
ARTICLE

Shared regulation and functional relevance of local
gene co-expression revealed by single cell analysis
Diogo M. Ribeiro 1,2✉, Chaymae Ziyani1,2 & Olivier Delaneau 1,2✉

Most human genes are co-expressed with a nearby gene. Previous studies have revealed this

local gene co-expression to be widespread across chromosomes and across dozens of tis-

sues. Yet, so far these studies used bulk RNA-seq, averaging gene expression measurements

across millions of cells, thus being unclear if this co-expression stems from transcription

events in single cells. Here, we leverage single cell datasets in >85 individuals to identify gene

co-expression across cells, unbiased by cell-type heterogeneity and benefiting from the co-

occurrence of transcription events in single cells. We discover >3800 co-expressed gene

pairs in two human cell types, induced pluripotent stem cells (iPSCs) and lymphoblastoid cell

lines (LCLs) and (i) compare single cell to bulk RNA-seq in identifying local gene co-

expression, (ii) show that many co-expressed genes – but not the majority – are composed of

functionally related genes and (iii) using proteomics data, provide evidence that their co-

expression is maintained up to the protein level. Finally, using single cell RNA-sequencing

(scRNA-seq) and single cell ATAC-sequencing (scATAC-seq) data for the same single cells,

we identify gene-enhancer associations and reveal that >95% of co-expressed gene pairs

share regulatory elements. These results elucidate the potential reasons for co-expression in

single cell gene regulatory networks and warrant a deeper study of shared regulatory ele-

ments, in view of explaining disease comorbidity due to affecting several genes. Our in-depth

view of local gene co-expression and regulatory element co-activity advances our under-

standing of the shared regulatory architecture between genes.
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The expression of genes is regulated in space and time
through the action of various cis-regulatory elements such
as promoters, insulators and enhancers1–4. These elements

play an important role in buffering and fine-tuning gene
expression in response to stress conditions, differentiation cues
and cell states5,6. To achieve a tight control and robust expression
level, genes are usually regulated by multiple enhancers, even-
tually with redundant action7, as well as multiple target genes8,9.
Indeed, neighbouring genes frequently exhibit similar behaviour
in terms of expression level10–12. This local gene co-expression is
more pronounced in the immediate vicinity of a gene (e.g.,
<100 kb) but can occur at longer distances and regardless of the
transcriptional orientation or shared functionality13,14. In parti-
cular, we have previously shown that as many as 59% genes are
co-expressed with a nearby gene (within 1Mb) across 49 GTEx
tissues10. However, these observations came from studies mea-
suring bulk gene expression in tissues, which entails several
limitations. In particular, as these measurements are averages
across many sampled cells, the correlation between nearby genes
does not necessarily represent co-expression in the same cell.
Moreover, tissues contain multiple cell types, which may mask
the detection of cell-type-specific co-expression15,16.

Single-cell analysis has multiple advantages over bulk analysis
for addressing the molecular circuitry between gene (co-)
expression and regulatory elements by (i) being able to reduce
cell-type heterogeneity, or even study one specific cell type17,18,
(ii) producing measurements per cell and thus getting closer in
time to the transcription event and (iii) allow to detect co-
expression events per individual (i.e., a single genetic back-
ground), and thus not affected by linkage disequilibrium (LD).
Moreover, with the advent of multimodal single-cell datasets19,20,
chromatin accessibility and gene expression levels can be mea-
sured in the same exact cells, which allows exploring the local
regulatory elements affecting gene expression at a very high
resolution.

Here, we provide an in-depth view of local gene co-expression
and regulatory element co-activity using single-cell data in two
cell lines (iPSC, LCLs). Namely, we (i) confirm the widespread
local co-expression of thousands of gene pairs at the single-cell
level, (ii) compare single cell to bulk RNA-seq in identifying local
gene co-expression, (iii) explore the co-transcription of co-
expressed genes and their maintenance up to the protein level and
(iv) identify enhancers involved in local gene co-expression by
analysing single-cell RNA-seq and ATAC-seq data performed on
the same cells. Our study improves the understanding of the
shared regulatory architecture between genes as well as their
regulators, which is a prerequisite for understanding their
implication in complex traits and disease.

Results
Local gene co-expression is widespread in single cells. To
identify locally co-expressed gene pairs (COPs) using single-cell
data, we adapted a method developed previously10 to handle gene
expression measurements across thousands of single cells (Fig. 1).
Briefly, this method generates genome-wide maps of local gene
co-expression from gene expression quantifications by looking at
the correlation between genes across cells of the same cell line.
For each gene, all other genes in a cis window of 1Mb around the
gene transcription start site (TSS) are tested for having higher
than expected expression Pearson correlation. We control for a
maximum false discovery rate (FDR) of 5% by comparing the
observed correlation to expected correlation values under the null
obtained by shuffling expression values 1000 times (see Methods).
This approach ensures that differences in the number of nearby
genes per region is accounted for. Only autosomal protein-coding

genes were assessed and gene pairs with high cross-mappability,
i.e., the extent to which reads from one gene are mapped to the
other gene21, were excluded.

First, we applied this method to gene expression quantifica-
tions for undifferentiated induced pluripotent stem cells (iPSC)
from 87 individuals from the HipSci consortium22 for which both
single-cell RNA-seq data (Smart-Seq2, 7440 cells in total) and
bulk RNA-seq data were available23,24. As the single-cell data was
obtained in batches which comprised sets of 4 to 6 individuals, to
account for potential batch effects, we performed COP identifica-
tion on a per individual and per experiment basis, as
recommended by the data providers24 (see Methods). Then, for
each individual, we obtained the union of COPs stemming from
the different experiments (Supplementary Fig. 1). We discovered
between 4 and 442 COPs per individual (mean and standard
deviation, 113.3 COPs ± 102), the number of COPs identified per
individual being strongly correlated with the number of cells
available for each individual (Fig. 2a, Spearman R= 0.88,
p-value= 4.2e−29), similar to what was observed for the GTEx
dataset and tissue sample sizes10,25. Across the 87 individuals, we
obtained 3877 distinct COPs from single-cell data, out of 254,647
gene pairs tested (Supplementary Table 1 and Supplementary
Data 1). Of these, we found 613 COPs present in 2 to 5
individuals and 377 COPs in more than 5 individuals (Fig. 2b).
The modest number of COPs found in common between multiple
individuals may suggest a high individual and cellular specificity
of COPs but may also stem from the lack of power in detecting
COPs in individuals with a low number of cells available. Yet,
when comparing COP replication rates between experiments of
the same individual to experiments from other individuals, we
found COP replication to be clearly higher than expected by
chance (23.8% versus 2.8%, Wilcoxon test p-value= 3e−14,
Supplementary Fig. 2). Moreover, the 4797 distinct genes
composing the 3877 COPs are found widespread across the
genome, with between 18.1% and 31.3% of genes per chromo-
some associated with at least one COP (Supplementary Fig. 3).

In addition to single-cell COPs (scCOPs) mapped for iPSCs
across individuals, we also identified 2589 scCOPs from 26,589
cells of a single human lymphoblastoid cell line (LCL,
Supplementary Table 1) using the SHARE-seq single-cell
dataset20, a multimodal dataset further explored in the next
sections. Data from this dataset includes many more cells but also
more sparsity compared to the iPSC dataset (Smart-seq2), which
warranted different processing steps such as the removal of genes
expressed in <100 cells and binarised expression levels (see
Methods). The discovery of several thousand LCL scCOPs in a
single individual (compared to hundreds in the iPSC dataset)
could be linked to the availability of many thousands of cells and
may serve as an example for what may be obtained per individual
with larger datasets. Together with the iPSC results, the extensive
discovery of COPs using single-cell data demonstrates that local
gene co-expression is present for a large proportion of genes and
seems to vary across individuals.

Comparison between single-cell and bulk-derived local gene
co-expression. Next, using bulk RNA-seq data for the same set of
87 individuals, we identified 3705 bulkCOPs by correlating gene
expression across individuals (Fig. 1, see Methods). This compares
to 3877 distinct scCOPs identified in the same samples, with 313
COPs found in both datasets. This overlap is higher than expected
by chance when considering the 239,154 gene pairs tested in
both datasets (Fig. 2c, two-sided Fisher’s exact test OR= 7.5,
p-value= 1.63e−148). Of note, 311 out of 377 scCOPs replicated
across 5 or more individuals were not found with bulk data, yet,
many of those are clearly functionally related genes, such as the
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histone 1 gene cluster (Supplementary Data 1). Indeed, although
the set of COPs differ between single cell and bulk datasets, we
found an enrichment for both scCOPs and bulkCOP genes to
belong in the same pathway (OR > 1.7, p-value < 1.3e−27, Fig. 2d)
and the same protein complex (OR > 11.5, p-value < 1.9e−22).
Moreover, both scCOPs and bulkCOPs are enriched in previously
identified10 GTEx COPs, which are conserved across >50% tissues
(OR= 6.2 to 15.6, p-value < 6.1e−42). These enrichments greatly
increase for the scCOPs replicated across 5 or more individuals
(OR= 5.5 to 82.4, p-value < 1.4e−36). We confirmed that the
scCOP enrichments are not driven by the COPs that are in
common with bulk data (Supplementary Fig. 4). In addition, these
enrichments are also replicated on the 2589 scCOPs mapped for
LCLs (OR= 1.9 to 5.7, p-value < 4.0e−10, Supplementary Fig. 5).
Although highly enriched, the overlap between scCOPs and
functionally related gene pairs ranged between 1.3% (same com-
plex) and 16.1% of the scCOPs (same pathway, Fig. 2d), i.e.,
functionally related genes only represent a minority of all co-
expressed gene pairs.

To confirm these results, we analysed single-cell RNA-seq and
bulk RNA-seq available for 37 Yoruba individuals of the 1000
Genomes project26,27. Notably, we observed very similar results as
previous when using this dataset including (i) a correlation
between the number of COPs identified per individual and the
number of cells available (Spearman R= 0.66, p-value= 1.1e−7,
Supplementary Fig. 6a), (ii) a similar proportion of COPs being
shared across individuals (9% COPs shared across 5 or more
individuals, Supplementary Fig. 6b), (iii) matching between the
number of COPs identified with bulk RNA-seq (1211 COPs) and
single-cell RNA-seq (1155 COPs), with a relatively low but
significant overlap between them (two-sided Fisher’s exact test
OR= 2.38, p-value= 5.2e−7, Supplementary Fig. 6c) and (iv)
significant enrichments for COPs to belong to the same gene
pathway, protein complex and conserved COPs (Supplementary
Fig. 6d).

The fact that scCOPs and bulkCOPs identify different sets of
COPs, yet both show strong functional enrichments, suggests that
the single-cell COP identification could be complementary to

bulk COP identification in discovering novel and biologically
relevant gene co-expression. Out of the 4797 distinct genes
present in scCOPs, 1587 genes (33%) are also present in
bulkCOPs (Supplementary Fig. 7a). When performing functional
enrichments with gProfiler28 (see Methods) for genes in scCOPs
and for genes in bulkCOPs, we observe several enriched biological
process terms in common between the two, in particular those
related to transcription such as “gene expression” (GO:0010467,
adjusted p-value < 2.3e−9) and “cellular metabolic process”
(GO:0044237, adjusted p-value < 2.2e−10) (Supplementary Data 2
and Supplementary Fig. 7b, c). However, while the majority of
bulkCOP significant enrichments are also found with scCOPs (65
out of 87, Supplementary Data 2 and Supplementary Fig. 7b),
scCOPs revealed an additional 547 significant enrichments
(Supplementary Data 2 and Supplementary Fig. 7c). These
enrichments included terms related to protein translation, such
as “translation” (GO:0006412, adjusted p-value= 3.9e−26), “pro-
tein-containing complex subunit organisation” (GO:0043933,
adjusted p-value= 1.0e−26) and “Ribosome” (KEGG, adjusted
p-value= 2.3e−21). Moreover, scCOPs are also highly enriched in
“Cell Cycle” (Reactome, adjusted p-value= 3.3e−11) and “Cel-
lular responses to stress” (Reactome, adjusted p-value= 5.1e−21).
The expression of cellular stress response genes due to single-cell
RNA-seq preparation has previously been reported29,30. While
this can be problematic in studies of differential gene expression
under multiple conditions, here we measure local gene co-
expression, which is largely independent of expression levels.
Thus, changes in cell states can be seen as an opportunity of
discovering novel co-expression events. Indeed, gene expression
differences due to cell cycle phases have been previously studied
in this dataset24. We have thus discovered COPs per cell cycle
phase, by first annotating each of the 7440 cells with its most
likely cell cycle phase (see Methods) and then separately
identifying COPs per individual from cells of each of the G1
(697 cells, 291 COPs), S (3371 cells, 1786 COPs) and G2M phases
(3372 cells, 2483 COPs). We again observed that COP
identification is dependent on the sample size for each
individual-experiment (Supplementary Fig. 8), which likely

Fig. 1 Scheme of the single cell and bulk local gene co-expression detection approach across 87 individuals. Using normalised single-cell data, we
identify scCOPs per individual based on measuring the gene expression correlation across all cells of the same individual. Using bulk data (right part of the
plot) we identify bulkCOPs by correlating the expression levels of nearby genes across individuals.
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explains the modest overlap in COPs between phases (e.g., 300
COPs overlapping between S and G2M phases, Supplementary
Fig. 9a). However, the enrichment of COPs in genes belonging to
the same pathway, protein complex or conserved COPs shows to
be very consistent across all phases (Supplementary Fig, 9b).
Likewise, many enriched GO terms are present across the 3 cell
cycle phases analysed (Supplementary Data 3), including for
“Ribosome” (KEGG, adjusted p-value= 6.1e−7) and “Cellular
responses to stress” (Reactome, adjusted p-value= 1.2e−6),
indicating that while COP identification is very much dependent
on the available data, the functional enrichments of COP genes
are robust. Overall, these results evidence the benefit of using
single-cell data to identify COPs in addition to bulk data and the
consistent enrichments in pathways and protein complexes
reiterate the functional usefulness of local gene co-expression
in cells.

Local gene co-expression is kept up from nascent RNA to
protein levels. In a bid to determine if local gene co-expression
not only occurs in the same cells but actually stems from gene
transcription at the same time, we analysed gene transcription
initiation from a nuclear run-on dataset (GRO-seq) publicly

available for the GM12878 LCL cell line31. In practice, we eval-
uated whether the nascent transcription of both genes in
2589 scCOPs mapped for LCLs is observed, by correlating the
number of reads mapping to TSSs of gene pairs (see Methods).
Indeed, we found significant read number correlation for COP
gene pairs (Spearman R= 0.22, p-value= 2.8e−4, Fig. 3a). To
determine if this correlation is higher than expected by the
genomic proximity between COP gene TSSs, we produced a
control set of 2589 gene pairs that is not co-expressed but closely
matches the distance between COPs’ TSSs, which we named
‘non-COPs’ (see Methods). Importantly, in this set of distance-
matched non-COP gene pairs we found no read number corre-
lation (Spearman R= 0.001, p-value= 0.99, Supplementary
Fig. 10). Given that scCOPs were discovered through their con-
certed expression in the same cell, this finding suggests that genes
in a COP may also be transcribed at the same time.

Next, to address whether the local gene co-expression observed
would be relevant at the cellular level, we used bulk proteomics
data (MS/MS) from Mirauta et al.32, which is available for 42 out
of the 87 HipSci consortium iPSC cell lines studied here (68 out
of 152 individual-experiment combinations). This allowed us to
assess whether local gene co-expression correlation can be
reproduced as protein intensity correlation (total of 9013 genes

Fig. 2 Features of single-cell local gene co-expression. a Number of cells per individual and number of COPs mapped. Fit line corresponds to a linear
regression model with 95% confidence intervals; b distribution of the percentage of individuals in which COPs are present. The inner plot counts how many
COPs in 1, 2 to 5 (exclusive) and 5 or more individuals; c total number of COPs detected with bulk data (bulkCOPs) and single-cell data (scCOPs, union
across individuals). Numbers in green represent COPs found from both bulk and single-cell data. The contingency table summarises the overlap between
scCOPs and bulkCOPs considering the common background of gene pairs tested, which differs slightly between both datasets due to different genes being
expressed and detected; d one-sided Fisher’s exact test odds ratio enrichment (and 95% confidence interval) for the pair of genes in COPs to belong to the
same gene pathway, protein complex or in the set of COPs conserved across GTEx tissues. “scCOPs >=5” are a subset of COPs that are found across 5 or
more individuals. x-axis is log-scaled, but values shown are before transformation. The right part of the plot denotes the percentage of COPs in each
functional annotation.
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with protein intensities, see Methods). We found that the 2577
distinct scCOPs discovered in the matching cell lines often
display correlated protein intensities, with a mean Spearman
correlation of 0.29 across 58 individual-experiment combinations
with more than 10 COPs (Fig. 3b). We observed no positive
correlation for 2577 distance-matched non-COPs (Spearman
R=−0.004), indicating that protein intensities correlations are
exclusive to COPs (two-sided Wilcoxon test p-value= 3.1e−7).
Moreover, this correlation was not present when shuffling gene
pair labels for COPs and non-COPs on each individual-
experiment (Supplementary Fig. 11a). Furthermore, when aver-
aging intensities across all the 42 individuals a significant
correlation in intensity levels is also observed for scCOPs but
not for distance-matched non-COPs (scCOPs Spearman R= 0.15
p-value= 4e−13, non-COPs Spearman R=−0.05, p-value= 0.2,
Supplementary Fig. 11b). This was also observed when consider-
ing bulkCOPs (COPs Spearman R= 0.19 p-value= 2e−11, non-
COPs Spearman R= 0.04, p-value= 0.2, Supplementary Fig. 11c).
These results demonstrate that the co-expression of nearby genes
often leads to similar protein abundance levels, perhaps
unsurprisingly, given the demonstrated functional relatedness
between the genes in a COP and their need to ensure co-
expression stability.

Enhancer regulation of local gene co-expression. To further
explore the regulatory mechanisms leading to gene co-expression
we utilised publicly available multimodal SHARE-seq data, which
simultaneously profiles gene expression (scRNA-seq) and open
chromatin (scATAC-seq) on the same single cells20. In particular,
we used the data available for a human LCL (GM12878), for
which 24,844 cells with both scRNA-seq and scATAC-seq are
available (see Methods). Focusing on ATAC-seq peaks over-
lapping known LCL enhancer regions from the EpiMap
repository33, we correlated the activity of enhancers with the
expression of nearby genes (+/−1Mb window of gene TSS,
Fig. 4a, see Methods). Out of 350,182 gene-enhancer pairs tested,
32,883 (9.4%) were determined as significant gene-enhancer
associations (FDR < 5% from 1000 permutations and Spearman
correlation > 0.05, Supplementary Data 4). As expected, sig-
nificant gene-enhancer associations are more often found at close
distances between the gene TSS and the enhancer, yet, in 83% of

associations the gene TSS and enhancers are >100 kb apart
(Supplementary Fig. 12). Importantly, we found significant cor-
relations between the gene-enhancer associations and two recent
orthogonal datasets of gene-enhancer associations in LCLs: (i)
EpiMap33, based on gene expression and epigenetic modification
measurements (Spearman R= 0.18, p-value < 2.2e−16) and (ii)
activity-by-contact (ABC) model9, based on CRISPR perturba-
tions (Spearman R= 0.06, p-value 3.9e−15, Supplementary
Fig. 13a, b). Of note, these correlation levels are higher than what
is obtained when comparing the EpiMap and ABC model
orthogonal methods (Spearman R= 0.04, p-value= 1.8e−6.,
Supplementary Fig. 13c), evidencing their orthogonal discovery of
gene-enhancer associations and the lack of a gold standard for
evaluating such associations. To further confirm the validity of
our gene-enhancer associations, we analysed normalised bulk Hi-
C data (5 kb, 10 kb and 25 kb resolution) for LCLs34. We find that
the correlation level of gene-enhancer associations corresponds to
higher Hi-C contact intensities (Spearman R= 0.13, p-value <
2.2e−16, Supplementary Fig. 14a). Importantly, this correlation
was not observed for distance-matched control regions (see
Methods, Supplementary Fig. 14b). Indeed, 22,102 (67.2%) out of
the 32,883 significant gene-enhancer associations displayed
higher Hi-C contacts than expected by their distance (Supple-
mentary Fig. 14c). These results were reproduced when con-
sidering Hi-C resolution of 10 kb or 25 kb (Supplementary
Figs. 15 and 16).

Next, using the 32,883 gene-enhancer associations identified,
we explored the role of enhancer sharing in local gene co-
expression. For this, we first identified enhancers associated with
both genes of a gene pair (correlation > 0.05, FDR < 5%, see
Methods). Notably, we found that 95.6% of the 2589 COPs
identified share at least one enhancer (mean of 6.2 enhancers
shared, range: 0 to 26, Fig. 4b, c), significantly more than for 2589
distance-matched non-COPs, where 32.6% shared at least one
enhancer (mean of 0.9 enhancers shared, two-sided Fisher’s exact
test OR= 41.3, p-value < 5e−324). These results were not driven
by a difference in the number of enhancers tested for associations
between COPs (21.6 enhancers) and non-COPs (21.5 enhancers,
Wilcoxon test p-value= 0.6, Supplementary Fig. 17). Remarkably,
using the same Hi-C dataset as before, we found that 53.1% of
COPs are associated with at least one enhancer displaying high

Fig. 3 GRO-seq and proteomics correlation in scCOPs. a GRO-seq read correlation for LCL scCOP genes for which data was available (N= 264). Reads
mapping to the TSS positions of each gene were considered. Gene pairs with missing data in at least one of the genes were excluded. The number of reads
across all genes in COPs and non-COPs was ranked prior to plotting. Two genes sharing the same number of reads share the same rank; b correlation of
protein intensities for each of 58 individual-experiments with iPSC proteomics data. The two-tailed Wilcoxon test refers to the comparison of correlation
values between iPSC scCOPs and non-COPs for all 58 individual-experiments. The length of the box corresponds to the interquartile range (IQR) with the
centre line corresponding to the median, the upper and lower whiskers represent the largest or lowest value no further than 1.5× IQR from the third and
first quartile, respectively.
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Fig. 4 Identification of enhancers linked to local gene co-expression. a SHARE-seq and identification of gene-enhancer associations and enhancer
sharing, based on correlating gene expression and chromatin activity on the same cells between nearby genes and enhancer regions (+/−1 Mb from gene
TSS). Shared enhancers are identified as having a significant association (FDR 5%, Spearman correlation >0.05) with multiple nearby genes; b percentage
of COPs and non-COPs sharing at least one enhancer, i.e., enhancer significantly associated with both genes in the pair; c number of significantly
associated enhancers per COP and non-COP. Two-tailed Wilcoxon test was performed between COP and non-COP numbers of enhancers. The length of
the box corresponds to the IQR with the centre line corresponding to the median, the upper and lower whiskers represent the largest or lowest value no
further than 1.5× IQR from the third and first quartile, respectively; d number of COPs and non-COPs with Hi-C support (e.g., both enhancer-gene1 and
enhancer-gene2 having Hi-C contact higher than the 75th quantile). Note that non-COPs are less likely to share enhancers and thus a smaller number of
gene pairs is liable to have Hi-C support. e Overview of the genomic region chr21:38358400-38929000 comprising TTC3 and DYRK1A co-expressed
genes, as well as other non-co-expressed genes. The y-axis represents the gene expression (blue) and enhancer region activity (green) across 9341 single
cells expressing at least one enhancer or gene. The 8 enhancers found in this region (green models) are denoted as E1 to E8. E1 and E3 are both significantly
associated with the TTC3, DSCR3 and DYRK1A genes. The midpoint locations of genes and enhancers are used to draw the y-axis values.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03831-w

6 COMMUNICATIONS BIOLOGY |           (2022) 5:876 | https://doi.org/10.1038/s42003-022-03831-w | www.nature.com/commsbio

www.nature.com/commsbio


Hi-C contacts to both genes (Fig. 4d, intensities higher than the
75th quantile, see Methods), indicating that these enhancers are
likely to interact with both gene’s TSSs. For instance, we have
found Hi-C support for the co-expression and enhancer sharing
of the ST3GAL2 and SF3B3 genes (Supplementary Fig. 18a) and
the DRAM1, CCDC53 and NUP37 genes (Supplementary
Fig. 18b). Indeed, 76.8% COPs share enhancers with higher Hi-
C contacts than distance-matched control regions (Supplemen-
tary Fig. 19). Importantly, when considering Hi-C resolutions of
10 kb and 25 kb, similar findings were also observed (Supple-
mentary Figs. 20 and 21). Regulatory element sharing between
genes in COPs was also observed when considering all ATAC-seq
peaks within+ /−100 Kb of each gene TSS (regardless of overlap
with known enhancers), with 76.7% COPs sharing peaks
compared to 25.1% for non-COPs (Supplementary Fig. 22).
Finally, we provide an example visualisation of enhancer sharing
between the TTC3 and DYRK1A co-expressed genes, in which
two enhancers regulate both genes (Fig. 4e). Overall, the
widespread usage of shared regulatory elements shows to be an
hallmark of local gene co-expression and may be a key
mechanism in ensuring that the transcription of nearby genes is
similar and results in stable co-expression.

Discussion
Previous work described the co-expression of nearby genes
through the co-variation of expression levels across individuals
for a multitude of tissues10,12. However, this work has been
achieved with bulk RNA-seq, often in primary tissues, in which
the heterogeneity of cell types can confound gene co-expression
measurements. Indeed, various studies have shown that the var-
iation in cell-type abundance between samples of the same tissue
can affect gene co-expression measurements, i.e., these patterns
may reflect the differential expression between cell types of a
tissue and even mask robust cell-type-specific co-expression
patterns16,35. By measuring transcription events in a single cell
rather than using gene expression averages, single-cell measure-
ments contain temporality information and may be better suited
for the study of local gene co-expression than bulk measurements.
Here, we confirmed the widespread presence of local gene co-
expression events across the genome in two specific cell types
(iPSC and LCL) using single-cell data. Indeed, we discovered
more distinct COPs (3877 iPSC COPs) with single-cell data than
with bulk data (3705 COPs) for the same set of 87 individuals.
Interestingly, only a fraction of these COPs were discovered from
both datasets even though the original material came from the
same cell lines. Besides technical differences in the library pre-
paration, experimental design, sequencing and processing of bulk
and single-cell datasets, obtaining disparate COPs between these
approaches is also expected from other points of view. On one
hand, when using bulk data to estimate gene co-expression across
individuals we leverage interindividual variability in expression
levels, which may be controlled by genetic variations. On the
other hand, using single-cell data and leveraging inter-cellular
variability, the genomes of each cell are the same and gene
expression variability may stem from different cell states. These
two systems for detecting gene co-expression (perturbation from
genetic variants versus perturbation from cell state) are clearly
different and thus should be expected to reveal different co-
expression events, as observed in other studies36,37. Our study
confirms this view, by finding a similar global pattern of local
gene co-expression between bulk and single-cell COPs (e.g., both
are strongly enriched for being in the same pathway), yet each
approach finding complementary sets of COPs with different
functional enrichments (e.g., scCOP enrichment in cell cycle
genes).

A benefit of using single-cell data across multiple individuals is
the ability to study the individual-specificity of local gene co-
expression. Our results suggest that COPs may be highly indivi-
dual-specific, however, the limited number of cells per each
individual impacts the ability to discover COPs, with only a
handful of COPs identified for individuals with less than 20
Smartseq2 cells but with 2589 COPs discovered with >25,000
SHARE-seq cells. Future studies including a higher number of
cells per individual as well as more individuals, such as the single-
cell eQTLGen consortium38, will unlock the ability to further
explore the interindividual variability of gene co-expression and
may even reveal differences between groups of individuals (e.g.,
based on sex or certain experimental conditions). Indeed, recent
studies involving >1 million single cells were able to identify
genetic variants associated with gene expression and compare
patterns between cases and controls for autoimmune
diseases39,40.

Multimodal single-cell methods performing scRNA-seq and
scATAC-seq in the same cells have proven useful in connecting
regulatory elements with their target gene expression20,41,42. This
approach is orthogonal to those using bulk RNA-seq data, such as
EpiMap, as the activity of gene expression and regulatory activity
is directly observed and correlated in the same cells. Here, we
have characterised gene-enhancer links using multimodal data,
finding them enriched in Hi-C contacts and the deep resolution
of multimodal data allowed us to explore the regulatory circuitry
between local gene co-expression and nearby regulatory elements.
While the action of multiple regulatory elements on the same
gene has often been described43,44, the action of a regulatory
region on multiple genes is seldom explored20. Notably, here we
found that the vast majority of co-expressed gene pairs (>95%)
share at least one regulatory region, much more than expected by
chance, indicating this may be a key mechanism for achieving
gene co-expression and that the action of enhancers may often be
pleiotropic. Further work could unveil not only which regulatory
elements are involved in regulating each gene(s) but also provide
detail on the actual set of regulatory elements that may work
together, by finding evidence for the co-activity of these elements
in the same cell.

A current challenge in the field is the inference of gene reg-
ulatory networks and determining causality in pathways and gene
interactions, with recent studies exploiting single-cell data and
deep learning approaches to address this45,46. Our finding that (i)
local gene co-expression is pervasive and potentially synchronous
and (ii) the vast majority of nearby genes share regulatory
regions, posits that part of the observed gene co-expression may
not reflect gene-gene interactions (e.g., gene1 leading to the
expression of gene2), but rather as concomitant events, without a
defined directionality between them. As gene co-expression
between nearby genes can occur through different molecular
cues than co-expression of genes in trans, large-scale analysis,
such as deriving pathways and gene regulatory networks, should
consider local gene co-expression as a special case warranting
specific treatment.

COPs derived from single-cell data are evidence of co-
expression in the same cells. For a deeper understanding on the
path of gene co-expression, from start to endpoint, we explored
datasets of nascent transcription (GRO-seq) and proteomics. We
provided evidence that local gene co-expression may stem from
the co-transcription of genes. Strikingly, despite the known poor
correlation between mRNA and protein levels47, we observed that
gene co-expression leads to matched protein levels. Together with
our previous findings regarding (i) functional relatedness of COPs
and (ii) the close matching between expression levels and
expression variation of co-expressed genes10, we can stipulate that
this consistency in gene and protein levels may derive from the
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need for cells to closely match quantities of functionally related
proteins. Overall, our results lead us to conceive a model in which
(i) genes may be arranged in the genome due to functional
relatedness and/or the need to keep a similar level of expression,
(ii) nearby co-expressed genes are transcribed at the same time,
(iii) the gene co-expression is kept up to the protein level and (iv)
this is achieved due to their proximity and sharing of regulatory
elements. The potential benefit of such a system could include the
minimisation of expression noise and maintenance of appropriate
protein complex stoichiometry48–52. In agreement with our
findings, a strong relationship between chromatin proximity,
protein complex interactions and gene co-expression was
described in a recent study by Tarbier et al. while measuring
genome-wide gene co-variation across hundreds of mouse
embryonic stem cells18.

Our work provides further evidence of the widespread co-
expression of nearby genes and explores the regulatory elements
involved in their co-expression. With the unravelling of large
projects such as the Human Cell Atlas53, which will contain
single-cell RNA-seq complemented with chromatin, protein and
spatial information across cell types, as well as studies of context-
specific gene expression regulation36,39, the future promises vast
datasets in which to further explore the shared regulatory archi-
tecture of gene (co-)expression.

Methods
Single-cell datasets used in the study. We used three datasets of single-cell data
in the study. The first dataset was produced by Cuomo et al.23 from iPSC cell lines
from the HipSci consortium22 and reanalysed in Cuomo et al.24. We obtained
preprocessed and quality-controlled raw count data from Cuomo et al.24

(DOI:10.5281/zenodo.4915837), derived from single-cell Smart-Seq2 RNA-seq of
undifferentiated iPSCs across 87 individuals, including a total of 7440 cells. We
further normalised the gene expression measurements using scran54 and subse-
quently rank-transformed the values to match a normal distribution N(0,1). Gene
expression counts for an initial 53,958 Ensembl v75 genes were available. From
these, genes in non-autosomes (including mitochondrial genes) or the MHC region
(chr6:29500000-33600000) were excluded. Gene names were annotated with
genomic coordinates (hg19), gene types and Ensembl gene IDs from Gencode v19
and only protein-coding genes were tested for co-expression (N= 18,943).

The second single-cell dataset used was obtained from Sarkar et al.26 (GEO:
GSE118723). This dataset contained scRNA-seq in iPSC lines for 54 individuals of
the Yoruba population of the 1000 Genomes Project55. We obtained preprocessed
Smart-Seq2 gene expression quantifications (20,152 Ensembl v75 protein-coding
genes, 7584 cells). As done previously, we normalised the gene expression
measurements using scran54 and subsequently rank-transformed the values to
match a normal distribution N(0,1). Next, we applied cell and gene filters as
suggested by the data providers based on quality controls26, as well as excluded
non-autosomal genes, retaining 9580 genes for analysis.

The third single-cell dataset used in the study was obtained from Ma et al.20

through GEO (GSE140203). This consisted of preprocessed gene expression counts
from the single-cell SHARE-seq method for the GM12878 lymphoblastoid cell line
(LCL, GSM4156603, rep3). This dataset included 26,434 expressed genes across
26,589 cells. Cells where <300 or >7500 genes were expressed had been previously
removed. As done for the iPSC dataset, we added genomic coordinates (hg19) and
Ensembl gene IDs from Gencode v19 and excluded non-protein-coding genes, as
well as genes in non-autosomes or in the MHC region. In addition, we excluded
genes expressed in less than 100 cells, resulting in a total of 10,821 genes explored
for co-expression. Finally, given that >76% of non-zero gene counts were 1 s, the
gene expression matrix was binarised (values > 1 became 1, values= 0 remained 0),
a common practice, which may aid certain analysis56 such as gene co-expression.

Single-cell COP identification. Single-cell COPs were identified using the pre-
viously described method for COP identification in Ribeiro et al.10. Briefly, for each
gene, we identifiy all other genes in a cis window of 1 Mb around the gene TSS and
compute gene expression correlation (Pearson correlation). We then compare the
observed correlation values of each gene/cis-gene pair to expected correlation
values under the null obtained by shuffling expression values, from which we derive
empirical p-values. To exclude potential batch effects, COPs were identified for
each individual-experiment combination (total of 152 combinations), as recom-
mended by Cuomo et al.24. In each individual-experiment gene expression matrix,
genes without any expression variability across the cells (e.g., only zeroes) were
excluded. We measured co-expression of all genes within a cis-window of 1 Mb
(based on TSS coordinates) and used 1000 permutations to determine observed
versus expected empirical p-values, as done before10. Positively Pearson correlated

COPs were determined by having a Benjamini–Hochberg (BH) FDR < 5% (the
minimum correlation across COPs is 0.248). Of note, due to the rank-
transformation step, results between Pearson and Spearman correlation are very
similar, Pearson being preferred due to computational speed. Three out 152
individual-experiment combinations were excluded for having a ratio of number of
COPs per number of cells above the 75th quartile+ interquartile range (IQR) × 3.
Moreover, 14,176 gene pairs (out of 268,417 gene pairs within 1 Mb window) with
cross-mappability score > 10 were excluded (75mer Exon, 36mer UTR, 2 mismatch,
symmetric mean)21. Finally, COPs with correlation > 0.99 (i.e., near perfect cor-
relation) were excluded as these are likely to be artefacts. In most analyses, COPs
from the different experiments of the same individual were combined together as
their union.

Single-cell COPs were also identified for each cell cycle phase. For this, the
“CellCycleScoring” function of the Seurat 4.0 R package57 was used to predict the
cell cycle phase for each of the 7440 cells. Then, a matrix was produced with cells of
each cell cycle phase (G1, S and G2M) and COP identification for each was
performed as described above. Single-cell COPs for the Sarkar et al. dataset26 were
identified for the 37 individuals (one experiment per individual) for which bulk
RNA-seq data was also available, using the same parameters and filters as above
(1000 permutations, BH FDR 5%, cross-mappability ≤10, correlation ≤ 0.99,
removing outliers above 75th quartile+ IQR × 3).

To determine COPs in LCLs from Ma et al.20 the same parameters were used
(1000 permutations, 1 Mb window, cross-mappability score ≤10,
correlation ≤ 0.99), with the exception that a minimum Pearson correlation value
of 0.2 was used in addition to statistical significance (BH FDR < 5%). Note that for
this dataset we used binary data (1 s and 0 s), in which case Pearson and Spearman
correlation produces the same exact results. In addition, Mutual Information was
found to produce highly similar results. Pearson correlation was preferred due to
computation speed.

Bulk COP identification. Bulk RNA-seq was produced by the HipSci
consortium22. Processed and quality-controlled gene expression measurements
were obtained from Cuomo et al.24 for the same set of 87 individuals for which
single-cell data was available. As recommended by Cuomo et al. to exclude con-
founding factors, the first 15 PCA principal components from the expression
matrix were regressed out using QTLtools58. COPs were identified by correlating
expression levels across all 87 individuals, as previously done10. A total of 244,341
gene pairs were tested for co-expression. All parameters and post-processing (1Mb
window size, 1000 permutations, 5% FDR, only coding genes, mappability filters)
were performed identical as for single-cell COP identification.

In addition, we obtained and processed bulk RNA-seq data for LCLs for 37
Yoruba individuals from the Geuvadis project27, for which we had single-cell RNA-
seq data. Gene expression was quantified for all protein-coding genes annotated in
GENCODE v19 (i.e., equivalent to Ensembl v75 used for single-cell data) using
QTLtools58 v1.3 quan function with default parameters. As the purpose was to
compare with the scRNA-seq dataset, we only retained the 9580 genes which we
used in scRNA-seq analysis. We regressed out the first 15 PCA principal
components from the expression matrix as before. Parameters and post-processing
were performed as above. A total of 65,881 gene pairs were tested for co-
expression.

Creation of control non-COP datasets. To control for distance effects in local
gene pair co-expression, sets of distance-matched non-co-expressed genes (non-
COPs) were built. For the 2589 COPs identified in LCLs from Ma et al., we derived
non-COPs in the following manner: (1) the pool of tested gene pairs that were not
defined as COPs (i.e., Pearson correlation <0.2 and FDR > 5%) were selected
(N= 71,038), (2) for each of the 2589 COPs, we calculated the absolute distance
between the gene TSSs and selected all non-co-expressed gene pairs from the pool,
which have an absolute distance ±100 bp of the COP distance value, (3) one of
these non-co-expressed gene pairs is randomly selected without replacement and
determined as a control non-COPs. Given the large number of initial non-co-
expressed gene pairs available, we obtained a non-COP match for each of the 2589
COPs. Sets of non-COPs were identified in this manner also for the Cuomo et al.
dataset for each individual-experiment. The only difference being the different
cutoff in splitting COPs and non-COPs (based on FDR 5% and not correlation
coefficient). For the analysis of all distinct 3877 COPs found across individuals, the
pool of non-co-expressed gene pairs used consisted of gene pairs not identified as
COPs in any of the individual-experiments. Non-COPs were also identified for
bulk COPs in the same manner.

Enrichment to functionally related gene pairs and annotation terms. The
overrepresentation of COPs as functional-related gene pairs was assessed with one-
way Fisher’s Exact tests to: (i) genes belonging to the same biological pathway
(N= 24,544), gathered from KEGG59 and Reactome60 through the Ensembl v98
BioMart data mining tool61 (25 May 2020); (ii) genes belonging to the same human
protein complex (N= 350), gathered from the CORUM 3.0 database62 and
hu.MAP63 (20-April-2020). UniprotKB IDs were converted to Ensembl IDs with
the Uniprot ID mapping tool64. In addition, enrichment tests were performed for a
set of COPs conserved across >50% GTEx tissues in which they are expressed
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(N= 2441) from Ribeiro et al.10. The background set of gene pairs used included
the union of all gene pairs tested for scCOPs and bulkCOPs (N= 259,834).

Enrichments to annotation terms for genes in bulkCOPs and scCOPs (union)
were performed with the gprofiler2 R package28,65 (December 2021). For this, a
multi-query search was performed for the “GO:BP”, “KEGG” and “REACTOME”
sources. As the background set, the union of all gene pairs tested for bulkCOPs and
scCOPs was used. The results for “GO:BP” were further summarised using
REVIGO66 using the parameters “semantic similarity”, “homo sapiens” and “Small
(0.5)” return list and plotted with the “TreeMap” R package.

GRO-seq data and COPs. Nascent RNA GRO-seq information for the GM12878
LCL was obtained from Core et al.31 bigWig files. These were converted to bed-
graph format using UCSC utils67 and bedtools intersect was used to combine gene
TSS (Gencode v1968, matching for genomic strand) with the number of GRO-seq
reads mapped to the TSS position. A total of 5432 genes had GRO-seq reads in
their TSS position. Finally, the number of reads between the two genes in LCL
COPs was correlated (Spearman correlation). For a comparison, the same was
performed for non-COP gene pairs. Gene pairs with missing data for at least one of
the two genes were excluded from the correlation.

Proteomics data and COPs. Quantitative proteomic data (Tandem Mass Tag
Mass Spectrometry) for 202 iPSC lines derived from 151 individuals of the HipSci
consortium samples was collected from Mirauta et al.32. This consisted of a pro-
cessed matrix of protein isoform intensities across individuals, of which 42 are
included in the set of 87 individuals assessed here. To measure correlation of
protein intensities among COPs and non-COPs, first the protein isoform intensities
were converted into ‘gene-based intensities’ by summing all the protein isoform
intensities from each gene. Protein intensities for 9013 genes were obtained in this
manner. Next, the intensities for COP gene pairs (and non-COP gene pairs,
separately) were correlated (Spearman correlation) per individual-experiment
combination, thus producing a correlation value for COPs and a correlation value
for non-COPs for each individual-experiment. To ensure the availability of enough
data for correlation, only individual-experiment combinations with >10 COPs were
considered (a total of 58 out of 68 possible combinations). Gene pairs with missing
data for at least one of the two genes were excluded from the correlation. As a
control, the genes across the pairs of each individual-experiment COPs/non-COPs
were shuffled once.

Gene-enhancer associations using SHARE-seq. To identify enhancer regions
associated with nearby gene expression, processed and quality-controlled ATAC-seq
peaks were retrieved from Ma et al.20 (GSM4156592, rep3, 507,307 peaks across
67,418 cells). Of these, only 24,844 cells that also had gene expression measurements
were kept. GM12878-specific enhancer annotations from the EpiMap repository33

for hg19 were obtained (18-state chromHMM models). Only regions of genic
enhancers (EnhG1, EnhG2) and active enhancers (EnhA1, EnhA2) were considered
as enhancer regions. Successive enhancers were merged using bedtools (v2.29.2)
merge command with default parameters (i.e., only merging “book-ended” features),
leading to 33,776 distinct enhancer regions. ATAC-seq peaks were then intersected
with these enhancer regions using bedtools intersect with the -F 0.5 parameters, thus
requiring that at least 50% of the peak overlaps an enhancer region, resulting in
6,443,451 enhancer-cell combinations (17,765 distinct enhancer regions). Finally,
gene expression and open chromatin activity measurements (binarised) were inte-
grated for the same cells and enhancer regions within+/−1Mb of a gene TSS were
tested for association with the gene through Spearman correlation. Only protein-
coding genes in non-autosomal chromosomes were considered (MHC also exclu-
ded). In total, of 350,182 tests were performed. For each test, the expression vector
of the gene was shuffled 1000 times and the correlation recalculated. This composes
a null distribution from which we derive an empirical p-value for the probability
that the observed value is more extreme than the correlations from randomisations.
To control for the total number of tests, the Benjamini–Hochberg procedure for
FDR was applied on the empirical p-values. Gene-enhancer pairs with correlation
coefficient >0.05 and permutation FDR < 5% were identified as significant gene-
enhancer associations (32,883 associations). This correlation coefficient was chosen
in order to retain a relatively high number of associations while still providing a
biological signal. Enhancers significantly associated with both genes of COPs and
non-COPs were identified as shared enhancers. The analysis using ATAC-seq peaks
(within 100 kb of gene TSS) instead of overlapping with enhancer regions was
performed in the same manner as above.

Comparison to EpiMap and ABC model gene-enhancer associations. To
evaluate the gene-enhancer associations identified here, sets of LCL-specific gene-
enhancer maps from the EpiMap repository
(links_by_group.lymphoblastoid.tsv.gz)33 and the activity-by-contact (ABC)
model9 (AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt) were
obtained. The ABC model file was processed to obtain only data for “GM12878-
Roadmap” CellType entries and gene names were converted to Ensembl gene IDs
using the gprofiler2 R package (gconvert function)28. EpiMap and ABC model
enhancers were separately intersected with the enhancer regions produced here
using bedtools intersect with -wa -wb parameters. Matching gene-enhancer pairs

between datasets (N= 99,911 gene-enhancer pairs between EpiMap and SHARE-
seq, N= 19,801 between ABC model and SHARE-seq) were obtained and the
correlation value from the SHARE-seq dataset (no filter) was correlated with
EpiMap scores and ABC scores, respectively. As a comparison, EpiMap scores and
ABC model scores for matching gene-enhancer pairs were also correlated.

Hi-C support of gene-enhancer and COP-enhancer associations. Bulk Hi-C
data the GM12878 cell line (LCL) at 5 kb, 10 kb and 25 kb resolution was obtained
from Rao et al.34. KR normalised (MAPQG0) bins encompassing the TSSs coor-
dinate of gene and midpoint of enhancer regions was obtained through custom
Python scripts. Normalised Hi-C contacts were log2-transformed. Using this, gene-
enhancer association strength was correlated with Hi-C contacts through Spear-
man correlation. Gene-enhancer associations with Hi-C contacts above the 75%
quantile across all tested gene-enhancer pairs were determined as supported by
Hi-C. Missing data (genes or enhancers without Hi-C data) was replaced with 0.
As a control, for each gene-enhancer pair, another control pair composed of
the gene TSS and an ‘enhancer’ region on the opposite up- or downstream
location in respect to the gene TSS was produced (e.g., if an enhancer is 1000 bp
upstream of the gene TSS, the matching control region is 1000 bp downstream of
the gene TSS).

Statistics and reproducibility. We performed statistical analysis using R pro-
gramming language, including the scran, Seurat and data.table libraries. Additional
software used include Python (including numpy and scipy packages) and gProfiler.
COP and gene-enhancer identification included permutation analysis (1000 ran-
domisations), followed by multiple testing correction by applying the
Benjamini–Hochberg procedure. In gProfiler, we used the recommended inbuilt ‘g:
SCS algorithm’ for multiple testing corrections.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The COPs and enhancer-gene associations produced here are available for download as
Supplementary Data 1 to 4, and through the LoCOP public database (https://glcoex.unil.
ch/). Source data and code to produce figures is provided in https://github.com/
diogomribeiro/sc_cop (DOI: 10.5281/zenodo.6875888). Source data for main figures is
also available under Supplementary Data 5. Source data for Fig. 2c is available on
Supplementary Data 1. All input data used in this study are available in the public
domain. Processed single cell and bulk RNA-seq data from Cuomo et al. is available in a
Zenodo repository (DOI:10.5281/zenodo.4915837), whereas Sarkar et al. single-cell data
is available through GEO (accession: GSE118723). Bulk RNA-seq for Yoruba of the 1000
Genomes project are available through EBI ArrayExpress (accession: E-GEUV-1). LCL
single-cell RNA-seq and ATAC-seq (SHARE-seq) processed data is available through
GEO (accession: GSE140203).

Code availability
The programming code used for data analysis and to produce figures is available under
https://github.com/diogomribeiro/sc_cop (https://doi.org/10.5281/zenodo.6875888),
together with source data and can be accessed without restrictions.
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