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The Polygenic Risk Score Knowledge Base offers a
centralized online repository for calculating and
contextualizing polygenic risk scores
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The process of identifying suitable genome-wide association (GWA) studies and formatting

the data to calculate multiple polygenic risk scores on a single genome can be laborious.

Here, we present a centralized polygenic risk score calculator currently containing over

250,000 genetic variant associations from the NHGRI-EBI GWAS Catalog for users to easily

calculate sample-specific polygenic risk scores with comparable results to other available

tools. Polygenic risk scores are calculated either online through the Polygenic Risk Score

Knowledge Base (PRSKB; https://prs.byu.edu) or via a command-line interface. We report

study-specific polygenic risk scores across the UK Biobank, 1000 Genomes, and the Alz-

heimer’s Disease Neuroimaging Initiative (ADNI), contextualize computed scores, and

identify potentially confounding genetic risk factors in ADNI. We introduce a streamlined

analysis tool and web interface to calculate and contextualize polygenic risk scores across

various studies, which we anticipate will facilitate a wider adaptation of polygenic risk scores

in future disease research.
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Genome-wide association (GWA) studies have revolutio-
nized the study of complex diseases and trait heritability
by identifying genome-wide significant genetic loci asso-

ciated with specific phenotypes. Tens of thousands of genetic
associations are currently implicated in diseases or traits with
genome-wide significance (p-value <5 × 10-8)1, and additional
associations have been discovered through meta-analyses2–4.
These GWA studies span various complex diseases and traits5–7,
including major depressive disorder8, type 2 diabetes mellitus9,
Alzheimer’s disease10, coronary artery disease11, schizophrenia12,
numerous cancers13–15, lifestyle choices (e.g., smoking, drinking,
etc.16,17), and have helped identify candidate drug targets18–20.

GWA studies are effective at identifying individual genetic
locus-trait associations. However, GWA results on their own
cannot determine the total genetic liability for a given trait in a
genome of interest. Polygenic risk scores utilize GWA summary
statistics to quantify the aggregate genetic risk for a disease or
trait based on all associated genetic variants present in a
genome21.

Accordingly, polygenic risk scores are dependent on the
underlying summary statistics from a GWA study. However,
most large-scale GWA studies have been conducted on pre-
dominantly European populations22, with results that often do
not translate to other populations23 due to differences in allele
frequencies and linkage disequilibrium patterns24–26. For
instance, effect sizes reported in GWA studies performed pri-
marily on populations of European descent were found to be
significantly higher than corresponding effect sizes reported by
GWA studies consisting entirely of non-European individuals27.
The lack of diversity in GWA study cohorts can also cause
important risk alleles in minority populations to remain uni-
dentified. For example, the Population Architecture using
Genomics and Epidemiology (PAGE) study found that a novel
risk variant associated with the number of cigarettes smoked
per day existed at a frequency of 17.2% in Native Hawaiian
participants but was absent or rare in most other populations28.

Choosing an appropriate GWA study to calculate polygenic
risk scores is paramount to the fidelity of the calculations because
the accuracy and predictive power of a polygenic risk score is
dependent on the power and scope of the corresponding GWA
study data29,30. When used appropriately, polygenic risk scores
can capture genetic predisposition for diseases or traits across
various genetic markers and can be used to assess the genetic risk
compared to a specific population31–34. Because polygenic risk
scores can stratify populations based on distinct risk, they can be
useful in determining clinical and personal interventions35,36. For
example, a polygenic risk score can greatly inform cancer risk
management for BRCA1 carriers, who have a 21% risk of devel-
oping breast cancer by age 50 if they are in the lowest polygenic
risk score decile for breast cancer and a 39% risk of developing
breast cancer by age 50 if they are in the highest polygenic risk
score decile37. Likewise, polygenic risk scores can be used to
classify disease subtypes36,38,39, and differences in polygenic risk
scores for epilepsy reliably correspond to the variation in epilepsy
subclassifications40,41. Furthermore, polygenic risk scores can
effectively explore genetic overlap between pairs of traits42, which
has revealed a shared genetic basis for multiple pairs of psy-
chiatric disorders43,44. Surprisingly, polygenic risk scores are also
able to show a lack of correlation in pairs of neurological traits,
such as multiple sclerosis and amyotrophic lateral sclerosis, where
genetic correlation might otherwise be expected45. Polygenic risk
scores can also test for gene-by-environment and gene-by-gene
interactions46,47 through Mendelian randomization studies,
which detect causal genetic relationships48,49, and genotype-by-
environment interactions based on GWA summary statistics are
increasingly common on biobank-scale data50.

There currently exists a spectrum of tools available for calcu-
lating polygenic risk scores, ranging from direct-to-consumer
genetics companies (e.g., 23andMe51) to downloadable software
packages (e.g., PRSice-252). PRSice-2 is a multi-faceted tool that
greatly facilitates polygenic risk score analyses of large cohorts
compared to alternative software such as LDpred53 and
lassosum54. However, PRSice-2 requires users to have an in-depth
knowledge of bioinformatics, supply their own GWA summary
statistics, use bgen or binary PLINK55 file formats for genetic data
(i.e., no VCF files), and perform all calculations locally (i.e., no
dedicated server for testing and/or small datasets). Further,
PRSice-2 requires all variants to be annotated with the same
accession numbers as the GWA study, so merged or deprecated
accession numbers are not identified using PRSice-2. PRSice-2
also has a significant learning curve to understand and utilize the
available options, which can limit its application in labs without a
strong bioinformatics presence. These constraints have poten-
tially limited the application of polygenic risk score calculations
in assessing off-target disease susceptibility and the wider adap-
tation of polygenic risk scores in other genetic analyses.

Other notable efforts to centralize polygenic risk scores for
research, such as the Polygenic Score Catalog (PGS Catalog)56

and Impute.me57, have greatly improved the interpretability and
dissemination of polygenic risk scores on precomputed data.
However, they currently lack the capability of performing high-
throughput analyses on user-specific data across all available
studies. Additionally, users are required to select specific studies
or traits to analyze a priori, which makes data exploration much
more time consuming.

Here, we present the Polygenic Risk Score Knowledge Base
(PRSKB), a web server (https://prs.byu.edu) and command-line
interface for calculating polygenic risk scores using various GWA
summary statistics and a single command at runtime. As of
March 16, 2022, the PRSKB contains the following data that can
be used for user-specific calculations of polygenic risk scores and
contextualization against larger cohorts: 250,134 variant associa-
tions; 125,433 unique single nucleotide polymorphisms; 20,798
unique study and trait combinations; 10,366 GWA study iden-
tifiers; and 3463 PubMed identifiers. We use genomic datasets
from the 1000 Genomes Project58, UK Biobank59, and the Alz-
heimer’s Disease Neuroimaging Initiative (adni.loni.usc.edu) to
create polygenic risk score percentiles against which individual
risk scores can be examined. We show that the PRSKB performs
similarly to PRSice-2 and can accurately differentiate between
Alzheimer’s disease cases and controls in the ADNI dataset.
Because the PRSKB simplifies polygenic risk score calculations
and contextualization across thousands of studies that can all be
performed with a single command at runtime, we anticipate that
this tool will enable a wider adaptation of polygenic risk score
calculations through clinical trial screenings, analyses of comor-
bidities, identifying confounding genetic factors, and various
other analyses related to disease genetics.

Results
We developed the PRSKB to simplify the process of calculating
polygenic risk scores across all available GWA studies. Users can
calculate polygenic risk scores through the user-friendly online
calculator or command-line interface. The PRSKB GWA Study
Browser allows users to identify which GWA studies can be used
to compute polygenic risk scores and provides references for each
study. Polygenic risk scores can be contextualized against the UK
Biobank, population-specific 1000 Genomes data, and the ADNI
dataset for each study in the database. The depth and breadth of
studies in the database, as well as the collection of previously-
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calculated risk scores from a variety of populations, facilitates the
implementation of the PRSKB in future trait and disease research.

Online polygenic risk score calculator. The PRSKB calculator
can calculate polygenic risk scores for multiple traits and studies.
To run the calculator, users input target data either by typing
reference RSID numbers and their corresponding alleles into a
text box or by uploading a variant call format (VCF) file that stays
on their browser and never reaches our database. Next, the user
must specify the reference genome (hg38, hg19, hg18, or hg17)
used to sequence the input variants if they are using the VCF file
format so that the associations queried from the database corre-
spond to the same reference assembly. By default, hg38 is used as
a reference for RSIDs. Various filters allow users to choose spe-
cific studies, populations, or study types (e.g., users can choose to
include only studies with the highest Altmetric score60 or the
largest study cohort reported by the GWAS Catalog, measured as
the initial sample size plus the replication sample size). Finally,
the user must designate a p-value threshold for GWA variants
included in the calculations and whether they prefer a condensed
or verbose output file. Supplementary Fig. 3 presents the PRSKB
calculator interface.

The polygenic risk score results are written to a tab-separated
values (TSV) output file presented in either a condensed or
detailed format, or a JavaScript Object Notation (JSON) file (see
Supplementary Fig. 4). Supplementary Data 4 and Supplementary
Data 5 respectively show examples of the condensed and verbose
output. Genetic variants with an odds ratio greater than one
indicate an increased genetic risk of developing the disease or
trait, while odds ratios less than one indicate genetic protection
against the disease or trait. Similarly, beta values greater than zero
increase genetic risk and beta values less than zero decrease
genetic risk for the disease or trait.

Users can browse the GWA studies in our database to locate
studies they wish to use in their calculations by searching for the
first author, article title, trait, PubMed ID, or GWAS Catalog
study accession ID. The GWA study browser can be accessed
under the “Studies” tab on the PRSKB website or through
“Option 2: Search for a specific study or trait” on the PRSKB CLI
menu. Supplementary Fig. 5 introduces the GWA study browser
interface. Alternatively, users can opt to use their own GWA
study data, following the proper formatting requests listed on the
PRSKB website or the PRSKB CLI menu.

Command-line interface tool download. In addition to the
website, a downloadable command-line interface (CLI) tool is
available for users to run the calculator directly from the
command-line. This option is recommended for users running
the calculator on multi-sample VCFs or calculating polygenic risk
scores for more than 50 GWA studies. Required parameters
include a path to the input file, a path to the output file, the
p-value threshold for associations, the reference genome of the
variants in the input file, and the superpopulation for the samples
in the input file. Using only the required parameters, polygenic
risk score calculations are run on every trait and study in the
database. Optional parameters are used to filter which studies are
included for calculations (e.g., specific traits, studies, or ethnicity
of the study cohort). The CLI can also be run in two steps to
perform large calculations without internet access, and it is
multithreaded for improved computational efficiency (see Sup-
plementary Fig. 6).

The CLI tool contains a built-in menu when run without
parameters. This menu allows users to learn more about the CLI
tool and the parameters required to run it, search the PRSKB

database for traits and studies, view the usage statement, and run
the risk score calculator (see Supplementary Fig. 7).

The UK Biobank, 1000 genomes, and ADNI for polygenic risk
score contextualization. We present polygenic risk score dis-
tributions and summary statistics for each of the studies in the
PRSKB database, generated from individual genetic data in the
1000 Genomes, UK Biobank, and ADNI datasets. Users can
choose between the following cohorts as an approximate con-
textualization for their own reported risk scores: UK Biobank,
1000 Genomes—African, 1000 Genomes—American, 1000 Gen-
omes—East Asian, 1000 Genomes—European, 1000 Genomes—
South Asian, ADNI—Alzheimer’s disease, ADNI—Mild Cogni-
tive Impairment, and ADNI—cognitively normal. Polygenic risk
score distributions on these precomputed data can be visualized
as violin plots, box plots, or line plots of the percentile data. For
example, Supplementary Fig. 8 depicts the distribution of poly-
genic risk scores for severe SARS-CoV-2 infection with respira-
tory failure for individuals in the UK Biobank cohort based on
GWA summary statistics reported by Ellinghaus, et al.61. At this
time, visualizations on the website are exclusively for pre-
computed scores and user-uploaded data are not graphed.
However, percentile data can be found for user-uploaded data in
the verbose output file.

ADNI case study. Although we used the GWA summary statis-
tics from Jansen, et al.2 to compare only two groups in the ADNI
dataset due to limited sample size for the mild cognitive
impairment group (i.e., we combined Alzheimer’s disease or mild
cognitive impairment versus controls and combined controls or
mild cognitive impairment versus Alzheimer’s disease), we used
an adjusted significance level of 0.01 to account for multiple
testing of five potential comparisons of Alzheimer’s disease risk:
Alzheimer’s disease versus mild cognitive impairment; Alzhei-
mer’s disease versus controls; mild cognitive impairment versus
controls; Alzheimer’s disease or mild cognitive impairment versus
controls; and mild cognitive impairment or controls versus Alz-
heimer’s disease. A Mann-Whitney U test revealed a significant
difference between Alzheimer’s disease polygenic risk scores in
individuals with a CDR ≥ 1 and individuals with a CDR ≤ 0.5
(P= 2.75 × 10-9). Similarly, a Mann-Whitney U test also detected
a significant difference between Alzheimer’s disease polygenic risk
scores for individuals with a CDR= 0 and individuals with any
amount of dementia (CDR ≥ 0.5), although it was less significant
(P= 1.97 × 10-7). Figure 1 shows the comparisons of polygenic
risk score distributions in each CDR cohort. Similar comparisons
were made using GWA summary statistics from Lambert et al.3

and Lo et al.62, and are shown in Supplementary Figs. 9 and 10,
respectively.

After calculating polygenic risk scores from all other studies in
the PRSKB database for the individuals in the ADNI cohort and
correcting for multiple testing, we identified 42 GWA studies that
produced risk scores that significantly differ (P < 4.21 × 10-06)
between individuals with and without Alzheimer’s disease (see
Supplementary Data 6) and found 29 GWA studies that produced
risk scores that significantly differed (P < 4.23 × 10-6) between
individuals with cognitive impairment and normal cognition (see
Supplementary Data 7).

Comparison to PRSice-2. The PRSKB reports similar polygenic
risk score results as PRSice-2. Figure 2a plots the polygenic risk
scores calculated for both the PRSKB and PRSice-2 across ADNI
participants using the Lambert, et al.3 GWA study. Since polygenic
risk scores are a relative measurement of genetic risk compared to a
population, we compared the shape of the distributions from the
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PRSKB and PRSice-2 to ensure that both algorithms report similar
score distributions. After performing a minor transformation to
have the same median values for both algorithms (original differ-
ence between medians is 0.001306), a Welch’s two sample t-test
shows that slight variations between the two algorithms do not
change the overall shape of the distributions (see Fig. 2b;
t= 0.004782; P= 0.9962). Similar comparisons between Alzhei-
mer’s disease and cognitive normal controls in the ADNI dataset
using GWA studies from Lambert, et al.3, Jansen, et al.2, and Lo,
et al.62 show that the PRSKB and PRSice-2 produce very similar
distributions (see Supplementary Figs. 11–13). Additionally, we
found similar phenotypic variance explained by the PRSKB and
PRSice-2 in ADNI when using associated variants in each of the
three Alzheimer’s disease genome-wide association studies (see
Supplementary Table 5). The PRSKB was able to perform all
polygenic risk score calculations using a single command at run-
time, whereas PRSice-2 required individual input files for each
study. Additionally, the PRSKB is a position-based tool and can
handle mislabeled or merged accession numbers. This feature
allowed the PRSKB to identify that variant rs111418223 had been
merged with rs9271192 and labeled differently between ADNI and
Lambert, et al.3. PRSice-2 was unable to automatically detect that
those two variants had been merged because PRSice-2 depends on
variant accession numbers. The PRSKB first searches for accession
numbers, and then looks for chromosome and position pairs to
identify associated variants in the target sequence.

Discussion
The PRSKB is the bridge between GWA study data and calcu-
lating polygenic risk scores using user-specific datasets. Polygenic
risk score calculations require GWA study summary statistics, yet

current tools for calculating polygenic risk scores do not offer
straightforward, comprehensive access to usable GWA study
information. The PRSKB facilitates large-scale polygenic risk
score analyses that currently (as of March 16, 2022) include
250,134 variant associations, 125,433 unique single nucleotide
polymorphisms, 20,798 unique study and trait combinations,
10,366 GWA study identifiers, and 3,463 PubMed identifiers.
These associations, which are automatically updated monthly
from the GWAS Catalog, will likely enable researchers to identify
previously unknown genetic biases in sampled cohorts and/or
potential associations between traits.

The PRSKB improves polygenic risk score utilization by
offering contextualization for individual risk scores. The UK
Biobank, 1000 Genomes, and ADNI genetic risk score percentiles
provide the information necessary for users to normalize their
reported scores relative to large population-specific datasets.

The application of polygenic risk scores has become a critical
resource in researching complex genetic diseases and persona-
lized medicine. Although polygenic risk scores are effective at
predicting genetic liability to a trait31–34, risk prediction is not
always the end objective to performing polygenic risk score cal-
culations. Rather, these analyses are used for a wide variety of
research purposes. Polygenic risk scores are useful at stratifying
populations35, influencing clinical and personal disease
interventions36,37, classifying disease subtypes38,39, identifying
genetic overlap between traits42,44, and determining causal
genetic relationships through Mendelian randomization
studies48,49,63. Moreover, the implementation of polygenic risk
scores has the potential to limit unknown covariates in future
genetic studies by revealing individuals that have atypical genetic
risk for phenotypes not directly studied.

Fig. 1 ADNI polygenic risk score distributions. Alzheimer’s disease polygenic risk score distributions are shown for a ADNI participants with a CDR≥ 1
compared to ADNI participants with a CDR≤ 0.5 and b ADNI participants with a CDR≥ 0.5 compared to ADNI participants with a CDR= 0.

Fig. 2 ADNI Polygenic Risk Scores using Lambert et al., 2013 GWA Summary Statistics. PRSice-2 (dark grey), and the PRSKB (light grey) scores are
shown. a PRSice-2 reports polygenic risk scores that center on 0, so 1.0 was added to each PRSice-2 score to put it on the same scale as the PRSKB, which
centers polygenic risk scores based on odds ratios around 1.0. The PRSice-2 median score after transformation is 1.05207 and the PRSKB median score is
1.05338. b Since a polygenic risk score is a relative score compared to the sample population, we transformed the PRSKB scores by subtracting 0.00131
to overlap the shape of the distributions when both algorithms report the same median. Since the scores are normally distributed, a Welch’s two-sample
t-test was used to determine the similarity between the two distributions, which were nearly identical (t= 0.004782; P= 0.9962).
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Although polygenic risk scores have become increasingly pre-
valent in genetic research, historically, only minimal guidelines
have existed for performing polygenic risk score analyses21. This
limitation has led to inconsistencies in polygenic risk score
methodologies in different studies and the misinterpretation of
results. A recent publication by Choi, et al.21 outlines a protocol
for calculating polygenic risk scores, including detailed guidelines
for performing and interpreting genetic risk score analyses. In our
efforts to overcome the variability in current polygenic risk score
research, we follow the standards set forth by Choi, et al.21,
including the implementation of the clumping and threshold
(C+ T) method. Furthermore, users are encouraged to follow the
quality control measures for target and GWA data recommended
by Choi, et al.21 in order to ensure more optimal polygenic risk
scores. Specifically, users are encouraged to ensure that the
summary data and target samples are from the same population
but avoid sample overlap or highly related samples. A target
sample size of at least 100 and GWA study data with a SNP
heritability (h2SNP) > 0.05 will also improve the power and
accuracy of genetic risk score results21. Furthermore, we suggest
that users who utilize the PRSKB to run bulk polygenic risk score
analyses for post-hoc hypothesizing account for multiple testing
when determining a significance threshold.

There are certain limitations to the PRSKB. For example, we
remove multi-allele haplotype associations from the PRSKB
database and ensure that combinations of multiple variants
cannot have a single effect. The PRSKB analyzes each variant
individually. Additionally, although LD clumping is the preferred
method for the removal of variants in linkage disequilibrium21, a
common criticism of clumping is that the correlation and dis-
tance thresholds are generally arbitrarily chosen21,64. We selected
threshold values that emulate clumping procedures performed in
previous studies64,65, but recognize that this choice may be an
area for further development and research.

The PRSKB has other limitations that are inherent to GWA
studies and polygenic risk score calculations66. A common lim-
itation of GWA studies is their current inability to account for
more than a small fraction of complex trait heritability67. Much of
this missing heritability is attributed to rare variants or variants
with small effect sizes that do not reach genome-wide statistical
significance68. Incorporating rare variants in polygenic risk score
calculations actually improves polygenic risk score prediction69,
and the PRSKB uses all associated variants in its calculations by
default, with an optional parameter to filter variants based on their
minor allele frequencies. Additional heritability has been uncov-
ered over the last decade with the increase in GWA study
sample size. For example, a 2009 study with 3322 cases and 3,587
controls detected only a single genomic locus associated with
schizophrenia44, but by 2014, the number of genetic loci associated
with schizophrenia had increased to 108 by using a sample size of
over 36,000 cases and controls70. Although the number of variants
identified have increased with GWA study sample size, the effect
size for the majority of significant GWA loci is under 1.1, which
makes it difficult to determine the individual functional effects of
each identified variant66. A polygenic risk score confronts this
matter by aggregating the individual effects of GWA study variants,
but it also assumes that the genetic risk is additive.

The polygenic risk scores calculated for the individuals in the
ADNI dataset reveal that the PRSKB is effective at estimating
disease risk. As shown in Fig. 1, individuals with Alzheimer’s
disease had significantly higher genetic risk scores for Alzheimer’s
disease than individuals with mild cognitive impairment or who
were cognitively normal. Recent findings by Leonenko, et al.71

show that polygenic risk scores account for the severity of cog-
nitive decline. Leonenko, et al.71 demonstrated that the APOE
gene was found to be the best predictor of amyloid deposition—a

pathological hallmark of Alzheimer’s disease and an important
factor in neural degeneration. However, they also found that
progression from amyloid accumulation and mild cognitive
impairment to Alzheimer’s disease was better determined by
polygenic risk scores, not APOE status. Our polygenic risk score
calculations similarly show that polygenic risk scores are effective
at capturing the distinction between mild cognitive impairment
and Alzheimer’s disease in the ADNI cohort.

The analyses on the ADNI cohort also highlight the utility of
polygenic risk scores in identifying groups of individuals with
distinct genetic risk for a certain trait. For example, a Welch’s two-
sample t test revealed that genetic risk for B-Cell Acute Lympho-
blastic Leukemia is significantly different between individuals with
and without Alzheimer’s disease (t= -9.3704; P= 1.0631 × 10-14),
as shown in Supplementary Data 6. Ongoing studies involving the
role of B cells in Alzheimer’s disease show that B cell depletion
counterintuitively decreases amyloid beta buildup in mice and may
be a therapeutic target for Alzheimer’s disease72. The PRSKB also
identified a clear difference in genetic risk for insomnia in the
Alzheimer’s disease cohort(t= -7.9373; P= 4.5937 × 10-11), which
is in-line with previous studies showing links between sleep pat-
terns and Alzheimer’s disease73. Our polygenic risk score analyses
may help researchers to further examine other links between both
known and unknown disease associations. By facilitating large-
scale polygenic risk score analyses utilizing various genome-wide
significant associations, we provide a tool to detect diseases with
shared genetic bases that may lead to better risk analyses, cohort
selection, and disease pathway analyses.

As GWA studies continue to improve, the polygenic risk score
calculations computed in the PRSKB will become more powerful
and effective. Recent efforts to recognize and improve the lack of
diversity in GWA study sample populations25,74 will allow users
to compute polygenic risk scores for a wider range of ethnicities
and help reduce population biases in polygenic risk score calcu-
lations. Furthermore, as GWA study sample sizes increase,
additional loci with genome-wide association will be revealed,
resulting in more comprehensive polygenic risk scores. Empirical
evidence indicates that for each complex phenotype, there is a
threshold sample size above which the rate of variant discovery
increases dramatically75. Moreover, the detection of risk variants
has yet to plateau for any trait75, suggesting that as large cohorts
become increasingly available, polygenic risk scores will become
more robust and informative.

The PRSKB simplifies access to data required for polygenic risk
score calculations. No other tool includes a centralized online
database and command line interface that allow users to simul-
taneously query thousands of studies on their own data through
both an online and command line interface. We anticipate that
the PRSKB will enhance the role of polygenic risk scores in future
genetic studies of complex disease and trait heritability by
streamlining the process to calculate polygenic risk scores across
various studies.

Methods
Data compilation. The PRSKB integrates with the National Human Genome
Research Institute-European Bioinformatics Institute (NHGRI-EBI) GWAS
Catalog76 to provide the most up-to-date and comprehensive list of GWA studies.
The GWAS Catalog is a publicly available database of GWA study summary sta-
tistics that allows individual research labs to submit full summary statistic files. The
PRSKB automatically downloads, prunes, and reformats study and association data
from the GWAS Catalog using the gwasrapidd R library77. The data are filtered to
include only associations that contain both a beta value (or odds ratio) and the
respective risk allele. Each variant is analyzed independently (i.e., risk haplotypes
are excluded). Sex-specific variants are not included in the database. Finally, any
allele that has been reported on the reverse strand is automatically detected and
flipped to the forward strand. The strand-flipping procedure entails comparing
each reported risk allele to the list of possible alleles for the specified variant from
dbSNP78. If the reported risk allele does not exist in the list of possible alleles, the
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complement of the risk allele is checked against the dbSNP list. If the complement
is present, then it is used as the reported risk allele for polygenic risk score cal-
culations, as recommended by Choi, et al.21. Ambiguous variants that cannot be
resolved by this method are automatically excluded from the analyses.

PRSKB tool structure. The PRSKB is divided into three key parts: the database,
the server, and the client, as shown in Fig. 3. More information on how the
database was compiled is shown in Supplementary Fig. 1. The GWA study data,
linkage disequilibrium clumping data, and association data are housed in a MySQL
database on the PRSKB server. Supplementary Tables 1–3 expound on the infor-
mation found in each database table. The variant associations from each study/trait
combination are contained within a single associations table, which includes

detailed summary statistics for each variant (see Supplementary Table 1). The study
table (see Supplementary Table 2) contains detailed descriptions of each GWA
study. Finally, there are four clumps tables, hg38 clumps, hg19 clumps, hg18 clumps,
and hg17 clumps, that include linkage disequilibrium region identification numbers
for variants in each of the five super populations from the 1000 Genomes project
(see Supplementary Table 3). The associations and study tables are automatically
updated monthly with new associations added to the GWAS Catalog. The scripts
for loading tables into the database are publicly available at https://github.com/
kauwelab/PolyRiskScore/tree/master/update_database_scripts.

The server houses the application programming interface endpoints for the
PRSKB, running NodeJS using PM2 (https://pm2.keymetrics.io/) and NGINX
(https://www.nginx.com/). While the user does not interact directly with the

Fig. 3 The PRSKB Tool Structure. The PRSKB tool is composed of a client, a server, and a database. The user interacts with the client, which is either the
web tool (https://prs.byu.edu), or the command-line interface (CLI). The client connects to the server that then retrieves and returns data from the PRSKB
database to the client. The arrows in this diagram represent the flow of data. Boxes represent specific actions a PRSKB user can take with an icon indicating
the client type for each box.
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application programming interface endpoints, the client calls endpoints to
download requested data needed to calculate polygenic risk scores. All calculations
occur client-side to reduce strain on the server.

Users have two platforms from which they can calculate polygenic risk scores.
The first platform is a web interface accessible at https://prs.byu.edu via a web
browser that allows users to perform client-side calculations where user data are
never uploaded to the PRSKB server. The second platform is a command-line
interface (CLI) tool that can be run from the Linux or Mac command-line or from
a bash shell on Windows. The CLI includes a bash script and four Python scripts.
We recommend using the CLI to calculate polygenic risk scores for multi-sample
VCF files, calculating scores spanning more than 50 GWA studies, and if the user
prefers more control over their bioinformatics pipelines.

Linkage disequilibrium clumping. Linkage disequilibrium is the nonrandom
association of alleles at two or more loci79 and generally affects loci that reside in
close physical proximity, resulting in the joint inheritance of alleles at different loci
within families and populations. Genetic variants that are in high linkage dis-
equilibrium will be similarly associated with traits in GWA studies. If they are not
adequately assessed, they can confound a polygenic risk score analysis by over-
representing the relative risk for a disease. For example, if three disease-associated
loci are in high linkage disequilibrium, only one locus should be included in
calculating a polygenic risk score because the same risk signal is present in any of
those three loci.

Therefore, the genetic variants used to calculate polygenic risk scores need to be
largely independent from each other to reduce score inflation. The PRSKB includes
linkage disequilibrium values that were calculated by first separating the 1000
Genomes data into five previously-annotated superpopulations: African, American,
East Asian, European, and South Asian. We then used PLINK Linkage
Disequilibrium (LD) Clumping80 to calculate linkage disequilibrium regions for the
variants in each population. We ran this analysis for the data available in both
reference genomes hg38 and hg19. Although linkage disequilibrium regions are
nearly identical between reference genomes81, we also converted the variant
coordinates in each clump to reference genomes hg18 and hg17 so that user-
supplied genotypes can be easily mapped to the correct LD clump regardless of
reference genome.

The LD Clumping analysis results were subsequently used to assign each genetic
variant to an LD clump identifier (clump ID) for each population. LD regions were

determined using an r-squared cutoff of 0.25 and a distance threshold of 500 kb,
which correspond to parameters used in previous studies64,65. From this
information, we created a table of population-specific linkage disequilibrium
clusters for each reference genome in our database (see Supplementary Table 3).
The clump ID for each population facilitates the dynamic retrieval of LD clumps
from the database so that no more than one variant per LD region is included in an
individual polygenic risk score calculation. Supplementary Fig. 2 illustrates the
process used to account for linkage disequilibrium in the PRSKB calculations, and
more information on how the clumps were created is found in Supplementary
Note 1.

Calculating polygenic risk scores. Polygenic risk scores are calculated client-side,
meaning no private data ever reaches our servers. The tool uses the same protocols
outlined by Choi et al.21. Figure 4 shows that polygenic risk score calculations
require two essential datasets: (1) summary data comprised of GWA study sum-
mary statistics (e.g., odds ratios or beta values, risk alleles, and p-values), and (2)
user-supplied query data comprised of individual genotypes. Although a single
GWA study is used to calculate each polygenic risk score, users can select multiple
studies or traits, which will each be analyzed independently. Users can also use
their own GWA summary statistics for personalized analyses. The PRSKB first
ensures that the summary data and the query data are in the same format (e.g.,
strand flipping and same reference genome). Next, missing genotypes are imputed
based on the minor allele frequency of either the sample or specified dataset (e.g.,
1000 Genomes population or UK Biobank) and that frequency is used in the
polygenic risk score calculation (e.g., if the minor allele frequency for a missing
genotype were 0.2, then the reported risk attributed to that missing genotype would
be 0.2 times 2 alleles times the associated risk from the GWA study). An optional
parameter allows users to set an imputation threshold that removes studies from
the output file where the number of imputed genotypes exceeds a specified per-
centage. By default, at least half of the genotypes used to calculate the polygenic risk
score must be included in the sample. Linkage disequilibrium is then calculated by
comparing each locus to the population-specific clumping regions for each GWA
study that are housed on our server. When a sample has two or more variants
within the same clumping region, the PRSKB chooses the variant with the most
significant GWA p-value from that region to represent the clump in the polygenic
risk score. The remaining set of independent variants is used in the polygenic risk
score calculation. The PRSKB uses the simple additive model to calculate polygenic

Fig. 4 Polygenic risk score workflow. The process follows the standards established by Choi et al.21.
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risk scores by averaging the effects of all risk alleles across the genome. Missing
variants are replaced with the population minor allele frequency of the risk allele in
the same manner as PLINK55 and PRSice-252. We chose to implement this model
because scores calculated using the additive model are generally highly
accurate11,21,26,29,82,83. Although the additive polygenic risk score model does not
account for gene-gene or gene-environment interactions, it facilitates comparisons
with other available software. For example, the largest meta-analysis of heritability
from twin studies validates the accuracy of a simple additive model for a majority
of the traits examined84.

UK biobank and 1000 genomes polygenic risk score visualization. In order to
interpret polygenic risk scores, individual results must be contextualized against a
large cohort of similar ethnicity29. The 1000 Genomes Project58 contains the best
representation of allele frequencies in unrelated individuals across diverse popu-
lations and has sequencing data for 2,504 unrelated individuals spanning five
superpopulations. We also recognize that some users might want to contextualize
their scores against a larger population. Therefore, we also included a separate
cohort of 487,409 relatively healthy individuals of primarily European descent from
the United Kingdom (UK) Biobank59. We used the PRSKB to compute polygenic
risk scores from all GWA studies in our database for each individual in each cohort
(each 1000 Genomes population was a different cohort). We then calculated the
percentile rank of each person against all other people in the cohort. The polygenic
risk score and percentile ranks were passed to Plotly JavaScript85 to create inter-
active graphics that allow users to visualize population-specific distributions of
polygenic risk scores for any study in the PRSKB database. Dynamic plots with a
table of summary statistics for each study are available for users to query online at
https://prs.byu.edu/visualize.html.

Alzheimer’s disease neuroimaging initiative (ADNI) case study. We also
computed Alzheimer’s disease polygenic risk scores and interactive graphics for the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu)
to verify the efficacy of the PRSKB calculations. ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment and early Alzheimer’s disease. Mild
cognitive impairment is the preclinical stage of Alzheimer’s disease and is char-
acterized by a slight but measurable decline in cognitive abilities. Individuals with
mild cognitive impairment are at an increased risk of developing Alzheimer’s
disease or another dementia. All relevant ethical regulations were followed for
establishing the ADNI cohort, including obtaining informed consent. All data were
deidentified for our study, and we did not enroll any human participants.

We used all 808 whole-genome sequences from the ADNI cohort that also have a
clinical dementia rating (CDR) score (see Supplementary Table 4 for the number of
samples in each CDR group). Population structure was previously analyzed86 and
shows that the ADNI whole-genome sequencing participants are primarily similar to
the European population in the 1000 Genomes Project. We recognize that
uncorrected population structure can either inflate or deflate polygenic risk score
associations when the population structure of the base and target samples
significantly differ21. Inaccurate adjustments for population structure can also
introduce biases into polygenic risk scores21. We decided not to correct for
population structure in ADNI because (1) the population structure for the base data
from the genome-wide association studies included in the GWAS Catalog indicate
general geographic locations for the included subjects without including principal
components, and (2) the principal component analysis of the ADNI whole genome
sequences shows that the population structure of ADNI is largely similar to the
general geographic location of the base data. Both the PRSKB and PRSice-2 were run
using the same assumptions to ensure that the results are directly comparable.

CDR is a summary measure developed to denote the overall severity of
dementia in an individual, where CDR= 0 is considered normal cognition,
CDR= 0.5 is mild cognitive impairment, and CDR ≥ 1.0 is Alzheimer’s disease87.
As a case study, we used the PRSKB calculator to compute the polygenic risk scores
for each ADNI participant for three Alzheimer’s disease GWA studies available in
our database: Lambert et al.3, Jansen et al.2, and Lo et al.62. The genetic variants
used for each polygenic risk score calculation are listed in Supplementary Data 1–3.
The PRSKB imputed missing genotypes using the entire ADNI cohort minor allele
frequency and used variant linkage disequilibrium based on the European
population in the 1000 Genomes Project.

A Kolmogorov-Smirnov test of normality88 revealed that the risk scores were
not normally distributed (Alzheimer’s disease P= 2.2 × 10-16, mild cognitive
impairment P= 4.4 × 10-16, cognitively normal P= 2.2 × 10-16), so we opted to
use a Mann-Whitney U test89 to compare the distributions of polygenic risk
scores between individuals with and without Alzheimer’s disease. We first
compared genetic risk scores in individuals with a CDR ≥ 1 (Alzheimer’s disease)
to individuals with a CDR ≤ 0.5 (mild cognitive impairment + cognitively
normal). Next, we compared individuals with a CDR= 0 (cognitively normal) to
individuals with a CDR ≥ 0.5 (Alzheimer’s disease + mild cognitive
impairment). Those results were compared to similar calculations from another
leading polygenic risk score calculator, PRSice-252, to assess the congruence

between the two algorithms as well as their ability to differentiate between the
three cognitive groups in ADNI.

We performed similar analyses using each study and trait in the PRSKB
database to identify additional diseases or traits that are not typically associated
with Alzheimer’s disease but might be covariates in the ADNI dataset or
significantly correspond with CDR. We report two clustering comparisons: (1)
Individuals with Alzheimer’s disease (CDR ≥ 1.0) and all other individuals
(CDR ≤ 0.5) and (2) Individuals with normal cognition (CDR= 0) and
individuals with any cognitive impairment (CDR ≥ 0.5). We did not analyze
mild cognitive impairment as a separate group to maintain statistical power.
Similar to the computations performed with the UK Biobank and 1000 Genomes
datasets, we also report the percentile score distributions and summary statistics
for CDR ≥ 1, CDR= 0.5, and CDR= 0 online using Plotly Javascript85.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
This project is documented online at https://polyriskscore.readthedocs.io/en/latest/. A
web interface is publicly available at https://prs.byu.edu/. All data and analyses are
publicly available through the web interface and the GWAS Catalog (https://www.ebi.ac.
uk/gwas/). Sequencing and participant data were not collected or generated for this study.

Code availability
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