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Pan-cancer analysis of mRNA stability for decoding
tumour post-transcriptional programs
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Rached Alkallas 1,2,3, Tianyuan Lu 1,2,4, Yasser Riazalhosseini 1,2 & Hamed S. Najafabadi 1,2✉

Measuring mRNA decay in tumours is a prohibitive challenge, limiting our ability to map the

post-transcriptional programs of cancer. Here, using a statistical framework to decouple

transcriptional and post-transcriptional effects in RNA-seq data, we uncover themRNA stability

changes that accompany tumour development and progression. Analysis of 7760 samples

across 18 cancer types suggests that mRNA stability changes are ~30% as frequent as tran-

scriptional events, highlighting their widespread role in shaping the tumour transcriptome.

Dysregulation of programs associated with >80 RNA-binding proteins (RBPs) and microRNAs

(miRNAs) drive these changes, including multi-cancer inactivation of RBFOX and miR-29

families. Phenotypic activation or inhibition of RBFOX1 highlights its role in calcium signaling

dysregulation, while modulation of miR-29 shows its impact on extracellular matrix organiza-

tion and stemness genes. Overall, our study underlines the integral role of mRNA stability in

shaping the cancer transcriptome, and provides a resource for systematic interrogation of

cancer-associated stability pathways.
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W idespread disruption of gene expression programs is a
hallmark of cancer and underlies the extensive trans-
formation of tumour cell identity and behavior. Among

the least understood aspects of this gene expression remodeling is
the regulation of mRNA stability and decay. Previous studies have
found specific programs that are involved in tumourigenesis or
metastasis through modulation of mRNA stability1–8; however, the
extent to which mRNA stability contributes to cancer cell tran-
scriptome has not been systematically studied, and the associated
regulatory networks are mostly unknown. A key limitation in
studying these post-transcriptional programs stems simply from
our lack of ability to measure mRNA decay rate in vivo: traditional
methods that measure mRNA decay rely on in vitro manipulations
such as transcriptional inhibition with chemical inhibitors (e.g.
actinomycin D) or metabolic labeling with nucleoside analogues
(e.g. 4-thiouridine), combined with time series measurements of
transcripts9–11. Despite recent improvements12,13, these methods
are resource-intensive, have inherent limitations and biases such as
triggering cellular stress and pleiotropic effects14, and, most
importantly, are only applicable to in vitro models. As a result, the
mRNA stability landscape of tumour remains almost completely
uncharted across different cancer types.

A potential solution comes from recent studies showing that
tissue RNA-seq data contain enough information to disentangle
transcription rate from mRNA decay rate. Briefly, under the
assumption that RNA processing rate is constant15,16, any change
in unspliced (pre-mature) mRNA abundance (estimated from
intronic reads) must reflect a proportional change in transcrip-
tion rate, while any change in spliced (mature) mRNA abundance
(estimated from exonic reads) reflects the combined effect of
transcription rate and mRNA decay (Fig. 1a). This model enables
the estimation of differential mRNA stability based on how the
ratio of exonic and intronic reads changes across conditions15. A
recent improvement on this model generalizes the unspliced-
spliced relationship as a power-law function, with the power-law
exponent reflecting the coupling between transcription rate and
splicing rate17 (Supplementary Fig. 1a, b).

Here, we build on these methods to obtain a pan-cancer map of
mRNA stability changes between tumour and normal tissues, as
well as the mRNA stability changes that accompany tumour
progression. To do so, we first introduce a general framework for
statistical analysis of differential mRNA stability that takes into
account the distributional properties of count data. We bench-
mark this method using experimental measurements of mRNA
decay rate, and then apply it to the RNA-seq data from The
Cancer Genome Atlas (TCGA) to map the mRNA stability
landscapes of 18 cancer types. We identify thousands of tran-
scripts whose stability is altered during tumour formation and/or
progression––experimental measurements in cancer cell line
models support these findings and suggest a role for mRNA
stability alterations in tumour progression and invasiveness.
Finally, using network modeling and functional experiments, we
identify key microRNAs (miRNAs) and RNA-binding proteins
(RBPs) that mediate these changes, providing new insights into
the post-transcriptional mechanisms of transcriptome remodel-
ling in cancer.

Results
A generalized linear model for statistical testing of mRNA
stability. The spliced and unspliced transcripts of each gene
follow a power-law relationship, with deviations from this power-
law trend reflecting changes in the degradation rate of the mature
mRNA17 (Supplementary Fig. 1a, b). The power-law exponent
reflects the coupling between transcription rate and RNA pro-
cessing rate–an exponent of 1 indicates no coupling between

transcription and processing rate constants, whereas values
smaller than 1 indicate that as transcription increases, processing
rate constant decreases, potentially due to saturation of the RNA
processing machinery (Supplementary Fig. 1a). To use this
power-law relationship for the inference of differential stability, it
is essential to correctly model the variability in RNA-seq counts.
For this purpose, we developed DiffRAC (https://github.com/
csglab/DiffRAC), a framework that converts the unspliced-spliced
relationship to a generalized linear model whose parameters can
then be inferred from sequencing count data using an appropriate
error model of choice (Fig. 1b, c and Supplementary Fig. 1c, d).

We evaluated the performance of DiffRAC for estimating
differential mRNA stability using a previously published
dataset18,19, consisting of RNA-seq data from mouse embryonic
stem cells and terminal neurons, along with experimentally
measured transcript half-life measurements after transcriptional
blockage with actinomycin D, which here we consider as “ground-
truth” measurements for benchmarking purposes. We observed an
overall Pearson correlation of 0.22 between RNA-seq-based
stability estimates from DiffRAC and ground-truth stability
measurements (Fig. 1d and Supplementary Data 1a), in line with
previous reports on RNA stability estimation using this specific
benchmarking dataset15,17. However, for transcripts that had
narrow confidence intervals as estimated by DiffRAC, the Pearson
correlation between RNA-seq-based estimates and ground truth
exceeded 0.5 (Fig. 1d–f), indicating that the confidence intervals
estimated by DiffRAC indeed reflect the true uncertainty in
estimating differential mRNA stability. Based on (adjusted) P
values associated with DiffRAC differential stability estimates, we
identified 79 transcripts with higher stability in embryonic stem
cells and 37 transcripts with higher stability in terminally
differentiated neurons (FDR < 0.05), which closely correspond to
differentially stable transcripts based on the ground-truth (Fig. 1g).
We performed additional benchmarking using RNA-seq data from
NAT10-deficient HeLa cells with matched stability data from
metabolic labeling-based BRIC-seq measurements20. Using similar
analysis methods as those described above, we observed that RNA-
seq-based DiffRAC estimates for transcripts with narrow con-
fidence intervals correlate with BRIC-seq stability measurements
(Supplementary Fig. 2 and Supplementary Data 1b). Overall, these
results suggest that DiffRAC can properly estimate not just the
mean differential mRNA stability, but also its uncertainty and
statistical significance.

One limitation of the model described above is that, with
increasing sample sizes, the number of latent variables that need
to be estimated by regression also increases, which can become
prohibitively expensive in terms of computational times. To
overcome the challenges associated with fitting the model in large
sample cohorts, we developed a simplified DiffRAC model that
assumes most of the variance in transcription can be explained by
the experimental variables (see Methods and Supplementary
Fig. 3a–c). This assumption greatly reduces the number of
parameters; however, we observed that it does not considerably
alter the differential stability estimates in the benchmarking
dataset (Supplementary Fig. 3d).

DiffRAC identifies cancer-associated changes in mRNA stabi-
lity. To investigate the post-transcriptional changes responsible
for transcriptome remodeling in cancer, we performed a pan-
cancer analysis of differential mRNA stability across TCGA (The
Cancer Genome Atlas, available at https://www.cancer.gov/tcga.),
encompassing 7760 samples from 18 cancer types. We used
DiffRAC to identify transcripts that were differentially stabilized
or destabilized in tumour compared to normal tissues in each
cancer type. This analysis revealed an average of 3954 mRNAs
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that were differentially stabilized/destabilized per cancer type
(FDR-adjusted p < 0.05) (Fig. 2a, b, Supplementary Figs. 4 and 5,
and Supplementary Data 2), suggesting widespread post-
transcriptional remodeling in cancer, with the majority of tran-
scripts showing highly cancer-specific stability profiles (Fig. 2b).
Interestingly, across TCGA samples, the degree of stability dys-
regulation, calculated as the number of differentially stabilized
mRNAs per patient, was associated with reduced disease-free
survival (log hazard ratio of 0.36, P < 0.005, using Cox
proportional-hazards model correcting for the confounding effect
of patient age, sex, tumour purity and cancer type). Per-cancer-
type associations were also mostly positive (Fig. 2c), indicating
that a greater disruption of mRNA stability is overall associated
with worse patient outcomes.

Several lines of evidence support the reliability of the stability
profiles we have inferred. First, we observed that tumour mRNA

stability profiles clustered by organ of origin (Fig. 2b), providing an
internal validation for the robustness of stability inferences.
Secondly, we observed that post-transcriptionally deregulated genes
in each cancer type are functionally related (Fig. 2d), consistent with
previously reported relationship between post-transcriptional
regulons and functional gene modules21,22. This analysis also
highlights the role of mRNA stability in shaping the functional
landscape of the cancer cell. For example, epithelial-mesenchymal
transition genes and MYC targets are enriched among stabilized
mRNAs across several cancer types, while metabolic pathways such
as oxidative phosphorylation and lipid metabolism are highly
enriched among destabilized mRNAs, most noticeably in cholan-
giocarcinoma (CHOL), liver hepatocellular carcinoma (LIHC) and
head-neck squamous cell carcinoma (HNSC).

Thirdly, we found that cancer-associated stability changes
inferred from tissue RNA-seq data are highly consistent with
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Fig. 1 Inference of differential mRNA stability using DiffRAC. a Schematic representation of the effect of transcription and stability on the abundances of
unspliced and spliced RNA. b DiffRAC models the mean (λ) of intronic (int) and exonic (exo) read distribution as a function of pre-mature (p) and mature
(m) transcript abundances, in addition to gene-specific (l) and library-specific (s) scaling factors. Mature mRNA abundance is modeled as a function of the
pre-mature RNA abundance and mRNA stability (γ), which is in turn a function (f) of the experimental variables. Also see Supplementary Fig. 1. c An
example case with four samples and two experimental conditions, showing how DiffRAC’s model can be implemented in a regression with a log-link
function, along with the interpretation of regression coefficients (also see Methods). d Comparison of DiffRAC stability estimates against experimental
mRNA half-life (stability) measurements in mouse ES cells differentiated to terminal neurons (TN)15,18,19. Each data point stands for one gene, with the
points coloured according the standard error of the mean (SEM) for DiffRAC estimates. e Comparison of DiffRAC estimates vs. measured mRNA stability
for the 100 genes with the smallest (left) and largest (right) DiffRAC SEMs. Error bars represent the standard error of the mean (SEM). f The Pearson
correlation between DiffRAC estimates and measured mRNA stability for bins of 50 genes sorted by their SEM. g Distribution of experimental mRNA half-
life measurements for genes that DiffRAC has identified as significantly destabilized (blue boxplots) or stabilized (red boxplots) in TN vs. ES cells, at FDR
cutoffs of 0.05 (dashed line) or 0.01 (solid line). Genes that are not called as significant by DiffRAC are represented with the grey boxplot.
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experimentally measured mRNA stability changes in cancer
cell line models. Specifically, we used time-series measurements of
4-thiouridine-labeled RNA23 from the MDA-MB-231 cell line, a
model of breast cancer, as well as the highly invasive MDA-LM2
cells to identify mRNAs that are differentially stable between
these two cell lines (Fig. 2e, see Methods for details; measure-
ments are provided in Supplementary Data 3a). We then
compared these experimental stability measurements to RNA-
seq-based differential stability estimates between highly meta-
static and poorly metastatic PDX models of breast cancer24–26.
We observed that the mRNAs that are more stable in the
invasive MDA-LM2 cell line (based on experimental stability

measurements) are also overall more stable in the highly
metastatic PDXs compared to the poorly metastatic PDX (based
on DiffRAC analysis of tissue RNA-seq data). Similarly, mRNAs
that are less stable in the MDA-LM2 cell line are overall less
stable in the poorly metastatic PDX (Fig. 2f; measurements are
provided in Supplementary Data 3b).

Interestingly, we found that the mRNAs that are more stable in
primary breast tumours compared to normal tissue (based on
DiffRAC analysis of TCGA data) are also overall more stable in the
highly invasive LM2 line compared to the parental MDA line, and
tumour-destabilized mRNAs are overall less stable in the LM2 line
(Fig. 2g). This concordance can also be observed at the pathway

Fig. 2 Pan-cancer analysis of differential mRNA stability. a Volcano plot of differential RNA stability between tumour and normal tissues (T vs. N) for 18
TCGA cancer types. See Supplementary Fig. 4 for volcano plots of individual cancer types. b Heatmap of differential mRNA stability profiles across TCGA
cancers. Genes with significant DiffRAC results in at least one cancer (FDR < 0.05) are included. The colour gradient represents a combination of the log2
fold-change of mRNA stability and the FDR. BLCA bladder urothelial carcinoma, BRCA breast invasive carcinoma, CHOL cholangiocarcinoma, COAD colon
adenocarcinoma, ESCA esophageal carcinoma, GBM glioblastoma multiforme, HNSC head and neck squamous cell carcinoma, KICH kidney chromophobe,
KIRC kidney renal clear cell carcinoma, KIRP kidney renal papillary cell carcinoma, LIHC liver hepatocellular carcinoma, LUAD lung adenocarcinoma, LUSC
lung squamous cell carcinoma, PRAD prostate adenocarcinoma, READ rectum adenocarcinoma, STAD stomach adenocarcinoma, THCA thyroid
carcinoma, UCEC uterine corpus endometrial carcinoma. c Associations between the degree of disruption of mRNA stability, defined as a high or low
number of differentially stabilized transcripts (relative to the median), and disease-free survival, tested using a Cox proportional-hazards model and
correcting for patient age, sex and tumour purity. The bar height represents the Cox regression coefficient, while the colour gradient represents the p
values, with red representing a worse prognosis, and blue representing a protective effect. The error bars represent the standard error of the mean (SEM).
d Pathway enrichment analysis of genes with significant differential mRNA stability in each cancer type. Circles with black outline correspond to MSigDB
hallmark gene sets that are significantly enriched among cancer-stabilized (red) and cancer-destabilized (blue) mRNAs (FDR < 0.05, Fisher’s exact test).
Log-odds and P values are represented using the colour gradient and circle sizes, respectively. e Volcano plot showing the experimentally measured
differential stability between highly metastatic MDA-LM2 cell line relative to its parental MDA-MB-231 line (see Methods). f Gene set enrichment analysis
(GSEA) (Subramanian et al., 2005) for highly metastatic relative to poorly metastatic PDX models of breast cancer24–26. Genes (x-axis) are sorted by
Wald test statistic of differential stability between metastatic and primary PDXs. The red line represents the enrichment curve for the transcripts that were
stabilized in MDA-LM2 relative to MDA-MB-231, while the blue line represents the enrichment curve for the destabilized transcripts. g Relative enrichment
of transcripts that were stabilized (red) or destabilized (blue) in TCGA-BRCA tumours compared to normal samples, overlaid on the volcano plot from (e).
Kernel density estimation was used to calculate the density of BRCA-stabilized and destabilized mRNAs across the plot, with the difference between the
estimated densities of the two groups shown using the colour gradient. h Venn diagrams illustrating the overlap between transcripts that are significantly
stabilized in BRCA tumours (relative to normal) and MDA-LM2 (relative to MDA-MB-231), and genes that are part of the mTORC1 signalling (top) or MYC
targets (bottom). P values are based on Fisher’s exact test. i Transcription inhibition time-course graphs for two example genes, one involved in
mTORC1 signaling (RAB1A) and one among MYC targets (ODC1). The y-axis shows mRNA abundance after applying variance-stabilized transformation and
correcting for mRNA abundance differences between the two cell lines at time zero. Time-course measurements in MDA-LM2 and parental MDA-MB-231
cells are shown in red and blue, respectively, with the slope of each fitted line representing the rate of degradation.
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level: two of the three pathways that were upregulated in breast
tumours based on DiffRAC estimates also appear to be enriched
among mRNAs that are stabilized in MDA-LM2 compared to
MDA-MB-231 cell lines (MYC targets and mTORC1 signaling,
Fig. 2h; example genes are shown in Fig. 2i), supporting a role of
mRNA stability in deregulation of these key pathways.

Since the MDA-LM2 line is more invasive than MDA-MB-231,
the above analysis suggests that, at least in breast cancer, normal-
to-tumour stability changes persist during the progression of the
disease to metastasis. To understand whether normal-to-tumour
stability changes are correlated with progression-associated
stability changes across other cancers, we used DiffRAC to examine
the effect of tumour stage and grade on mRNA stability in each
TCGA cancer type, by including stage/grade (as numerical
variables) in DiffRAC’s GLM design while controlling for the
confounding effects of age, sex and tumour purity (Supplementary
Data 4). The differential stability results therefore reflect the change
in stability that occurs as tumour stage or grade increases. We
identified a total of 1966 transcripts with significant stability
changes associated with tumour stage in at least one of the 11
cancers types that we analysed (Supplementary Data 5a), and 2013
transcripts whose stability was associated with tumour grade in at
least one of the four cancer types for which this type of
classification was available (Supplementary Data 6). We observed
highly cancer-specific associations both for stage and grade
(Fig. 3a). Importantly, we found that in most cases the stage- and
grade-associated stability changes correlate with normal-to-tumour
stability changes (Fig. 3b shows an example, with the overall results
summarized in Fig. 3c).

We note that disease progression is often accompanied by
substantial cell composition changes, which may confound the
estimation of stage/grade-associated stability changes from bulk
RNA-seq data. However, previous research has shown that cell
type-specific gene expression changes can be identified from bulk
RNA-seq data27. We implemented a similar design using
DiffRAC to deconvolve the stage-associated stability changes
occurring specifically in the malignant cells from those occurring
in the tumour microenvironment, as well as changes that simply
reflect cell composition differences (Fig. 3d, see Methods for
details). We identified 275 genes whose stage-associated mRNA
stability changes were confidently attributed to dysregulation in
malignant cells (Fig. 3e and Supplementary Data 5b). With the
exception of one cancer type, the stage-associated stability
changes inferred from the tumour bulk were better correlated
with the deconvoluted changes attributed to malignant cells
compared to those of tumour microenvironment (Fig. 3f, g).
Stage-associated changes that could be attributed to malignant
cells were also positively correlated with tumour-to-normal
changes in most cancer types (Fig. 3h). Taken together, these
results highlight widespread mRNA stability changes in tumours,
which affect key cancer-related pathways and continue to
remodeling of the transcriptome in malignant cells through
disease progression.

RNA-binding proteins play a key role in shaping the tumour
mRNA stability profile. RNA-binding proteins (RBPs) and micro-
RNAs (miRNAs) are the key regulators of mRNA stability. These
sequence-specific factors primarily affect RNA stability through
binding to the 3ʹ untranslated region (UTR) of their targets–RBPs
either stabilize or destabilize their targets28, while miRNAs primarily
destabilize their target mRNAs29,30. Starting with RBPs, we set out to
examine whether these factors underlie themRNA stability changes in
cancer. We specifically tested for the enrichment of the targets of each
RBP amongmRNAs that are differentially stable between tumour and
normal tissues, after correcting for the background frequency of RBP

binding to each transcript (seeMethods). Figure 4a shows an example,
where the binding targets of the RBFOX1 protein are enriched among
transcripts that are destabilized in glioblastoma multiforme (GBM),
relative to the binding targets of other RBPs. We can quantify this
enrichment by statistical modeling of the relationship between the
binding of a specific RBP to the 3ʹ UTR of a transcript and the
tumour-specific stability status of that transcript (Fig. 4b). We per-
formed a systematic quantification of these relationships for 35 RBPs
whose stability target sets (regulons) have been previously mapped
based on the presence of their preferred binding sequences in the 3ʹ
UTRs as well as the expression pattern of the candidate target genes28.
This analysis revealed significantly enriched regulons among tumour-
stabilized or destabilized mRNAs across different cancer types,
representing deregulation of 17 out of the 35 examined RBPs in at
least one cancer type (Fig. 4c). Importantly, we observed excellent
agreement between cancer-associated RBP expression changes and
RBP target enrichments, after taking into account the expected
function of each RBP in stabilizing or destabilizing its targets (Pearson
correlation 0.61; Fig. 4d). For example, SNRPA, which is an RNA-
destabilizing factor28, is upregulated in multiple cancers, consistent
with the observed destabilization of its regulon (Fig. 4c, d). This strong
correlation highlights the reliability of our regulon analysis approach
for identifying dysregulated RBPs, and suggests that aberrant
expression of RBPs in cancer drives coordinated changes in the sta-
bility of their regulons.

Among the RBPs we analysed, two RBPs, namely RBFOX1 and
RBFOX3, stand out as being consistently deregulated across several
cancer types. Specifically, the targets of these RBPs are enriched
among destabilized mRNAs in almost half of all the cancer types we
analysed (Fig. 4c). Consistent with the role of RBFOX proteins in
promoting mRNA stability28,31, both RBFOX1 and RBFOX3 are
downregulated across multiple cancers (Fig. 5a, b), suggesting that
downregulation of RBFOX proteins leads to destabilization of their
targets. For both RBFOX1 and RBFOX3, the highest expression in
normal tissues can be seen in the brain tissue; subsequently, the
most prominent case of their downregulation as well as the most
significant changes in the stability of their regulons can be seen in
GBM, suggesting a major role in determining tumour transcrip-
tome in this cancer type. However, their effect is not limited to
GBM, especially for RBFOX3, which shows a broader range of
expression in normal tissues and is also downregulated in a greater
number of cancers (Fig. 5b).

To confirm that the downregulation of RBFOX proteins
accompanies destabilization of their direct binding targets in
cancer, we used HITS-CLIP data of Rbfox proteins in whole brain
tissue lysate of mice32 to build a high-confidence stability network
of transcripts that have the strongest binding sites in their 3ʹ UTRs
(see Methods). We confirmed that RBFOX binding sites identified
frommouse HITS-CLIP data are conserved in human (Fig. 5c), and
observed overall destabilization of the associated targets across
different cancers (Fig. 5d). We noticed a subset of mRNAs that are
consistently destabilized across the same cancers in which either
RBFOX1 or RBFOX3 is downregulated (Fig. 5d). Interestingly, a
subgroup of these mRNAs is stabilized in the few cancer types in
which RBFOX1 is upregulated (e.g. genes with positive mRNA
stability values for LUSC, LUAD and THCA in Fig. 5d), further
supporting the notion that their cancer-associated stability changes
are driven by RBFOX proteins.

To verify that the stability of these mRNAs is regulated by
RBFOX1, we examined the RNA-seq data from differentiated
primary human neural progenitor (PHNP) cells in which RBFOX1
is knocked down33,34. As expected, cancer-destabilized mRNAs
that were associated with RBFOX1 were also downregulated upon
RBFOX1 knockdown (Supplementary Data 7a and Fig. 5e). In
contrast, when RBFOX1 expression is restored ectopically in mouse
neurons lacking RBFOX proteins31,35, the expression of these genes
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is also rescued (Fig. 5f). We identified a core set of eight transcripts
that have RBFOX binding site in their 3ʹ UTRs, are concurrently
destabilized across cancers, are inhibited when RBFOX1 is knocked
down, and are upregulated when RBFOX1 expression is rescued
(Fig. 5g). Interestingly, half of these genes belong to the calcium
signaling pathway (based on KEGG pathways36, Fisher’s exact test
P < 10−6), suggesting that deregulation of RBFOX proteins
primarily affects calcium signaling in cancer cells.

Finally, to validate the role of RBFOX1 downregulation in
mediating mRNA stability changes in human glioblastoma cells
and to investigate whether restoring RBFOX1 activity can rescue
the destabilization of its target transcripts, we overexpressed
RBFOX1 in the human glioblastoma cell line A172 (Supplemen-
tary Fig. 6) and performed RNA-seq. As expected, we observed
widespread changes in gene expression (Fig. 5h and Supplemen-
tary Data 7b), with overall upregulation of the RBFOX1 regulon

Fig. 3 Stage- and grade-associated mRNA stability changes. a The mRNA stability changes associated with tumour stage (left) and grade (right) across
TCGA cancers. Genes with significant changes in at least one cancer at FDR < 0.05 are included. The colour gradient is the same as in Fig. 2b.
b Comparison of the differential mRNA stability between tumour and normal (x-axis) and stage-associated differential mRNA stability (y-axis), in the
TCGA-LIHC dataset as an example. Genes with significant changes along both axes at FDR < 0.05 are coloured in blue. Pearson correlation coefficients and
confidence intervals for all genes (black) and significant ones (blue) are shown on top. Panel (c) summarizes the Pearson correlations for significant genes
in other cancer types (error bars represent the confidence intervals). d Schematic illustration of the model used for deconvolving the stage-associated
changes in malignant and non-malignant cells. The equation on top represents the model used, with the interpretation of model coefficients shown on the
plot. See Methods for details. e Stability changes associated with tumour stage across TCGA cancers that could be assigned to cancerous/pre-cancerous
cells. Genes with significant DiffRAC results in at least one cancer (FDR < 0.05) are included. The colour gradient is the same as in Fig. 2b, with the
exception that the log2 fold-change of mRNA stability ranges from −1 to 1 here. f Comparison of the stage-associated differential mRNA stability in non-
cancerous cells (x-axis, left) or cancerous/pre-cancerous cells (x-axis, right) to the non-deconvoluted estimates (y-axis) in the TCGA-KIRC dataset.
Pearson correlation coefficients and p values are shown on the plot. Panel (g) shows this Pearson correlations across all cancer types for non-cancerous
(gray) and cancerous/pre-cancerous cells (red). Error bars represent the 95% confidence intervals. h The Pearson correlation between tumour vs. normal
(T/N) differential stability and the deconvoluted stage-associated differential mRNA stability. Only cancer types with at least 5 significant deconvoluted
stage-associated genes are shown. Error bars represent the 95% confidence intervals.
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in the RBFOX1-overexpressing A172 cell line (Fig. 5i). Consistent
with the pathway analysis described above, we observed
significant upregulation of calcium signaling pathway genes after
RBFOX1 overexpression (Fig. 5j). Furthermore, the majority of
pan-cancer destabilized mRNAs that are bound by RBFOX1 are
upregulated in A172 cells after RBFOX1 overexpression (Fig. 5k).
These results suggest that RBFOX1 downregulation in glioblas-
toma cells leads to destabilization of its targets, including calcium
signaling pathways genes, which can be partially rescued through
RBFOX1 overexpression.

Dysregulation of miRNA regulons shapes the cancer tran-
scriptome. To examine the contribution of miRNAs to the
dysregulation of mRNA stability in cancer, we systematically
searched for miRNAs whose targets are disproportionately
dysregulated at the stability level in cancer, similar to the RBP
analysis above (Methods). Figure 6a shows miR-122 as an
example; miR-122 is the most abundant miRNA expressed
in liver cells37, was previously shown to be downregulated in

cholangiocarcinoma, and acts as a tumour suppressor via sup-
pression of cell proliferation and induction of apoptosis38,39. As
expected, our regulon analysis indicates that miR-122 targets
are predominantly stabilized specifically in cholangiocarcinoma
tumours compared to normal tissue (Fig. 6a), consistent with
reduced activity of miR-122. This observation is consistent with
TCGA miRNA expression data, which show specific down-
regulation of miR-122 expression in cholangiocarcinoma
(Supplementary Fig. 7). Systematic application of this network-
based approach revealed that, out of 153 broadly conserved
miRNA families, the regulons of 63 miRNAs are deregulated in
at least one cancer type, suggesting widespread disruption of
miRNA networks (Fig. 6b).

Of interest, we observed that miR-29 targets are recurrently
stabilized across more than half of the cancer types we analysed,
suggesting a pan-cancer decrease in miR-29 activity. Among these
cancer types, the miR-29 regulon showed the most significant
enrichment among stabilized mRNAs in UCEC and KIRC (clear cell
renal cell carcinoma), suggesting a major role in post-transcriptional

Fig. 4 Enrichment of RBP binding sites among differentially stabilized mRNAs in cancer. a An example case showing the enrichment of RBFOX1 binding
sites among differentially stabilized mRNAs in TCGA-GBM. Genes are binned by FDR of their DiffRAC differential mRNA stability between tumour and
normal, with destabilized mRNAs on the left and stabilized mRNAs on the right. The relative frequency of RBFOX1 targets (circles) and targets of all other
RBPs (solid line) is shown for each bin. b Schematic representation of the logistic regression approach for modeling the enrichment of RBFOX1 targets
(relative to other RBPs) as a function of differential stability. c Heatmap summarizing the results of applying the model in panel (b) to all RBPs. Positive
(red) and negative (blue) regression coefficients indicate enrichment of RBP targets among mRNAs that are stabilized and destabilized in cancer,
respectively. The circle size represents the significance level. Significant associations between RBP binding and stability status are shown using black
outlines (FDR < 0.05). d Comparison of the differential RBP expression (tumour vs normal) and cancer-associated regulon activity. Regulon activity is
defined to be the same as the enrichment coefficients from panel (c), with the sign of the coefficient inverted for RBPs whose binding leads to RNA
destabilization (based on ref. 28). Each dot represents one RBP in one cancer type. RBFOX1 regulon activities are highlighted. Pearson correlation of
differential expression vs. differential regulon activity is 0.61.
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remodeling in these cancer types. To understand whether restoring
miR-29 activity can reverse these post-transcriptional changes, we
expressed a miR-29 mimic in 786-O and A-498 cells, which are
models for KIRC (Supplementary Fig. 8). As expected, expression of
miR-29 mimic resulted in global downregulation of the miR-29
regulon (Fig. 6c, Supplementary Fig. 9a, and Supplementary Data 8a,
b). Importantly, miR-29 mimic expression leads to downregulation of
the majority of mRNAs that are significantly stabilized in KIRC
(Fig. 6d and Supplementary Fig. 9b), most of which have a miR-29

binding site in their 3ʹ UTRs. Conversely, miR-29 inhibition in the
ACHN cell line (also a model for KIRC) reversed these patterns, with
a global upregulation of miR-29 targets (Supplementary Fig. 10 and
Supplementary Data 8c), and upregulation of transcripts that are
stabilized in KIRC and potentially targeted by miR-29 (Fig. 6e).
Together, these results suggest that miR-29 downregulation has a
widespread effect on the stability of transcripts in cancer, while
restoring its activity partially rescues the normal mRNA stability
landscape of the cell.
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Fig. 5 Aberrant activity of RBFOX proteins mediates stability changes across multiple cancers. a RBFOX1 expression across TCGA cancer types. The box
plot (top) shows the RBFOX1 log2(RSEM) gene expression, retrieved from Firebrowse (http://firebrowse.org/), in normal tissue samples. The bar plot
(bottom) illustrates the average log fold-change of RBFOX1 expression in tumours compared to normal samples (T vs. N; error bars represent SEM).
b RBFOX3 expression in normal tissue samples and differential expression in tumours, similar to panel a. c Conservation of mouse RBFOX1 binding sites in
humans for high-confidence Rbfox HITS-CLIP targets32. The heatmap shows the sequences of human orthologs of the mouse Rbfox binding sites (Rbfox
motif hits on the mouse sequences were identified, and the orthologous regions were extracted using liftOver69. The consensus sequence from the human
orthologs is shown underneath the heatmap. The RBFOX1 motif from RNAcompete28 is also shown at the bottom. d Heatmap showing the stability of
RBFOX HITS-CLIP targets (as defined above). Rows correspond to genes and columns to cancer types, with the latter sorted in the same order as panels
(a, b). e Gene set enrichment analysis (GSEA)70 for RBFOX1 inhibition in terminally differentiated neurons. Genes (x-axis) are sorted by the Wald test
statistic of differential expression between RBFOX1 knockdown (KD) and control (Ctrl) cells, with vertical black lines demarcating the pan-cancer-
destabilized set of RBFOX1 targets. The blue line represents the enrichment curve for this gene set70. f GSEA for RBFOX1 rescue in mouse neurons deficient
for RBFOX proteins, similar to panel (e). g Venn diagram illustrating the overlap between the leading-edge70 set of genes downregulated by RBFOX1
knockdown (from e) and the leading-edge set of genes upregulated by RBFOX1 rescue (from f). h Volcano plot of differential gene expression in RBFOX1-
overexpressing (OE) A172 cells. i Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) for RBFOX1 overexpression (OE) in the A172 human
glioblastoma cell line. Genes (x-axis) are sorted by the log2 fold change of differential mRNA stability between RBFOX1 overexpressing and control cells.
The blue line represents the enrichment curve for RBFOX1 direct targets. j Similar to panel i, with the blue line representing the enrichment curve for genes
involved in the calcium signalling pathway. k Differential gene expression in RBFOX1-overexpressing A172 cells (n= 3 biological replicates) relative to
controls (n= 3 biological replicates), shown for pan-cancer destabilized mRNAs that are bound by RBFOX1 (from panel d). Error bars represent the SEM.
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Discussion
By quantifying differential mRNA stability patterns across 18
cancer types, our study presents a systematic resource for mining
the post-transcriptional landscape of cancer. Importantly, our
results uncovered recurrent changes in the stability of >13,000
mRNAs in at least one cancer type, highlighting the widespread

role of post-transcriptional regulation in shaping the cancer tran-
scriptome. We note that this resource also provides an approx-
imation for the relative contribution of transcriptional and post-
transcriptional events in shaping cancer transcriptome: on average,
19% of genes that are significantly upregulated at the expression
level are detected by DiffRAC as significantly stabilized in tumours,

Fig. 6 Dysregulation of miRNA regulons in cancer. a An example case showing the enrichment of miR-122 targets among mRNAs stabilized in TCGA-
CHOL tumours (relative to normal), similar to Fig. 4a. Note that since miRNAs are expected to destabilize their targets, enrichment in differentially stable
mRNAs indicates downregulation of miRNA activity. b Heatmap summarizing enrichment analysis for all miRNAs across all cancer types, similar to Fig. 4c.
c Enrichment of miR-29 targets among genes that are downregulated after transfection of miR-29 mimic in 786-O cells (n = 1) relative to control (n =1).
The volcano plot (bottom) summarizes differential expression results between miR-29 mimic and control; the dot plot at the top shows enrichment of miR-
29 targets at bins of differentially expressed genes, similar to panel (a). In the volcano plot, significantly differentially expressed genes (FDR < 0.05) are
shown in red. d Enrichment of miR-29 binding sites, relative to other miRNA binding sites, in genes categories defined by their differential mRNA stability in
TCGA-KIRC and differential expression after miR-29 mimic expression in 786-O cells. Each dot represents a gene, and those with a black outline contain at
least one miR-29 binding site. The colour gradient represents the log-odds of miR-29 binding site enrichment in each quarter. P values are based on Fisher’s
exact test. Also see Supplementary Fig. 8 for miR-29 mimic expression in 786-O cells. e Similar to panel (d), but using differential expression after miR-29
inhibition in ACHN cells. f Venn diagram illustrating the overlap of genes that are bound by miR-29, upregulated in KIRC, downregulated after miR-29-
mimic treatment of 786-O and A-498 cells, and upregulated after miR-29 inhibition in ACHN cells. g Differential expression of the 53 genes identified in
panel (f), in 786-O or A-498 cells expressing a miR-29 mimic, or in ACHN cells expressing a miR-29 inhibitor. Error bars represent the SEM. Genes that
are bold correspond to ECM genes (based on overlap with GO), and those with an asterisk are markers of embryonal carcinoma (based on StemCheker
(Pinto et al., 2015)).
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and 23% of genes with significantly reduced expression are detected
as significantly destabilized. In comparison, 66% and 61% of genes
whose expression is significantly up- or downregulated are detected
as transcriptionally activated or inhibited in tumours, respectively
(Supplementary Fig. 11). We note that about 57% of the variability
in the number of differentially stabilized genes across cancer
types appears to be attributed to sample size, suggesting that our
analysis may be underpowered for smaller cancer cohorts (Sup-
plementary Fig. 12). Nonetheless, these results suggest an impor-
tant role for post-transcriptional changes in shaping the cancer
transcriptome, with recurrent changes that are ~30% as frequent as
transcriptional events.

Our study also highlights the coordinated post-transcriptional
deregulation of genes that are involved in the same pathways.
Notably, we observed recurrent stabilization of mRNAs that
encode epithelial-mesenchymal transition (EMT) proteins and
MYC targets across multiple cancer types. EMT is the process by
which epithelial cells lose their apical-basal polarity and cell–cell
adhesion, and instead acquire mesenchymal properties such as
migratory and invasive potentials40; our results suggest that
activation of the EMT pathway in cancer is at least partly
mediated by post-transcriptional upregulation. Similarly, we
observed post-transcriptional upregulation of MYC targets, which
include growth-related genes that directly contribute to
tumourigenesis41. MYC is a well-defined transcription factor and
represents one of the most frequently amplified oncogenes42,
leading to transcriptional activation of its targets in cancer.
Therefore, our intriguing observation that MYC targets are also
upregulated at the mRNA stability level suggests the presence of
convergent transcriptional and post-transcriptional mechanisms
that modulate overlapping gene sets. Furthermore, we observed
coordinated destabilization of mRNAs for genes implicated in
oxidative phosphorylation (OXPHOS) and related pathways such
as fatty acid metabolism and adipogenesis, consistent with the
well-documented Warburg effect in which upregulation of glu-
cose consumption and glycolysis is accompanied by a down-
regulation of OXPHOS43.

In addition, we observed widespread and coordinated post-
transcriptional modulation of the targets of RNA-binding pro-
teins (RBPs) in cancer, with the RBFOX family of RBPs standing
out as having the most recurrently downregulated regulon across
multiple cancer types. RBFOX proteins are known regulators of
alternative splicing and mRNA stability28 and have been impli-
cated in a number of neurological diseases17,31,44, but their role in
cancer is less characterized. Nonetheless, at least the RBFOX1
locus appears to be among the most frequently deleted loci across
different cancer types45,46, with its deletion47 or other genetic
defects48 being associated with poor survival. Our study suggests
that downregulation of RBFOX proteins leads to destabilization
of their target transcripts in tumours; many of these transcripts
encode proteins involved in calcium signaling, a critical pathway
that affects a wide range of cancer-associated processes such as
proliferation, invasion, and apoptosis49. The association between
RBFOX1 and calcium signaling is also supported by previous
literature that shows a positive effect of RBFOX1 on the expres-
sion of some of the genes involved in this pathway50. We note
that the RBFOX family of proteins includes RBFOX1, RBFOX2,
and RBFOX3; however, RBFOX1 and RBFOX3 show the greatest
extent of downregulation across different tumours (>60-fold,
Fig. 5a, b), whereas RBFOX2 shows comparatively moderate
downregulation (~3-fold, Supplementary Fig. 13). Furthermore,
RBFOX2 does not show significant correlation with the expres-
sion of the mRNAs that contain the RBFOX-binding consensus
sequence28. Taken together, these observations suggest that
RBFOX1/3 are the most likely candidates driving dysregulation of
the RBFOX regulon in cancer.

In addition to RBPs, our results also highlight cancer type-
specific deregulation of mRNA stability by miRNAs, with miR-
29 standing out as a pan-cancer stability factor. Our observations
are in line with previous studies showing that different miR-29
isoforms act as tumour suppressors and are downregulated in
several cancer types51,52, affecting cell proliferation, differentia-
tion and apoptosis53. This downregulation correlates with more
aggressive forms of cancer, characterized by increased metas-
tasis, invasion and relapse54, and therapeutic restoration of miR-
29 was suggested to improve disease prognosis55. In line with
these reports, we observed pan-cancer stabilization of miR-29
targets, suggesting widespread reduction in miR-29 activity in
cancer, which could be partially reversed by miR-29 rescue. We
note that our results highlight a core set of 53 mRNAs that are
miR-29 targets, stabilized at least in KIRC, downregulated after
restoring miR-29 activity in the KIRC model cell lines 786-O and
A-498, and upregulated after miR-29 inhibition in ACHN cells
(Fig. 6f). Importantly, seven of these genes are markers of
embryonal carcinoma, suggesting that miR-29 inhibition is
essential for activation of an embryonic-like program in cancer
(Fig. 6g). In addition, we observed a significant enrichment of
the extracellular matrix (ECM) genes (Fig. 6g), suggesting that
miR-29 inhibition also contributes to ECM remodeling in
cancer, consistent with previous reports on ECM regulation by
miR-2956.

It should be noted that various pathways may affect mRNA
stability and its estimates. For example, disruptions in the
nonsense-mediated decay (NMD) pathway affects the translation-
dependent stability of a wide range of mRNAs57. Since most of the
affected transcripts are likely spliced58, such changes are expected
to be properly captured by our analysis of spliced/unspliced tran-
script ratios. However, analysis of spliced/unspliced transcript
ratios may not be suitable for studying NMD-dependent clearance
of unspliced cytoplasmic transcripts59. Other proteins involved in
the RNA decay pathway are also expected to influence mRNA
stability, although we were not able to detect a significant asso-
ciation between the degree of RNA stability disruption and somatic
alterations in RNA decay pathway proteins (Supplementary
Fig. 14). While RNA surveillance pathways such as NMD and
general RNA decay proteins affect mRNA stability globally, in this
work we chose to focus on regulon-specific disruptions caused by
abnormal activity of RBPs and miRNAs. We note that different
mechanisms may underlie the observed disruption in the RBP/
miRNA regulons in cancer, including changes in the expression
levels of these regulatory factors, mutations, post-translational
modifications in the case of RBPs, disruption of miRNA biogenesis,
competition/cooperation with other regulatory factors, and
enhanced/restricted access to binding sites on target transcripts.
However, at least in the case of RBPs, we observed a strong cor-
relation between their expression and regulon activity in cancer
(Fig. 4d), suggesting that disruption of the expression of RBPs is
most likely the dominant mechanism underlying the dysregulation
of their regulons.

Together, these results highlight a key role for mRNA stability
programs, mediated by RBPs and miRNAs, in regulation of path-
ways that are integral to cancer development and progression.
While the vast majority of current literature is focused on the role
of transcriptional mechanisms in reprogramming cancer cells, this
study underlines a critical and largely uncharacterized role for post-
transcriptional remodeling of the cancer cell transcriptome, and
provides a resource for exploring post-transcriptional pathways
in cancer.

Methods
Joint modelling of intronic and exonic read counts and mRNA stability. Our
approach for statistical modeling of intronic and exonic read counts builds on
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previous research that connects the abundance of pre-mRNA and mature mRNA
to mRNA stability (Supplementary Fig. 1a, b):

logm ¼ b ´ log pþ logφþ log γ ð1Þ
here, m corresponds to the vector of the mature mRNA abundance for a given gene
across different samples, p is the abundance of the pre-mature mRNA, γ is the
mRNA stability across samples, φ is the maximum processing rate of RNA, and b is
the bias-term (Supplementary Fig. 1b). Vectors are differentiated from scalars using
bold typeface.

We further model the logarithm of mRNA stability as a linear function of a set
of sample-level variables:

log γ ¼ X ´ βþ α ð2Þ
here, X is the n × k matrix of sample-level variables (for n samples and k variables),
β is the vector of coefficients that quantify the effect of each variable on the mRNA
stability, and α is an intercept (matrices are differentiated from vectors using
capital letters). This leads to:

logm ¼ b ´ log pþ cþ X ´ β ð3Þ
where c= log φ + α. We model the mean of intronic read counts for a given gene
across samples as a function of the pre-mRNA abundance for that gene, a gene-
level scaling factor that can be interpreted as the effective length, and a sample-
specific scaling factor that can be interpreted as library size (Fig. 1b):

λint ¼ p ´ l ´ sint ð4Þ
here, int stands for intronic, λ represents the mean read count, l is the gene-specific
scaling factor, and s is the sample-specific scaling factor. Similarly, the mean of
exonic read counts for a given gene across samples can be expressed as:

λexo ¼ m ´ l0 ´ sexo ð5Þ
The above equations can be collectively expressed by matrix operations as:

log
λint

λexo

" #
¼ log

sint

sexo

� �
þ X0

log p0

c0

β

2
64

3
75 ð6Þ

where

X0 ¼ In 0n ´ 1 0n ´ k
b ´ In 1n ´ 1 Xn ´ k

� �
ð7Þ

and p’= p × l, c’= c+ log(l’)− b × log(l), and I is the identity matrix (matrix
dimensions are indicated as subscripts). These equations connect pre-/mature
mRNA abundance and mRNA stability to the observed intronic and exonic read
counts for each given gene (see Supplementary Fig. 1c, d for matrix equations that
consider all genes at the same time). This formulation enables the estimation of
unknown parameters using a generalized linear model with a log-link function. In
this study, we use DESeq260 to fit the unknown parameters of this model, as
explained below.

It should be noted that changes in the ratio of spliced/unspliced mRNAs, and
ultimately in the observed intronic and exonic read counts, may arise from a wide
array of pathways affecting decay of pre-mRNAs or mature mRNAs in different
manners. However, previous research has demonstrated that nuclear decay of pre-
mRNAs does not affect the ratio of exonic/intronic reads17 (Supplementary
Fig. 1b). This indicates that mechanisms affecting pre-mRNA levels do not lead to a
substantial change in the final ratio of spliced/unspliced mRNAs as long as the pre-
mRNA remains a potential substrate for the splicing machinery, since a change at
the pre-mRNA level leads to an equivalent change at the mature mRNA level and,
therefore, does not affect the ratio. The estimates of differential stability generated
in this study therefore represent mostly the effect of change in degradation
occurring at the mature mRNA levels.

Different RNA selection methods can also affect the intronic read counts.
Poly(A)-selected RNA will lead to a lower proportion of intronic reads compared
to rRNA-depleted RNA. In the current study, we made use of several poly(A)-
selected datasets, including the RNA-seq data from TCGA. However, since all
samples in each dataset were analysed using the same method, the estimates are all
affected in a similar manner across the sample types and cancer types. We note that
poly(A)-selected RNA has previously been shown to produce sufficient intronic
reads for stability estimation15. In addition, the large number of samples included
in this study most likely mitigates any statistical power loss that results from lower
amount of intronic reads.

Estimation of the effect of sample variables on mRNA stability. The above
equations allow us to estimate the distribution of latent variables log p’, c’, and β by
fitting the model to observed intronic and exonic read counts. For this purpose, we
use the matrix X’ as the design matrix in a DESeq2 model. In practice, we replace
the first column of X’ with an intercept (Fig. 1c), which is an equivalent design
matrix and does not change the interpretation of β, but enables the user to employ
a beta prior (if desired) when fitting the DESeq2 model.

In order to be able to construct X’, the bias term b needs to be first estimated. We
do this by first optimizing b in order to maximize the likelihood of observed intronic

and exonic read counts across all genes in a model that assumes the mRNA stability is
a gene-specific constant. Specifically, we use the below design matrix D to fit the
model using DESeq2, while varying the value of b in the interval [0,1] to select the b
that maximizes the sum of log-likelihood of the data across all genes:

D0 ¼ In 0n ´ 1
b ´ In 1n ´ 1

� �
ð8Þ

we use the ‘optimize’ function in R to select the optimal value of b. Once this optimal
value is identified, it is used in the matrix X’ (see above), which is then used as the
design matrix in DESeq2 to estimate the latent variables, including β (i.e. the effect of
each variable on stability). This procedure is implemented in DiffRAC (https://github.
com/csglab/DiffRAC).

A modified design to accommodate larger sample sizes. A major limitation of
this approach is the considerable increase in computing time with larger sample
sizes when DESeq2 is used to fit the model, since the model includes sample-
specific latent variables for pre-mRNA abundance. To accommodate these cases,
we have also implemented a model that assumes that most of the variance in pre-
mRNA abundance can be explained by the experimental variables, instead of
including sample-specific latent variables:

logp ¼ X ´ωþ ρ ð9Þ
Here, ω is the vector of coefficients that represent the effect of each variable on the
pre-mRNA abundance of a given gene, and ρ is a gene-specific intercept. There, we
also have:

logm ¼ b ´ X ´ωþ ρ
� �þ cþ X ´ β ð10Þ

This leads to a modified set of matrix equations (Supplementary Fig. 3a–c) that
connect intronic/exonic read counts to sample variables:

log
λint

λexo

" #
¼ log

sint

sexo

� �
þ X0

ρ0
ω

c0

β

2
6664

3
7775 ð11Þ

where

X0 ¼ 1n ´ 1 Xn ´ k

1n ´ 1 b ´Xn ´ k

0n ´ 1 0n ´ k
1n ´ 1 Xn ´ k

� �
ð12Þ

and ρ‘= ρ+ log l, and c’= c+ log(l’/l)+ ρ × (b – 1). Similar to the previous section,
X’ can be used as the design matrix for DESeq2 to estimate the latent variables,
including ω and β.

To construct X’, the bias-term b is chosen so that it maximizes the sum of log-
likelihood of data across all genes in a model that assumes gene-specific constant
stability, i.e. with the below design matrix D’:

D0 ¼ 1n ´ 1 Xn ´ k 0n ´ 1
1n ´ 1 b ´Xn ´ k 1n ´ 1

� �
ð13Þ

This simplified model is also implemented in DiffRAC. Overall, we see strong
agreement between DiffRAC’s estimates when using the two different models (i.e.
sample-specific pre-mRNA abundances vs. condition-specific pre-mRNA
abundances) on the same data (Supplementary Fig. 3d).

Differential RNA stability between NAT10 knockout and parental cells. Raw
BRIC sequencing (BRIC-seq) (5′-bromo-uridine [BrU] immunoprecipitation
chase-deep sequencing analysis) reads for time-series measurements of BrU-pulsed
RNAs in parental and NAT10−/− HeLa cells20,61 were obtained from GEO
accession GSE102113 (SRA accession SRP114504). This RNA-seq dataset repre-
sents time points 0, 2, 4, 8 and 16 h after a 24-hour treatment of cells with BrU (two
replicates for each cell line at each time point). Reads were mapped to the GRCh38
genome assembly using HISAT262, and gene-level read counts for each sample
were obtained using HTSeq-count63 (“intersection-strict” mode) based on Ensembl
GRCh38 v87 gene annotations. Ground-truth Differential mRNA stability between
the control and NAT10KO cells was obtained using DESeq260 by modeling the
RNA abundances as a function of ~c+ t+ c:t, where c is the cell type (0 for Control
and 1 for NAT10KO), t is the time point, and c:t is the interaction between cell type
and time. In this model, the coefficient of c would represent the differential
expression between the two cell types (i.e. difference in abundance at time zero);
the coefficient of t would represent the stability of each gene’s mRNA in the
reference cell line (relative to the average of all genes); and the coefficient of the
interaction term c:t would represent the differential mRNA stability between the
two cell lines. For each gene, the coefficient of c:t and associated statistics were
retrieved using DESeq2.

TCGA RNA-seq data processing. RNA-seq BAM files for 7078 tumour samples
and 682 adjacent normal samples from the 18 cancer types with at least 5 normal
samples in TCGA were acquired from the National Cancer Institute (NCI)
Genomic Data Commons (GDC) data portal (https://portal.gdc.cancer.gov/GDC;
dbGaP study accession phs000178.v1.p1). All TCGA RNA-seq data used in this
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study was generated from poly(A)-selected RNA. In order to quantify the number
of reads corresponding to pre-mRNA and mature mRNA for the estimation of
mRNA stability, we generated custom annotations for exons and introns for the
transcripts supported by both Ensembl and Havana consortia, using GTF for-
matted annotations acquired from Ensembl GRCh38 version 87.

We note that, in addition to mRNA stability, aberrant alternative splicing may
affect the exonic read profiles. To avoid the potential confounding effect of
alternative splicing on mature mRNA quantification, we exclusively retained exonic
reads mapping to constitutive exons that are present in all Ensembl/Havana
transcripts. Even when only constitutive exons are used for read counting, there
might be cases where a splicing shift leads to transcripts that have reduced or
enhanced stability. In such cases, DiffRAC should still detect the overall change in
stability, even though it is caused by the interaction between abnormal alternative
splicing and isoform-specific decay mechanisms. Similar to ref. 17, we limited our
analysis of RBP and miRNA regulons to the genes that shared the same 3′ UTR
across all their isoforms, with the 3ʹ UTR composed of a single exon, to mitigate the
potential confounding effect of alternative 3ʹ UTR usage/splicing on mRNA
stability.

Intronic regions were included in our annotations only if they did not overlap
with any exon, regardless of whether the exon was concordantly annotated by
Ensembl or Havana consortia. The strandedness of RNA-seq data was determined
using RSeQC64. Subsequently, BAM files were sorted by read name using
SAMtools, and exonic and intronic reads were separately counted using HTSeq-
count63, limiting to reads with a MAPQ score ≥30. Exonic reads were counted
using the HTSeq “intersection-strict” mode, whereas intronic reads were counted
using the “union” mode. The exonic/intronic read counts were then used as input
to DiffRAC for stability analysis. We removed the cell cycle genes (based on GO
term GO:000704) for downstream analyses, given that these genes are not at steady
state, which is required for estimating stability from pre-/mature mRNA
abundances.

Deconvolution of cellular origin from differential stability estimates. We
inferred stage-associated changes in stability specifically originating from the
cancerous (or pre-cancerous) cells using DiffRAC with a design matrix that models
the exonic/intronic read ratio as a function of the tumour stage (dichotomized into
low-stage and high-stage categories), the impurity (fraction of non-malignant cells)
of the tumour as measured by ABSOLUTE65, and an interaction term between
stage and impurity, similar to ref. 27. As shown in Fig. 3d, different coefficients
retrieved from this model represent the stage-associated changes in stability ori-
ginating from cancerous or pre-cancerous cells specifically. Specifically, the coef-
ficient of the tumour stage variable represents difference in stability between high-
and low-stage tumours when impurity is zero, and thus can be interpreted as the
stage-associated differential stability that is confidently attributed to
malignant cells.

Pathway analysis. MSigDB hallmark gene-sets66 were retrieved using the msigdbr
R package (https://cran.r-project.org/web/packages/msigdbr/index.html). For each
TCGA cancer type, Fisher’s exact test was used to examine the association between
each pathway and the sets of significantly stabilized or destabilized mRNAs,
separately.

Differential RNA stability between MDA-MB-231 and MDA-LM2 cells.
Raw RNA-seq reads for time-series measurements of 4-thiouridine (4sU)-
labeled RNA23,67 from MDA-MB-231 and MDA-LM2 cells were obtained from
GEO accession GSE49608 (SRA accession SRP028570). This RNA-seq dataset
represents time points 0, 2, 4, and 7 h after a 2-hour treatment of cells with
4sU (four replicates for each cell line at each time point). Raw data was
processed and differential mRNA stability between the MDA-MB-231 and
MDA-LM2 cells was obtained in the same way as the NAT10KO BRIC-seq data
(see above Methods).

RBP and miRNA regulon analysis. The stability regulons of 35 RBPs (i.e. the set
of mRNAs bound and regulated by each RBP) were obtained from a previous
publication28. The regulons of miRNA families were obtained by identifying exact
miRNA seed matches in mRNA 3ʹ UTRs. Specifically, 3ʹ UTR sequences of protein-
coding genes were retrieved using the Ensembl GRCh38 version 87 annotations.
We limited the analysis to the genes for which a single 3ʹ UTR, composed of a
single exon, was shared across all isoforms, in order to avoid the possible con-
founding effects of alternative splicing. The miRNA seed sequences (8nt) were
retrieved from TargetScan v7.268, limiting to a set of 153 broadly conserved
miRNA families (family conservation score ≥1). Exact seed sequence matches in 3ʹ
UTR sequences were identified while limiting the search space to a maximum of
2000 nt downstream of the stop codon.

The regulon enrichment among upregulated or downregulated genes was
quantified using a logistic regression approach. Specifically, for each cancer type,
we modeled the likelihood of being bound by each RBP/miRNA as a function of
status, with –1 corresponding to significantly destabilized mRNAs (FDR ≤ 0.05),
+1 corresponding to significantly stabilized mRNAs, and 0 corresponding to non-
significant mRNAs. To account for the confounding factors that generally affect the

number of binding sites of RNA-binding factors (rather than a specific RBP or
miRNA; e.g. 3ʹ UTR length), we used the total number of binding sites of each
mRNA for RBPs or miRNAs as the background. Specifically, we used a generalized
linear model of the binomial family, in which the presence of a binding site for the
specific RBP or miRNA of interest is considered as “success”, and the presence of
binding sites for other RBPs or miRNAs considered as “failures”. These success/
failure counts were modeled as a function of the stability status of the transcript
using the glm function in R.

HITS-CLIP data analysis. Pooled HITS-CLIP peaks of RBFOX1/2/3 proteins in
whole brain tissue lysate of mice were retrieved from a previous study32. Peaks
occurring in the 3ʹ UTR with a height greater or equal to 200 overlapping CLIP tags
were retained (peak height was extracted from Supplementary Table 1 of the source
publication). The mRNAs that had at least one 3ʹ UTR high-confidence peak were
considered high-confidence RBFOX targets, which were further filtered to include
only those whose orthologs had expression measurements in TCGA. This resulted
in 58 genes, 54 of which also have a 3ʹ UTR RBFOX binding site based on CIMS
analysis of CLIP data.

Cell culture and transient transfection of miRNA mimics and inhibitors. The
established renal cancer cell line 786-O, A-498 and ACHN as well as the glio-
blastoma cell line A172 were purchased from the American Type Culture Col-
lection (ATCC; Rockville, MD, USA) and cultured in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin (Life technologies) at 37 °C with 5% CO2. For transient
transfection, 786-O and A-498 cells (100,000 cells/well in 6-well plates) were
reverse-transfected in antibiotic-free medium with 10 nM of miRNA-29 mimic
(stem-loop sequence: UGGUUUCGUAUUGGUGCAUAGAAGUAUUAAUUU
UGUAACUUGUCUAGCACCAUUUGAAACCAGU (two biological replicates for
A-498, and one for 786-O), mature miRNA sequence: UAGCACCAUUUGAA
ACCAGU, ThermoFisher, 4464066) or control mimic (ThermoFisher, 4464058)
(two biological replicates for A-498, and one for 786-O) using Lipofectamine
RNAiMAX Reagent (ThermoFisher,13778075) according to the manufacturer’s
recommendations. ACHN cells were transfected either with miR-29 inhibitor
(ThermoFisher, 4464084, Assay ID: MH10103) or negative control (ThermoFisher
4464076) using the same protocol described above, with three biological replicates
each. Two additional RNA-seq samples related to the miR-29 mimic experiment
performed in A-498 cells were excluded due to potential mislabeling of the samples.

RNA isolation and qRT-PCR analysis of miRNAs. Total RNA was extracted
using All Prep DNA/RNA/miRNA Universal kit (Qiagen) 48 h after transient
transfection. RT-PCR was done using TaqMan MicroRNA reverse transcription kit
(Applied Biosystems, 4366596). The LightCycler 480 instrument (Roche) was used
to perform qRT-PCR analysis of miR-29 and miR-26 using TaqMan Fast
Advanced miRNA Assays (ThermoFisher, 4444557) following guidelines provided
by the manufacturer. Expression was reported as Ct values (Supplementary Fig. 8).

Stable cells expressing RBFOX1. To generate stable A172 cell lines,
HEK293T cells were transfected with lentiviral packaging plasmids (psPAX2 and
MD2.g) together with a lentiviral expression plasmid for either GFP or RBFOX1
(three biological replicates each) using Lipofectamine 3000. Plasmids pLX317-GFP
and pLX317-RBFOX1 were obtained from the TRC3 ORF collection from Sigma
provided by McGill Platform for Cellular Perturbation (MPCP) at McGill Uni-
versity. After 48 h, media containing lentiviral particles were collected, filtered
through a 0.45 μm syringe filter, and immediately added to A172 cells with 8 μg/ml
polybrene. Over-expression of GFP and RBFOX1 were confirmed by fluorescence
microscopy (for GFP) or qPCR (for RBFOX1). Total RNA was extracted using the
All Prep DNA/RNA/miRNA Universal kit (Qiagen).

RNA-sequencing and analysis. Library preparation from total RNA was per-
formed using NEB rRNA-depleted (HMR) stranded library preparation kit
according to manufacturer’s instructions, and sequenced using Illumina NovaSeq
6000 (100 bp paired-end). RNA-seq reads were aligned to the GRCh38 genome
assembly using HISAT262, and gene-level read counts were obtained using HTSeq-
count63 (“intersection-strict” mode) based on Ensembl GRCh38 v87 gene anno-
tations. DESeq260 was used to compute differential gene expression.

Statistics and reproducibility. All statistical analysis were performed using by
Bioconductor packages in R (version 4.1.2). The specific statistical tests used for
each analysis and the associated measures of statistical significance are indicated
within the main text, methods, in the figure, or in their legends. Statistical sig-
nificance was set at P < 0.05 for all analyses and multiple testing correction was
performed when applicable using the FDR method. Sample size for TCGA cohort
analysis depended on publicly available data. No statistical analysis was performed
to select the sample sizes for RNA-seq experiments. To ensure reproducibility for
RNA-seq experiments, biological replicates were used and/or the findings were
replicated in other cell lines.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data generated during this study are included in this published article and its
supplementary files. Additional data and analysis files are available at http://csg.lab.
mcgill.ca/sup/pancancer_stability/ and/or via Zenodo (doi:10.5281/zenodo.4404547).
RNA-seq data from the miR-29 mimic and inhibitor expression experiments are
available via GEO under accession GSE145088. RNA-seq data from the RBFOX1
overexpression experiment are also available via GEO under accession GSE201639. The
results published here are in part based on data generated by the TCGA Research
Network: https://www.cancer.gov/tcga. Other data used in this paper are available via
their source publications as indicated in the article.

Code availability
DiffRAC is available via GitHub at https://github.com/csglab/DiffRAC.
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