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Cancer cell histone density links global histone
acetylation, mitochondrial proteome and histone
acetylase inhibitor sensitivity
Christopher Bruhn 1,3✉, Giulia Bastianello 1,2 & Marco Foiani 1,2✉

Chromatin metabolism is frequently altered in cancer cells and facilitates cancer develop-

ment. While cancer cells produce large amounts of histones, the protein component of

chromatin packaging, during replication, the potential impact of histone density on cancer

biology has not been studied systematically. Here, we show that altered histone density

affects global histone acetylation, histone deactylase inhibitor sensitivity and altered mito-

chondrial proteome composition. We present estimates of nuclear histone densities in 373

cancer cell lines, based on Cancer Cell Line Encyclopedia data, and we show that a known

histone regulator, HMGB1, is linked to histone density aberrations in many cancer cell lines.

We further identify an E3 ubiquitin ligase interactor, DCAF6, and a mitochondrial respiratory

chain assembly factor, CHCHD4, as histone modulators. As systematic characterization of

histone density aberrations in cancer cell lines, this study provides approaches and resources

to investigate the impact of histone density on cancer biology.
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DNA is wrapped around histones to establish nucleosomes
as basic packaging unit1. A nucleosome contains two
copies of each core histone (H2A, H2B, H3, H4).

Nucleosomes are dynamic structures which are disassembled and
displaced to grant access to naked DNA during replication,
transcription and DNA damage repair2. Nucleosome density and
histone-DNA interaction influence the efficiency of these pro-
cesses and are tightly regulated by chromatin assembly factors,
chromatin remodellers and histone modifiers3,4. Nucleosome
assembly requires an adequate supply of histone proteins. The
dosage of histones, which is the amount of histones in relation to
chomatin assembly factors and DNA, can affect nucleosome
assembly and density, and thereby impact on chromatin
structure5.

The histone landscape in humans is complex6: while there is
only one histone H4 protein, diverse variants exist for H2A, H2B
and H3. These histone variants can be categorized as replication-
dependent (canonical) variants, which constitute the major
fraction of histones and are produced mainly during S phase, and
replication-independent (non-canonical) variants, which are also
expressed outside of S phase. Most replication-dependent histone
variants are encoded by multiple genes, which are organized in
large, coordinately regulated clusters7. The expression of these
clusters is driven by the transcription factors NPAT, Oct-1 and
HiNF-1, together with the co-activators TRRAP and Tip608. The
cyclin-dependent kinase 2 (Cdk2) cyclin E complex phosphor-
ylates and activates NPAT at the onset of S phase and thereby
boosts histone gene transcription9. The high copy number of
histone genes facilitates sufficient expression to support chro-
matin assembly during DNA replication. Replication-dependent
and -independent histone mRNAs are further regulated at the
level of translation and turnover: as for most mRNAs, the stability
and translation of replication-independent histone mRNAs is
controlled by their 3‘ polyadenylated (polyA) tail10. In contrast,
replication-dependent histone mRNAs have a 3‘ stem-loop
structure instead of the polyA tail, which promotes efficient
mRNA translation11 and facilitates mRNA degradation upon
completion of DNA replication12. Histone protein levels are
controlled by a variety of degradation mechanisms, including
protease cleavage, the autophagy-lysosome system, and the pro-
teasome complex13. Chromatin structure and DNA metabolism
can potently influence histone dosage. The most striking example
is the high-mobility group protein B1 (HMGB1), one of the most
abundant chromatin components14, loss of which is associated
with a global histone dosage reduction by 20%5. The DNA
damage response signaling network further controls histone gene
expression15,16, mRNA stability12 and protein turnover17 to
adjust histone dosage during DNA synthesis, replication stress
response and DNA repair.

The maintenance of adequate chromatin structure is critical for
cell identity18. Altered chromatin remodelling, chromatin mod-
ification and histone proteins frequently occur in cancers, and
several of the associated chromatin changes are known to drive
cancer development19. Histone dosage is elevated in some cancer
cell lines, where it increases nucleosome occupancy20. However,
in contrast to the above chromatin processes, the link between
histone dosage and cancer biology is not well explored. Elevated
histone dosage may provide a survival advantage for cancer cells
by facilitating high histone supply during DNA replication, and
by protecting the DNA from damaging agents20; however,
excessively high histone levels have various documented adverse
effects, including unspecific nucleic acid binding, inhibition of
enzyme activities and interference with metabolic pathways16,21.
Currently there are two major limitations in understanding
whether histones dosage plays a role in cancer development. First,
we are lacking a systematic characterization of histone dosage

across widely used cancer models. The underlying histone
quantification would need to be highly accurate because small
changes in histone dosage (20% and less) are sufficient to affect
nucleosome biology. Variations in DNA content and nuclear-to-
cytoplasm ratio further complicate a meaningful definition of
histone dosage by raising the question of the ideal quantification
and normalization procedures. Second, in spite of the large
number of characterized histone regulators, only little is known
about potential alterations in histone regulators that have an
actual impact on steady state histone levels in cancer, as in the
case of HMGB1.

Most commonly used cancer cell lines have been characterized
by the Cancer Cell Line Encyclopedia (CCLE) project at the level
of genome, transcriptome, proteome, metabolome, genetic
dependencies and drug sensitivities22. The CCLE datasets are a
valuable resource to investigate regulatory mechanisms in silico.
The large number of included cell lines provides many examples
in which a gene or protein of interest shows particularly high or
low expression, and thereby allows a statistical analysis of bio-
logical features that are associated with its expression23,24.

Here, we explore the phenomenon of naturally occurring his-
tone density variation in cancer using CCLE resources. We
classify CCLE cancer cell lines by histone density, describe his-
tone density-associated molecular signatures and drug responses
and identify bona fide histone modulators.

Results
Histone level prediction in cancer cell lines based on pro-
teomics data. Aberrant histone levels have been reported for
several cancer cell lines, in comparison with non-transformed
cells20. We decided to systematically investigate the phenomenon
of histone dosage in cancer cells. The Cancer Cell Line Ency-
clopedia (CCLE) project characterized more than 1300 cancer cell
lines by RNA-Seq22 and 375 by global proteomics25 and hence
provides the largest available resource for such systematic ana-
lysis. The datasets covered 15 core histone protein variants (H2A,
H2B, H3, H4), which were encoded by 43 mRNAs (Fig. 1a). Seven
of these variants were encoded by multiple mRNAs, and we
assessed their total mRNA levels by integrating the expression of
their individual mRNAs (see Methods, Fig. 1a and Supplementary
Fig. 1a).

Histone levels could be predicted from mRNA or protein
measurements. The main advantages of mRNA measurements
are their lower cost, highly standardized methodology and broad
availability. Their main disadvantage is the frequent use of polyA
mRNA enrichment, such as in the CCLE RNA-Seq dataset22,
which causes an under-representation of replication-dependent
(non-polyA) histone mRNAs26,27. In agreement, we found that
replication-dependent histone mRNAs were less abundant than
the replication-independent (polyA) histone mRNAs and other
mRNAs in general (Fig. 1b), and for specific histone types
(Fig. 1a, replication-dependent H3.1/H3.2 vs. -independent H3.3
mRNAs). Nonetheless, CCLE RNA-Seq data reflected the typical
co-regulation pattern of replication-dependent histone mRNAs8

(Fig. 1c and Supplementary Fig. 1b). To assess how accurately
histone protein levels can be predicted by their encoding mRNAs,
we calculated protein-mRNA correlation coefficients. Protein
and mRNA levels correlated strongly (macroH2A2) or moder-
ately well (macroH2A1, H2AX, H3.3) for several replication-
independent histones, but poorly for all replication-dependent
histones, including the ones with the highest apparent expression
(H2A type 2-A: H2AC18, H2B type 1-J: H2BC11, H3.1: H3C10,
H4: H4C14) (Fig. 1d and Supplementary Fig. 1c). An indepen-
dent CCLE microarray dataset of polyA-enriched mRNAs28

revealed a comparable lack of protein-mRNA correlation
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(Supplementary Fig. 1d). We extended our analysis to datasets
from The Cancer Genome Atlas (TCGA) Network and the
Clinical Proteomic Tumor Analysis Consortium, which provide
patient-matched transcriptomics and proteomics datasets for
various cancer types. These include breast cancer29 and ovarian
cancer30 microarray datasets in which mRNA enrichment has
been conducted by ribosomal RNA subtraction instead of polyA
enrichment. We found a similarly poor correlation for

replication-dependent histone proteins and mRNAs (Supplemen-
tary Fig. 1d). We observed the same lack of correlation for
cancer studies based on RNA-Seq with polyA mRNA enrichment,
including colon adenocarcinoma31, lung squamous cell
carcinoma32,33, glioblastoma multiforme34,35, head and neck
squamous cell carcinoma36,37 and uterine corpus endometrial
carcinoma38,39 (Supplementary Fig. 1d). In summary, our
analysis suggests that histone mRNA measurements do not

Fig. 1 Histone mRNA and protein expression in CCLE datasets. a, b Histone mRNA levels in cancer cell lines. a The boxplots show the histone mRNA read
distribution across cancer cell lines from the CCLE expression (RNA-Seq) dataset for which proteome data are available. Histone gene names are specified
by x axis labels. Histone genes are grouped by the encoded histone variant as indicated above the boxplots. The x label sum indicates that the boxplot
represents the read sum of all detected histone transcripts encoding the respective variant. bMean read counts of replication-dependent and -independent
histone genes were calculated for each CCLE cell line. The violin plots display their distribution across cell lines. The colors represent the histone
classification by replication dependence. c Correlation of histone mRNAs and proteins across cancer cell lines. The heatmaps represent Pearson correlation
coefficients of estimated histone mRNA variant levels and histone protein variant levels from the CCLE RNA-Seq expression and proteomics datasets,
organized by hierarchical clustering. Font colors indicate histone classification by replication dependence. d Correlation of histone proteins vs. mRNAs
across cancer cell lines. The barplots represent Pearson correlation coefficients of histone protein variants vs. the encoding mRNAs. Axis labels and color
coding are as in (a). Cell lines covered by both CCLE RNA-Seq and proteomics datasets (N= 372) are represented. Only histone genes are represented of
which the encoded protein variant is covered by the proteomics datasets. Data in (c, d) were lineage-centered. TPM transcripts per million.
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reflect histone protein levels across cancer cell lines or patient
samples.

A nuclear index as reference for histone density estimation. We
explored the CCLE proteomics dataset to investigate the phe-
nomenon of histone density. CCLE proteomics data reflect the
level of individual proteins in relation to the total proteome.
Histone levels are therefore influenced by the relative contribu-
tion of the nuclear proteome to the total proteome. An estimate
of nuclear histone density should therefore relate histone levels to
the nuclear proteome. Nuclear reference proteins should appear
as co-expressed with histones and each other, they should
represent diverse nuclear structures, and their expression should
not be cell line-specific.

To identify suitable nuclear reference proteins, we first scored
all proteins for co-expression with histones. We used H4 as model
histone, because it exists as single variant and hence does not
require the consideration of isoform complexity, and H3.1, based
on its co-expression with H4 (see Fig. 1c right panel). Gene
ontology (GO) cellular component analysis revealed that the top

H3.1/H4 co-expressed proteins (Fig. 2a; R > 0.5) were almost
exclusively nuclear (Fig. 2b). Most of these proteins were highly
co-expressed among each other (Fig. 2c, enlarged image in
Supplementary Fig. 2) and included subunits of diverse
constitutive nuclear complexes (Fig. 2c and Supplementary Fig. 2).
Thus, based on their expression and functional diversity, these
nuclear proteins may serve as nuclear reference for histone
expression. The level of these proteins correlated poorly with their
mRNAs (Fig. 2d), implying robustness against changes in gene
expression. We created a robust subgroup of highly co-expressed
nuclear proteins with particularly low protein/mRNA correlation,
using simplification of protein co-expression by principal
component analysis (PCA) (Fig. 2e, f). The resulting proteins
were divided into 10 categories: mRNA export factors, the nuclear
pore complex, nucleolar proteins, chromatin modifiers/remodel-
lers, RNA pol II, Mediator, Integrator and PAF1 complexes,
cohesin, and the nuclear envelope (Fig. 2g). All selected proteins
had a low inter-lineage variation (Fig. 2h). We calculated a
representative nuclear protein expression value, the nuclear index,
from the nuclear reference proteins (Fig. 2i).
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Cell line classification by nuclear index-corrected histone
densities. We estimated nuclear histone densities by correcting
histone levels for the nuclear index (Fig. 3a). Nuclear index
correction strongly reduced nearly all positive and negative cor-
relations of histones H3.1 and H4 with other proteins (Fig. 3b and
Supplementary Fig. 3a). Importantly, co-expression of H3.1 and
H4 with other histone proteins was unaffected by nuclear index
correction (Fig. 3b and Supplementary Fig. 3a), which is expected
from histone complex stoichiometry. This implies that nuclear
index correction enriches for meaningful co-expression by elim-
inating systematic differences in nuclear vs. total protein content.

We asked if the lineage of a cancer cell line had an effect on its
histone levels and the nuclear proteome. Few cancer lineages had
extreme average nuclear index values, associated with corre-
sponding shifts in the mean expression of H3.1 and H4 (Fig. 3c).
Nuclear index correction reduced these systematic histone level
shifts across lineages (Fig. 3c). However, the combination of
nuclear index correction and lineage centering resulted in the
strongest reduction of histone density variation across cancer cell
lines (Fig. 3d), emphasizing the use of both methods when
comparing histone density across lineages.

Histone level changes of less than 20% cause detectable
differences in nucleosome density and gene expression20. We
therefore classified CCLE cell lines by histone density using a 20%
change of nuclear index-corrected H3.1 and H4 levels. Due to the
lack of data on lineage-matched non-cancer counterparts, we
defined high or low histone density using the lineage median of
cancer cell lines. This approach classified 46 (12%) and 31 (8%)
cell lines from various lineages as histone-high and -low,
respectively (Fig. 3e, f, Supplementary Data 1), resulting in less
cell lines with extreme histone dosage than an equivalent
classification without nuclear index correction (Supplementary
Fig. 3b). The nuclear index and histone gene copy numbers were
comparable between histone-high and -low groups (Supplemen-
tary Fig. 3c, d), implying that nuclear protein content and histone
gene dosage did not drive this classification. As validation, we
quantified histone expression in histone-high and -low cell lines
of three lineages (breast, skin, central nervous system) (Supple-
mentary Fig. 4a) by Western blotting, using two nuclear
index proteins, DHX9 and RNA polymerase II subunit RPB1
(POLR2A), as reference. The histone levels measured by Western
blot were in good agreement with the predicted H3 and H4 levels:

all tested histone-high cell lines had average H3/H4 levels above
the lineage mean, whereas all tested histone-low cell lines had
average H3/H4 levels below the lineage mean (Fig. 3g, h).
Classification of the same cell lines by histone expression values
without nuclear index correction failed to classify 3 out of 5 cell
lines as histone-high (WM2664, IPC298, MEWO) and 2 out of 5
cell lines as histone low (MDAMB436, IGR1) (Supplementary
Fig. 4b). Since nuclear index calculation is not based on DNA
content data, nuclear index-corrected histone densities do not
directly reflect histone:DNA ratios, which are relevant for most
biological effects of histones. To address how nuclear index-
corrected histone densities relate to histone:DNA ratios, we
performed quantitative flow cytometry analysis of DNA content
in the histone-high and -low cell lines using the DNA binding dye
4′,6-diamidino-2-phenylindole (DAPI) (Supplementary Fig. 4c).
There were no systematic differences of DNA content between
histone-high and -low cell lines (Supplementary Fig. 4d). More-
over, DAPI-normalized average H3/H4 levels of all tested
histone-high and -low cell lines were above and below the lineage
mean, respectively (Supplementary Fig. 4e); hence nuclear index-
corrected histone density classification was in good agreement
with histone-DNA ratio across cell lines.

The histone density-associated proteome and transcriptome.
We next investigated if histone density was linked to specific
proteome signatures and analyzed the CCLE proteome dataset for
differentially expressed proteins in histone-high vs. -low cells. We
identified 123 and 263 proteins with increased or reduced
expression in histone-high cells, respectively (FDR < 0.1, fold-
change >1.3) (Fig. 4a, Supplementary Data 2, Supplementary
Fig. 5a). Based on their co-expression, these differentially
expressed proteins organized into 4 clusters associated with high
(up in histone-high vs. -low) and low (down in histone-high vs.
-low) histone density (Fig. 4b, enlarged in Supplementary
Fig. 5b). Histone-high cells had a high expression of other his-
tones apart from H3.1 and H4, regulators of chromatin structure
(CBX5, CHTOP, HMGN2, MBD1, MBD2, SMARCA5), chro-
mosome conformation (CDCA2, CDCA5, RMI2), nuclear
architecture (TMPO), the CENPA nucleosome-associated com-
plex (CENPC, CENPN, CENPQ, CENPU), transcription reg-
ulators (ELF2, ARHGAP11A, SS18L1), and mitotic spindle

Fig. 2 Definition of a nuclear reference proteome. a Protein correlations with histones H3.1 and H4 across cancer cell lines. The scatter plot shows the
Pearson correlation coefficients (R) of proteins vs. H3.1 (x axis) and H4 (y axis). Each dot represents a protein covered by the CCLE proteome dataset.
Proteins that correlate strongly with both histones (R > 0.5) are colored in red. b Gene ontology cellular compartment analysis of top histone correlating
proteins from (a). Significantly over-represented cellular components were sorted by the number of top histone correlators localized to the respective
component. The blue bars show the number of top histone correlators covered by component. The red bars show the cumulative sum of the top histone
correlators covered. c Mutual correlations between top histone correlating proteins from (a). The heatmap represents Pearson correlation coefficients of
protein levels, organized by hierarchical clustering. An enlarged version with protein labels is available in Supplementary Fig. 2. d Correlation of protein vs.
mRNA levels across cancer cell lines. The y axis indicates the Pearson correlation coefficient of each protein in the CCLE proteomics dataset vs. its
encoding mRNA. The x axis indicates the mean Pearson correlation coefficient of each protein vs. histones H3.1 and H4. Top histone correlating proteins
from (a) are colored in red. The red line represents the quantile regression. e Principal component analysis of top histone correlator co-expression. Pearson
correlation coefficients from c were simplified by PCA. The PCA correlation plot shows the first two principal component correlations. Each dot represents
one top histone correlating protein. Dot positions reflect the clustering behavior in c. Colors indicate the protein classification by complex and function.
f Selection of proteins for the representative nuclear index. The y axis indicates the protein-mRNA correlation (same as the y axis in d). The x axis indicates
the first principal component of top histone correlator co-expression (same as the x axis in e). Proteins with low protein-mRNA correlation (R < 0.3) and a
similar co-expression spectrum (PC1 > 0.5), marked in red, were included in the nuclear index. g Components of the representative nuclear index. Proteins
selected in (f) were clustered by STRING and manually grouped into 10 categories with Cytoscape. h Lineage variation of nuclear index components. Mean
levels of each protein were calculated by cell lineage. The relative variation between lineages is represented as the standard deviation of lineage means
divided by the mean of lineage means. i Scheme for the calculation of the nuclear index. To ensure a balanced contribution of all nuclear index protein
categories, the nuclear index is calculated in two steps: first, individual protein expressions are converted to representative category values. Second, the
representative category values are integrated. This method eliminates the effect of potential large expression changes of individual proteins by using
median values across diverse protein categories. Cell lines covered by both CCLE RNA-Seq and proteomics datasets (N= 373) were used. Protein
expression data were lineage-centered.
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organizers (KIF22, NUMA1, SAPCD2) (cluster A). High mobility
group proteins, including HMGB1, were positively associated
with histone dosage (cluster B). Remarkably, knock-down of
HMGB1 reduces histone H3 levels5, implying a potential role in
the variation of histone density in cancer. Other proteins asso-
ciated with the histone-high state were involved in cell-
environment interaction, signaling and intracellular trafficking
(cluster C) and various aspects of nuclear biology (cluster D:
histone demethylase KDM2A, PARP1, cohesin subunit STAG1,
LINC component SYNE2). Histone-high cells had a low expres-
sion of plasma membrane, ECM and cytoskeletal proteins (cluster
E: Moesin, Laminins, Collagens), various mitochondrial and
rRNA synthesis proteins (cluster F), trafficking and signaling
factors (cluster G: mTORC1 subunit AKT1S1, NFkappaB subunit
RELB, autophagy factor ATG13), and protein degradation
enzymes (cluster E: histone-cleaving protease Cathepsin L
(CTSL)40, cluster G: proteasome subunits PSMA4 and PSMC5).
Gene ontology analysis confirmed that nuclear chromatin terms
were associated with histone-high state, whereas mitochondrial
terms were associated with histone-low state (Fig. 4c). Western
blot analysis of two mitochondrial proteins, SCO1 and ALAS1,
confirmed their predicted differential expression (Fig. 4d, e). In

contrast, the mitochondrial protein COX4, which was not pre-
dicted to be differentially expressed, did not correlate with histone
levels (Fig. 4d, e). This implies that histone dosage is linked to
specific mitochondrial proteome signatures but not to a global
alteration of mitochondrial proteins. Consistently, confocal ima-
ging of mitochondria did not reveal obvious systematic differ-
ences in mitochondria content or network structure in histone-
high and -low cells (Supplementary Figs. 6 and 7). In summary,
histone density associates with specific proteome signatures
across cancer cell lines, and is linked to the expression of chro-
matin components, mitochondrial proteins, and known histone
regulators (HMGB1, CTSL).

We asked to which extent gene expression contributed to the
histone density-associated proteome and tested the respective
mRNAs for differential expression in histone-high vs. -low cell
lines (FDR < 0.1). The mRNAs of 96 out of 123 up-regulated
proteins and 115 out of 263 down-regulated proteins were
consistently altered in histone-high vs. -low cells, including the
histone regulators HMGB1 and CTSL (Fig. 4f, Supplementary
Data 3). Hence, differential mRNA levels potentially account
for the majority of up-regulated and nearly half of the
down-regulated proteins. To identify potential transcriptional
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programs, we applied regulatory target gene set enrichment
analysis. mRNAs with high expression in histone-high cells were
enriched for targets of E2F, Snail (SNAI1) and YY1 transcription
factors, covering in total 31 out of 96 mRNAs. mRNAs with low
expression in histone-high cells were enriched for targets of
NFκB, STAT5B, SRF, BACH1 and AP1, but only 18 out of 115
altered mRNAs were controlled by these transcription factors
(Fig. 4g, Supplementary Data 4–5). Hence, our data implies a
potential involvement of several transcription factors in shaping
the histone-high proteome signature.

Histone density predicts global acetylation state and drug
resistance. The histone density-associated proteome may be used as
molecular signature to predict histone density.We developed a logistic
model for histone density prediction based on PCA-simplified histone
density-associated proteins. The model efficiently distinguished
histone-high from -low cell lines (Fig. 5a). 10 cell lines of particularly
high histone density (>30% increase) were clearly distinguished with
high confidence (>99.9%) from all cell lines with normal and low
histone density (Fig. 5a–c). We argued that such cell lines are most
likely to display other characteristics associated with high
histone density and analyzed CCLE datasets (global chromatin
profiling22, Sanger drug sensitivity41,42, Achilles CRISPR/Cas9 gene
dependency43, DEMETER2 siRNA gene dependency44 and
metabolomics23) for features that were significantly altered in these
cell lines, compared to cell lines with normal or low histone density.
High histone dosage was associated with elevated acetylation of his-
tone H3 on lysines 14, 18, 23 and 27 (Fig. 5d). Histone-high cells
were also sensitive to two histone deacetylase (HDAC) inhibitors,
trichostatin-A and panobinostat (Fig. 5e), implying that the already
elevated global histone acetylation sensitizes towards a further increase
in acetylation. Notably, high histone density was linked to several
other drug sensitivities and resistance towards four differernt MEK1/2
inhibitors (Fig. 5e). Moreover, histone-high cells had an increased
resistance to the targeting of ZC3H13, an N6-methyladenosine
methylation factor for mRNAs, by siRNA and CRISPR/Cas9 tech-
nologies (Fig. 5f). Metabolic alterations linked to the histone-high state
were entirely accounted for by lineage effects (Supplementary Fig. 8).
In summary, our analysis shows that cancer cell lines with highly
elevated histone dosage show high levels of histone acetylation and

altered responses to several cancer drugs, of which HDAC inhibitors
directly affect the histone modifications.

Identification of histone dosage modulators. Histone density-
associated proteins may be co-regulated with histones, histone-
regulated, or histone modulators, such as HMGB1, which could
drive or buffer abnormal histone densities. We conducted a
small-scale siRNA high-content imaging screen of cell cycle-
corrected H3 levels (Fig. 6a–c)45 in the triple-negative breast
cancer cell line MDA-MB-231, which is characterized by normal
histone density, rendering a pre-existing alteration of histone
density modulators less likely (Fig. 6a). We selected candidates
strongly associated with histone density by ranking all proteins of
the histone density-associated proteome by their ability to predict
histone dosage (Supplementary Figs. 9a–f, Supplementary
Data 6–7). We identified 4 candidate siRNAs, of which 2
decreased (siCHCHD4, siDCAF6) and 2 increased (siTMPO,
siPSMC5) H3 (Fig. 6d). Of these, siCHCHD4 and siTMPO had no
major impact on cell viabiliy and cell cycle distribution, whereas
siDCAF6 and siPSMC5 reduced cell viability and caused a cell
cycle shift towards G2/M phase (Supplementary Fig. 10a, b). The
ratio of histone H3 intensity vs. DAPI was not influenced by cell
loss (Supplementary Fig. 10c). We conducted two validation
screens for the 4 candidates, using the same polyclonal H3
antibody or a co-staining of two monoclonal anti-H3 and anti-H4
antibodies (Fig. 6e, f). Both H3 antibodies validated the primary
screen, whereas the H4 antibody validated siCHCHD4, siDCAF6
and siPSMC5, but not siTMPO (Fig. 6f and Supplementary
Fig. 10d). The effects on histone signal were cell cycle-
independent in siCHCHD4, siTMPO and siPSMC5 conditions,
whereas siDCAF6 depleted histone signal more profoundly in S
and G2/M phases (Supplementary Fig. 10e). Notably, all candi-
date siRNAs reduced incorporation of the thymidine analog EdU
into DNA in S phase (Supplementary Fig. 10f), reflecting a
reduction of replication rate. siDCAF6 also caused an expansion
of the nucleus (Supplementary Fig. 10g). We performed candidate
validation by Western blotting. siCHCHD4 and siDCAF6 reduced
histones H3 and H4 (Fig. 6g), whereas siTMPO and siPSMC5 did
not elevate histone levels (Supplementary Fig. 10h). Thus, the
immunocytochemical quantification of siTMPO- and siPSMC5-

Fig. 3 Cancer cell line classification by histone density. a Nuclear index correction of histone levels. Histone levels were plotted against the nuclear index,
and the systematic effect of the nuclear index on histone levels across cancer cell lines was determined by quantile regression (red lne). Histone levels were
then corrected for the nuclear index contribution. Each dot represents a cell line. b Effect of nuclear index correction on protein correlations with histones H3.1
and H4 across cancer cell lines. The scatter plots show the Pearson correlation coefficients (R) of proteins vs. H3.1 and H4 with (y axis) and without (x axis)
nuclear index correction of H3.1 and H4 levels. Each dot represents a protein. Histones are colored in red. c Influence of cell lineage on nuclear index and histone
levels. The barplots represent nuclear index and mean levels of H3.1 and H4 with and without nuclear index correction by lineage. Data are represented as log2
mean values over cell lines ± standard deviation. d Effect of nuclear index correction and lineage centering on histone levels. Histone levels were subjected to
lineage centering, nuclear index correction or both. The standard deviation divided by the mean level is shown as measure of relative variation across cell lines.
e Classification of cancer cell lines by histone density. The scatter plot shows nuclear index-corrected histone H3.1 and H4 levels in 373 cell lines. Each dot is a
cell line. Red and blue colors indicate cell lines with at least 20% increase or decrease, respectively, of both histones H3.1 and H4. f The number of histone-high
and -low cell lines from (e) by cell lineage. Note that lung cancers are over-represented in the CCLE proteomics dataset, and lung cancers do likely not have a
particular tendendency for extreme histone dosage. g, h Validation of histone density classification. g Protein lysates were made from asynchronous cultures of
the indicated cell lines from 3 different lineages. Protein levels were analyzed byWestern blot. h The barplots represent histone levels normalized to the mean of
RNA polymerase II and DHX9. Data are represented as mean of 3 independent parallel replicate cultures (N= 3) ± standard deviation, with the lineage mean set
to 1. The numbers above the bars represent the mean of H3 and H4 for the respective cell lines. The font color indicates the cell line classification from (e) by
histone density. Significances were calculated by lineage with one-way ANOVA (breast: pANOVA, H3=0.012, pANOVA, H4= 4.0 × 10−3; skin: pANOVA, H3=
3.0 × 10−7, pANOVA, H4= 1.4 × 10−6) with post hoc Tukey HSD test (breast: pMDAMB453 vs. MDAMB157, H3= 7.7 × 10−4, pMDAMB453 vs. MDAMB157, H4=0.020,
pMDAMB453 vs. MDAMB436, H3= 1.6 × 10−3, pMDAMB453 vs. MDAMB436, H4=0.019; skin: pWM2664 vs. UACC62, H3= 1.8 × 10−7, pWM2664 vs. UACC62, H4= 2.7 × 10−7,
pWM2664 vs. IGR1, H3= 5.6 × 10−6, pWM2664 vs. IGR1, H4= 1.3 × 10−5, pIPC298 vs. UACC62, H3= 1.3 × 10−6, pIPC298 vs. UACC62, H4= 2.6 × 10−6, pIPC298 vs. IGR1, H3=
1.0 × 10−4, pIPC298 vs. IGR1, H4= 3.9 × 10−4, pMEWO vs. UACC62, H3= 4.3 × 10−6, pMEWO vs. UACC62, H4= 2.2 × 10−5, pMEWO vs. IGR1, H3= 6.3 × 10−4, pMEWO vs. IGR1,

H4=0.011) or two-sided, unpaired Student’s t test (CNS: pU118MG vs. A172, H3= 5.6 × 10−4, pU118MG vs. A172, H4= 5.1 × 10−5). Nuclear index analysis (a–f) was
applied to all CCLE proteome cancer cell lines (N= 373). Protein expression data were lineage-centered unless otherwise indicated. CNS central nervous
system, UAD upper aerodigestive tract.
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treated cells do not reflect differences in histone protein levels,
but are likely caused by improved epitope accessibility of H3 and
H3/H4, respectively. We confirmed that the siRNAs used in the
screen and validation experiments reduced expression of
CHCHD4 and DCAF6 (Fig. 6h–j). Together, we identify
CHCHD4 and DCAF6 as bona fide modulators of histone
density.

Discussion
We developed a method to estimate histone density based on a
CCLE proteome dataset and used it to establish a histone density
classification of cancer cell lines (Supplementary Data 1), which can
serve as resource to investigate the biological effects of histone
density in lineage-matched cell models. We explored proteome,
transcriptome, drug resistance and epigenetic modification pat-
terns associated with histone density across cancer cell lines,
revealing links between histone density, mitochondrial proteome

composition, histone hyper-acetylation and altered cancer drug
sensitivities (Fig. 7). We also identified known histone modulators
as histone density-associated proteins (HMGB1, CTSL) and report
two potential histone modulators.

High histone density is associated with the elevated expression of
various chromatin components, which suggests a coordinated or
adaptive regulation of histones along with other key chromatin
components. One of these chromatin proteins is HMGB1, which is
required to maintain high histone levels in cancer cells5. Our study
therefore implies that differences in HMGB1 expression contribute
to natural histone density variation across cancer cell lines. The
protease cathepsin L and two proteasome subunits (PSMA4,
PSMC5) were inversely associated with histone dosage. Cathepsin
L catalyzes N-terminal histone H3 cleavage in embryonic stem
cells40 and in intestinal villi46 during differentiation. Histone H3
cleavage by cathepsin L has also been shown to mediate oncogene-
induced and replicative senescence47. The inverse correlation
between cathepsin L levels and histone density raises the possibility

Fig. 4 Histone density-associated molecular signatures. a, b Significantly different proteins in histone-high (N= 37) vs. -low (N= 31) cells. a Proteins
were tested for significantly different levels in histone-high vs. low cells using the R package maanova (FDR < 0.1, fold-change >1.3). Significant hits are
shown in the Volcano plot by color coding. b Proteins with significantly higher or lower expression in histone-high cells were clustered by co-expression
across cancer cell lines, and clusters were visualized by edge bundling. Grey and red edges represent co-expression within and between clusters,
respectively. A magnification of the panel is provided in Supplementary Fig. 5b. c GO slim cellular component analysis of differentially expressed proteins
from (a). d, e Mitochondrial protein analysis by Western blot (d) and quantification based on lineage-centered protein levels normalized to Ponceau S
staining of total proteins (e). Significance was analyzed with two-tailed Student’s t-test comparing the expression of the indicated proteins in histone-high
(N= 5) vs. -low (N= 5) cell lines ± standard deviation. f Significantly different mRNAs in histone-high (N= 37) vs. -low (N= 31) cells. mRNAs encoding
candidate proteins from (a) were tested for significantly different levels in histone-high vs. -low cells using the R package maanova (FDR < 0.1). Significant
hits with co-regulation of protein and mRNA are shown in the scatter plot by color coding. g Transcription factor target gene set enrichment analysis of
histone density-associated mRNAs. mRNA fold-changes in histone-high vs. -low cells (f) were subjected to gene set enrichment analysis using the
transcription factor target signature collection. Significant signatures (FDR < 0.1) were clustered and visualized by emapplot (R package clusterprofiler).
The node color indicates the direction of signature regulation.
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that its expression may influence histone turnover in cancer cells
through cleavage. The proteasome mediates histone degradation
in vivo and thereby determines the rate of nucleosome
turnover48,49. Notably, low protein level of the proteasome com-
ponent PSMC5 is the proteome-wide strongest predictor of high
histone density (Supplementary Fig. 9a, b). Proteasome inhibitors
are already in use for the treatment of selected cancers50. It would
therefore be interesting to investigate if a reduction of proteasome
activity causes elevated histone density.

We identify an inverse correlation between histone density and
a large group of mitochondrial proteins (Fig. 4b, c). While altered
histone density is not associated with obvious changes in global
mitochondrial network structure or content (Supplementary
Figs. 6 and 7), it would be interesting to investigate a potential
impact on the various metabolic mitochondrial functions in
the future. Notably, we demonstrate that siRNA targeting the
mitochondrial protein CHCHD4, a crucial factor in respiratory

chain assembly51, reduces histone levels in the MDA-MB-231
breast cancer cell line (Fig. 6f, g). Since CHCHD4 inversely
correlates with histone density (Fig. 4b), we can exclude that its
expression is causative for the differences in histone levels
between cancer cell lines. Instead, our data would support a
model in which a subset of genes encoding mitochondrial pro-
teins is repressed by excessive histones, which induces a com-
pensatory feedback loop to lower histone levels, as in the case of
siRNA-mediated CHCHD4 depletion. Such feedback loop is
expected to control the expression of mitochondrial protein-
encoding genes that are located in the nuclear chromatin, but not
of such genes that are located in the histone-free mitochondrial
DNA. Consistently, all mitochondrial proteins with low expres-
sion in histone-high cells were encoded in the nucleus (Supple-
mentary Fig. 5b). This regulatory model is in agreement with a
report linking high histone levels to repression of mitochondrial
functions52 (Fig. 7). Mechanistically, high histone levels could

Fig. 5 Characterization of the histone-high state by comparative OMICs. a Cell line classification by histone density. PCA was applied to the expression
data of significant proteins from Fig. 4a. The first two principal components are plotted and each dot is one cell line. A logistic model was trained for the
classification of histone-high (red, N= 37) vs. -low (blue, N= 31) cell lines. The red and blue areas mark a 95% classification confidence for histone-high
and -low cell lines, respectively. Cell lines with normal histone content are shown in grey (N= 209). b Contribution of histone-high (N= 37), -low (N= 31)
and other (N= 209) cell lines at a given prediction score from a, and histone density vs. the cell line classification confidence from a, where each dot is one
cell line. Quantile regressions were separately performed for histone-high and -low cells. The log10 prediction score reflects the likelyhood that a cell line is
correctly classified as histone-high (positive range) or -low (negative range). Note that a strong prediction score for the histone-high state (>3), indicated
by the red separator bar, is specific for cell lines with particularly high histone dosage and separates them from histone-low and other cells. c Summary of
high confidence histone-high cells (N= 10) from (b) with representation of H3.1 and H4 levels as heatmap. d–f Characteristics of high histone density in
CCLE datasets. Datasets from global chromatin profiling (d), drug sensitivity (e) and gene dependency (f) were analyzed for significant differences
between high confidence histone-high cell lines (c, N= 10) vs. cell lines with normal or low histone density (N= 240). All data were lineage-centered. The
distribution of values in cell lines with normal or low histone density is indicated by violin plots. The distribution of values in high confidence histone-high
cell lines is overlaid as blue dots (significant decrease) or red dots (significant increase). Significance between the two groups was analyzed with two-
tailed, unpaired Student’s t-test with Benjamini-Hochberg correction (padj < 0.1, fold-change >1.2). All significant histone modifications, drugs and gene
dependencies are shown.
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inhibit the expression of nuclear encoded mitochondrial genes
by interfering with chromatin remodeling53. Since CHCHD4
knock-down impedes mitochondrial respiration, our data
raise the possibility that respiration inhibitors in general may
down-regulate histone levels. Given the currently explored

strategies to specifically kill cancer cells by blocking mitochon-
drial respiration together with dietary restriction54,55, it would
be interesting to investigate a potential role of histone density
modulation on mitochondrial functionality and metabolic
adaptation.

Fig. 6 Screen for histone level modulators. a Scheme of the siRNA screen for histone density modulators. b, c High-content imaging analysis of histone
H3. MDA-MB-231 cells were transfected with the scrambled control siRNA and processed as in (a). Representative microscopy images are shown in (b).
Examples for image-based cell cycle phase analysis and histone quantification are shown in (c). d Primary siRNA screen for histone modulators. MDA-MB-
231 cells were transfected with the indicated siRNAs and processed as in (a). Three replicate plates (N= 3) with identical design were prepared, on which
each siCtrl and siKIF11 were transfected in 4 wells, and all other siRNAs were transfected in one well. Quantifications are based on at least 1123 cells per
well (excluding siKIF11). Histone H3 signal per DAPI signal was quantified separately for G1, S and G2/M phases, and the well-wise H3 signal was
calculated as mean of these 3 values. The bars represent the mean across replicate wells. Significance against the scrambled contol siRNA was analyzed
with two-tailed, unpaired Student’s t-test with Benjamini-Hochberg correction. e High-content imaging analysis of histones H3 and H4 in the secondary
siRNA screen. MDA-MB-231 cells were transfected with the scrambled control siRNA and processed as in (a). Representative microscopy images are
shown. f Secondary siRNA screen for histone modulators. MDA-MB-231 cells were transfected with the indicated siRNAs and processed as in (a). Two
separate experiments were performed for the validations using either polyclonal anti-H3 antibody or the combination of monoclonal H3 and H4 antibodies.
In each experiment, cells were transfected with siRNAs in 9 (siCtrl), 3 (siKIF11) or 4 (all other siRNAs) replicate wells. Quantifications are based on at least
1123 and 1174 cells per well for the pAb H3 and the mAb H3/H4 screens, respectively (excluding siKIF11). Histone H3 and H4 signals per DAPI signal were
quantified separately for G1, S and G2/M phases, and the mean of these 3 values is represented. Significance against the scrambled contol siRNA was
analyzed with two-tailed, unpaired Student’s t-test with Benjamini-Hochberg correction. g Western blot validation of histone modulators. MDA-MB-231
cells were transfected with the indicated siRNAs and protein lysates were produced after 3 days. Protein levels were analyzed by Western blot. The barplot
represents histone levels normalized to DHX9. Significance against the scrambled contol siRNA was analyzed with two-tailed, unpaired Student’s t-test
with Benjamini-Hochberg correction (N= 4 independent siRNA transfections). h–j Western blot and qPCR validation of candidate siRNAs. MDA-MB-231
cells were transfected with the indicated siRNAs. Protein lysates and RNA extracts were prepared after 3 days. Protein levels were analyzed by Western
blot (h, i). The asterisk indicates that the apparent molecular weigth of DCAF6 was higher than expected, requiring an additional assay to control for
DCAF6 depletion. The DCAF6mRNA level was analyzed by qPCR using GAPDHmRNA as normalization control (j). Experiments were performed with three
technical replicates. Data are represented as mean ± standard deviation. siCtrl is a scrambled siRNA. The scale bars correspond to 40 µm.
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Particularly high histone density (>30% increase) is associated
with global histone H3 acetylation on lysines 14, 18, 23, 27
(Fig. 7). Intriguingly, excessive histone accumulation in yeast
elicits a global histone hyper-acetylation response (Fig. 7)16. Such
hyperacetylation is likely a protective mechanism to ameliorate
excess histone toxicity with substantial side effects on central
carbon metabolism that lead to enhanced dependence on glucose
metabolism (Fig. 7)16. We show that cancer cells with high his-
tone density and acetylation are particularly sensitive to HDAC
inhibitors trichostatin-A and panobinostat. Together, these
observations imply that excessive histone dosage could sensitize
cancer cells to HDAC inhibition by imposing an aberrant global
acetylation state. Excessive histone density could sensitizes
towards HDAC inhibition in the context of cancer therapy, and it
would be interesting to explore histone density as predictive
marker for the success of HDAC inhibitor treatments.

We describe a link between histone density and E2F tran-
scription signatures (Fig. 4g). Notably, the mRNA level of E2F2,
one of the E2F-encoding genes, is elevated in histone-high cells
(Supplementary Data 3). Consistent with the absence of corre-
lation between replication-dependent histone mRNAs and pro-
teins, target signatures of the histone gene transcription factors
NPAT, Oct-1 and HiNF-1 are not associated with histone density.
Hence, E2F, which is not a classical histone gene regulator8, could
indirectly control histone density. Interestingly, high histone
density is also associated with resistance to 4 different MEK1/2
inhibitors (Fig. 5e). Resistance to MEK inhibitors is usually linked
to the re-activation of mitogen-activated protein kinase (MAPK)
pathways, or with the activation of parallel pro-growth signaling
pathways, such as PI3K, STAT and Hippo signaling56. The E2F
transcriptional signature in histone-high cell lines argues for
enhanced pro-growth signaling, which activates the G1/S transi-
tion by stimulating G1- and S-phase CDK and hence E2F
activity57. While such enhanced signaling could account for the
MEK inhibitor resistance, the mechanistic basis for the activation
of growth signaling and its link to histone density need to be
further investigated.

DCAF6 interacts with the Cul4A/DDB1 E3 ubiquitin ligase to
modulate its activity towards the androgen receptor58. Interest-
ingly, Cul4A/DDB1 is crucial for nucleosome assembly by ubi-
quitylation of histone H3 on lysine 5659. Depletion of DCAF6
reduces histone dosage and replication speed, increases S and G2/
M phase populations and ultimately reduces cell proliferation
(Fig. 6f and Supplementary Fig. 7). These phenotypes are

consistent with insufficient histone supply during DNA replica-
tion, and we hypothesize that DCAF could modulate H3 by
assisting its ubiquitylation during replication-coupled nucleo-
some assembly.

Correction of histone levels with the nuclear index has one
major function: It facilitates an organelle normalization of the
almost exclusively nuclear histones, and thereby compensates for
variations in nucleus-to-cytoplasm ratio that commonly occur
between lineages, cell types and individual cell lines. As a result,
nuclear index correction globally reduces co-expression scores
while preserving well-characterized co-expressions across his-
tones. In contrast to the normalization with a single nuclear
reference protein, nuclear index correction integrates information
on various protein complexes and takes into account the
actual quantitative relationship between histones and the
nuclear index across cell lines. This enhances the robustness
against de-regulation of individual proteins and over-correction,
respectively. Although DNA content is linked to the amount of
DNA-binding proteins, it is important to note that nuclear index-
corrected histone densities do not directly reflect histones per
DNA. Importantly, we show for cancer cell lines from 3 different
lineages that the results obtained from DNA content normal-
ization are consistent with histone densities predicted by nuclear
index correction. We recommend a similar validation when
working with cell lines of predicted extreme histone density. We
strongly emphasize that protein and nuclear DNA measurements
should be performed on the same sample because histone and
DNA content are affected by cell cycle distribution, which is
influenced by multiple experimental conditions. A clean DNA
normalization across all CCLE cell lines would require matched
measurements of proteomics and nuclear DNA content popula-
tion means. Future proteomics studies may allow such direct
comparisons to identify cases in which nuclear index correction
produces outcomes that deviate from DNA normalization.

DNA sequencing and RNA-Seq are the strandard technique to
identify mutations, copy number variation and gene expression in
large cancer projects60. Proteome datasets are becoming available,
but cover less patients than sequencing-based methods33,35,37. We
were able to demonstrate that mRNA levels of replication-
dependent histones are not a suitable predictor of their protein
levels, emphasising the need of protein quantification when
estimating histone de-regulation in cancer. We provide the his-
tone density-associated proteome with a protein ranking by
predictive power (Supplementary Data 6–7). Our analysis is

Fig. 7 Model of conserved responses to aberrant histone density. a, b Modulators of histone density and cellular processes influenced by histone density
in cancer cells. High histone density is associated with elevated histone H3 acetylation, increased HMGB1 expression and repression of mitochondrial
proteins. The histone modulators CHCHD4 and DCAF6 may influence histone density during mitochondrial stress responses and DNA replication-linked
histone depositioning. c Evolutionary conservation of the acetylation reponse and the mitochondrial regulation in budding yeast, Saccharomyces cerevisiae.
Aberrant histone accumulation can be caused by a defective Rad53CHK1/CHK2-Spt21NPAT axis, which controls replication-coupled histone gene expression.
Excess histones are hyper-acetylated, silence subtelomeric genes and repress mitochondrial gene expression. Acetylation and subtelomeric silencing
together affect central carbon metabolism and cause glucose dependence. Note that the high acetylation state and the repression of mitochondrial protein
production are conserved features of histone-high yeast and cancer cells.
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restricted to cancer cell lines, and applicability of nuclear index
correction and histone density prediction markers to clinical
samples will need to be demonstrated. Our study thus establishes
a starting point to address the impact of histone density in cancer.

Methods
Processing of datasets. BioMart annotations for gene conversions were down-
oaded from the BioMart website on the 5th of October 2020 and manually com-
plemented with annotations from genenames.org. The annotations were used for
all conversions. HISTome26 annotations were used for the mapping of histone
genes to histone protein variants.

CCLE protein expression, mRNA expression by RNA-Seq (DepMap Public
20Q2), mRNA expression by microarray and sample information (DepMap Public
20Q2) files were downloaded from the DepMap portal. Gene and protein IDs were
converted to HGNC symbols. Duplicate measurements across proteins or samples
were averaged. Genes and proteins with zero expression in all cancer cell lines were
exluded. For genome-wide analyses, mRNAs and proteins detected in less than 5 or
150 cell lines were excluded. Data were lineage-centered unless otherwise indicated
by centering the log2 expression of each gene or protein to 0 for each lineage.

Clinical Proteomic Tumor Analysis Consortium datasets and sample
information files were downloaded from the Clinical Proteomic Tumor Analysis
Consortium data portal. TCGA datasets and sample information files were
downloaded from the GDC data portal. All Clinical Proteomic Tumor Analysis
Consortium datasets and the TCGA colon adenocarcinoma, breast cancer and
ovarian cancer files were downloaded in matrix format. TCGA lung squamous cell
carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma and
uterine corpus endometrial carcinoma datasets as individual files per patient and
merged into expression matrices. Gene and protein IDs were converted to HGNC
symbols. Expression levels were averaged per patient. Colon adenocarcinoma
proteome data were normalized by variance stabilizing transformation using the
DEP R package.

Integration of mRNA levels for histone variants. Transcript quantification in the
CCLE gene expression dataset uses the software package RSEM61, which allows the
accurate estimation of transcript abundance for highly similar genes, such as genes
enconding the same histone variant. We converted expression values to the linear
scale by reverting the the log2(x+ 1) transformation used in the CCLE expression
dataset, calculated the sum of all linear values for each histone variant and applied
the log2(x+ 1) transformation to obtain logarithmic values of histone variant
expression (xvariant):

xvariant ¼ log2ð1þ∑ 2x � 1ð ÞÞ ð1Þ

Data visualization. We used the R packages ggplot2 (general plotting), Rcolor-
Brewer (color palettes), ggVennDiagram (Venn diagrams), ggraph/igraph (edge
bundling), ggpubr (emapplot) and pheatmap (heatmaps with hierarchical clus-
tering) for data visualization.

Analysis of mRNA read distributions. Genes were categorized as replication-
dependent histone gene, replication-independent histone gene or other gene based
on the HISTome2 database.

Correlation analysis. Correlations of mRNA vs mRNA, protein vs. protein and
protein vs. mRNA were performed across cell lines using the R function cor for
pairwise complete observations.

Gene ontology and gene set enrichment analysis. We used the DAVID
Bioinformatics Resources 6.8 online tool for enrichment of cellular compartment
gene ontologies. A custom R script was used for the calculation of the cumulative
sum of gene ontology sets and for visualization. We used the R package cluster-
Profiler to perform gene set enrichment analysis on the log2 mRNA fold-changes in
histone-high vs. -low cell lines. We obtained the C3 collection (regulatory target
gene sets, version 7.4) from MSigDB as transcription factor target gene sets. We
clustered and visualized enriched sets with the R packge clusterProfiler together
with ggpubr.

PCA dimensionality reduction and model training. We used the R packages
FactoMineR and factoextra for principal component analysis (PCA). We used a
principal component correlation plot (circular) for the visualization of top histone
correlator functions. For the classification of cell lines as histone-high or -low, we
performed a PCA on the significantly different proteome between histone-high and
-low cells and established a predictive model for histone dosage state (high vs. low)
based on the first two principal components. We visualized the 95% confidence
intervals for correct classification in the principal component sample plot. We used
the R packages caret for model training and ROCR for calculation of ROC statistics
and ROC curve visualization. Model training for the ranking of proteins by histone

density group prediction was implemented with parallel computing using the R
packages foreach and doParallel.

Protein network visualization. We used STRING version 11.5 for protein network
construction and visualized the STRING output with Cytoscape version 3.5.1.
Proteins were arranged manually in Cytoscape according to the ten nuclear index
protein classes.

Nuclear index calculation. For each of the 10 protein classes contributing to the
nuclear index, a median expression level (the median of its proteins) was calcu-
lated. The nuclear index was then calculated as median of the 10 representative
protein class values. The nuclear index is based on lineage-centered data. However,
a calculation without lineage centering is possible and was used to analyze the
interaction between lineage and nuclear index effects on histone levels.

Nuclear index correction. For each protein of interest, a quantile regression (R
package quantreg) was performed against the nuclear index over all indicated cell
lines. The corrected protein expression was calculated for each cell line by sub-
tracting the predicted expression for the given nuclear index from its measured
expression in the CCLE dataset.

Cell line classification and significance analysis of differentially expressed
features. We classified cell lines as histone-high or -low based on a least 20%
increase or decrease of both histones H3.1 and H4, using lineage-centered, nuclear
index-corrected protein expression data. We restricted all types of significance
analysis to lineages in which both histone-high and -low cell lines were represented
(blood, breast, central nervous system, gastric, kidney, liver, lung, lymphocyte,
ovary, pancreas, skin, upper aerodigestive). For significance analysis of protein
expression, we used the R package maanova (FDR < 0.1, fold-change > 1.3). For
significance analysis of mRNA expression and other features (metabolites, histone
modifications, drug sensitivity), we applied the R package maanova (FDR < 0.1) to
lineage-centered data. We validated that all of the differentially expressed proteins
were also statistically significant when applying proteome-wide nuclear index
correction (Supplementary Data 2), and that most of differentially expressed
proteins were consistently altered when comparing histone-high or -increased low
vs. cell lines with normal histone density (Supplementary Fig. 5a).

Cell culture, media and treatments. Cells cultured in RPMI 1640 medium
(TermoFisher) with 10% fetal bovine serum, 2 mM glutamine (Life Technologies)
and penicillin/streptomycin (Life Technologies), in a humidified incubator atmo-
sphere at 37° and 5% CO2. A custom cherry-pick siRNA library in the SMARTpool
format was obtained from horizon, with KIF11 siRNA (FE5L003317000005) and
non-targeting pool siRNA (FE5D0018101005) as controls. siRNA transfection was
done 3 days before cell fixation or lysis. We used OptiMEM (ThermoFisher) and
Lipofectamine RNAiMAX (ThermoFisher) reagents for siRNA transfection. For
each 96-well, 0.2 µL RNAiMAX in 10 µL OptiMEM were mixed with 10 µL
OptiMEM containing 120 nM siRNA. The mix was added to the wells and incu-
bated for 20 min. 100 µL cells in culture medium were then seeded on top at
10–15% confluency. For 6-well transfections the volumes were scaled up 30-fold.
For immunocytochemistry, 5-ethynyl-2’-deoxyuridine (EdU, ThermoFisher) was
added to a final concentration of 4 µM 1 h before fixation. Cell lines were obtained
from ATTC (MDA-MB-157, MDA-MB-453, WM-266-4, A-172, U118MG), NCI
(MDA-MB-231, UACC-62), CLS (MDA-MB-436), DSMZ (IPC-298, IGR-1), and
ICLC (MEWO). None of the used cell lines is listed as misidentified cell line in the
ICLAC register. Cell morphologies were tested visually for all cell lines. Cell line
validation was performed by STR profiling (gene print 10 system, Promega). All
cell lines were tested negative for mycoplasm contamination by PCR and colori-
metric assay (mycoalert detection kit, Lonza). Bright-field images of all used cell
lines are provided in Supplementary Fig. 4a.

Cell lysis and immunoblotting. Total cell lysates were prepared in lysis buffer
(50 mM Tris-HCl pH 8.0, 1 mM MgCl2, 200 mM NaCl, 10% Glycerol, 1% NP-40)
with EDTA-free protease inhibitor cocktail (Roche). Protein concentrations were
quantified by Bradford assay (Bio-Rad) and equal amounts of protein were boiled
with Laemmli buffer. Samples were resolved using BoltTM 4–12% Bis-Tris Plus
precast gels (Invitrogen) with MES buffer (Invitrogen), transferred to a 0.2 µm
nitrocellulose membrane for 16 h at 30 V. Proteins on membranes were visualized
with Ponceau S solution. Membranes were blocked for 30 min at room temperature
with blocking solution (5% non-fat dried milk in 1x TBS with 0.075% Tween-20).
Antibodies were diluted in blocking solution. Primary antibodies were incubated
overnight at 4 °C and secondary antibodies for 1 h at room temperature. Super-
Signal™ West Dura Extended Duration Substrate (ThermoFisher) and a ChemiDoc
imaging system (Image Lab v5.0) were used for signal acquisition. ImageJ software
(version 1.51d) was used for signal quantification. The preparation of Figure panels
was done with ImageJ and GIMP (version 2.8.14), and the cropping of original
images is shown in Supplementary Fig. 11. The following antibodies were used for
Western blotting: rabbit polyclonal anti-histone H3 (EpiCypher, Cat# 13-0001,
1:5000), rabbit monoclonal anti-histone H4 clone D2X4V (Cell Signaling

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03846-3

12 COMMUNICATIONS BIOLOGY |           (2022) 5:882 | https://doi.org/10.1038/s42003-022-03846-3 | www.nature.com/commsbio

www.nature.com/commsbio


Technology, Cat# 13919, 1:4000), rabbit polyclonal anti-DHX9 (Atlas Antibodies,
Cat# HPA028050, 1:2000), mouse monoclonal anti-RNA polymerase II (Santa
Cruz Biotechnology, Cat# sc-47701, 1:500), rabbit polyclonal anti-CHCHD4
(Novus biologicals, Cat# NBP2-76390, 1:1000), rabbit polyclonal anti-DCAF6
(Novus biologicals, Cat# NB100-56434, 1:1000), rabbit polyclonal anti-SCO1 (Atlas
antibodies, Cat# HPA021579, 1:1000), mouse monoclonal anti-ALAS1 (Santa Cruz
Biotechnology, Cat# sc-365153, 1:200), mouse monoclonal anti-COX4 (Cell Sig-
naling Technology, Cat# 11967, 1:5000), mouse monoclonal anti-α-Tubulin
(Merck, Cat# T5168, 1:1000), goat polyclonal anti-mouse IgG (H + L)-HRP
Conjugate (Bio-Rad, Cat# 1706516, 1:20000), goat polyclonal anti-rabbit IgG (H +
L)-HRP Conjugate (Bio-Rad, Cat# 1706515, 1:20000).

cDNA preparation and qPCR analysis. Three days post siRNA transfection, cells
were washed with ice-cold PBS, RNA was prepared for each sample using the
RNAeasy Mini kit (Qiagen, Cat# 74104) according to manufacturer instructions.
cDNA was prepared for each sample starting from 1 µg of RNA using the High-
Capacity cDNA Reverse Transcription Kit (ThermoFisher, Cat# 4368814)
according to manufacturer instructions. cDNA samples were treated with 1 µL
RNAse H (Promega, Cat# M4281) for 20 min at 37 degrees and stored at −80 °C.
Gene expression analysis was performed by the qPCR-Service at Cogentech-
Milano. 5 ng of cDNA was amplified in triplicate in a reaction volume of 10 µL
containing the following reagents: 5 µL of TaqMan Fast Advanced Master Mix
(ThermoFisher), 0.5 µL of TaqMan Gene expression assay 20x for DCAF6 and
GAPDH (ThermoFisher). Real-time PCR was carried out on the QS12k (Ther-
moFisher), using a pre-PCR step of 20 s at 95 °C, followed by 40 cycles of 1 s at
95 °C and 20 s at 60 °C. Samples were amplified with primers and probes for each
target, and for all the targets one NTC sample was run. Raw data (Ct) were
analyzed with Biogazelle qbase plus software and the fold change was expressed as
Calibrated Normalized Relative Quantity.

High content microscopy analysis, confocal imaging, bright-field imaging and
siRNA screens. For high content microscopy analysis, cells were fixed for 15 min
at room temperature in 3% PFA/0.025% glutaraldehyde, and permeabilized with
0.3% Triton X-100 for 10 min. Glutaraldehyde was quenched with 0.1% NaBH4 in
PBS for 10 min. The click reaction was performed for 1 h at room temperature in
PBS with 2 mM CuSO4, 10 mM sodium ascorbate and 1 µM Alexa Fluor™ 647
Azide (ThermoFisher). Cells were incubated with blocking solution (1% BSA, 5%
goat serum, 0.075 Tween-20 in TBS) for 1 h, with the primary antibodies diluted in
blocking solution overnight at 4 °C, and with fluorophore-conjugated secondary
antibodies for 2 h. Cells were washed three times with TBS-Tween between all
incubations. Nuclei were stained with 1 µg/ml 4′,6-diamidino-2-phenylindole
(DAPI, ThermoFisher) in PBS. For high-content imaging, images were acquired
using a ScanR microscope (Olympus) with a 10x objective, using auto-focus on the
DAPI channel and fixed exposure times. Image sets were analyzed with CellProfiler
(version 4.1.3)62 to identify nuclei and measure shape, area and intensities. Nor-
malizations, cell cycle gating, statistics and visualization were performed in a
custom R script (provided). At least three independent wells per condition were
analyzed, and statistics were calculated over well means. The mean H3 signal per
DNA (H3/DAPI) was quantified separately for G1, S and G2/M phases for each
screening well to avoid potential bias due to differences in cell cycle distribution,
and the mean of these three values was used as representative H3 signal per DNA.
We confirmed as measure of transfection and knock-down efficiency that treat-
ment with lethal siKIF11 reduced nuclei counts to approximately 10% of the
scrambled siRNA (siCtrl) (see Supplementary Fig. 10a). Information on the
number of analyzed objects is listed in the CellProfiler output files. For confocal
imaging, 20,000 cells/well in a 24-well plate were seeded on round slide-glasses pre-
coated with fibronectin at 10 µg/ml. 48 h after cell seeding cells were washed once
with PBS and fixed with 4% formaldehyde (15 min at room temperature), washed 3
times with PBS (10 min each), permeabilized with 0.5% Triton-X-100 in PBS
(5 min at room temperature), incubated with blocking buffer (3% BSA in 0.1%
Triton-X-100 PBS) for 1 h, incubated with primary antibody (diluted in blocking
buffer) for 1.5 h at room temperature, followed by three PBS washes and incubated
with secondary antibodies (1:400 in blocking solution) and phalloidin-FITC (1:50
in blocking solution) for 1 h in the dark at room temperature followed by three PBS
washes. DAPI was added in PBS for 5 min at room temperature followed by other 2
washes with PBS. Samples were mounted with Mowiol and stored at 4 °C until
image acquisition. Random fields (up to 15) were acquired from each coverslip on
an UltraVIEW VoX spinning-disc confocal unit (PerkinElmer), equipped with an
Eclipse Ti inverted microscope (Nikon) and a C9100-50 electron-multiplying CCD
(charge-coupled device) camera (Hamamatsu), driven by a Volocity software
(Improvision; Perkin Elmer). Z-stacks with a step size 0.3 µm were acquired for
each field of view for a total Z of 10 µm using a 60X oil objective. Bright-field
images were acquired at a EVOS imaging system using a 40x objective. The pre-
paration of Figure panels was done with ImageJ and GIMP, and the cropping of
original images is shown in Supplementary Fig. 12. The following antibodies were
used for immunocytochemistry: rabbit polyclonal anti-histone H3 (Abcam, Cat#
ab1791, 1:200), mouse monoclonal anti-histone H3 clone 1B1B2 (Cell Signaling
Technology, Cat# 14269, 1:200), rabbit monoclonal anti-histone H4 clone D2X4V
(Cell Signaling Technology, Cat# 13919, 1:200), mouse monoclonal anti-
mitochondria (Abcam, Cat# ab92824, 1:500), donkey polyclonal anti-mouse

AlexaFluor-Cy3 (Jackson ImmunoResearch, Cat# AB_2340813, 1:400), donkey
polyclonal anti-rabbit AlexaFluor-488 (Jackson ImmunoResearch, Cat#
AB_2313584, 1:400).

Flow cytometry analysis of DNA content. Cells were trypsinized and counted,
106 cells were pelleted at 1500 rpm for 10 min, washed once in 1 ml PBS (4 °C) and
centrifuged at 3000 rpm for 5 min. Cell pellets were resuspended in 250 µL PBS
(4 °C) by pipetting and fixed by adding 750 µL pure ethanol (−20 °C) dropwise
while vortexing. Cells were left in fixative for at least one hour on ice. Cells were
then washed once in 1 mL PBS with 1% BSA (4 °C). Finally, pellets were resus-
pended in 1 mL DAPI dilactate (Merck Cat# D9564) at 2 µg/ml in PBS (4 °C) and
stained cells were kept overnight at 4 °C until flow cytometry analysis. Volumes
were rescaled in order to keep the same cell density in samples with lower number
of cells. for 1 h at room temperature. Samples were acquired with Attune NxT
(ThermoFisher) with fixed settings for all cell lines and analyzed with FlowJo
10.8.1. Unstained samples were included for all cell lines to confirm that the
background intensity was below 1% of the staining intensity.

Human research participants. There was no involvement of human participants
in this study.

Statistics and reproducibility. Significances for comparisons of multiple groups of
normally distributed data were calculated with one-way ANOVA with post hoc
Tukey HSD test. Significances for pairwise comparison of normally distributed data
were calculated with Student’s t test (two-sided, unpaired). Benjamini-Hochberg
correction was applied to p values for multiple comparisons. Descriptive statistics
on histone expression in cancer cell lines and cancer patients were applied to all
available samples without exclusion (Fig. 1a–d and Supplementary Fig. 1a–d).
Nuclear index calculation was based on cell lines covered by CCLE proteomics and
RNA-Seq datasets (N= 372) (Fig. 2a–h and Supplementary Fig. 2). Nuclear index
corrections and cell line classification by histone density were applied to the cell
lines covered by the CCLE proteomics dataset (N= 373) (Fig. 3a–f and Supple-
mentary Fig. 3a, b). Histone density validation (Fig. 3g, h) and DNA content
analysis (Supplementary Fig. 4c–e) were performed with parallel experimental
replicate cultures (N= 3), and statistics were calculated separately by lineage and
quantified histone. Mitochondrial protein expression validation was performed in 5
histone-high and 5 histone-low cell lines (Fig. 4d, e). Cell line groups by histone
density contain 46 (histone-high), 31 (histone-low), and 296 (histone-medium) cell
lines (Supplementary Fig. 3c, d). Cell line groups by histone density filtered for
lineages that contain at least one histone-high and at least one histone-low cell line
contain 37 (histone-high), 31 (histone-low), and 209 (histone-medium) cell lines
These groups were used for most statistical analysis between histone density groups
(Figs. 4a–c, f, g, 5a, b and Supplementary Figs. 5a, b, 9a–f). A group of high
confidence histone-high cell lines (Fig. 5c, N= 10) was used in multiple omics
comparisons vs. a pool of histone-low and -medium cell lines (N= 240) (Fig. 5d–f,
Supplementary Fig. 8). Representative imaging Figure panels without formal
experimental repetition (Supplementary Figs. 4a, 6, and 7) or from high-
throughput screening (Fig. 6b, c, e) are shown as illustrations of cell identity and
morphology. The primary high-content imaging screen was performed in 3
replicate wells split to 3 plates, with 4 control siRNAs per plate (Fig. 6d and
Supplementary Fig. 10a–c). The secondary high-content imaging screens were
performed in 4 replicate wells on the same plate, with 9 control siRNAs (Fig. 6f and
Supplementary Fig. 10d–g). siRNA valdation experiments were performed with 4
experimental replicates for histone regulation (Fig. 6g and Supplementary
Fig. 10h), and in three technical replicates for knock-down quantification
(Fig. 6h–j). No data exclusions were performed unless specifically stated. To assure
the high confidence experimental replication of histone regulators, high content
analysis data were obtained with 3 antibodies in total, and relevant hits were
independently validated by Western blot analysis. Sample randomization and
blinding were not performed. However, the study is largely based on published data
and a high-content imaging approach, which avoids data acquisition bias.

The following antibody validations were performed: rabbit polyclonal anti-histone
H3 (EpiCypher, Cat# 13-0001): validated by our lab16, expected molecular weight in
Western blot, expected nuclear signal and correlation with DNA content in
immunocytochemistry; rabbit polyclonal anti-histone H3 (Abcam, Cat# ab1791):
Validated in manufacturer’s website, expected molecular weight in Western blot,
expected nuclear signal and correlation with DNA content in immunocytochemistry;
mouse monoclonal anti-histone H3 clone 1B1B2 (Cell Signaling Technology, Cat#
14269): Validated in manufacturer’s website, expected molecular weight in Western
blot, expected nuclear signal and correlation with DNA content in
immunocytochemistry; rabbit monoclonal anti-histone H4 clone D2X4V (Cell
Signaling Technology, Cat# 13919): Validated in manufacturer’s website, expected
molecular weight in Western blot, expected nuclear signal and correlation with DNA
content in immunocytochemistry; rabbit polyclonal anti-DHX9 (Atlas Antibodies,
Cat# HPA028050): Validated in manufacturer’s website, expected molecular weight in
Western blot; mouse monoclonal anti-RNA polymerase II (Santa Cruz Biotechnology,
Cat# sc-47701): Validated in manufacturer’s website, expected molecular weight in
Western blot; rabbit polyclonal anti-CHCHD4 (Novus biologicals, Cat# NBP2-76390,
1:1000): Validated in manufacturer’s website, expected molecular weight in Western
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blot, consistent with siRNA knock-down; rabbit polyclonal anti-DCAF6 (Novus
biologicals, Cat# NB100-56434, 1:1000): Apparent molecular weight (130 kD)
different higher than expected; validated by comparison with literature showing
consistent appearance in Western blot at ~130 kD with diverse antibodies detecting
DCAF663–65, consistent with siRNA knock-down which was confirmed by qPCR;
rabbit polyclonal anti-SCO1 (Atlas antibodies, Cat# HPA021579, 1:1000): Validated
in manufacturer’s website, expected molecular weight in Western blot; mouse
monoclonal anti-COX4 (Cell Signaling Technology, Cat# 11967, 1:5000):): Validated
in manufacturer’s website, expected molecular weight in Western blot; mouse
monoclonal anti-α-Tubulin (Merck, Cat# T5168, 1:1000): Validated in manufacturer’s
website, expected molecular weight in Western blot; mouse monoclonal anti-
mitochondria (Abcam, Cat# ab92824, 1:500): Validated in manufacturer’s website,
typical mitochondrial morphology observed in confocal microscopy in 10 cell lines

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data and uncropped blots are available at Mendeley Data (https://doi.org/10.
17632/68pd82kgpg.1)66. Uncropped blot image files are located in the Mendeley Data
project raw data folder, within the subfolders named after the corresponding Figure
panels. High-content imaging raw data are available at figshare (https://doi.org/10.6084/
m9.figshare.20412639.v1)67. All other data are available from the corresponding author
on reasonable request.

Code availability
The projects were managed in Rstudio version 1.0.153, run in a Windows 7 (64 bit)
operative system. The code was executed with R version 4.0.2. Code, data files and a user
manual are available at Mendeley Data (https://doi.org/10.17632/68pd82kgpg.1)66. The
following R package versions were used: data.table 1.13.6, dplyr 1.0.2, ggplot2 3.3.3,
RcolorBrewer 1.1–2, ggVennDiagram 1.1.0, ggforce 0.3.2, ggraph 2.0.3, igraph 1.2.6,
qvalue 2.20.0, maanova 1.58.0, stringr 1.4.0, tidyr 1.1.3, ggpubr 0.4.0, pheatmap 1.0.12,
clusterProfiler 3.16.1, FactoMineR 2.4, factoextra 1.0.7, caret 6.0–86, ROCR 1.0–11,
foreach 1.5.1, doParallel 1.0.16, quantreg 5.75, extrafontdb 1.0, extrafont 0.17. The
following tool and software versions were used: DAVID Bioinformatics Resources 6.8,
STRING 11.5 and Cytoscape 3.5.1.
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