression may be associated with atrophy of neurons in limbic
regions115, pointing histopathological susceptibility of paralimbic
areas in psychiatric conditions.

We also observed a marginal association between the trans-
diagnostic effect on brain structure and the principal functional
connectivity gradient, but findings were overall weaker than for
the above in vivo and postmortem derived microstructural
gradients. Despite an overall convergence between structure and
function in showing sensory-fugal gradients, prior work noted
some divergence between sensory-heteromodal functional con-
nectivity gradients40 and sensory-paralimbic microstructure/
cytoarchitecture gradients38. This is in particular notable with
respect to the heteromodal vs paralimbic anchor that these two
gradients radiate towards. Mounting evidence suggests that het-
eromodal systems, such as the default mode network, decouple
from microstructurally defined axes of brain organization that
mainly describe differences in laminar differentiation38,116. That
work has also shown that regions with strong microstructure-
function decoupling also host more flexible cognitive functions,
and have marked cross-species differences between humans and
nonhuman primates. Considering that difference, the current
work shows an association between transdiagnostic disease effects
and microstructural (i.e., sensory-paralimbic) gradients but not
between transdiagnostic disease effects and functional (i.e., sen-
sory-heteromodal) gradients. As such, the above divergence
suggests increased specificity of the sensory-paralimbic gradient
with respect to disease-related vulnerability, which is likely more
determined by the microstructural context of cortical areas
compared to their placement within cortical functional hier-
archies. It is nevertheless important to underscore that vulner-
ability and susceptibility are likely affected by multiple factors and
be reflected in different structural and functional gradient
axes48,117–120. These considerations collectively motivate caution
in interpreting the observed associations, and also likely rule out a
single mechanism underlying the observed association between
the studied gradients and transdiagnostic effects.

In addition to our findings showing overall associations between
the transdiagnostic effect and sensory-fugal microstructural gra-
dients, we observed associations to the spatial distribution of dif-
ferent neurotransmitter systems derived from in vivo
neuroimaging. Notably, associations were seen both to serotonin
(5-HT1a and 5-HT1b) and dopamine receptors and transporters
(DAT/D1 and D2), two previously reported markers of mental
health and targets for pharmacological treatments64,121–128. In
both cases (i.e., 5-HT1a vs 5-HT1b, DAT/D1 vs D2), associations
to the disease effect were of opposite polarity, confirming prior
work in rodents129–133 and humans134–137. Associations with
in vivo neurotransmitter topographies provide a way of indirectly
assessing the relationship between shared alterations of cortical
morphology and neurotransmitter systems so that we can under-
stand putative mechanisms of shared morphological alterations,
extending prior work in rodents and humans. As different tracers
may have variable sensitivity/specificity across cortical regions and,
and as PET data may suffer from relatively coarse spatial resolution
and partial volume effects, future studies are required to expand
these findings based on a broader array of tracers and based on
potentially more detailed techniques, such as 3D receptor
autoradiography138,139.

Our study has limitations. First, comorbidities and medication
may contribute to the shared disease effect. Comorbidities are
common in psychiatric conditions140–143. Moreover, it has been
shown that additional diagnosis beyond the primary diagnosis may
affect the degree of cortical thickness changes, for example in ADHD
with BD and MDD with anxiety144–146. As data used in our study
were collected from many independent research centers, comor-
bidities and medication effects could not be fully adjusted. Future
studies need to consider controlling for such confounders. Second,
we associated the shared disease dimension with features from
multiple neural scales derived from independent cohorts, which
precludes a direct interpretation of transdiagnostic effects with
respect to histological as well as molecular mechanisms in the same
subjects. Future studies, likely very challenging to accomplish, that
measure multiscale features from the same individuals may set basis
for more direct interpretations. Third, the cortical morphological
data from the ENIGMA dataset were only available in the
Desikan–Killiany parcellation67, a macroscopic scheme following
sulco-gyral patterns. In addition to not offering a high granularity on
cortical arealization, the reliance on folding patterns alone may only
provide rather limited sensitivity to contextualize our findings with
respect to functional topographies. It would, thus, be relevant to re-
evaluate functional gradient association based on functionally-
defined parcellations147,148, and/or to assess vertex-level feature data
in future efforts. Lastly, through the investigation of the mean effect,
we observed that the primary motor cortex is least vulnerable to the
conditions we observed. However, the low absolute mean effect in
sensory/motor regions does not per se indicate that these regions are
less important in the understanding of psychiatric conditions. They
may have potential effects that have not been detectable with our
analyses. For example, prior functional connectivity studies observed
that transdiagnostic effects may often be detectable in sensory and
motor cortices149,150, in addition to heteromodal and paralimbic
areas82,83.

As a final integrative analysis, we opted for a supervised sta-
tistical learning paradigm to predict the shared disease effect from
combinations of neuroarchitectural features. This analysis indeed
underscored that not a single feature, but rather combinations of
microarchitectural and transmitter systems, have the highest
utility in predicting the spatial pattern of the transdiagnostic
morphological dimension. By, thus, highlighting microstructural
and functional aspects of local cortical circuitry, our data-driven
findings provide insights into potential determinants of trans-
diagnostic effects. Overall, our findings emphasize that an
increasingly recognized principal gradient that differentiates
sensory/motor networks from transmodal cortices in healthy
brains38,40,84 also describes the main axis of cortex-wide sus-
ceptibility to transdiagnostic effects of common mental health
conditions. Altogether, the findings may provide a potentially
integrative framework for understanding neuropathology in
psychiatry, and potentially inform the development of diagnostic
and treatment strategies that cut across traditional disease
boundaries.

Methods
Study dataset
ENIGMA data. We analyzed T1-weighted data from people with a diagnosis of
(n= 12,876) ASD (n= 1821), ADHD (n= 1815), MDD (n= 2695), OCD
(n= 2274), BD (n= 1555), and SCZ (n= 2716) and site-matched healthy controls
(n= 15,670) from 145 independent cohorts participating in prior ENIGMA con-
sortium studies26–31. Demographic information is summarized in Supplementary
Table 1 and available in a recent cross-condition study33. Data from each center
were processed using the standard ENIGMA workflow (http://enigma.ini.usc.edu/
protocols/imaging-protocols/). Processing was conducted using FreeSurfer151–153

that involves magnetic field inhomogeneity correction, non-brain tissue removal,
intensity normalization, and tissue segmentation. Estimated white and pial surfaces
were inflated to spheres and registered to the fsaverage template. Based on the
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Desikan–Killiany atlas67, cortical thickness was measured for 68 gray matter brain
regions. For each psychiatric condition, the ENIGMA groups performed multiple
linear regression analyses to fit cortical thickness measures with age, age squared,
sex, and site information. The meta-analytic profiles of between-group differences
between patients and controls were estimated via an inverse variance-weighted
random-effects model, which can be obtained from the previous study33 (Fig. 1a).
If the studies provided multiple effect sizes across children/adolescents/adults, only
the effects from the adult sample were used, in order to match the age range across
conditions. The positive/negative effects indicate increases/decreases in cortical
thickness in patients relative to controls. Individual cohort investigators obtained
approval from local institutional ethics boards, and informed consent was obtained
from study participants or their guardians.

HCP data. To generate microstructural and functional connectivity gradients, we
also studied 207 unrelated healthy young adults (60% females, mean age ± SD=
28.73 ± 3.73 years) from the HCP dataset65. In the HCP, multimodal imaging data
comprising T1- and T2-weighted as well as rs-fMRI were acquired on a Siemens
Skyra 3 T at Washington University. The cohort selection is identical to our prior
work32,154. T1-weighted images were acquired using a magnetization-prepared
rapid gradient-echo (MPRAGE) sequence (repetition time (TR)= 2400 ms; echo
time (TE)= 2.14 ms; inversion time (TI)= 1000 ms; flip angle= 8°; field of view
(FOV)= 224 mm2 × 224 mm2; voxel size= 0.7 mm isotropic; 256 slices). T2-
weighted data were obtained using a T2-SPACE sequence, with the same acqui-
sition parameters as for the T1-weighted data except for TR (3200 ms), TE
(565 ms), and flip angle (variable). The rs-fMRI data were collected using a
gradient-echo echo-planar imaging sequence (TR= 720 ms; TE= 33.1 ms; flip
angle= 52°; FOV= 208 mm2 × 180mm2; voxel size= 2 mm isotropic; the number
of slices= 72; and 1200 volumes per time series), where participants were
instructed to keep their eyes open looking at a fixation cross during the scan. Two
sessions (left-to-right and right-to-left phase-encoded directions) of rs-fMRI data
were acquired, providing up to four time series per participant. Participant
recruitment procedures and informed consent forms, including consent to share
de-identified data, were previously approved by the Washington University Insti-
tutional Review Board as part of the HCP.

Images underwent minimal preprocessing pipelines using FSL, FreeSurfer, and
Workbench as follows155–157:

T1- and T2-weighted data. Data were corrected for gradient nonlinearity and b0
distortions, and then T1- and T2-weighted data were co-registered using a rigid-
body transformation. The bias field was adjusted based on the inverse intensities
from the T1- and T2-weighting. The white and pial surfaces were generated151–153,
and the mid-thickness surface was generated by averaging them. The mid-thickness
surface was inflated and the spherical surface was registered to the Conte69 tem-
plate with 164k vertices158 using MSMAll148 and downsampled to a 32k
vertex mesh.

Microstructure data. Myelin-sensitive proxy was estimated based on the ratio of the
T1- and T2-weighted contrast159,160. We generated 14 equivolumetric surfaces
within the cortex and sampled T1w/T2w intensity along these surfaces38. A
microstructural similarity matrix was constructed by calculating the linear corre-
lation of cortical depth-dependent T1w/T2w intensity profiles between different
cortical regions based on the Desikan–Killiany atlas67, controlling for the average
whole-cortex intensity profile38. The matrix was thresholded at zero and log-
transformed38. A group matrix was constructed by averaging matrices across
participants.

rs-fMRI data. Data were corrected for distortions and head motion, and registered
to the T1-weighted data and subsequently to MNI152 standard space. Magnetic
field bias correction, skull removal, and intensity normalization were performed.
Noise components attributed to head movement, white matter, cardiac pulsation,
arterial, and large vein related contributions were removed using FMRIB’s ICA-
based X-noiseifier (ICA-FIX)161. Preprocessed time series were mapped to the
standard “grayordinate” space using a cortical ribbon-constrained volume-to-
surface mapping algorithm. The total mean of the time series of each left-to-right/
right-to-left phase-encoded data was subtracted to adjust the discontinuity between
the two datasets and then concatenated to form a single time series. A functional
connectivity matrix was constructed by calculating the linear time series correla-
tions between Desikan–Killiany parcels67, followed by Fisher’s r-to-z
transformation162. Individual connectivity matrices were averaged to construct a
group level connectome.

Shared effects of cortical thickness differences across conditions. To assess
transdiagnostic effects of cortical thickness differences in patients relative to controls,
we applied principal component analysis to the concatenated effect size maps across
six conditions163 (Fig. 1b and Supplementary Fig. 1a). The first principal dimension
was determined as the shared disease effect. We summarized the effects according to
seven intrinsic functional communities68, as well as four cortical hierarchical levels41.
We additionally calculated the mean effect size across the conditions to intuitively
interpret shared disease effect (Supplementary Fig. 1b) and also estimated the

principal dimension based on the data sourced from the ENIGMA toolbox (i.e.,
Cohen’s d; Supplementary Fig. 1c). We compared the shared dimension and the effect
size of each condition via linear correlations to assess the degree of contribution of
each condition (Supplementary Fig. 2). The significance of the correlation was
determined using 1000 nonparametric spin-tests, to account for spatial
autocorrelation164, and corrected for multiple comparisons using an FDR
procedure165. To assess robustness, we performed leave-one-condition-out cross-
validation. Specifically, we estimated the shared dimension using five conditions by
excepting for a single condition, and assessed similarity with the shared disease effect
estimated based on the whole six conditions (Supplementary Fig. 3). We calculated
the significance of the correlation using 1000 spin-tests and multiple comparisons
were corrected using FDR164,165. We furthermore obtained the map of cortical
expansion and functional reconfiguration69 and calculated correlations with three
shared disease maps, where the significance was determined using a 1000 spin-test.

Associations to microstructural and functional connectivity gradients. We
evaluated the underlying connectome organizations of the shared disease effects.
Based on T1w/T2w and rs-fMRI data obtained from the HCP database65, we esti-
mated microstructural and functional gradients, the low dimensional representation
of connectome organizations explaining spatial variation in the connectome data38,40,
using BrainSpace (https://github.com/MICA-MNI/BrainSpace)166 (Fig. 1c). An affi-
nity matrix was constructed with a normalized angle kernel from the group averaged
connectivity matrix with the top 10% entries for each parcel. The connectome gra-
dients were estimated using diffusion map embedding167, which is robust to noise
and computationally efficient compared to other nonlinear manifold learning
techniques77,168. It is controlled by two parameters α and t, where α controls the
influence of the density of sampling points on the manifold (α= 0, maximal influ-
ence; α= 1, no influence) and t scales eigenvalues of the diffusion operator. The
parameters were set as α= 0.5 and t= 0 to retain the global relations between data
points in the embedded space, following prior applications38,40,48,166,169. We asso-
ciated the shared effect with these gradients using linear correlation (Fig. 1d), where
the significance was assessed using 1000 spin-tests followed by FDR164,165.

Cytoarchitectonic associations with shared disease effects. We aimed to
associate the shared dimensions with histology-driven cytoarchitectonic features
derived from BigBrain surfaces with 62 cortical areas (https://bigbrain.loris.ca/
main.php)66. Specifically, BigBrain is a ultra-high resolution, 3D volumetric
reconstruction of a postmortem Merker-stained and sliced human brain from a 65-
year-old male, with specialized pial and white matter surface reconstructions66. The
postmortem brain was paraffin-embedded, coronally sliced into 7400 20-μm sec-
tions, silver-stained for cell bodies170, and digitized. A 3D reconstruction was
implemented with a successive coarse-to-fine hierarchical procedure, resulting in a
full brain volume. Among 68 regions defined by the Desikan–Killiany atlas67, three
regions per hemisphere, including banks of the superior temporal sulcus, frontal
pole, and temporal pole, were excluded as the BigBrain did not provide data for
these regions. We generated 18 equivolumetric cortical surfaces within the cortex
(https://github.com/caseypaquola/BigBrainWarp) and sampled the intensity values
along these surfaces. Based on the intensity values, we calculated four moment
features, including mean, SD, skewness, and kurtosis, as well as externopyr-
amidization (Fig. 2a, b). The mean and SD represent the overall intensity dis-
tribution of cytoarchitecture across layers, skewness indicates shifts in intensity
values towards supragranular layers (i.e., positive skewness) or flat distribution (i.e.,
negative skewness), and kurtosis identifies whether the tails of the intensity dis-
tribution contain extreme values. Externopyramidization reflects gradual shifts of
intensity values from infragranular to supragranular layers defined as follows75:

Externopyramidization ¼ ðintensityÞ
mean ðintensityÞ ´

1� thicknesssupra
thicknesstotal

ð1Þ

To assess associations with shared disease effects, we calculated linear
correlations between cytoarchitectonic features and shared effects (Fig. 2c). The
significance of the correlations was assessed using 1,000 spin-tests followed by FDR
across different cytoarchitectonic features164,165. BigBrain is a 3D model of the
human brain with microscopic resolution, enabling us to assess cellular
organization in cortical layers66. However, it is based a single and significantly
older subject compared to our study participants. We thus additionally calculated
intracortical profile moments as well as externopyramidization from in vivo
myelin-sensitive MRI i.e., the ratio of T1- and T2-weighted contrast159,160,
obtained from the HCP database65. We associated the features with shared disease
effect, and the correlations were assessed using 1,000 spin-tests followed by
FDR164,165.

Associations between transmitter systems and shared effects. To provide
underlying molecular properties of the shared effects in neuroanatomical disrup-
tions across different psychiatric conditions, we associated the shared dimensions
with ten different neurotransmitter maps of healthy controls provided by prior
independent PET/SPECT studies54–59, which contain neurotransmitters of
FDOPA, GABAa, transporters of DAT, NAT, SERT, and receptors of D1, D2, 5-
HT1a, 5-HT1b, and 5-HT2a (https://github.com/juryxy/JuSpace)53 (Fig. 3a). All
PET maps were linearly rescaled to have intensity values between 0 and 10053.
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After mapping the neurotransmitter maps onto the Desikan–Killiany atlas67, we
calculated linear correlations between the shared effects and each neurotransmitter
map (Fig. 3b), and assessed the significance using 1000 spin-tests followed by FDR
to adjust for multiple comparisons across ten different maps164,165.

Associations between multiscale features and other shared dimensions. We
furthermore associated the second shared dimensions (Supplementary Fig. 1a) with
microstructural and functional connectivity gradients, cytoarchitectural moments,
and neurotransmitter system distributions to assess convergence or divergence
across the shared dimensions (Supplementary Table 2). We also estimated a shared
disease dimension based on surface area, souring Cohen’s d maps from the
ENIGMA toolbox32. Here, we applied principal component analysis to the con-
catenated effect size maps of surface area across five conditions, as ASD was not
available (Supplementary Fig. 5 and Supplementary Table 3).

Prediction of shared effects using multiscale features. We associated multi-
scale features and shared effects using supervised machine learning to incor-
porate our findings (Fig. 4). Specifically, we aimed to predict the shared disease
effects using concatenated multiscale features of microstructural and functional
gradients, cytoarchitectonic (i.e., mean, SD, skewness, kurtosis, and externo-
pyramidization), and transmitter maps (i.e., D1, D2, 5-HT1a, 5-HT1b, 5-HT2a,
FDOPA, GABAa, DAT, NAT, and SERT). We used five-fold nested cross-
validation78–80 with LASSO regression76. Nested cross-validation split the
dataset into training (4/5) and test (1/5) partitions, and each training partition
was further split into inner training and testing folds using another five-fold
cross-validation. The model with the best performance (lowest MAE) across the
inner folds was applied to the test partition of the outer fold. Among the
multiscale features, we selected performant features using LASSO regularization,
and the effect size was predicted using linear regression with the selected fea-
tures. The procedure was repeated 100 times with different training and test
partitions. Prediction accuracy was evaluated with linear correlations between
the actual and predicted effect size and the MAE, with their 95% confidence
interval. Permutation-based correlations across 1000 tests were conducted by
randomly shuffling cortical regions to verify whether the prediction performance
exceeded chance levels. We also performed the prediction analysis using the
effect size of each condition (Supplementary Fig. 6).

Statistics and reproducibility. The between-group differences in cortical thick-
ness of each psychiatric condition were assessed using inverse variance-weighted
random-effects models33, and their shared disease effects were estimated via
principal component analysis. We assessed associations between the shared disease
dimension and microstructural and functional connectivity gradients, cytoarchi-
tectonic features calculated from the BigBrain66, and neurotransmitter maps
obtained from independent PET/SPECT studies54–59 based on linear correlations
with 1000 spin-tests followed by FDR164,165. We opted for supervised machine
learning to associate multiscale features and shared effects based on five-fold nested
cross-validation78–80 with LASSO regression76.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Disorder-related effect size measures analyzed in this project are openly available via
https://enigma-toolbox.readthedocs.io and https://doi.org/10.1001/jamapsychiatry.2020.
2694. Raw imaging data that support these findings are not publicly available in a
repository as they contain information that could compromise the privacy of research
participants. Although there are data sharing restrictions imposed by (i) ethical review
boards of the participating sites, and consent documents; (ii) national and trans-national
data sharing law, such as GDPR; and (iii) institutional processes, some of which require a
signed MTA for limited and predefined data use, we welcome sharing data with
researchers, requiring only that they submit an analysis plan for a secondary project to
the leading team of the Working Group (http://enigma.ini.usc.edu). Once this analysis
plan is approved, access to the relevant data will be provided contingent on data
availability and local PI approval and compliance with all supervening regulations. If
applicable, distribution of analysis protocols to sites will be facilitated. Source data
(Supplementary Data 1) are provided with this paper.

Code availability
Codes for multiscale neural feature calculation and statistical analyses are provided at
BrainSpace (https://doi.org/10.1038/s42003-020-0794-7; https://github.com/MICA-MNI/
BrainSpace) and ENIGMA toolbox (https://doi.org/10.1038/s41592-021-01186-4; https://
github.com/MICA-MNI/ENIGMA). Tutorials to carry out similar analyses are provided
on https://enigma-toolbox.readthedocs.io/en/latest/.
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