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Construction of a trio-based structural variation
panel utilizing activated T lymphocytes and long-
read sequencing technology
Akihito Otsuki 1,2,7, Yasunobu Okamura 1,3,7, Noriko Ishida1, Shu Tadaka 1, Jun Takayama1,3,4,5,

Kazuki Kumada1, Junko Kawashima1, Keiko Taguchi 1,2,3, Naoko Minegishi1, Shinichi Kuriyama1,

Gen Tamiya1,3,4,5, Kengo Kinoshita1,2,3,6, Fumiki Katsuoka 1,3 & Masayuki Yamamoto 1,2,3✉

Long-read sequencing technology enable better characterization of structural variants (SVs).

To adapt the technology to population-scale analyses, one critical issue is to obtain sufficient

amount of high-molecular-weight genomic DNA. Here, we propose utilizing activated T

lymphocytes, which can be established efficiently in a biobank to stably supply high-grade

genomic DNA sufficiently. We conducted nanopore sequencing of 333 individuals con-

stituting 111 trios with high-coverage long-read sequencing data (depth 22.2x, N50 of

25.8 kb) and identified 74,201 SVs. Our trio-based analysis revealed that more than 95% of

the SVs were concordant with Mendelian inheritance. We also identified SVs associated with

clinical phenotypes, all of which appear to be stably transmitted from parents to offspring.

Our data provide a catalog of SVs in the general Japanese population, and the applied

approach using the activated T-lymphocyte resource will contribute to biobank-based human

genetic studies focusing on SVs at the population scale.
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To realize and facilitate genomic medicine, it is essential to
identify and understand the genetic variations present in
the general population. Over the last decade, population-

scale genome studies have been conducted in many countries,
providing insight into the processes involved in genetic diversity
and disease biology1–3. Population allele frequencies have been
actively used for the diagnosis of rare diseases as a reference
panel4–7. A set of phased variants in individual haplotypes have
been utilized to design DNA arrays8 and for genotype
imputation9–11.

To enhance genome research in the Japanese population, we
established the Tohoku Medical Megabank (TMM) Project con-
sisting of a community-based cohort12 and birth and three-
generation cohort (BirThree Cohort)13 with a biobank (TMM
Biobank)14. We constructed an allele-frequency panel focusing on
single-nucleotide variants (SNVs) and short insertions and dele-
tions (indels) based on short-read whole-genome sequencing
(WGS) analyses. The current panel covers more than 38,000
participants5,15–17. These data have been prepared along with
multi-omics data and medical information, and they have become
a useful resource for academic, clinical, and industrial
research17,18. However, a reference panel focusing on structural
variants (SVs) in the Japanese population is lacking.

SVs are typically defined as genomic rearrangements of more
than 50 bp in size19–21. SVs are more likely to be associated with a
genome-wide association signal and affect gene expression20,22,
because larger changes in the genome are likely to result in
deleterious events through the disruption of protein synthesis and
the regulatory mechanisms of gene expression23.

Despite the biological importance of SVs, a limited number of
large-scale genome studies have focused on SVs at the population
scale24–27 due to the fundamental limitations of conventional
short-read sequencing technologies in SV detection. In contrast,
recent developments in long-read sequencing technologies have
led to new approaches for genome analysis, such as nanopore
sequencing by Oxford Nanopore Technologies28,29, and single-
molecule real-time sequencing by Pacific Biosciences30,31. These
long-read sequencing technologies enable us to sequence several
thousand base pairs or more, which are more likely to span the
breakpoints of SVs with high-confidence alignments, aiding in
the capture of larger SVs better than can be achieved with short-
read sequencing alone32–34.

Pioneer studies have taken advantage of such long-read technol-
ogies for SV analysis, giving rise to new challenges in population-
scale studies35,36. In particular, it is preferable to prepare a relatively
large amount of high-quality genomic DNA, as the data derived from
a long-read sequencing analysis are affected by various factors37. For
instance, the molecular weight of genomic DNA has been shown to
affect the sequencing yield35, which seems to influence downstream
variant detection, resulting in the under- or overestimation of allele
frequencies. Population-scale studies involving long-read sequencing
technologies have been addressing these issues35,36, but the problems
of a nonuniform distribution of read lengths and low sequencing
depth coverage remain.

To overcome these hurdles inherent to population-scale
long-read sequencing analyses and construct a Japanese-
specific allele-frequency panel focusing on SVs, we employed a
unique cell resource of TMM Biobank. To date, we generated
more than four thousand Epstein–Barr virus (EBV)-trans-
formed lymphoblastoid cell lines (LCLs) and activated T cells,
which have been utilized in the genome and functional
studies38,39. In this study, we utilized the activated T cells as a
genomic DNA resource and conducted the long-read
sequencing analysis of 333 Japanese individuals constituting
111 trios, who were recruited in the TMM BirThree Cohort
Project. We cataloged the allele frequencies of 72,470 SVs

located in autosomes. Thus, we succeeded in constructing a
Japanese population-scale SV panel of Japanese, providing a
fundamental resource for human genetic studies.

Results
Activated T cells as a DNA resource for long-read sequencing
analyses. To capitalize on the advantage of long-read sequence
technologies in SV analyses, high-molecular-weight DNA should
be used for the library preparation step because the read length
depends on the DNA size of DNA fragments in a library. Simi-
larly, the data yield for a given cost varies depending on the input.
For instance, it has been implied that the fragmentation status
affects the sequencing yield per run, indicating that the length of
the input libraries can affect the sequencing depth per cost35. As
the read length and sequencing depth are important factors in
constructing variation panels, these factors should be carefully
controlled. In this regard, the TMM Biobank has been estab-
lishing proliferating cell resources, which avoid the rapid deple-
tion of biospecimens14. In this study, we used high-molecular-
weight DNA specimens derived from activated T lymphocytes for
long-read sequence analyses.

The activated T cells were established from CD19-negative cells
from the PBMC fraction in the blood of participants (Fig. 1a). As
of March 2021, the TMM Biobank had established 4527 LCLs and
4808 activated T lymphocytes (Fig. 1b). The reason for our
selection of genomic DNA specimens derived from activated
T cells versus LCLs for the long-read sequence analysis is that the
former can be established in a much shorter time span with a
higher success rate than the latter, ensuring future expandability.
We stimulated the cells with the human T-cell activators CD3 and
CD28 and expanded them for three to ten days in culture medium
supplemented with recombinant IL-2 cytokine14. We successfully
recovered more than 99% of the cells stored in liquid nitrogen.
Most of these cell resources are accompanied WGS information
determined by short-read sequencing. Almost all established cells
were positive for CD3, a T-cell marker (Fig. 1c), indicating that
T cells dominantly proliferated under cytokine stimulation.

To assess the quality of the genomic DNA samples extracted
from these T cells, we measured the optical density (OD) at 260/
280 and 260/230 and obtained average OD ratios of 1.89 ± 0.15
and 1.81 ± 0.44 (mean ± SD), respectively. We also conducted
pulsed-field gel electrophoresis of 5 random samples (#1–#5). The
lengths of the DNA specimens ranged from 20 to 145 kb (Fig. 1d
and Supplementary Fig. 1a), demonstrating that the DNA
samples used were appropriate for long-read sequencing analyses.

Next, we conducted a long-read WGS analysis with a nanopore
sequencer utilizing T-cell genomic DNA specimens. To optimize
the DNA fragmentation step to balance the sequencing yield and
read length, we designed a step to yield DNA fragments with
lengths ranging from 20 to 80 kb (Fig. 1d and Supplementary
Fig. 1a). We obtained 85.0 ± 5.4 Gb of yield and 25.8 ± 1.8 kb of
N50 length per flowcell (n= 5), indicating that half of the sequence
base pairs were derived from reads longer than or equal to 25.8 kb
(Fig. 1e and Supplementary Fig. 1b, c). Taken together, these
results support our contention that activated T cells constitute a
useful genomic DNA resource for a long-read WGS analysis.

To address whether the utilization of activated T cells is a good
method for genome analyses, we designed a benchmark analysis
using three independent sets of genomic DNA samples obtained
from activated T cells and LCLs (Supplementary Fig. 2a). Notably,
there are donor-matched and high-quality de novo assemblies
available for all three genomes40. In this benchmark analysis, we
obtained standard SV-call sets from the assemblies and compared
them to SV-call sets from nanopore sequencing data to calculate the
precision and recall scores of SV detection (Supplementary Fig. 2a).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03953-1

2 COMMUNICATIONS BIOLOGY |           (2022) 5:991 | https://doi.org/10.1038/s42003-022-03953-1 | www.nature.com/commsbio

www.nature.com/commsbio


To select the SV-call pipeline, we experimentally compared the
efficiency and accuracy of the CuteSV41 and Sniffles algorithms42,
both of which are widely used algorithms available for the nanopore
sequencing data. As shown in Supplementary Fig. 2b, CuteSV
reproducibly showed higher recall and precision scores than Sniffles
in the detection of DELs. This result is concordant with previous
benchmark studies41,43, and we therefore decided to utilize the
CuteSV algorithm. Utilizing this algorithm, we next compared the
precision and recall scores of activated T cells and LCLs. As shown
in Supplementary Fig. 2c, we observed that activated T cells and
LCLs showed very similar recall and precision scores. Therefore, we
concluded that activated T cells were an acceptable resource for a
genome analysis similar to LCLs.

Trio-based structural variation analysis using long-read
sequencing technology. To clarify the variation spectra, fre-
quencies, and functional impact of SVs in the Japanese popula-
tion, we constructed an allele-frequency panel. Here, it should be

noted that despite the continuous improvements in computa-
tional tools, many challenges in read alignment-based SV calling
algorithms remain34,41. Therefore, to apply quality assessments
based on Mendelian inheritance error profiling, we designed
WGS analyses of 333 BirThree cohort participants comprising
111 parent–offspring trios through the long-read sequence pro-
cedures established in this study (Fig. 2a).

Using 411 flowcells, we conducted 430 runs in total
(Supplementary Data 1). As shown in Supplementary Fig. 3a, b,
the sequencing yields increased as the active pore count increased,
but the N50 lengths did not. These observations indicate that the
quality of the flowcell is a determinant of the sequencing yield.
While it has been known that the sequencing yield per flowcell
decreases when longer libraries are subjected to sequencing35, we
did not observe such a negative correlation between the two
variables (Supplementary Fig. 3c). We surmise that this occurred
because optimization in the fragmentation step resulted in low
diversity of the N50 length, suggesting that it is important to
optimize the DNA fragmentation step to balance the sequencing
yield and read length for high-quality deep sequencing.

The sequencing data resulted in 69.7 Gb per individual after
filtering the sequence reads with low-quality values (lower than a
mean quality score44,45 of 6 as shown by the dotted line in Fig. 1e).
Our strategy led to relatively long (read N50 of 25.8 ± 3.9 kb)
sequence reads (Fig. 2b) compared to previous works35,36. When
aligned to the human reference genome (GRCh38), the sequence
reads resulted in 22.2 ± 4.4-fold coverage (Fig. 2c), and the median
sequencing error rate was 7.9% (2.2% for insertions, 3.5% for
deletions, and 2.2% for mismatches) (Supplementary Fig. 3d).
Taken together, the results support the integrity of our approach,
including the following two important improvements: the use of
T-cell resources to stably provide high-quality DNA suitable for
SV analyses at the population scale and the use of BirThree Cohort
participants for Mendelian error profiling.

Structural variations detected in the Japanese population. Next,
we evaluated the structural variation spectra in the Japanese
population. We detected two classes of canonical SVs, deletions
(DELs) and insertions (INSs), both of which were more than
50 bp in length, identifying 23,056 ± 454 SVs per individual on
autosomes composed of 10,923 DELs and 12,133 INSs per indi-
vidual (Fig. 2d). The numbers of detected SVs in this study are
comparable to those of previous estimations by means of long-
read sequencing32,35 and other technologies21,33.

Then, we merged these SVs of the 333 individuals into a
nonredundant set of SVs to produce a variant repository
composed of 37,981 DELs and 36,220 INSs, showing a balanced
number of DELs and INSs (Fig. 2e). In this regard, several studies
have identified more INSs than DELs35,46. A plausible explana-
tion for this discrepancy may be the lower recall scores in INS
detection than DEL detection in our study (Supplementary
Fig. 2b). We surmise that biases in SV calling remain and expect
the development of elaborate bioinformatics algorithms to
address this issue. One additional hypothesis is that a few
thousand loci that are underrepresented in GRCh38 may affect
the ratio between insertions and deletions. In good agreement
with this hypothesis, while we identified more insertions than
deletions in the individual-level analysis (Fig. 2d), the ratio
between insertions and deletions became closer to 50:50 in the
population-scale analysis that included 333 individuals (Fig. 2e).

The number of SVs strongly correlates with the length and
rapidly decreases; three peaks at sizes of ~300 bp, 3 kb, and 6 kb
are notable. We consider that these peaks are due to retro-
transposon elements, especially Alu, SINE/VNTR/Alu, and LINE-
1 elements (Fig. 2e), based on their sizes35,36.

Fig. 1 Long-read sequencing using activated T cells. a Scheme of the
establishment of activated T cells. T cells were established from CD19-
negative cells derived from PBMCs by CD3/CD28 stimulation and stored in
liquid nitrogen. After freezing and thawing, the cells were expanded under
IL-2 stimulation. b Numbers of cell resources established in the TMM
Biobank. Success rates of the establishment processes are also shown.
c Cell surface marker profiles of activated T lymphocytes. d Length of
genomic DNA as assessed by pulsed-field gel electrophoresis. Genomic
DNA isolated from activated T cells was fragmented using a 29-gauge
needle and syringe pump. Representative images of five independent
samples (from #1 to #5) before (−) and after (+) the fragmentation steps
are shown. e Bivariate plot of the read length (x axis) and aligned read
quality (y axis) with kernel density estimation. The threshold used to filter
low-quality sequence reads (mean quality score of 6) is shown as a
dotted line.
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To ascertain the benefit of using high-quality DNA in SV analyses,
we examined the correlation between the read length and SV
detection ability. As shown in Fig. 2f, we observed a strong
correlation between the read N50 and the mean size of the INSs and
a moderate correlation between the read N50 and the mean size of

the DELs (Pearson correlation coefficient [cor]= 0.54 and 0.80 for
DEL and INS, respectively). These results suggest that an SV analysis
using longer reads has an advantage in the detection of large SVs
compared with that using shorter reads. To further verify this finding,
we also evaluated the correlation between the read length and SV

Fig. 2 Study design and statistics of the trio-based nanopore sequencing. a Design of the SV analysis in this study. Activated T cells were established
from 333 individuals comprising 111 trios and subjected to whole-genome sequencing using a nanopore sequencer. b, c Distribution of read length N50 (b)
and average coverage of aligned reads (c). The dotted lines show the mean values, and the mean ± SD is indicated in the panel. d Number of DEL (red) and
INS (blue) SVs located on autosomes per individual. Mean ± SD is indicated in parentheses. e Size distribution of the DELs (red) and INSs (blue). The left
and right panels indicate the distribution of SVs with sizes from 50 to 500 bp (bin= 10 bp) and sizes from 500 bp to 15 kb (bin= 300 bp), respectively.
Notable peaks due to transposable elements (Alu, SINE/VNTR/Alu [SVA], and LINE-1) are shown as arrows. The numbers of DELs (red) and INSs (blue)
are shown in parentheses. f Scatterplot showing the relationship between the N50 length and mean DEL (red) and INS (blue) length. The Pearson
correlation coefficient (cor) and P values are shown (n= 333).
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detection ability by detecting large SVs ranging from 5.9 to 6.1 kb and
small SVs ranging from 280 to 350 bp (Supplementary Fig. 4a, b,
respectively). The SVs belonging to the former fraction contain
LINE-1-related SVs, and those belonging to the latter fraction contain
Alu-related SVs. We found that the number of large INSs was
correlated with the read N50 (cor= 0.54), whereas that of the DELs
(cor= 0.18 and 0.07 for large and small DELs, respectively) and small
INSs (cor= 0.25) was not correlated with the read N50. These results
indicate that an SV analysis using longer reads ranging from 10 to
35 kb utilizing activated T cells is beneficial for the comprehensive
identification of large SVs, especially in the case of INSs.

Next, we evaluated the minor allele frequencies (MAFs) of
individual SVs in the Japanese population. To avoid double counting
the SVs shared between parents and offspring and, thus, prevent the
overestimation of the allele frequencies of the SVs in the general
population, we extracted SVs observed in 222 unrelated individuals
(i.e., fathers and mothers) from the repository to evaluate MAF. We
found that the number of SVs decreased as the allele frequency
increased (Fig. 3a). Then, we categorized these SVs into the
following four categories: singleton (minor allele count [MAC]= 1);
rare (MAC> 1 and MAF < 0.01); low (MAF≥ 0.01 and MAF <
0.05); and common (MAF ≥ 0.05). Across all SV classes, 12,782 SVs
(representing 17.6% of all SVs identified in 222 unrelated
individuals) were singletons, 9600 (13.2%) SVs were rare, 12,660
(17.5%) SVs were low, and 37,428 (51.6%) SVs were common.
Overall, most SVs are shared among unrelated individuals.

An intriguing observation is that the sizes of the SVs vary
among the SV categories (Fig. 3b). For example, large SVs were

most frequently found in the singleton category, but the median
size of the SVs decreased as the MAF increased (singleton, 274 bp;
rare, 201 bp; low, 168 bp; and common, 133 bp). This result is
consistent with the previous observation47 in which the allele
frequency of SVs in size range of 100 kb to 1Mb decreased with
size. The size of the SVs appeared to be the smallest in the
common category. These observations suggest that the size of SVs
or the amount of rearranged DNA may be a key determinant in
the selection of SVs.

Ethnic diversity of SVs. To assess ethnic differences or diversity
in the occurrence of SVs, we compared the DELs in our dataset
with those in the recently published Iceland deCODE study35 (see
Methods, “Comparison of SVs to the deCODE dataset”). The
deCODE dataset contains data derived from a population-based
analysis of SVs using a long-read sequencing platform. As shown
in Fig. 3c, of all SVs in our dataset (INS and DEL; shown as
“TMM”), 38,304 (53.5%) were also found in the deCODE dataset,
while 33,279 were unique to the TMM dataset. Next, we com-
pared the MAFs of the unique DELs and INSs to those of over-
lapping ones. The results revealed that the SVs in the common
category were shared preferentially with those in the deCODE
dataset; in contrast, those with a low MAF and those in the rare
and singleton categories tended to be unique in the TMM dataset
(Fig. 3d). Thus, the comparison of the deCODE and TMM
datasets revealed significant differences in the ethnic distribution
of SVs, even though high-MAF SVs are shared relatively widely
across ethnicities.

Fig. 3 Characteristics of SVs detected in the Japanese population. a Distribution of minor allele frequency (MAF). SVs were categorized as follows:
singleton (minor allele count [MAC]= 1), rare (MAC > 1 and MAF < 1%), low (MAF≥ 1% but <5%), and common (MAF≥ 5%). b Distribution of the SV
size in each MAF category. *P= 0.00098 and **P < 2 × 10−16, Holm adjusted Wilcoxon rank-sum test. The numbers of SVs belonging to each category are
shown in Fig. 3a. Each boxplot has a box that represents the interquartile range (IQR) and whiskers that extend 1.5 × IQR from the box edges. The median is
shown in a horizontal line in the box. c Overlap between our dataset and a previous report35. The numbers of SVs identified in this work (TMM), and
previous work (deCODE) are shown in red and blue, respectively. The number of SVs identified in both studies is shown in green. d Bar plot showing the
proportion of MAF categories in DELs (left) and INSs (right) identified in the TMM dataset only (unique) and in both the TMM and deCODE datasets
(overlapped). e Scatterplot showing the allele frequencies estimated in the deCODE study (x axis) and this study (y axis). The Pearson correlation
coefficient (cor) and P values are shown. n= 8568 and 9762 for DEL and INS, respectively. f Scatterplot showing the allele frequencies estimated in the
East Asian subset of the gnomAD study (x axis) and this study (y axis). The Pearson correlation coefficient (cor) and P values are shown. n= 3491 and
3515 for DEL and INS, respectively.
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For further analysis focusing on the ethnic diversity of SVs, we
extracted common SVs (MAF ≥ 0.05) and compared the allele
frequencies (AFs) between the deCODE dataset and the TMM
dataset (Fig. 3e). We observed only modest correlations between
these two datasets (Pearson correlation coefficient [cor]= 0.50 and
0.40 for DEL and INS, respectively), indicating that the common
SVs showed substantial differences in AFs between the ethnicities.

Next, we compared the TMM dataset to that of gnomAD-SV25,
which was based on short-read WGS of more than 14,000 sam-
ples. Notably, the samples are mainly derived from European and
African/African-American samples, while less than 10% of the
samples are derived from East Asian samples (EAS). In the
comparison between the TMM dataset and the whole gnomAD-
SV, only modest correlations (cor= 0.61 and 0.57 for DELs and
INSs, respectively) were observed (Supplementary Fig. 5), show-
ing very good agreement with the observation in the comparison
to the deCODE dataset. In contrast, we observed much higher
correlations (cor= 0.74 and 0.78 for DELs and INSs, respectively)
in the comparison of the TMM dataset and the East Asian subset
in the gnomAD-SV (Fig. 3f), demonstrating that the AFs in the
TMM dataset reflect ethnicities in AFs.

Quality assessment of SVs based on Mendelian inheritance. To
assess the reliability of our SV analysis and dataset, we examined
the Mendelian inheritance error (MIE) rates by taking advantage
of a trio analysis. In general, MIEs arise from two major events in
this type of analysis. One event is germline or nongermline de
novo mutations (biological errors), and the other event is variant
calling errors or incorrect pedigree information (technical errors).
As true de novo mutations occur at an extremely low rate
(~1 × 10−8 per base pair per generation)48,49, the former biolo-
gical errors seem less influential in this case, and we surmise that
most MIEs are the consequence of the latter event. Therefore, the
MIEs of SVs can serve as an indicator of the reliability of SV
analyses. In fact, the MIE rate was calculated in the deCODE
long-read study35.

We found that the transmission of 3.5 ± 0.1% and 4.3 ± 0.2% of
the DELs and INSs per trio, respectively, did not follow Mendelian
inheritance (Fig. 4a). We also observed a lower concordance in trios
with lower coverage (Fig. 4b). In particular, the genotyping accuracy
of the INSs was more sensitive to the sequencing coverage, indicating
that a higher sequencing coverage is desirable for higher genotyping
accuracy. A previous analysis of five trios (15 members) using long-
read sequencing technology estimated the MIE to be 6.4–15.2%50.
Thus, although the MIE rates were still higher than expected, there
was a substantial improvement in concordance with Mendelian
inheritance, perhaps due to technical improvements in long-read
sequencing, including stable data production in terms of the
sequencing depth and read length, and in bioinformatics pipelines.

We attempted to examine the characteristics and genomic
locations of the SVs that showed MIEs. Taking advantage of the
trio analysis, we evaluated the incidence of MIEs in each SV by
calculating the error family ratio (number of trios with MIE/total
number of trios analyzed). For the SV types that showed MIEs,
we observed concordant values in the DELs and INSs (DEL,
3.2 ± 5.3%; INS, 3.7 ± 5.2% of trios showed MIEs; Supplementary
Fig. 6a). To address the genomic distribution of SVs with MIEs,
we precisely plotted the error family ratios on genomic locations
(Supplementary Fig. 6b). We identified SVs located near gaps and
chromosome ends that frequently accompany MIEs. We also
found that the SVs in the regions near gaps and chromosome
ends were often called based on low coverage sequencing reads
(Supplementary Fig. 7a, b). Therefore, we surmise that the high
incidences of MIEs were derived, at least partly, from erroneous
SV calls due to the difficulty in read mapping.

We also evaluated the accuracy of the SV in each MAF
category. To this end, we employed the error family ratio. As
shown in Supplementary Fig. 6c, we observed that the error
family ratios were lower for singleton SVs than for common or
highly frequent SVs. One plausible explanation for this
unexpected observation is that for high-frequency SVs, the
accuracy is affected by systematic errors during the identification
of SVs. In low complexity regions in the genome, some SVs with a

Fig. 4 Quality assessment of the SV dataset based on Mendelian inheritance. a Mendelian inheritance error (MIE) ratio per trio. The MIE ratio was
calculated for each trio. Each boxplot has a box that represents the interquartile range (IQR) and whiskers that extend 1.5 × IQR from the box edges. The
median is shown in a horizontal line in the box. Outliers are shown in dots. n= 111 for both DEL and INS. b Scatterplot showing the relationship between the
sequencing coverage and the MIE ratio. The minimum coverages among three individuals who belong to a trio and the MIE ratio observed in the trio are
plotted on the x- and y- axes, respectively. n= 111 for both DEL and INS. c Distribution of genotype calls in parent–offspring trios. 0 and 1 denote the
reference and alternative alleles, respectively. Genotypes of the parents are shown on the y axis, and the frequencies of each genotype (0/0, 0/1, and 1/1;
red, blue, and green, respectively) that were expected (Exp) and observed in DELs (DEL) and INSs (INS) are shown. The number of pairs tested are shown
on the right.
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low accuracy may be called with high frequencies, which results
in MIEs. In contrast, singletons and low-frequency SVs may be
less affected by such systematic errors.

We evaluated the distribution of the SV genotype calls in all
parent–offspring trios to assess whether there are specific
combinations of genotypes among trios that lead to erroneous
calls (Fig. 4c). While the distributions of DELs and INSs in our
dataset were closer to the expected probabilities, for the most part,
several minor discrepancies in the genotype distribution were
observed. For instance, in the case of the genotype of offspring
derived from parents with the genotypes “0/0” and “1/1”, high-
rate MIE accumulation was observed (Fig. 4c). This observation
was reproducible in the deCODE study35. Thus, these results
demonstrate that our long-read sequence analysis achieved
reasonable genotype calls, considering that substantial challenges
need to be addressed to accomplish fully reliable and accurate
genotype calls of SVs using long-read sequence technology.

Functional annotation of SVs. To evaluate the potential function
of the SVs, next, we annotated the SVs to genomic features. We first
examined how these SVs are distributed on chromosomes. Although
the number of SVs correlated with the chromosome length (Fig. 5a),
the SVs were differentially distributed on each chromosome (Fig. 5b;
P < 2.2 × 10−16 for DELs and P= 6.87 × 10−16 for INSs;
Kruskal–Wallis rank-sum test). We also observed several peaks,
indicating the high density of SVs on chromosome ends and sites
adjacent to the gaps remaining in the reference genome, and this
observation is concordant with the observation in a previous study32

(Fig. 5c). To evaluate the nonrandom distribution of the SVs in
detail, we plotted the number of sequencing reads supporting the
variant call of each SV (Supplementary Fig. 7a, b). The sequencing
depths were decreased in the genomic regions adjacent to gap and
chromosome ends, suggesting that the difficulty in read mapping
might result in the erroneous detection of SVs in these regions.
Nonetheless, we found five peaks of SVs located in positions far
from the gaps and chromosome ends (Fig. 5c, green arrows). The
green arrow position on chromosome 6 involves human leukocyte
antigen (HLA) loci. Regarding the position, a closer analysis of our
long-read sequence data revealed that these five peaks are located in
regions that harbor high-level segmental duplications (Fig. 5c). The
regions with SD accumulations are intractable with the current long-
read sequencing technology. We surmise that the difficulty in SV
detection in these regions might result in the overestimation of SVs.

Next, we examined the localization of these SVs within
intergenic regions, introns, exons, and protein-coding sequences
(CDSs). Of 74,201 SVs, 34,053 (45.9%) were in intergenic regions,
while 38,749 (52.2%), 3099 (4.2%), and 828 (1.1%) SVs
overlapped with introns, exons, and CDSs, respectively
(P < 0.002, bootstrap test), which is concordant with a previous
study35. Thus, SVs located in intergenic regions were over-
represented, and SVs located in introns, exons, and CDSs were
underrepresented (Fig. 5d). We also observed elevated rates of
rare alleles in exons and CDSs (Fig. 5e). These differences in the
distribution of SVs within genomic regions suggest that these SVs
influence gene structure, which provides information regarding
the strength of negative selection during molecular evolution.

SVs associated with clinical phenotypes. As SVs affect gene
structures more drastically than smaller variants, including SNVs
and indels (insertions/deletions less than 50 bp), SVs located in
CDSs may exert more potent effects on gene functions and
downstream phenotypes than SNVs and indels. To gain func-
tional insight into these SVs, we searched for and identified SVs
overlapping with CDSs belonging to 461 protein-coding genes
(Supplementary Data 2). Of these SVs, we selected four

previously shown or suggested to be associated with clinical
phenotypes and examined them closely in our set of analyses.

We identified DELs of 4.9 kb in hemoglobin subunit gamma 1 and
2 (HBG1 andHBG2) loci (Fig. 6a), which were present in two parent-
offspring pairs out of 111 trios examined in this study (Fig. 6f), and in
both cases, the alleles transmitted from parent to offspring (from the
father to offspring in the family shown in Fig. 6a). While the HBG1
and HBG2 genes, which encode γ-globin chains consisting of HbF,
are expressed predominantly during the fetal stage from the β-globin
gene cluster, their expression is progressively silenced during the
postnatal period due to the interplay of transcription factors
interacting with the locus control region (LCR) and the HBG1 and
HBG2 promoters51. The breakpoints of the DELs are located in
second introns of the HBG1 and HBG2 genes, resulting in an HBG1-
HBG2 fusion gene52, as illustrated in Fig. 6e. Intriguingly, this DEL
has been shown to cause an increased expression of γ-globin and
elicit hereditary persistence of fetal globin (HPFH), with increased
expression of γ-globin in the adult stage52. Another East Asian case
of HPFH with this DEL has also been reported53. The allele
frequency (AF) of this DEL was 0.45% (2 in 444 alleles) in this study,
which appears to be concordant with the estimation obtained using a
short-read whole-genome sequence database (Fig. 6f; 0.52% in East
Asia from gnomAD25).

We also found a 32-kb DEL in genes encoding late cornified
envelope 3B and 3C (LCE3B and LCE3C) proteins related to skin
barrier functions, as has been described in the previous studies35,54.
This DEL includes whole LCE3B and LCE3C genes (Fig. 6b), and
complete loss of these genes is reported to be associated with
susceptibility to psoriasis35,55,56. The AF of this DEL was 49.3% in
our study, showing very good agreement with the high frequency in
East Asia (57.7%; Fig. 6f) from gnomAD25. To evaluate the accuracy
of the AF based on the bioinformatics pipeline used in this study, we
counted alternative alleles and estimated AF via visual inspections of
read alignment. We found 247 ACs and 55.6% AFs, comparable to
the AF estimated by a variant caller (CuteSV41; 49.3%).

We also detected a DEL in the gene encoding the drug-
metabolizing enzyme cytochrome P450 family 2 subfamily member
6 (CYP2A6) (Fig. 6c). The DEL in the CYP2A6 gene is known to be
associated with poor nicotine metabolism57–59. The DEL in CYP2A6
results in a fusion between the 3’ UTRs of CYP2A6 and CYP2A760,
and the alternative allele is referred to as CYP2A6*4. This DEL in the
CYP2A6 gene has been reported to be common (15.1–19.0%58,59,
Fig. 6f), but the bioinformatic algorithm used in this study estimated
the AF to be only 0.45%. We surmised that this discrepancy is due to
an underestimation of AF by the algorithm used because our visual
inspection of the CYP2A6 locus read alignment resulted in an AF
concordant with previous estimations (15.5%, Fig. 6f). Nonetheless,
we used CuteSV in this study as this variant caller is assumed to be
the most accurate available to date.

Focusing on INS, we detected the expansion of triplet repeats
in the coding sequence of the Ataxin 3 (ATXN3) gene (Fig. 6d).
CAG repeat expansion in exon 10 of the ATXN3 gene is known to
cause spinocerebellar ataxia type 3 (SCA3) by resulting in an
abnormally long polyQ tract in the encoded protein. Affected
individuals are usually heterozygous for the expansion and carry
52–86 CAG trinucleotide repeats in the expanded allele, whereas
wild-type (WT) alleles have 12–44 CAG repeats61. The numbers
of repeats are highly polymorphic62, and our analysis was not
optimized to accurately estimate repeat length; nonetheless, we
identified the variation in the repeat as INS with a length of 56 bp
(Fig. 6d and Supplementary Fig. 8).

In summary, we constructed an allele-frequency panel focusing
on SVs by utilizing the activated T-cell resource in our biobank
and nanopore sequencing technology. This strategy was success-
ful in terms of supplying a sufficient amount of high-quality
genomic DNA suitable for long-read sequencing analysis and
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high-throughput long-read sequencing at the population scale. We
also validated the reliability of the SV panel utilizing trio samples
recruited in the TMM biobank to validate the panel by means of
Mendelian inheritance error profiling.

Discussion
Long-read sequencing technology enabled the preparation of an
allele-frequency panel focusing on SVs. To pursue long-read
sequencing analyses at a population scale, it seems to be desirable

Fig. 5 Distribution of SVs at the chromosome scale. a Correlation between the chromosome length and the number of DELs (red) and INSs (blue). The
lengths of the N-gaps are excluded from the chromosome length. Regression lines, 95% confidence intervals, and chromosome names are also shown.
b Number of SVs per 2-Mb bin per chromosome. Each boxplot has a box that represents the interquartile range (IQR) and whiskers that extend 1.5 × IQR
from the box edges. The median is shown in a horizontal line in the box. c Distribution of SVs at the chromosome scale. The numbers of DELs and INSs per
2-Mb bin are shown in red and blue, respectively. Positions of gaps and chromosome ends in GRCh38 are highlighted in brown. Green arrows indicate SV
peaks that are more than 5Mb away from the gaps. The positions of segmental duplications are shown in black rugs under the histogram. d Overlap
between SV positions and genomic features. Expected frequencies of SVs that overlapped with each genomic feature (intergenic, intron, exon, and coding
sequence [CDS]) were set to 1, and the observed frequencies are shown. The error bars represent the minimum and maximum values of the enrichment
score. n= 1000. e Enrichment of rare SVs in functional genomic features. The proportions of singleton, low, rare, and common SVs that overlapped with
genomic features are shown in red, green, blue, and navy, respectively.
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to prepare a sufficient amount of high-quality genomic DNA.
However, population-scale studies often rely on limited amounts
of DNA from peripheral blood. Therefore, we designed an
approach that utilizes activated T lymphocytes systematically
prepared in the TMM Biobank14 (Supplementary Fig. 9). We
expect that activated T lymphocytes will become a key technology
that provides sufficient high-quality DNA samples for long-read
sequencing analyses on a population scale. We also exploited trio
samples recruited for our BirThree cohort for quality assessment
based on MIE profiling. Utilizing this approach, we succeeded in
stably producing high-coverage sequencing data with long N50
read lengths on a population scale. We identified mean numbers
of 10,923 DELs and 12,133 INSs per individual and succeeded in
constructing an allele-frequency panel of Japanese individuals.
We validated the allele-frequency panel utilizing trio-based MIE
analyses for the careful interpretation of the SVs. We also
explored SVs that are likely associated with clinical phenotypes.
The SVs identified in this study and their allele frequencies are
publicly available on our website, the Japanese Multi Omics
Reference Panel (jMorp)16,63; the reference panel is referred to
as JSV1.

Several reference panels for SNVs and indels have been pre-
pared utilizing short-read WGS technology1–3, including those of
the Japanese population5,15,63. However, short-read WGS tech-
nology has limitations in the discovery, genotyping, and

characterization of SVs, and it has been difficult to prepare a
reference panel for SVs. However, the emergence of long-read
WGS technology led us to detect SVs efficiently and enabled the
possibility of generating a reference panel for SVs. Indeed, recent
long-read WGS studies of Icelandic35 and Chinese36 populations
have identified more than 20,000 SVs per individual. These
detected SVs comprise a greater number than the SVs found per
individual by short-read WGS, which has been limited to
4405–743921,25. Therefore, we considered that the application of
long-read WGS technology for population-scale genome analyses
could support the preparation of a reference panel of SVs, leading
us to discover a substantial number of hidden SVs.

To obtain a sufficient amount of high-quality genomic DNA,
participant-derived culture cells are an attractive biological
resource. Indeed, LCLs have been utilized as a canonical resource
in human genome studies64. In the present study, we selected
activated T cells rather than LCLs because the former can be
established much more quickly and with a higher success rate
than LCLs. In addition, compared to the complex procedures
required for the establishment of LCLs14, the simple procedure in
which only cytokine stimulation is required to introduce pro-
liferation signals into T cells should reduce the probability of
technical errors in a cohort-scale analysis. Overall, we predict that
currently and in the future, the need for high-quality and large
quantities of genomic DNA will increase exponentially with the

Fig. 6 SVs associated with clinical phenotypes. a–c SVs overlapping with the protein-coding sequences of HBA1 and HBG2 (a), LCE3B and LCE3C (b),
CYP2A6 (c), and ATXN3 (d). The positions of the SVs are indicated as black bars, and the sizes are shown in parentheses. e Schematic of the 4.9 kb DEL
between the HBG1 and HBG2 loci. Notably, this DEL produces the HBG1-HBG2 fusion gene. The breakpoints are shown as arrowheads. f Allele frequency
and clinical phenotypes associated with the SVs shown in a–d. AC allele count, AF allele frequency; and AF in EAS, publicly available AF value in the East
Asian population25, 58, 59. AC and AF based on manual inspections are shown in parentheses.
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advancement of genome analysis technologies. Therefore, the use
of activated T cells may become an essential improvement for
advanced genome analyses. The activated T-cell resource may
contribute to the sustainable development of the biobank,
responding to the wide-ranging demands of population-scale
genome analyses and avoiding the rapid depletion of
biospecimens.

The accumulation of SV datasets at the population scale
allowed us to explore genetic differences across ethnic groups. We
compared our SV dataset to the dataset published by the deCODE
study group35 and observed that half of the SVs identified in our
study were unique to our dataset and that the other SVs over-
lapped with those in the deCODE dataset. We expected that
common SVs would be distributed more commonly across eth-
nicities than rare SVs, and indeed this was the case. Interestingly,
however, a substantial proportion of common SVs were also
found to be unique to the TMM dataset. The TMM dataset-
specific distribution of common SVs suggests that there exist
substantial differences in the occurrence and inheritance of SVs
between Japanese and Icelandic populations, implying the pre-
sence of marked ethnic diversity in SVs. One caveat is that the
bioinformatic pipeline used in each study is different, which
should be considered when interpreting this result.

To explore the functional aspects of SVs, the clinical impacts of
several SVs identified in this study were examined. We found
DELs in the coding regions of genes, including HBG1/2, LCE3B/
C, and CYP2A6, and INS in those of ATXN3. As the DELs in
LCE3B/C and CYP2A6 genes cause large deletions, including in
coding regions, functions of these genes must be strongly affected.
In contrast, the DEL in the HBG1-HBG2 locus not only changes
the gene structure of the γ-globin gene but affects the gene
expression and results in the overexpression of the gene in the
adult stage52,53. The deletion of the inhibitory element located in
the HBG1 promoter appears to elicit the upregulation of the
HBG1-HBG2 fusion gene in the adult stage, leading to the HPFH
phenotype. Supporting this notion, mutations in HBG1/2 pro-
moters have been shown to upregulate HBG1 and HBG2 mRNA
expressions65–67. These results indicate that SVs disrupting reg-
ulatory elements have a functional impact by affecting gene
expression profile. Thus, attempts to expand the sample size and
carry out follow-up examinations in a prospective cohort study
could improve the biological aspects of the SVs discovered in
this study.

In conclusion, we constructed an SV database of a Japanese
population by utilizing a strategy involving activated T lympho-
cytes and a trio-based analysis. The expansion of the dataset in
the future will improve our understanding of the diversity of the
human population and the clinical impact of SVs that affect
individual phenotypes, and continuous efforts for further
improvement in the bioinformatics pipelines used to analyze
long-read sequencing data are anticipated.

Methods
Participants. In total, 333 participants composing 111 trios were recruited through
the Birth and Three Generation Cohort (BirThree Cohort)13, which was led by the
Tohoku Medical Megabank Organization (ToMMo) at Tohoku University and
Iwate Tohoku Medical Megabank Organization (IMM) at Iwate Medical Uni-
versity. The participants consisted of almost equal numbers of males (n= 161) and
females (n= 172) whose ages ranged from their twenties to eighties (Table 1).
Individual written informed consent was obtained prior to enrollment. The pro-
tocol was reviewed and approved by the Ethics Committee of Tohoku University
Graduate School of Medicine for ToMMo and the Ethics Committee of Iwate
Medical University for IMM.

Establishment and culture of human-activated T cells. CD19-negative cells were
isolated from cryopreserved peripheral blood mononuclear cells (PBMCs) and
stimulated with the human T-cell activator CD3/CD28 (Dynabeads, Life Tech-
nologies) according to the manufacturer’s recommendations. The cells were

expanded in a complete RPMI 1640 medium containing 20% heat-inactivated fetal
bovine serum (Sigma-Aldrich), 100 U/mL penicillin and 100 μg/mL streptomycin
(Nacalai Tesque), 2 mM GlutaMAX I, and MEM containing nonessential amino
acids (Thermo Fisher Scientific) and 30 U/mL recombinant IL-2 (PeproTech EC)
in a 12-well plate for 3–10 days. After successful cell expansion, the activated T cells
were harvested and divided into 5 × 105 cells per tube for long-term cryopre-
servation. The frozen cultures were thawed by placing the cryotubes in a water bath
at 37 °C and further expanded for the analysis. Subsequently, 1 to 2 × 107 cells were
subjected to genomic DNA extraction.

Flow cytometry analysis. The cells were stained with antibodies against human
CD3 conjugated with FITC (BD Biosciences, Cat# 555339; 1:50 dilution). The
stained cells were analyzed with FACSVerse, and the data analyses were performed
using BD FACSuite software (BD Biosciences).

Nanopore sequencing. Genomic DNA was extracted from activated T cells using a
Gentra Puregene Blood Kit (Qiagen) and sheared using a 29-gauge needle to obtain
DNA fragments of the appropriate size. The quality and quantity of the DNA
fragments were analyzed using Nanodrop and Qubit fluorometers, respectively,
and 2 μg of the DNA fragments were subjected to library preparation using a SQK-
LSK109 ligation kit (Oxford Nanopore Technologies [ONT]). Sequencing was
conducted using PromethION devices with R9.4.1 flowcells (ONT). Then, the
libraries were divided into thirds or fourths and loaded sequentially onto a single
flowcell with nuclease flushes68. The squiggle data obtained from the PromethION
sequencers were subjected to a base-calling step using Guppy software (version
4.2.2) in the “hac” mode.

Sequencing summaries. Among a total of 430 runs, we analyzed 323 runs without
any problems before and during sequencing (i.e., we excluded runs for the fol-
lowing reason: 23 runs for difficulty during sequencing; 45 runs using flowcells
with a low active pore count below the standard of QC; and 39 runs using flowcells
with a lot defect due to manufacturing errors). The sequencing summaries were
generated using NanoPlot69 software (version 1.27.0).

Read alignment and SV calling using nanopore data. The read alignment and
SV calling were conducted following the official pipeline provided by ONT (https://
github.com/nanoporetech/pipeline-structural-variation/releases/tag/v2.0.2), with
minor modifications. Briefly, the base-called reads with mean quality scores greater
than 6 were subjected to downstream analyses after cropping their head and tail
100 bp. The read alignment to the human reference genome (GRCh38) was con-
ducted using LRA70 (version 2.17-r941) with the option “-ONT”. The SVs were
called individually using CuteSV41 software (version 1.0.9) with the “-min_-
sv_length 50” option. The individual calls were merged using SURVIVOR
software71 (version 1.0.6) with the option “1000 1 1 -1 -1 -1”; the joint call was
conducted using CuteSV software. For the downstream analysis, we focused on
autosomes since the SV callers currently in use support only diploid chromosomes.
The data were visualized using Integrated Genome Viewer72 (version 2.4.14) using
the options “SAM.HIDE_SMALL_INDEL TRUE”, SAM.SMALL_INDEL_-
THRESHOLD 10”, “SAM.QUICK_CONSENSUS_MODE TRUE”, “SAM.-
FLAG_LARGE_INDEL TRUE” and “SAM.LARGE_INSERTION_THRESHOLD
10”. For the error profiling, deletions, insertions, and mismatches to the reference
genome in each mapped sequence were identified using in-house software (https://
github.com/informationsea/sequencetoolkit).

Sample processing. To eliminate the possibility of sample mix-up and ID mis-
labeling during the sample processing, including cell culture, we confirmed the
collation of SNVs between individual genotypes obtained from the short-read WGS
analysis and those obtained from the nanopore sequencing analysis of all samples
analyzed in this study14. Notably, the short-read WGS analysis and nanopore WGS
analysis were conducted independently. The individuals belonging to parents have
been previously known to be unrelated individuals based on the mean identity-by-
descent (IBD) score5.

Table 1 Number of individuals analyzed in this study.

Age Male Female

20s 15 23
30s 27 37
40s 8 7
50s 40 44
60s 57 57
70s 13 4
80s 1 0
Total 161 172
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Mendelian inheritance errors. The MIEs were quantified using an in-house script
(mendelian-check.py) which is provided in Supplementary Software 1. This script
counts the number of combinations of parent–offspring trio genotypes for all SVs.
We defined the MIEs as the combination of trio genotypes that were inconsistent
with Mendelian inheritance. The MIE rates per trio were calculated by dividing the
number of MIEs by the total number of combinations of genotypes in the trio.

Gene enrichment. This analysis was conducted using an in-house script (gene-
enrichment.py) which is provided in Supplementary Software 1. The script cal-
culates the expected numbers of SVs that overlapped with genomic features by
randomizing the position of the SVs and counting the number of intervals that
overlapped with genomic features, including genes, exons, and CDSs defined by
GENCODE73 (version 36). The enrichment score was defined as the ratio of the
numbers of SVs that overlapped with each genomic feature (observed numbers) to
the expected numbers.

Comparison of SVs to published datasets. The SV datasets published by
deCODE35 and gnomAD25 were downloaded from the respective websites (https://
www.nature.com/articles/s41588-021-00865-4 and https://gnomad.broadinstitute.
org). For the comparison with the gnomAD dataset, we constructed an SV dataset
based on hs37d5 reference genome in the same way as the GRCh38 version. The
datasets subjected to the comparison were merged using SURVIVOR software71

(version 1.0.6) with the option “1000 1 1 -1 -1 -1”, and the SVs with AF > 0 in each
dataset were regarded as detected.

Statistics and reproducibility. All statistical tests were conducted using R software
(ver. 3.5). For correlation tests in Figs. 2f, 3e, f, and Supplementary Figs. 4 and 5,
the correlation coefficients and P values were calculated using the test of Pearson’s
correlation coefficient. For Figs. 3b, 5b, d, the P values were calculated using Holm
adjusted Wilcoxon rank-sum test, Kruskal–Wallis rank-sum test, and bootstrap
test, respectively. No statistical method was used to predetermine the sample size.
No data were excluded. The exact numbers of samples are indicated in individual
figure legends and the main text. The definitions of error bars are indicated in
individual figure legends.

Data availability
The SV datasets are available at the jMorp (https://jmorp.megabank.tohoku.ac.jp/202112/)
website via a web interface16,63 and in downloadable variant call format (VCF) files. The
VCF files are also available from the Zenodo repository74 (https://doi.org/10.5281/zenodo.
7039938). The data lines in the VCF files contain positions in the genome, reference and
alternative alleles, allele frequencies, and the number of families with MIE for each SV site.
The sequence data and genotyping results of individuals are under controlled access as
they contain information that is restricted by the research participants’ consent. The data
are available upon request after approval of the Ethical Committee and the Materials and
Information Distribution Review Committee of ToMMo. One who wishes to access the
data needs to contact jmorp@omics.megabank.tohoku.ac.jp. The approximate response
time for accession requests is about two weeks. Numerical data associated with the figures
are available in Supplementary Data 3 and the Zenodo repository75 (https://doi.org/10.
5281/zenodo.7049276). An uncropped version of the electrophoresis image in Fig. 1d is
presented in Supplementary Fig. 1.

Code availability
The in-house scripts (mendelian-check.py and gene-enrichment.py) and codes associated
with the figures are available in Supplementary Software 1 and 2, respectively. These
codes and scripts are also available in the Zenodo repository75 (https://doi.org/10.5281/
zenodo.7049276).
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