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Choice of Voxel-based Morphometry processing
pipeline drives variability in the location of
neuroanatomical brain markers
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Fundamental and clinical neuroscience has benefited tremendously from the development of

automated computational analyses. In excess of 600 human neuroimaging papers using

Voxel-based Morphometry (VBM) are now published every year and a number of different

automated processing pipelines are used, although it remains to be systematically assessed

whether they come up with the same answers. Here we examined variability between four

commonly used VBM pipelines in two large brain structural datasets. Spatial similarity and

between-pipeline reproducibility of the processed gray matter brain maps were generally low

between pipelines. Examination of sex-differences and age-related changes revealed con-

siderable differences between the pipelines in terms of the specific regions identified.

Machine learning-based multivariate analyses allowed accurate predictions of sex and age,

however accuracy differed between pipelines. Our findings suggest that the choice of pipeline

alone leads to considerable variability in brain structural markers which poses a serious

challenge for reproducibility and interpretation.
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Human fundamental and clinical neuroscience aims to
determine the contribution of specific brain systems to
mental processes and disorders, and neuroimaging

approaches have been widely employed to this end. Due to its
high spatial resolution and noninvasive nature, Magnetic Reso-
nance Imaging (MRI)-based assessments of brain structure and
function have become one of the most widely used neuroimaging
techniques. However, the complexity and flexibility of workflows
in MRI analyses, and differences between the handful of com-
monly used analysis software packages, may lead to high varia-
bility in neuroimaging results1. This variability challenges the
interpretation of the results with respect to the precise mapping of
mental processes and brain-based biomarkers for mental dis-
orders. Compared to the processing of functional MRI (fMRI)
data, brain morphometry analyses of T1-weighted structural
images allow less processing variations and may have higher test-
retest reliability1–6. However, the choice of analytic software may
still have a considerable impact on the results obtained. The
variability in terms of whether and which specific brain regions
pass the statistical threshold, in turn, impacts greatly on the
interpretation of findings with respect to structure-function
mapping or brain-based biomarkers and can significantly
impede the sensitivity of subsequent neuroimaging meta-analyses.

Neuroanatomical research has benefited tremendously from
the development of automated computational approaches such as
Voxel-based Morphometry (VBM), examining variations in
regional gray matter volume, and the more recently developed
surface-based approaches (e.g., examining cortical thickness).
VBM represents one of the most commonly used brain structural
analytic approaches to date (e.g., a simple literature search using
the term “voxel-based morphometry” or “VBM” on PubMed
revealed 6210 studies, https://pubmed.ncbi.nlm.nih.gov, from
1993 to November 19, 2020, see also publications for VBM and
other approaches such as “cortical thickness” and “surface area”
in PubMed depicted in Fig. S1). The standardized and highly
automated VBM workflow includes segmentation of gray matter
from other brain tissues, normalization into standard stereotactic
space, and smoothing with a Gaussian kernel before inferential
statistics are applied. The corresponding inferential voxel-wise
statistical models commonly determine (1) between-group dif-
ferences in regional gray matter volume (GMV), e.g., between
patients and controls or men and women7–10, or (2) associations
between individual variations in regional GMV and behavioral
phenotypes, including learning, age, or disorder-relevant
traits11–16. Significant differences or associations are commonly
interpreted in a regional-specific fashion, e.g., mapping specific
behavioral functions to specific brain systems, and determining
which brain regions undergo age-related changes or which
regions contribute to mental disorders. More recently, machine-
learning-based multivariate analytic approaches such as Multi-
variate Pattern Analyses (MVPA) have been increasingly applied
to VBM data to detect subtle and spatially distributed patterns of
brain structural variations to improve biomarker-based diag-
nostics of mental disorders17–19. MVPA aims at determining
variations in the spatial pattern across multiple voxels simulta-
neously and is thus often more sensitive in detecting between-
group differences or brain structural associations. The approach
is based on training pattern recognition algorithms, for example,
brain structural data, and can be applied to new data to predict
group membership (e.g., patients vs. controls, or women vs. men)
or individual variations in a continuous variable such as age.

A number of software packages have been developed and are
widely utilized for VBM analyses. Among them, the currently
most widely used ones are the Computational Anatomy Toolbox
(CAT, www.neuro.uni-jena.de/cat), which is implemented in the
Statistical Parametric Mapping software (SPM, https://www.fil.

ion.ucl.ac.uk/spm/software/spm12/), and FSLVBM and FSLA-
NAT, which are based on the FMRIB Software Library (FSL,
https://fsl.fmrib.ox.ac.uk). To enhance the robustness and repro-
ducibility of neuroimaging analyses, new modular preprocessing
pipelines for structural MRI (e.g., sMRIPrep, https://www.
nipreps.org/smriprep/) have been recently developed. Although
the software packages generally employ similar processing steps
to volumetric T1-weighted (anatomical) MRI data, differences in
specific processing steps and their implementation exist. This
raises the question of whether the choice of specific software and
the application of software-specific default processing configura-
tions may lead to variability in the results.

A recent study examined reliability and replicability in cortical
thickness measures, using different software packages in large
datasets of healthy subjects, and reported a similar cortical
thickness distribution across software packages, although the
absolute estimated values varied considerably among pipelines20.
In contrast, studies exploring the replicability of VBM in samples
of neurological patients revealed considerable variations among
the processing pipelines, and results suggest that the VBM
processing pipeline chosen strongly affects the clinical
interpretation21,22. Specifically, spatial normalization inaccuracies
and different spatial normalization templates and methods chal-
lenge one of the main assumptions of VBM, namely that indi-
vidual brain differences and anatomical correspondence of brain
areas are maintained during the spatial normalization
process23–27. Moreover, VBM lacks a clear in vivo or ex vivo
histological and neurobiological validation in humans23. Together
this challenges the interpretation of VBM findings as biologically
plausible markers for brain-based disorders or phenotypical
variations.

Against this background, the present study systematically
examined whether the choice of processing software influences
the results of a VBM study. We included the most commonly
used processing software packages (FSLVBM and FSLANAT as
implemented in FSL v6.0, and CAT12.7, all recent releases) as
well as an in-house pipeline using some sMRIPrep functionalities
(version 0.6.2). The sMRIPrep pipeline served as an example of a
customized pipeline based on different neuroimaging software
packages. To model the typical scientific workflow, the recom-
mended default configurations were employed to determine
between-group differences and biological associations within two
independent samples of healthy individuals (n= 200; n= 494).
Given the previously reported low robustness of associations
between psychological variables and brain structure see ref. 28, we
focused on biological variables, i.e., sex and age9,10,29–32.

To determine the effects of the choice of processing pipeline on
the results of a typical VBM study, we examined sex differences
and age-related changes with univariate analyses (group differ-
ences and regression, respectively) as well as multivariate analyses
(machine-learning-based MVPA) in two large datasets (dataset 1,
n= 200, age 18–26, 100 females; dataset 2, n= 494, age 19–80,
307 females) after processing the data with the commonly used
VBM pipelines (Fig. 1). Specifically, the following systematic steps
were conducted. First, spatial similarity and intraclass correlation
(ICC, both voxel-wise and image-based estimations) were
examined to determine the spatial similarity, homogeneity, and
replicability of outcomes across pipelines before further statistical
analyses. Second, results with respect to sex differences in GMV
from univariate between-group comparisons between males and
females were compared across pipelines. Third, results with
respect to age-related GMV changes from univariate linear
regression analysis were compared across pipelines. Finally, the
effects of pipelines on multivariate prediction accuracy were
examined by means of MVPA-based predictions of sex and age
based on whole-brain GMV maps across pipelines.
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Results
Spatial similarity and homogeneity within- and between-
pipelines. We initially examined the spatial similarity maps of
the preprocessed images within and between the pipelines
(Fig. S2). Statistical analyses by means of ANOVA models with
the repeated factor pipeline and the dependent variable spatial
similarity in terms of z-transformed spatial correlation coeffi-
cients revealed a high variation in terms of pipeline and partici-
pants, both within- and between-pipelines (all tests Bonferroni’s
corrected p < 0.01). For detailed ANOVA and post hoc results,
please see supplemental material results, Fig. S3 and
Tables S1–S9. Together these findings indicate significant spatial
dissimilarities between GMV maps from the same participants
between-pipelines as well as from the same pipeline between
participants. Specifically, across the datasets, the lowest spatial
similarity was observed between CAT and FSLVBM, and CAT
and sMRIPrep, respectively. Notably, CAT reached a considerably
higher within-pipeline spatial similarity as compared to the other
pipelines (Fig. S3), reflecting a higher homogeneity of the pro-
cessed GMV maps between participants when the data were
processed with CAT.

Cross-pipeline replicability. Examination of ICC maps for each
between-pipeline comparison revealed generally low regional
consistency between the GMV maps computed by different
pipelines (see Fig. 2 for dataset 1 and 2). An exception was
comparably high replicability between FSLANAT vs. FSLVBM in
dataset 1, and FSLANAT vs. sMRIPrep in dataset 2 (Fig. 2). Of
note, across the two datasets, the different pipelines exhibited
relatively low between-pipeline replicability. This may be
explained by the fact that the data were acquired in different
imaging centers, MRI systems, and age range populations and

suggests that complex interactions between the technological,
sample, and analytic factors may contribute to variability see
ref. 33. Examining the regional distribution of variations on the
voxel level revealed that parietal and frontal regions in particular
exhibited low consistency between pipelines. Examination of an
image-based replicability index (I2C2) revealed a generally poor
consistency between the pipelines (all image intraclass correlation
coefficients < 0.4), confirming low inter-pipeline replicability.
Only the replicability between CAT and FSLANAT or CAT and
FSLVBM approached the ‘fair’ criterion (Table S10).

Effects of the pipeline on univariate between-group statistical
comparison: sex differences. To determine the impact of the
choice of processing pipeline on the results of a typical between-
subject VBM study we compared male and female participants in
dataset 1. To determine the extent of common and different
results between the pipelines, the percentage of common and
different voxels in all significant voxels across the four pipelines
was calculated (Supplemental Methods). For parametric statistics
with a conventional cluster-level pFWE < 0.05 correction, only
10.98% spatial overlap of the results for sex differences between
FSLANAT, FSLVBM, and CAT (Table 1) were observed, while
the different pipelines mapped considerable pipeline-unique
GMV sex-differences (up to 54.73% unique GMV sex differ-
ences identified by one, but not the other pipelines, Table 1).
Notably, the data preprocessed by the sMRIPrep pipeline did not
reveal significant sex differences in GMV. Between the other
pipelines, overlap for male > female was observed in the lingual
gyrus, precuneus, left hippocampus, bilateral parahippocampal
cortex, olfactory cortex, left putamen, and left insula (Fig. 3a). No
common regions for female > male were observed among the four
pipelines. The two FSL pipelines shared only 13.16% overlap
(Table 1), with overlapping higher GMV for females being
located in the bilateral postcentral cortex, right angular, right
inferior parietal lobule, and cerebellum (Fig. 3a). In contrast to
the comparably small overlap between the pipelines, wide varia-
tions in the location and extent of the identified GMV sex-
differences were observed specifically in medial prefrontal and
occipital regions. For instance, whereas CAT revealed higher
GMV in widespread cerebellar and limbic regions in men,
FSLANAT and FSLVBM revealed higher GMV in widespread
posterior/superior parietal regions in women (Fig. 3a).

Results from the nonparametric statistics (TFCE pFWE < 0.05)
were highly similar to the parametric statistic results, suggesting
that the pipeline differences are robust across statistical models
(details, please see Supplemental Results). Notably, in some
instances, the overlap between the software packages increased
slightly using the nonparametric approach (Table 1 and Fig. S4a).

To further account for potential interaction effects between the
preprocessing pipelines and the threshold for multiple compar-
isons, we computed correlations between unthresholded statistical
between-group difference maps from the four pipelines with a
similar approach see ref. 34. The spatial pattern of similarities of
sex-dependent GMV differences ranged from −0.0033 to 0.6328
(Fig. 3b), with a particularly low spatial overlap of sex differences
revealed by sMRIPrep compared with those obtained by other
pipelines. Moreover, CAT results were very dissimilar from the
sex differences obtained by the FSL pipelines.

Meta-analytic functional characterization of the identified sex-
differences. To explore the extent to which the different regions
identified by the pipelines may affect the functional interpretation
of brain volumetric sex-differences a meta-analytic functional
decoding approach was employed (for a similar approach see

Fig. 1 Overview flowchart of preprocessing steps across four pipelines.
*Given that FSLANAT and sMRIPrep pipelines are mainly used for
segmenting GM, WM, and CSF data, the segmented GM outcomes
(in native space) were subjected to preprocessing steps from
fslvbm_2_template (except for segmentation) and fslvbm_3_proc to
produce normalized and modulated GM data.
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ref. 35). The approach is based on a large-scale automated
synthesis of functional MRI studies supported by platforms such
as Neurosynth and is increasingly used to improve the functional
characterization of a given brain region (see e.g., ref. 36, for
conceptual background), and to aid the interpretation of GMV
findings, including sex differences in GMV35. According to the
meta-analytic decoding with Neurosynth, the identified regions
between the pipelines differed strongly in terms of their func-
tional characterization (Fig. 3c, note that only three pipelines
revealed significant sex-differences). This, in turn, may have
promoted quite different interpretations of potential behavioral
and cognitive differences between the sexes.

Prediction approach: sex differences in multivariate pattern
analyses. MVPA-based prediction approaches have been
increasingly applied to voxel-wise GMV data to determine group
membership, including diagnostic groups as well as biological sex
groups. To test whether the different pipelines would influence
multivariate prediction accuracy, we developed pipeline-specific
MVPA classifiers for sex. To this end, dataset 1 was split into a
training (n= 100) and test (n= 100) dataset—each preprocessed
by identical pipelines. In general, classifiers developed on each
pipeline accurately predicted sex in the independent data (accu-
racy ranging from 68% (sMRIPrep) to 94% (CAT), Cohen’s
d= 0.2967 to 2.2815, Fig. 3).

Fig. 2 Voxel-level intraclass correlation coefficient (ICC) maps. Voxel-level intraclass correlation coefficient (ICC) maps between pipelines of a dataset 1
and b dataset 2. L left, R right. The color grading reflects the ICC value.

Table 1 Percent overlap of GMV sex-differences as revealed by the four pipelines.

Male > female Female >male

Parametrica Nonparametricb Parametric Nonparametric

CAT (unique) 54.73% 38.94% — —
FSLVBM (unique) 16.57% 8.14% 8.02% 2.03%
FSLANAT (unique) 1.38% 0.29% 78.82% 88.64%
sMRIPrep (unique) — — — —
CAT ∩ FSLVBM 3.76% 9.84% — —
CAT ∩ FSLANAT 4.55% 10.93% — -—
CAT ∩ sMRIPrep — — — —
FSLVBM ∩ FSLANAT 8.02% 12.97% 13.16% 9.33%
FSLVBM ∩ sMRIPrep — — — —
FSLANAT ∩ sMRIPrep — — — —
CAT ∩ FSLVBM ∩ FSLANAT 10.98% 18.89% — —
CAT ∩ FSLVBM ∩ sMRIPrep — — — —
CAT ∩ FSLANAT ∩ sMRIPrep — —- — —
FSLVBM ∩ FSLANAT ∩ sMRIPrep — — — —
CAT ∩ FSLVBM ∩ FSLANAT ∩ sMRIPrep — — — —

aCluster-level pFWE < 0.05.
bTFCE pFWE < 0.05.
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The most reliable regions for the classification of sex across
pipelines encompassed the medial prefrontal, subcortical, insular,
occipital, and parietal regions. Overlapping clusters of predictive
voxels across pipelines were only observed in the bilateral
parahippocampal cortex (voxels of each cluster > 5, Fig. 3d), and
there were wide differences in the location of predictive voxels.
For instance, predictions based on CAT strongly weighted voxels
in the putamen, hippocampus, middle cingulate cortex, and
angular gyrus, while FSLANAT identified strongly predictive
voxels in a widespread network including the superior frontal
cortex, orbitofrontal cortex, pre- and postcentral cortex, insula,

temporal pole, angular gyrus, and cerebellum. FSLVBM and
sMRIPrep revealed generally similar findings to FSLANAT.

To further validate the impact of the processing pipelines on
prediction accuracy in the independent dataset, the classifiers
from the training data of each pipeline were applied to the
independent data processed by the other pipelines. Despite the
low spatial overlap between the thresholded predictive maps
(Table S11), all classifications across pipelines could accurately
predict sex (58–94%, Cohen’s d= 0.1392–2.2815), with the
exception of using the pattern developed on sMRIPrep to
predict sex from FSLVBM processed data (50%, Cohen’s

Fig. 3 Univariate and multivariate analyses determining GMV sex differences. a Results from parametric statistics showing between-pipeline overlap at
a cluster-level pFWE < 0.05 with initial cluster forming voxel level p < 0.001. The left panels of a display results for the male>female contrast. The right
panels of a correspond to the female > male contrast. For a and d the pipelines are coded as: red= CAT, green= FSLVBM, blue= FSLANAT, light
blue= sMRIPrep, additional colors visualize the overlap between the results, e.g., CAT ∩ FSLVBM= yellow, CAT ∩ FSLANAT= purple,
FSLVBM ∩ FSLANAT= light blue, CAT ∩ FSLVBM ∩ FSLANAT=white and etc. b The variability of unthresholded statistical maps. The correlation values
between whole-brain unthresholded statistical maps of four pipelines were computed respectively for sex differences. Only positive values are visualized
for display purpose. c Decoding the functional properties of the identified brain regions of male > female (a, red= CAT, green= FSLVBM, blue= FSLANAT,
no difference in sMRIPrep) using NeuroSynth. Only the top 20 functional terms are visualized. The font size reflects the size of the correlation. d Reliable
brain patterns to distinguish sex differences via bootstrapping test (5000 permutations, pFDR < 0.05), and e cross-predicted accuracy of four pipelines in
independent samples. The color from cold to warm indicates increasing classification accuracy (from 0.5 to 1).
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d= 0.2930) or CAT (14%, Cohen’s d=−1.4909) (Fig. 3e,
corresponding Cohen’s d and performance details in Tables S12
and S13). Specifically, cross-pipeline predictions between the FSL
pipelines reached the highest accuracy (>86%), as well as
relatively high accuracy for predicting data processed by
sMRIPrep (FSLANAT: 80%, Cohen’s d= 0.6437, and FSLVBM:
76%, Cohen’s d= 0.7231) and CAT (FSLANAT: 72%, Cohen’s
d= 0.7810, and FSLVBM: 76%, Cohen’s d= 0.7402). For further
independent validation of the sex-predictive pattern in dataset
2 see Supplemental Results.

Effects of the pipeline on univariate associations: age-related
effects. In addition to determining between-group differences in
brain morphometry VBM is often applied to examine associa-
tions between variations in biological variables and GMV.
Associations between age and variations in GMV are, for
instance, commonly interpreted in terms of age-related brain
changes. To examine how the different pipelines affect the results
of association studies—specifically the identification of regions
that undergo age-related changes—we examined differences
between the pipelines with respect to determining age-related
volumetric changes in a regression approach. Using parametric

statistics (cluster-level pFWE < 0.05 threshold), all pipelines
revealed GMV decreases with age. However, the overlap between
all pipelines was only observed in the middle occipital gyrus
(Fig. 4a and Table 2). Further inspection revealed that FSLANAT
had rather a low overlap with the other pipelines, whereas the
other three pipelines additionally identified common age-related
decreases in medial prefrontal, cingulate, and some parietal and
temporal regions (Fig. 4a). In contrast, age-related increases were
only observed in two pipelines (FSLVBM and sMRIPrep) with
minimal overlap in the cerebellum (3.41% overlap, Fig. 4a and
Table 2). In general, the results showed a high variability with
respect to both, the direction (FSLVBM and sMRIPrep) and the
extent of the age-related effect (sMRIPrep). For nonparametric
statistics with TFCE pFWE < 0.05, the results were very similar to
parametric statistics, particularly for brain regions that decreased
with age (Fig. S4b and Table 2, details please see Supplemental
Results).

Further examining the spatial similarity of the age-related
GMV association maps by means of computing correlations
between unthresholded statistical maps across four pipelines
revealed variations in age-related effects ranging from −0.0051 to
0.6757 (Fig. 4b). The lowest similarity values indicated that

Fig. 4 Univariate and multivariate analyses with respect to age-related GMV changes. a Results displaying the overlap between pipelines at a cluster-
level pFWE < 0.05 with initial cluster forming voxel level p < 0.001. The left panels of a depict brain regions with increasing GMV with age. The right panels
of a depict decreases with age. For a and d the pipelines are coded as: red=CAT, green= FSLVBM, blue= FSLANAT, light blue= sMRIPrep, additional
colors visualize the overlap between the results, e.g., CAT ∩ FSLVBM= yellow, CAT ∩ FSLANAT= purple, FSLVBM ∩ FSLANAT= light blue,
CAT ∩ FSLVBM ∩ FSLANAT=white and etc. b The variability of unthresholded statistical maps. The correlation values between whole-brain
unthresholded statistical maps of four pipelines were computed, respectively, for age-related effects. Only positive values are visualized for display
purpose. c Reliable brain patterns to predict age determined by bootstrapping tests (5000 permutations, pFDR < 0.05), and d cross-predicted r value of four
pipelines for each of the pipeline proprocessed samples. The color from cold to warm indicates increasing r values (from 0.8 to 1).
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FSLANAT produced very different maps for age-related changes
as compared to the other pipelines and that CAT was rather
different from the FSLVBM processing pipelines. CAT and
sMRIPrep had the highest similarity with respect to the
unthresholded maps. In line with the overlap results (Table 2),
a considerable proportion of the variance between pipelines was
introduced by the results from FSLANAT.

Prediction approach: age-related effects from multivariate
pattern analysis. Multivariate prediction models are increasingly
applied to GMV maps to determine the actual age or ‘brain age’
based on brain structure. We therefore further explored the extent
to which the choice of processing pipeline would affect prediction
accuracy as well as the regions that contribute most to the pre-
diction. To this end, we trained a support vector regression (SVR)
model to predict age based on GMV maps. Given the lack of a
suitable independent test dataset, we employed a cross-validation
approach to evaluate the effects of pipelines by quantifying the
correlation strengths between predicted and true age for within-
and between-pipelines. With respect to the spatial overlap of
pattern expressions from the four pipelines, overlapping regions
were mainly located in the bilateral pallidum, bilateral thalamus,
and parahippocampal gyrus (voxels of each cluster >5, Fig. 4c).
Considerable spatial variations became apparent (Table S11), for
instance, FSLANAT revealed high predictive weight for regions in
the putamen, hippocampus, hypothalamus, brainstem, medial
frontal cortex, middle temporal gyrus, middle frontal gyrus, and
insula, while data processed with FSLVBM suggested that post-
central gyrus, superior frontal gyrus, superior temporal gyrus, and
cerebellum strongly contributed to the prediction. Despite
marked differences in the spatial distribution, an accurate pre-
diction of age was possible based on data from all pipelines, as
reflected by high correlations between the predicted and true age
(all r values >0.8, Fig. 4d).

Exploring the effects of the template and spatial similarity
outliers. To address the effects of the template and quality
assessment after spatial normalization, we included the following
two-step approach. First, we reprocessed the data using the same
brain template across pipelines. Given that the FSL-based pipe-
lines and sMRIPrep employed study-specific templates, we
employed the template from CAT across all pipelines (CAT

template IXI555_MNI152). Second, we employed an assessment
of sample homogeneity (inter-participant spatial similarity)
within each pipeline as a quality assessment strategy and excluded
images with low quality (details see Supplemental Results,
Table S14). An identical strategy for quality assessment is
employed by CAT, for example. Next, we implemented additional
analyses to explore the effects of the template and quality
assessment on between-pipeline variability in terms of sex dif-
ferences and age associations, as well as a direct statistical com-
parison between pipelines on the voxel level.

After using the same template across pipelines, differences
between sex and age effects (Fig. S5) as well as the direct statistical
comparison (Figs. S6 and S7) remained stable. The variability
between the pipelines remained robust after controlling for the
potential effects of different TIV estimation approaches by means
of aligning both template and TIV calculation across pipelines
(Fig. S8). Furthermore, after controlling the template and
excluding images that did not pass quality control (low spatial
similarity images), results for both analyses changed considerably
(Fig. S9), suggesting a strong effect of sample homogeneity.
However, although between-pipeline variability could be reduced
by means of template and quality control, considerable variability
remained across pipelines (details see Supplemental Results,
Tables S15 and S16).

Discussion
VBM is among the most commonly employed approaches for
examining regional differences or variations in brain structure in
fundamental neuroscience and psychiatric neuroimaging. We
here examined the variability of VBM results across commonly
used software packages and pipelines. Additionally, we examined
how the choice of the processing pipeline influences results in
terms of the identified brain regions in two prototypical VBM
study scenarios examining GMV between-group differences (sex
differences) or linear associations (age-related changes). To this
end, data from two independent datasets were processed with the
recommended default options in widely used VBM analysis
packages (CAT12, FSL, and sMRIPrep) or pipelines (FSLANAT,
FSLVBM), respectively. Examining spatial similarity between the
preprocessed data revealed marked differences in the voxel-level
spatial distribution of GMV across the pipelines as well as with
respect to the spatial homogeneity of participants’ data within the

Table 2 Percent overlap of age-associated GMV changes between the pipelines.

Positive association Negative association

Parametrica Nonparametricb Parametric Nonparametric

CAT (unique) — 0.52% 21.58% 14.35%
FSLVBM (unique) 92.6% 96.37% 1.05% 1.2%
FSLANAT (unique) — — — —
sMRIPrep (unique) 3.98% 1.87% 4.01% 4.25%
CAT ∩ FSLVBM — — 0.69% 0.77%
CAT ∩ FSLANAT — — — —
CAT ∩ sMRIPrep — — 53.77% 56.62%
FSLVBM ∩ FSLANAT — — — —
FSLVBM ∩ sMRIPrep 3.41% 1.23% 0.9% 1.05%
FSLANAT ∩ sMRIPrep — — 0.003% 0.003%
CAT ∩ FSLVBM ∩ FSLANAT — — — —
CAT ∩ FSLVBM ∩ sMRIPrep — — 17.95% 21.67%
CAT ∩ FSLANAT ∩ sMRIPrep — — 0.05% 0.07%
FSLVBM ∩ FSLANAT ∩ sMRIPrep — — — 0.0001%
CAT ∩ FSLVBM ∩ FSLANAT ∩ sMRIPrep — — 0.002% 0.02%

aCluster-level pFWE < 0.05.
bTFCE pFWE < 0.05.
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pipelines. Both, voxel-level and image-based replicability analyses
revealed consistently poor replicability between pipelines, con-
firming considerable variations in the estimation of regional
GMV. We next examined how different processing pipelines
would impact the determination of GMV variations in two typical
mass-univariate analytic scenarios examining between-group
differences (sex differences) and associations with phenotypic
variations (age associations). While some overlap in the identified
regions was found across parametric and nonparametric correc-
tion procedures, there were considerable variations in both GMV
sex differences and age associations, reflecting that the choice of
software has a strong impact on the regions identified. In addition
to mass-univariate methods, machine-learning-based approaches
were applied to explore general associations between subtle spa-
tial variations in GMV and the two biological variables of sex and
age. Although the regional overlap of the most predictive voxels
between the pipelines was low, GMV maps processed with each
pipeline generally allowed an accurate prediction of the biological
variables. Prediction accuracy varied within- and between-
pipelines suggesting that the choice of processing software
influences multivariate prediction accuracy. Together, the find-
ings indicate considerable variability in the results obtained and
that the choice of processing pipeline will considerably influence
which regions are identified in VBM analyses. This, in turn, will
strongly influence the interpretation of the findings in terms of
e.g., ‘which brain regions differ between men and women’ or
‘which brain regions show age-related declines in volume’. On the
other hand, the high predictive accuracy for sex and age indicates
that all GMV maps encoded biologically significant variations,
although region-specific interpretations need to be considered
with caution.

In the first step, we examined the spatial variability and
replicability of the preprocessed GMV images between the
pipelines. For a biological valid and robust index that reflects
regional variations in the gray matter one would expect a high
spatial homogeneity as well as replicability across pipelines.
However, the spatial similarity analyses revealed considerable
variations between the pipelines as well as within them. Extensive
variability existed both within- and between-pipelines, but nota-
bly, the samples preprocessed with CAT exhibited a higher
within-participant homogeneity compared to other pipelines
(Figs. S2 and S3). These findings suggest that the choice of the
pipeline has a considerable influence on the spatial distribution of
GMV variations and additionally influences how much individual
variation is retained after preprocessing of the data. Examination
of the between-pipeline replicability revealed a generally poor
consistency, reflecting low inter-pipeline replicability, with the
additional voxel-level replicability examination suggesting some
regional variations with particularly low consistency between the
pipelines in parietal and frontal cortices (Fig. 2, Table S10). In
addition, high variability between the example datasets in the
present study was observed (e.g., reflected by inconsistent ICC
maps and pipeline performances between dataset 1 and dataset
2). This may reflect the potential influence of different acquisition
protocols, MRI systems, and population characteristics, and
suggests complex interactions between these factors and the
specific preprocessing pipeline. Future multi-center studies and
mega-analyses pooling data from different centers are required to
carefully evaluate these complex interactions33.

Our second main aim was to examine how the choice of
pipeline and implementation of the pipeline-specific default
configuration would affect the results of a typical VBM study.
With respect to GMV variations and biological factors, sex and
age have been extensively examined in previous studies. Although
the specific regions that exhibit GMV differences between men
and women differ between studies, region-specific differences are

commonly interpreted to underlie sex differences in cognitive and
emotional functions associated with them8–10. Similarly, previous
findings on region-specific GMV changes with age revealed
inconsistent results28,29—even with strongly increasing sample
sizes9,10,37,38. Age-associated changes in GMV are commonly
interpreted in terms of atrophic changes that mediate specific
emotional and cognitive changes with age. In contrast, the present
findings indicate that the specific regions exhibiting sex differ-
ences or age-related changes strongly depend on the choice of the
processing pipeline. For instance, after controlling for the influ-
ence of statistical inference (same statistical software, see also the
similarity of unthresholded maps, Figs. 3 and 4) and sample or
scanner differences (the same dataset was used across pipelines),
only a few—or in the case of sex differences even no (Fig. 3a,
Table 1)—overlapping regions were identified. Moreover, for
identified GMV sex differences no three pipelines overlapped
more than 20 percent, which also reflected the high regional
variations. For instance, after processing with CAT, results would
indicate higher GM volume in men in limbic regions typically
associated with emotional processes or spatial navigation,
whereas results for the FSL-based pipeline would indicate GMV
sex differences in posterior parietal regions typically associated
with attention or motor integration. With respect to age-related
changes, the pipelines revealed some overlapping regional GMV
decreases in the middle occipital gyrus, although this was gen-
erally small (0.002% and 0.02% corresponding to parametric and
nonparametric statistics, respectively, Figs. 4a, S4, Table 2). In
general, the location, extent, and direction of age-related GMV
changes differed considerably between the pipelines. For instance,
while analysis with CAT revealed widespread age-related GMV
decline in nearly the entire cortex, FSLANAT revealed instead
regional-specific decreases in inferior frontal regions, while
FSLVBM revealed regional-specific age-related GMV increases in
cerebellar and limbic regions. In line with a recent study exam-
ining the influence of pipelines on functional brain activation
results34, we additionally examined spatial correlations between
the unthresholded statistical maps. However, although this pre-
vious study reported a considerable overlap of the unthresholded
functional maps34, cross-pipeline overlap for the GMV maps in
the present study was rather low (Figs. 3 and 4), implying that the
impact of pipeline additionally varies depending upon the brain
modality under investigation.

In addition to mass-univariate analyses, machine-learning-
based approaches were employed to investigate sex differences
and age-related effects from a functional and general biological
validity perspective39,40. Briefly, the basic idea is that some fea-
tures which can be derived from the GMV maps significantly
contribute to the accurate prediction of the biological variables
age and sex. Notably, based on all GMV maps, reliable features
for an accurate prediction of the biological variables could be
extracted (e.g., for age all correlations >0.8, Fig. 4d, for sex clas-
sifiers, higher than chance level, Figs. 3e and S10). These results
suggest that all pipelines retained biologically and functionally
relevant information. However, further examination of the spatial
distribution of the most predictive voxels revealed considerable
variations across the four pipelines, similar to the mass-univariate
analyses (Figs. 3d and 4c, Table S11). For instance, the application
of CAT processed data to develop sex classifiers would have
emphasized the region-specific contribution of the putamen,
hippocampus, middle cingulate cortex, and angular gyrus, while
FSLANAT would have indicated that a widely distributed pattern
allowed successful sex classification. Finally, the preprocessing
pipeline had a significant effect on prediction accuracy and pre-
diction effect sizes, such that, depending on the pipeline, our sex
classifiers reached 70–94% classification accuracy in an inde-
pendent dataset. This indicates that the processing pipeline can
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have a considerable effect on the sensitivity and specificity of
multivariate predictive signatures.

The impact of a number of potential sources of variability was
further explored, i.e., template, TIV, and data quality effects. Our
findings suggest that all of these factors contribute to the variability,
but even after aligning these factors, considerable differences
between the pipelines were observed. Future studies should thus
consider employing standardized procedures for these factors (e.g.,
replication with standardized templates, TIV, and thorough data
quality checks, in particular, homogeneity estimates).

The largest variations were observed between CAT and the other
pipelines and remained stable after controlling some sources of
variability such as template and TIV effects. The marked differ-
ences may reflect that the other three pipelines were based on FSL
or incorporated FSL-based modules (the modular in-house pipe-
line implemented in sMRIPrep incorporated FSL functions for
spatial normalization and modulation), whereas CAT employs
distinct routines. For instance, CAT uses the unified segmentation
from SPM for initial registration, and next optimizes segmentation
with other extended options. This may promote more homogenous
GMV processed images and have contributed to both, the higher
homogeneity within the datasets processed by CAT as well as the
marked between-pipeline differences between CAT and the other
pipelines. In addition, the FSL-based pipelines create and employ
study-specific templates for normalization, whereas CAT uses a
prespecified template. The variability introduced by the computa-
tion of a study-specific template might further amplify the differ-
ences between the pipelines. While variability between the pipelines
remained stable after employing the same template in both uni-
variate and multivariate analyses (see supplements), we cannot rule
out that differences in normalization templates may lead to
variability in pathological samples with brain structural alterations.
With respect to multivariate analyses we also observed variations
between the pipelines; for instance, even with a constant template
the sMRIPrep pipeline data yielded only a comparably low pre-
dictive accuracy which may reflect low internal consistency in
dataset 1 when processed by the sMRIPrep pipeline (see Fig. S3).
Finally, CAT and FSL recommend different strategies to modulate
data, i.e., affine+ nonlinear and nonlinear only modulation, which
may have led to variability between the pipelines. The exact
influence of the modulation has been examined in previous studies
for within-pipeline scenarios see e.g., refs. 41,42.

Our findings challenge the reproducibility as well as biological
and functional interpretability of regional GMV variations as
determined by VBM. The choice of software had a considerable
impact on the regional variation of GMV on the voxel level,
which is difficult to reconcile with a biologically valid index.
Moreover, regions that were found to exhibit sex differences or
age-related GMV changes differed strongly depending on the
pipeline employed. The high variability in regions identified
would have led to a rather different functional interpretation of
sex differences (e.g., Fig. 3c) as well as atrophic changes with age
and potential functional consequences. In contrast, multivariate
analyses accurately predicted age and gender with classifiers
trained on GMV maps from all pipelines; however, the specific
predictive regions differed. Together, these findings indicate that
GMV indices encode biologically relevant information, yet the
interpretation of specific regions in both univariate, as well as
multivariate analyses, will, to a large extent, be pipeline-
dependent. In the context of the replicability crisis, meta-
analyses of neuroimaging data are considered the gold stan-
dard, but our current findings indicate that coordinate-based
meta-analyses may also need to account for regional variability
between studies introduced by the use of different pipelines.

The present findings emphasize the need for detailed reporting
of the software specifications and configurations, which is also

advocated by the Committee on Best Practices in Data Analysis
and Sharing (COBIDAS) report43. However, the fact that the
pipelines with recommended default configurations revealed
considerably different GMV results indicates that further efforts
are needed to promote the development of robust and repro-
ducible GMV-based biomarkers34,44,45. Potential initial steps are
open cooperation and replicability analyses across software plat-
forms and pipelines, open software platforms that allow com-
parisons and standardization of methods across platforms, and a
transparent and detailed processing report that should accom-
pany manuscript submissions (e.g., as provided by sMRIPrep and
fMRIPrep). Further analyses exploring the effects of normal-
ization template, TIV calculation, and data quality in terms of
sample homogeneity revealed that between-pipeline variability
remained robust when aligning template and TIV across pipe-
lines. In contrast, quality control of the preprocessed images by
means of excluding images with low spatial similarity reduced
between-pipeline variability to some extent. These findings imply
that improving data homogeneity may improve replicability
across pipelines. However, depending on the pipeline, different
images were excluded based on the sample homogeneity. More-
over, the lack of a gold standard for analytic flexibility in neu-
roimaging meta-analysis and the lack of ground truth for VBM
indices limits comparison between pipelines. For instance, pipe-
lines may exhibit high within-pipeline replicability; however, the
current work does not allow us to specify which of the identified
regions represent true positive results. Despite this limitation, the
present work demonstrates that the choice of a specific VBM
pipeline will strongly influence the results obtained for the same
research question. To further determine true positives and the
biological plausibility of the VBM technique will require bench-
marking with clear biological indices from animal models, post-
mortem brain indices, or invasive approaches. Finally, although
the present study mainly focuses on the initial examination of
variability introduced by the different VBM pipelines, a number
of recent studies examined within-pipeline reliability for brain
structural measures, including VBM, across different
timepoints46–49. These studies generally reported good to excel-
lent within-pipeline VBM reliability, although it was influenced
by participant characteristics such as sex or the presence of a
disorder. A recent study examined between-pipeline variability
for functional MRI and employed a densely sampled test-retest
dataset for evaluation50, an approach that would allow the
identification of interactions between-pipeline variability and
repeated assessments in future studies on VBM. In addition,
although the different software packages refer to general pre-
processing steps such as “segmentation” or “spatial normal-
ization”, details in the implementation may lead to highly variable
results. It will be necessary to explore automatic quality control
tools and establish an overarching and modular workflow to
enhance robustness of VBM analyses.

The present study demonstrated considerable variations in
GMV indices and corresponding results across the most com-
monly used processing pipelines for VBM. The combination of
mass-univariate analyses and machine-learning-based multi-
variate approaches revealed that the specific regions identified to
exhibit GMV sex-differences or age-related changes varied
strongly depending on the software chosen. While multivariate
prediction of sex and age was possible across pipelines, prediction
accuracy varied strongly between them. Together, these findings
challenge the interpretability and robustness of VBM results.

Methods
Datasets. Dataset 1 included T1-weighted anatomical data from 200 healthy
Chinese participants aged 18–26 years old (mean= 21.45 years old, SD= 2.18; 100
females and 100 males matched for age; sample details see also Liu, et al.51). This
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dataset served to determine variations across the four analytic pipelines with
respect to determining gray matter differences in between-subject designs using the
example of sex differences.

Dataset 2 included 494 healthy Chinese participants aged 19–80 years
(mean= 45.18 years, SD= 17.44, 187 males) from an openly available dataset
(SALD) encompassing T1-weighted anatomical and resting-state functional MRI
data (details please see ref. 52). This dataset served to determine variations between
the software packages with respect to linear associations between biological indices
and GMV with the example of age-related changes. For detailed structural MRI
acquisition parameters, please see Supplemental Methods.

Data quality control. First, we inspected apparent artifacts and image quality by
visual inspection, which confirmed high image quality. Second, automated quality
assessment by the MRIQC toolbox (https://mriqc.readthedocs.io/)53 was employed
to further evaluate raw data quality, including signal-to-noise ratio (SNR), fore-
ground to background energy ratio (FBER), percent of artefact voxels (Qi1) (details
and results see Supplemental Material Figs. S11 and S12 and Wei et al.52). Third,
the CAT12.7 (r1720) (http://www.neuro.uni-jena.de/cat/) quality assurance (QA)
framework for empirical quantification of quality differences across scans and
studies were applied. This retrospective QA allows the evaluation of essential image
parameters such as noise, inhomogeneities, and image resolution which can be
integrated into a single quality index (dataset 1: mean= 81.68, SD= 1.61,
range= 73.48–84.48; dataset 2: mean= 84.51, SD= 1.27, range= 76.9–86.24;
scores >70 indicates satisfactory to excellent image quality). Thus, all data passed
the quality control procedure.

Preprocessing pipelines. VBM analyses commonly write out two types of
structural indices, referred to as volume and concentration, depending on whether
a modulation step is employed or not37,54,55. In line with the advantages of, and
wider use of, modulated images (volume), all subsequent analyses focused on
modulated data.

With respect to the preprocessing pipelines we established four separate
preprocessing pipelines. These pipelines implemented a voxel-wise estimation of
local GMV. Given that the primary aim of our study was to examine variability
introduced by the use of commonly used VBM pipelines, the four pipelines were
set up according to the default or recommended configurations in the respective
manuals of the software packages (Fig. 1). One pipeline was based on CAT12.7
(r1720) (http://www.neuro.uni-jena.de/cat/) (CAT); two pipelines were based on
FSL v6.0 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL, Smith et al.56, Jenkinson et al.57)
(FSLVBM and FSLANAT, respectively); and one pipeline included modules from
different software packages and was based on sMRIPrep 0.6.2 (Esteban et al.58,
RRID:SCR_016216, https://www.nipreps.org/smriprep/) (sMRIPrep).

The CAT pipeline was implemented in CAT12.7 running on SPM12 v7219
(Welcome Department of Cognitive Neurology, London, UK, https://www.fil.ion.
ucl.ac.uk/spm/software/spm12/). Standard VBM preprocessing protocols of CAT12
as outlined in the CAT12.7 manual were employed in the pipeline. Briefly, the T1-
weighted images were bias-corrected, segmented into gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF) using SPM’s unified segmentation
function for segmentation and initial registration, with additional optimization of
the segmentation (e.g. using local adaptive segmentation and adaptive maximum a
posterior segmentation) and spatially normalized to the standard Montreal
Neurological Institute (MNI) space using the ICBM-152 template (East Asian,
additional results obtained with the Caucasian template did not affect the results,
see supplements Fig. S13) with a voxel size of 2 × 2 × 2 mm. GM images were
smoothed with three Gaussian kernels with commonly used smoothing kernels (8,
10, and 12 mm) at full width at half maximum (FWHM) for subsequent statistical
analysis and total intracranial volume (TIV) was estimated to correct for individual
differences in brain size. Default parameters were applied unless indicated
otherwise.

Two different default preprocessing pipelines were established in FSL56,57: (1)
FSLVBM (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM), and (2) FSLANAT
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat). The FSLVBM default pipeline
included the following four steps: First, non-brain tissue was removed using BET
(fslvbm_1_bet). Second (fslvbm_2_template), tissue-type segmentation was
conducted via the Automated Segmentation Tool (FAST), to segment the images
into GM, WM, and CSF. Third, the outcomes were non-linearly registered to the
GM ICBM-152 template using the registration tool FNIRT, then creating a study-
specific template. Finally, the GM images were non-linearly registered to the study-
specific template using FNIRT (fslvbm_3_proc). In contrast, FSLANAT is a general
pipeline for processing anatomical images encompassing the following steps
(fsl_anat). Of note, the processing order is different from FSLVBM, and the final
outcomes are segmented data in the native space. First, all T1-weighted images
were reorientated to the standard MNI orientation (fslreorient2std) and
automatically cropped (robustfov). Second, bias-field correction for RF/B1-
inhomogeneity-correction (FAST) was done. Third, the pipeline did brain-
extraction (BET) and tissue-type segmentation (FAST). The calculation of TIV for
both FSLANAT and FSLVBM adhered to the protocols provided by the ENIGMA
project (http://enigma.ini.usc.edu/protocols/imaging-protocols/protocol-for-brain-
and-intracranial-volumes/#fsl).

sMRIPrep 0.6.2 (Esteban, et al.58, RRID:SCR_016216, https://www.nipreps.org/
smriprep/) is a structural MRI data preprocessing pipeline designed to provide an
easily accessible, state-of-the-art interface that is robust to variations in scan
acquisition protocols and that requires minimal user input, while providing easily
interpretable and comprehensive error and output reporting. The workflow is
based on Nipype 1.5.0 (Gorgolewski, et al.59, RRID:SCR_002502). A similar
workflow is also used in fMRIPrep anatomical preprocessing workflow (Esteban,
et al.58, https://fmriprep.org/). In the present study, the T1-weighted (T1w) image
was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection60,
distributed with ANTs 2.2.0 (Avants et al.61, RRID:SCR_004757), and used as T1w-
reference throughout the workflow. The T1w-reference was then skull-stripped
with a Nipype implementation of the antsBrainExtraction.sh workflow (from
ANTs), using OASIS30ANTs as the target template. Brain tissue segmentation of
CSF, WM, and GM was performed on the brain-extracted T1w using fast (FSL
5.0.9, RRID:SCR_002823, Zhang et al.62). Considering no TIV estimation is
provided by sMRIPrep, the corresponding brain size for the analysis was computed
by summarizing the tissue types (GM+WM+ CSF).

To reduce further variability induced by spatial normalization the FSLANAT,
FSLVBM, and sMRIPrep pipelines used the same normalization. In detail,
sMRIPrep and FSLANAT were mainly used for segmenting GM, WM, and CSF
data, and the data next was integrated into the FSLVBM pipeline. For the
processing in these pipelines we thus excluded the initial brain-extraction
(fslvbm_1_bet) and segmentation (first part of fslvbm_2_template) stages and
subjected the segmented GM outcomes (in native space) to fslvbm_2_template and
fslvbm_3_proc to produce modulated GM data.

To keep preprocessing consistent within each platform the fslmaths function
was used to smooth FSL processed data (FSLVBM, FSLANAT, and sMRIPrep)
with comparable smoothing kernels (sigma= 3.5, 4.3, 5.2, approximately
corresponding to FWHM—3.5 × 2.3= 8.05 ≈ 8, 4.3 × 2.3= 9.89 ≈ 10, and
5.2 × 2.3= 11.96 ≈ 12) as the CAT data. For the CAT preprocessing, SPM
smoothing was conducted with FWHM= 8, 10, and 12, respectively.

In summarizing, according to the functions used to process the data, the four
pipelines could be divided into three FSL-based (FSLANAT, FSLVBM, and
sMRIPrep which employ the segmentation, FAST, function from FSL) and on
CAT-based pipelines. Within the FSL-based pipelines the FSLVBM employed
further processing after segmentation while FSLANAT employed a different order
of the processing steps. The sMRIPrep pipeline represents an in-house pipeline
based on different neuroimaging packages, including FSL, Nipype, ANTs and etc.
CAT employed functionally similar steps such as bias correction, segmentation,
spatial normalization, smoothing, and modulation, yet these steps were based on
CAT-specific rather than FSL-based processing approaches. Moreover, CAT
incorporates additional steps such as the unified segmentation implemented by
SPM12, and further optimization steps such as denoising. The different processing
steps and functions may introduce variability in data preprocessing and statistical
results. Of note, our main focus was to determine differences that can result from
the application of the default or recommended processing steps within the different
pipelines rather than specifically segregating the technical details that lead to the
variability.

Spatial similarity. Pearson’s correlation coefficients were employed to compute
the spatial similarity of the modulated GM maps of the preprocessed data from the
four pipelines for dataset 1 (male and female) and dataset 2, and at different
smoothing kernels (see Fig. S2). Spatial similarity maps across the processing
pipelines were established to show its distribution (Fig. S2) and revealed highly
similar patterns across the unsmoothed data and data processed with three dif-
ferent smoothing kernels (FWHM 8, 10, and 12). Further statistical analyses
therefore focused on the z-transformed r values of the FWHM 8 smoothed data.
Examination of the spatial similarity within-pipeline similarities by means of
ANOVA models revealed a significant main effect of pipeline, in particular, a high
spatial similarity within the data processed by the CAT pipeline and a high var-
iation between pipelines (Fig. S3, unsmoothed data see Fig. S14) for both dataset 1
and 2 (Bonferroni corrected p < 0.01).

Replicability. Replicability across pipelines was evaluated using two approaches:
(1) voxel-level univariate replicability was examined using the intraclass correlation
coefficient (ICC) implemented by a linear mixed model in DPABI63, see supple-
mental material, and (2) whole-brain multivariate replicability, using the image
intraclass correlation coefficient (I2C2), which represents a multivariate image
measurement error model5. ICC (ICC (3,1) with linear mixed models as used in the
current study) and I2C2 can estimate the consistency between the different pipe-
lines on the voxel or whole-brain level, respectively5,64. The replicability between
the pipelines as assessed by the coefficient is commonly interpreted as follows: <0.4
poor; 0.4–0.59 fair; 0.60–0.74 good; >0.74 excellent64–66.

Univariate analyses. To account for potential interactions between preprocessing
and inferential statistical procedures, all univariate analyses in the current study
were conducted in SPM12 and across different multiple comparisons corrections.
The analyses including conventional statistical parameter tests (threshold at voxel
level p < 0.001, and cluster-level pFWE < 0.05 with initial cluster forming voxel level
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p < 0.001 respectively) as well as threshold-free cluster enhancement (TFCE with
5,000 permutations, threshold at p < 0.001, and pFWE < 0.05, respectively). For
completeness, the uncorrected voxel-level results (p < 0.001 and TFCE p < 0.001)
are provided in Supplemental Material Figs. S15 and S16, and results after
excluding template effect and TIV calculation in Fig. S17.

Between-group difference approach: sex differences in univariate analyses.
Independent sample t-tests were employed to determine significant differences in
regional gray matter volume between men and women. Age and TIV were included
in the models as recommended for VBM analyses to control for age- and global
brain size-related variations.

Association approach: age-related changes in univariate analyses. Multiple
linear regression models were employed to explore associations between age and
regional GMV, including sex and TIV as covariates.

Multivariate pattern analysis approach: prediction of sex and age. State of the
art machine-learning framework in neuroimaging40 was adopted to explore whe-
ther the use of the different pipelines will affect the prediction accuracy of sex and
age by means of distributed brain structural variations (GMV maps). For the
categorical prediction (sex), the 200 healthy participants from dataset 1 were
divided into two sex- and age-matched independent samples, which served as
training and test datasets, respectively. A support vector machine (SVM, C= 1)
was employed to develop an MVPA-based sex classifier. The SVM was trained on
the training data (n= 100) with a bootstrapping test to find stable features (5000
permutations, pFDR < 0.05). Next, these features were used to train the model by
means of five-fold cross-validation. The resulting patterns were subsequently tested
in the independent test sample (n= 100) to determine within- and between-
pipeline prediction accuracy for sex. To estimate the effect size of each classification
Cohen’s d for between-subject designs was employed67. For prediction of a con-
tinuous variable (age) a support vector regression (SVR, epsilon= 0.1, C= 1)
model was trained on dataset 2. A bootstrapping test (5000 permutations,
pFDR < 0.05) was used to find stable features. These features and a five-fold cross-
validation were applied to train the model. Prediction performance was next
quantified by evaluation of correlation strengths between predicted and true age for
within- and between-pipelines. Stable predicted performance after excluding
template effect and stable predicted patterns were also provided in Figs. S18 and
S19.

Of note, the aim of the MVPA was not to determine an optimized algorithm or
feature set to predict sex or age but rather to determine whether different
processing pipelines affect prediction accuracy and whether the GMV maps
generally encode biologically meaningful information.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Unthresholded statistical maps and pattern weight images are available onOSF (https://
osf.io/p5b6f/). Dataset 2 is available for download in an Amazon Web Services S3 bucket
from the International Data-sharing Initiative (http://fcon_1000.projects.nitrc.org/indi/
s3/index.html) under a Creative Commons License: Attribution Non-Commercial. Other
data can be obtained from the corresponding authors upon reasonable request.
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