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The spike of SARS-CoV-2 promotes metabolic
rewiring in hepatocytes
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Clàudia Gil-Pitarch 1, Irene González-Recio1, Jorge Simón1,4, Petar Petrov 4,5, Ramiro Jover 4,5,6,
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a multi-organ

damage that includes hepatic dysfunction, which has been observed in over 50% of COVID-

19 patients. Liver injury in COVID-19 could be attributed to the cytopathic effects, exacer-

bated immune responses or treatment-associated drug toxicity. Herein we demonstrate that

hepatocytes are susceptible to infection in different models: primary hepatocytes derived

from humanized angiotensin-converting enzyme-2 mice (hACE2) and primary human

hepatocytes. Pseudotyped viral particles expressing the full-length spike of SARS-CoV-2 and

recombinant receptor binding domain (RBD) bind to ACE2 expressed by hepatocytes, pro-

moting metabolic reprogramming towards glycolysis but also impaired mitochondrial activity.

Human and hACE2 primary hepatocytes, where steatosis and inflammation were induced by

methionine and choline deprivation, are more vulnerable to infection. Inhibition of the renin-

angiotensin system increases the susceptibility of primary hepatocytes to infection with

pseudotyped viral particles. Metformin, a common therapeutic option for hyperglycemia in

type 2 diabetes patients known to partially attenuate fatty liver, reduces the infection of

human and hACE2 hepatocytes. In summary, we provide evidence that hepatocytes are

amenable to infection with SARS-CoV-2 pseudovirus, and we propose that metformin could

be a therapeutic option to attenuate infection by SARS-CoV-2 in patients with fatty liver.
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Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has caused to date, almost 500 million infections
worldwide (covid19.who.int). Notably, liver damage is

emerging as a coexisting symptom reported in patients with
COVID-191. Approximately 50% of COVID-19 patients show
elevated transaminase levels, which is a prognostic factor for
disease severity1–3. The high prevalence of liver damage in
patients with COVID-19 may be due to several factors. Antiviral
treatments used in these patients, such as arbidol and lopinavir/
ritonavir, among others, might partially explain the liver injury
described in clinical studies performed in COVID-19 patients4. In
addition, administration of antibiotics, macrolides or quinolones,
steroids, and other drugs, could result in idiosyncratic drug-
induced liver injury (IDILI), which presents clinical signs com-
patible with the ones described for COVID-19: liver necrosis,
inflammatory response and steatosis5.

In this scenario, it is still unclear if the observed liver damage in
COVID-19 patients is a direct consequence of SARS-CoV-2
infection of hepatic cells. Other viruses targeting mainly the
upper respiratory tract, such as SARS-CoV and MERS-CoV, have
shown tropism to the liver6,7. Indeed, the presence of coronavirus
particles has been found in liver biopsies from COVID-19
patients presenting abnormal hepatic transaminase levels, hepatic
apoptosis and mitochondrial swelling1,8. A major limitation of
these studies is the limited number of samples, making it difficult
to evaluate the direct contribution of SARS-CoV-2 infection of
hepatic cells to the observed liver damage.

Angiotensin-converting enzyme 2 (ACE2) is the primary cel-
lular entry receptor for SARS-CoV-2 as a result of the direct
interaction with the receptor-binding domain (RBD) of the
S1 subunit of the spike protein9–11. Transmembrane protease
serine 2 (TMPRSS2)12 and Neuropilin-1 (NRP1)13,14 have also
been described as host cell entry mediators implicated in the
infection of SARS-CoV-2. We have previously shown that in
obese patients with metabolic-associated fatty liver disease
(MAFLD) and type 2 diabetes (T2D), hepatic levels of ACE2 and
the cellular TMPRSS2 transcripts were positively correlated with
the NAS score of these patients15,16.

About 10% of individuals with COVID-19 suffer from chronic
liver disease17 and present an increase in morbidity and mortality
as a result of SARS-CoV-2 infection18. In this context, debatable
data addressed the beneficial effect of metformin treatment in
mortality and progression of COVID-19 patients19,20. Metformin
remains a common therapeutic option to manage hyperglycemia
in T2D patients21,22. In addition, it has been suggested that
metformin might reduce both the mortality and severity in T2D
patients infected with SARS-CoV-223,24, but the mechanism by
which metformin might have a beneficial effect on the prognosis
of COVID-19 remains largely unexplored.

To better understand the implications of SARS-CoV-2 infec-
tion on the liver, we have performed experiments in human
primary hepatocytes and in primary hepatocytes derived from
ACE2-humanized mice (hACE2)25 with pseudotyped lentiviral
particles expressing the full-length spike of SARS-CoV-2 in
comparison to control virus26. Our results determine that pri-
mary hepatocytes are susceptible to SARS-CoV-2 infection.
Remarkably, ACE2 levels were significantly increased in hepato-
cytes isolated from hACE2 mice and cultured under NASH-like
conditions, leading to increased infection. Additionally, the
inhibition of the renin-angiotensin system increases the infection
ratio of both human and mouse hepatocytes. Metabolic flux
analyses revealed adaptations and dynamic changes in hACE2
and human hepatocytes after infection, resulting in a rewiring at
the mitochondrial level and a shift towards glycolytic metabolism.
Furthermore, the proteomic landscape of infected hACE2 hepa-
tocytes evidenced antiviral immunity, exacerbated inflammatory

responses, and altered mitochondrial processes, such as mito-
chondrial translation and iron trafficking. Finally, our results
uncovered an unidentified mechanism of metformin action in
NASH that could explain the beneficial effects of this drug in the
prognosis of SARS-CoV-2-infected patients.

Results
The spike of SARS-CoV-2 binds to human hepatocytes and
hepatocytes derived from humanized ACE2 (hACE2) mice. In
order to determine if the spike of SARS-CoV-2 could directly
interact with human hepatocytes, the binding capacity of the
S1 subunit (S1) or the receptor-binding domain (RBD) were
measured by flow cytometry in THLE-2 cells, a human hepato-
cyte cell line expressing ACE2, TMPRSS2 and NRP1 (Fig. 1a).
Figure 1b, c show that RBD interacts with human hepatocytes.
Under these conditions, the binding capacity was comparable to
that observed on Vero E6 cells27, a widely used kidney epithelial
cell model in SARS-CoV-2 biology research28. In order to con-
firm that this interaction was mediated by ACE2, we carried out
pull-down experiments with S1 or RBD proteins in THLE-2
human hepatocytes (Fig. 1d). This approach confirmed the
binding of S1 and RBD to ACE2 in human hepatocytes. We then
evaluated the ability of pseudotyped lentiviral particles that
express the full-length spike of SARS-CoV-226 to infect human
hepatocytes. THLE-2 cells cultured in the presence of pseudo-
typed viral particles are susceptible to be infected, as detected by
flow cytometry (Fig. 1e).

Our findings indicating that human hepatocytes could be a
relevant cell target for SARS-CoV-2 prompted us to study its
infectivity in relevant primary cell models. For this purpose, we
used transgenic mice that express human ACE2 (hACE2) and are
therefore SARS-CoV-2 susceptible25. We assessed the expression
of ACE2 and NRP1, an important factor that mediates the initial
steps of SARS-CoV-2 infection, in hACE2- and wild-type (WT)-
derived primary hepatocytes by immunoblotting. Both ACE2 and
NRP1 protein levels were upregulated in hACE2-derived
hepatocytes compared to control hepatocytes (Fig. 1f). Pull-
down assays confirmed that S1 and RBD directly bind to ACE2
expressed on primary hepatocytes (Fig. 1g). In order to determine
the susceptibility to infection, hACE2 primary hepatocytes were
exposed to pseudotyped viral particles expressing the full-length
spike of SARS-CoV-2 and pseudotyped viral particles without
spike as a negative control. Flow cytometry experiments revealed
that hACE2 primary hepatocytes, but not WT mouse hepatocytes,
are infected by pseudotyped viral particles expressing the SARS-
CoV-2 spike while pseudotyped control viral particles did not
show any effect (Fig. 1h). Remarkably, we demonstrate that
upcyte second-generation human hepatocytes are also susceptible
to infection with pseudotyped viral particles, whereas the control
virus had no effect (Fig. 1i). Consistent with these results, we
observed that in primary hACE2 hepatocytes, ACE2 levels
measured by western blot were decreased in the presence of
pseudotyped viral particles, but no modulation was detected upon
infection with the control virus (Supplementary Fig. 1a). In
human primary hepatocytes, changes in the pattern of ACE2
expression were observed after infection (Supplementary Fig. 1b).
NRP1 is another receptor known to enhance viral infection29. In
this context, we explored NRP1 expression in hACE2 and human
primary hepatocytes after infection (Supplementary Fig. 1a, b).
Finally, to assess whether infection renders primary mouse and
human hepatocytes susceptible to apoptotic processes, we
measured caspase-3 activity by fluorimetry in the presence of
pseudotyped viral particles. Infection induced an apoptotic
response that was dependent on the presence of the spike
(Supplementary Fig. 1c).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03789-9

2 COMMUNICATIONS BIOLOGY |           (2022) 5:827 | https://doi.org/10.1038/s42003-022-03789-9 | www.nature.com/commsbio

https://covid19.who.int/
www.nature.com/commsbio


Proteomic analyses reveal changes in hACE2 mouse hepato-
cytes after infection with pseudotyped viral particles expressing
the spike of SARS-CoV-2. Significant molecular changes have
been reported in cells that have been infected with SARS-CoV-
230. In the context of liver infection, we characterized changes at
the proteome level that result from the interaction of the full-
length spike of SARS-CoV-2 with hACE2 primary hepatocytes.

First, we examined the proteomic changes induced by
pseudotyped viral particles expressing the full-length spike of
SARS-CoV-2 on primary mouse hepatocytes expressing

humanized hACE2 (Fig. 2a) or WT mouse hepatocytes (Fig. 2b).
Consistent with the rather absence of infection of WT
hepatocytes in comparison with that of the humanized hACE2
model (Fig. 1h), WT hepatocytes presented a lower number of
differentially expressed peptides than the humanized hACE2
model (Fig. 2c). In order to focus on changes derived from the
binding of the spike of SARS-CoV-2, 13 common peptides that
were found significantly dysregulated in an ANOVA+ Tukey test
(p < 0.05) in both WT and hACE2 hepatocytes after exposure to
pseudotyped viral particles were discarded in downstream
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Fig. 1 The spike of SARS-CoV-2 binds to human hepatocytes and hepatocytes derived from humanized ACE2 (hACE2) mice. a Western blot showing
the expression of ACE2, TMPRSS2, and NRP1 proteins on Vero E6 cells (left) or THLE-2 human hepatocytes (right). b A representative flow cytometry
histogram showing the binding of the RBD to Vero E6 cells (left) or THLE-2 human hepatocytes (right). c Binding of the RBD to Vero E6 cells or THLE-2
cells (n= 3, unpaired t-test), measured by flow cytometry. d Western blot showing the expression of ACE2, NRP1, and TMPRSS2 on different fractions of
the immunoprecipitation assay (input, control, immunoprecipitated and flowthrough) with S1 (left) or RBD (right) on THLE-2 human hepatocytes. e A
representative histogram representing the infection rate of THLE-2 cells measured by flow cytometry (ZsGreen expression) 48 h after addition of the
pseudotyped viral particles expressing the full-length spike of SARS-CoV-2. f Western blot showing the expression of ACE2, NRP1, and β-actin on hACE2
(left) or WT (right) primary mouse hepatocytes. g Western blot showing the expression of ACE2 and NRP1 on the different fractions after the
immunoprecipitation assay (input, control, immunoprecipitated and flowthrough) with S1 (left) or RBD (right) on hACE2 primary mouse hepatocytes.
h Infection rate of hACE2 or WT primary mouse hepatocytes measured by flow cytometry (n= 5, one-way ANOVA test). i Infection rate of upcyte second-
generation human hepatocytes measured by flow cytometry (n= 3, one-way ANOVA test). Error bars represent SEM and asterisks represent p values
(****<0.01, ***<0.001, and ****<0.0001). FT flowthrough in the immunoprecipitation assay, hACE2 humanized angiotensin-converting enzyme 2, IP
immunoprecipitated fraction, MW molecular weight marker, SAV-PE Streptavidin-phycoerythrin, WT wildtype.
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analyses (Fig. 2c). Figure 2d shows the list of the top-25 up- and
down-regulated specific peptides in hACE2 hepatocytes after
exposure to pseudotyped viral particles. The Database for
Annotation, Visualization and Integrated Discovery (DAVID)
was used to identify the major pathways altered as a result of the
infection. We considered those pathways that were found altered
in the hACE2 model but not in the WT model (Fig. 2e). Identified
dysregulated pathways included viral-related responses: response
to the virus, inflammatory and immune-related signals against
infection, receptor-mediated endocytosis and mitochondrial
translation. In the context of liver-related pathways, the
cholesterol steroids pathway was significantly altered on hACE2
hepatocytes. Moreover, two pathways related to iron homeostasis
were significantly upregulated in infected hACE2 hepatocytes
compared to control hepatocytes (Fig. 2e). Iron-trafficking
proteins such as neutrophil gelatinase-associated lipocalin
(NGAL), transferrin endocytosis, and recycling molecules, such
as transferrin receptor protein 2 (TFR2) and the transmembrane
protease serine 6 (TMPS6), among others, were greatly
representative in hACE2 hepatocytes exposed to the pseudotyped
viral model (Supplementary Data 1). These results are in line with
previous studies describing the role of iron metabolism in
COVID-19 patient progression31–35. Additionally, KEGG path-
ways represent the unique peptides in the infected hACE2
hepatocytes compared to control hepatocytes identified ribo-
some- and COVID-19-related processes (Supplementary Fig. 2a).

Binding of the spike of SARS-CoV-2 alters mitochondrial
activity and glucose homeostasis in mouse and human primary
hepatocytes. Iron uptake is essential for the correct functioning of
mitochondria; therefore, accumulation of this ion usually leads to
oxidative stress36,37. In order to clarify whether the infection of
hACE2 hepatocytes by pseudotyped viral particles expressing the
full-length spike of SARS-CoV-2 affected mitochondrial function,
we performed metabolic analyses to evaluate alterations in energy
production pathways.

Figure 3a shows changes in the oxygen consumption rate
(OCR) and extracellular acidification rate (ECAR) after infection
of hACE2 hepatocytes by pseudotyped viral particles compared to
controls, measured by extracellular flux analysis. These results
showed a shift towards enhanced glycolysis. Viral infection also
enhanced the OCR, suggesting increased mitochondrial activity
(Fig. 3a). Importantly, upcyte second-generation human hepato-
cytes showed a similar metabolic switch characterized by a more
energetic state upon infection (Fig. 3b). In this context, the
activity of AMP kinase, a major hub for metabolic control in the
cell, was examined by immunoblotting in hACE2 and human
primary hepatocytes, resulting in an increase in AMPKα
phosphorylation in Thr172. No effect was observed after infection
with control viral particles (Fig. 3c and Supplementary Fig. 3a).
These metabolic changes could result from the direct interaction
of the SARS-CoV-2 spike with the ACE2 receptor on the surface
of hACE2 and human hepatocytes. In this context, it is known
that ACE2 can regulate mitochondrial function and that ACE2-
knockout mice show impaired mitochondrial respiration38–40.
Moreover, exacerbated mitochondrial activity could alter the cell's
oxidative state, leading to cell death41,42. We also measured the
content of mitochondrial reactive oxygen species (ROS) in
hACE2 and human primary hepatocytes, showing that infection
with pseudotyped viral particles increased ROS production
(Fig. 3d and Supplementary Fig. 3b). Consistently, Tnf and Il6
in primary hACE2 hepatocytes (Supplementary Fig. 4a) and TNF
in case of human primary hepatocytes (Supplementary Fig. 4b)
were significantly modulated under pseudovirus S1 infection
while no regulation was identified with the control virus.
Importantly, iron metabolism was also modulated in response
to the lentiviral particles expressing spike. Iron transporters
(TRFC1 and TRFC2) were upregulated while FTL expression was
reduced, suggesting a higher iron utilization by the mice and
human primary hepatocytes (Supplementary Fig. 4a, b).

Finally, under these circumstances, extracellular ATP levels
were significantly increased in infected primary hepatocytes

b c
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(Fig. 3e), whereas intracellular ATP levels remained unaltered
(Supplementary Fig. 3c).

In order to further understand the rewiring of energy
metabolism produced by the binding of the spike of SARS-
CoV-2, we performed metabolic flux experiments employing

labeled [U-13C]-glucose analyzed by high-resolution mass
spectrometry on hACE2 hepatocytes. Determination of isotopic
enrichment labeled tracer of [U-13C]-glucose revealed an increase
of the glycolytic flux into the tricarboxylic acid (TCA) cycle in
hACE2 hepatocytes after infection with pseudotyped viral
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Fig. 3 Binding of the spike of SARS-CoV-2 alters mitochondrial activity and glucose homeostasis in hACE2 and human primary hepatocytes.
a, b Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) after infection with pseudotyped viral particles expressing the spike
protein or control of hACE2 hepatocytes (n= 6) (a) or human primary hepatocytes (n= 6) (b) measured by extracellular flux analyses. c Relative
quantification of phospho-AMPKα (T172) levels measured by immunoblotting on primary hACE2 hepatocytes or primary human hepatocytes infected with
pseudotyped lentiviral particles (n= 3, one-way ANOVA test). d Relative MitoSOX fluorescence (n= 3, one-way ANOVA test) and e extracellular ATP
concentration (n= 4, one-way ANOVA test) of the indicated groups. f Schematic representation showing the up- or down-regulation of metabolites of the
TCA cycle after hepatocyte infection with lentiviral particles or in the presence of recombinant RBD (n= 3, one-way ANOVA). g Extracellular lactate
concentration (n= 4, one-way ANOVA test) and h intracellular glucose concentration (n= 4, one-way ANOVA test) of the indicated groups. Asterisks
represent p values (*<0.05, **<0.01, and ***<0.001).
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particles or binding of recombinant RBD (Fig. 3f). Supplementary
Fig. 5a shows that binding of the spike or RBD to hepatocytes
increases cellular consumption of labeled glucose, resulting in the
activation of downstream energy pathways characterized by
accumulation of labeled metabolites that include citrate, fumarate
and malate. The observed increase in glutamate levels probably
acts to potentiate the activity of the TCA through α-ketoglutarate
(α-KG) (Fig. 3f). We also analyzed each labeled carbon
independently (Supplementary Fig. 5b), further confirming the
findings on rewiring at the mitochondrial level and a shift
towards the glycolytic processes shown in Fig. 3a. TCA cycle
activity could also be evaluated by measuring the ratio between
the labeled citrate on different carbons and the sixth labeled
carbon of glucose ([U-13C6]-glucose). Notably, citrate/glucose
ratios in hACE2 hepatocytes in presence of pseudotyped viral
particles were significantly increased compared to non-infected
cells (Supplementary Fig. 5c), confirming a boosted activity of
TCA on hepatocytes upon interaction with the spike of SARS-
CoV-2. To confirm these data, glucose and lactate levels were
examined under infection with pseudotyped and control viral
particles in hACE2 and in human primary hepatocytes. The
extracellular lactate levels were upregulated in hepatocytes upon
infection compared to controls (Fig. 3g). In addition, a reduction
in the levels of intracellular glucose was detected (Fig. 3h),
consistent with a more pronounced glycolytic phenotype.
Furthermore, gene expression of glycolytic enzymes, lactate, and
glutamine metabolism (G6PDH, PKLR, PFKL, LDHA, LDHB,
GLS1, GLS2, and GLUL), were upregulated in primary mouse
(hACE2) and human hepatocytes upon infection compared to
controls (Supplementary Fig. 4a, b).

Infection of primary hepatocytes regulates the renin-
angiotensin system. ACE2 is a key enzyme of the renin-
angiotensin system (RAS) that converts angiotensin ANGII to
ANG(1–7). A reduction in the presence of ACE2 in the cell
membrane alters the balance of RAS toward an increase in
ANGII. Therefore, the activation of the ANG(1–7)/Mas receptor
is an important mechanism for counteracting the deleterious
effects induced by inappropriate increases in the ANGII/AT1
receptor in several diseases43.

Remarkably, ANG(1–7) levels were significantly reduced in
human primary hepatocytes after infection (Fig. 4a), corresponding
to ACE2 inhibition after the binding of the spike. Treatment with
A779, a pharmacological inhibitor of the ACE2/ANG(1–7)/Mas axis,
increased the susceptibility of mouse and human primary hepatocytes
to infection (Fig. 4b, c). No apoptotic response was detected at 0.1
and 1 µM concentrations of A779 (Supplementary Fig. 6a, b). These
results are consistent with previously observed data showing that an
imbalance of ANGII/ANG(1–7) influences susceptibility to SARS-
CoV-2 infection44. Treatment with A779 increased mitochondrial
ROS in mouse and human hepatocytes upon infection (Fig. 4d and
Supplementary Fig. 6c). Accordingly, significant changes were also
observed in the level of ATP production upon treatment with A779
(Fig. 4e). The blockade of the RAS system in primary hepatocytes by
using the Mas inhibitor A779 showed comparable metabolic effects
to those observed upon infection with pseudotyped lentiviral particles
expressing the spike of SARS-CoV-2 (Fig. 3d, e). During infection, an
interaction between the spike and ACE2 occurs, inhibiting RAS
signal transduction. Thus, activation of the Mas receptor may
counteract the inflammatory response mediated by SARS-CoV-2
infection in primary hepatocytes.
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Fig. 4 Infection of primary hepatocytes regulates the renin-angiotensin system. a Extracellular levels of ANG(1–7) secreted by human primary
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Dysregulation of hepatocyte mitochondrial activity modulates
ACE2 levels and increases susceptibility to infection. Metabolic
alterations associated with obesity, fatty liver disease, and T2D
have been described as risk factors for COVID-1945. In this
context, understanding the broad spectrum of factors that shape
SARS-CoV-2 pathophysiology in patients with metabolic-
associated fatty liver disease (MAFLD) remains a pressing issue.
We have recently reported that the liver of patients with MAFLD
presents increased levels of ACE2 and TMPRSS215.

In order to provide new insights related to the regulation of the
viral entry points in the liver, primary hepatocytes isolated from a
humanized ACE2 mouse model were exposed to steatotic insults.
ACE2 levels were significantly elevated in a time-dependent
manner in hACE2 hepatocytes cultured in a medium deficient in
methionine and choline (MCD) that triggers the accumulation of
lipids and the production of ROS, generating mitochondrial
dysfunction46. Additionally, NRP1, which is known to bind furin-
cleaved substrates and potentiate SARS-CoV-2 infectivity, was
also induced in steatotic hepatocytes (Fig. 5a). Indeed, NRP1 has
a critical role in liver fibrosis and cirrhosis pathogenesis47,48.

Metformin is an antidiabetic drug widely used in patients with
MAFLD49. Metformin acts by inhibiting the activity of Complex I
of the mitochondrial respiratory chain, directly modulating ATP
production in the cell50,51. Recently, metformin has been proposed
as a potential therapy for COVID-19 patients23,24, although its role
in clinical disease progression remains controversial. Therefore, we
have evaluated if metformin has any impact on the success of the
viral entry in hACE2 hepatocytes. Treatment with metformin
significantly reduced the levels of ACE2 and NRP1 proteins in
hACE2 hepatocytes in a time-dependent manner (Fig. 5b).
Notably, metformin was able to diminish the levels of ACE2 and
NRP1 in stimulated steatotic hepatocytes to a similar content of
that of healthy hACE2 liver cells (Fig. 5c). A similar result was
observed at the transcriptional level of Ace2 and Nrp1 (Supple-
mentary Fig. 7a). Importantly, the expression of Tmprss2 was
induced in steatotic conditions and reduced upon treatment with
metformin (Supplementary Fig. 7a). These results were also
examined in human primary hepatocytes under steatotic condi-
tions and in the presence or absence of metformin (Supplementary
Fig. 7b). Induction of ACE2, NRP1 and TMPRSS2 expression under
steatotic conditions were identified, as described previously15

(Supplementary Fig. 7b). In these conditions, metformin was able
to reduce their expression (Supplementary Fig. 7b).

Steatotic hACE2 hepatocytes exposed to pseudotyped viral
particles expressing the spike of SARS-CoV-2 showed higher
susceptibility to infection compared to healthy cells (Fig. 5d).
Metformin is able to significantly reduce the increased infection
rate observed in metabolically compromised hepatocytes. Human
primary hepatocytes showed a similar response in cells treated
with MCD in the presence or absence of metformin (Fig. 5d).
Finally, we studied the effect of metformin on the RAS system
upon infection with pseudotyped lentiviral particles expressing
the spike of SARS-CoV-2 (Fig. 5e). Levels of ANG(1–7) measured
by ELISA were upregulated under steatotic conditions (Fig. 5e).
Activation of the counterregulatory ACE2/ANG(1–7)/Mas axis
has been shown to prevent liver injury52. Therefore, metformin
significantly reduced ANG(1–7), likely due to the reduction in
oxidative stress and thus reduced liver injury (Fig. 5e and
Supplementary Fig. 7a, b). According to this, TNF and IL-6 gene
expression were upregulated when metformin was present
(Supplementary Fig. 7a, b).

Discussion
The impact of SARS-CoV-2 on the liver has been extensively
debated. The high incidence of COVID-19 patients with elevated

transaminases may be due to a compromised detoxifying capacity
of the liver in these poly-treated patients, the response to a
proinflammatory environment, or the possible tropism of SARS-
CoV-2 to the liver. On the other hand, liver disease is a risk factor
for severe COVID-19 pathology as described in MAFLD
patients53. Given the controversial information on SARS-CoV-2
tropism to the liver, we have demonstrated that pseudotyped viral
particles expressing the full-length spike of SARS‐CoV‐2 were
able to infect human primary hepatocytes as well as hepatocytes
isolated from a humanized hACE2 mouse model. Mass spectro-
metry analysis revealed that in primary hepatocytes infected with
pseudotyped lentiviral particles expressing the spike of SARS‐
CoV‐2, the main molecular processes dysregulated were
mitochondria-dependent. Specifically, fluxomics analyses
revealed an increase in the TCA activity in hACE2 and human
primary hepatocytes as a result of infection with pseudotyped
viral particles or binding of recombinant RBD, indicating a shift
to a glycolytic phenotype induced by ACE2 after binding of the
spike. In the present study, we have also dissected hepatic
expression patterns of SARS-CoV-2 viral entry points under
steatotic conditions, demonstrating a higher susceptibility to
infection of steatotic hepatocytes. Finally, we have reported new
insights into the beneficial effects of metformin treatment in
patients with MAFLD as a result of a significant reduction of
hepatic ACE2 content and reduced predisposition to infection.

Several reports provided the first data supporting the notion
that hepatic cells are permissive for SARS‐CoV-2 infection and
viral replication54–56, but the usage of immortalized hepatoma
cell models instead of primary hepatocytes limited the depth of
their findings. More recently, several studies have provided fur-
ther evidence by using organoids derived from human hepato-
cytic stem cells demonstrating that the liver could be a potential
target of SARS‐CoV-257–59. Although other hepatic cell types like
cholangiocytes showed higher expression of ACE2 than hepato-
cytes, no direct evidence of infection in these cells have been
reported in the liver of patients with COVID-1959 in spite of the
fact that viral particles compatible with SARS-CoV-2 were
identified by electron microscopy techniques in the hepatocytes
from COVID-19 autopsies1. These data encourage a rigorous
study of the permissiveness of the liver to SARS-CoV-2 infection
and its potential cytopathic effect that could explain the deleter-
ious effects identified in COVID-19 patients. The models pre-
sented in this study include a non-transformed human hepatocyte
cell line, primary hepatocytes obtained from humanized hACE2
transgenic mice and upcyte second-generation human hepato-
cytes. These approaches demonstrate that the spike of SARS-
CoV-2 binds to ACE2 expressed in primary hepatocytes and
identify the hepatocyte as a susceptible cell target for SARS-CoV-
2 infection. This information may be relevant for the clinical
treatment of COVID-19 patients, considering that liver func-
tionality may be compromised by infectivity.

Furthermore, our approach by mass spectrometry analysis
revealed a molecular mechanism in hACE2 hepatocytes that
compromised mitochondrial activity as a result of infection.
Previous data have shown that the depletion of the Angiotensin-
(1–7) receptor Mas in hepatocytes aggravates mitochondrial
dysfunction, increased mitochondrial ROS, induced fatty acid
synthesis, and impaired cholesterol synthesis/efflux39. Hence,
lipid alteration and insulin resistance in the hepatocytes, con-
comitant with an apoptotic process was observed in the hepato-
cytes Mas−/−. These data are consistent with our proteomics
results where a possible ACE2 inhibition mediated mitochondrial
dysfunction has been detected. Indeed, iron metabolism appeared
significantly overrepresented in infected hACE2 hepatocytes.
Increased iron uptake upon viral infection would increase mito-
chondrial ROS37. Accordingly, Saleh et al. described that severity

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03789-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:827 | https://doi.org/10.1038/s42003-022-03789-9 |www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


c

45

130

130 ACE2

NRP1

β-actin

0% FBS
MCD
10h

MCD + Metf
10h

Pr
ot

ei
n/

β-
ac

tin
 e

xp
re

ss
io

n

1.5

1

1.5

2

2.5

0

0% FBS
MCD
MCD + Metformin

ACE2 NRP1

* *
* *

Non-infected
Spike
Spike (MCD)
Spike (MCD + Metformin)

d Mouse

WT hACE2

0

0.5

1.5

1

2

R
el

at
iv

e 
in

fe
ct

io
n

*
p=0.09

Human Human

Non
-in

fec
ted

Spik
e

Spik
e (

MCD)

Spik
e (

MCD + 
Metf

orm
in)

e
* ***130

AN
G

(1
-7

) c
on

ce
nt

ra
tio

n 
(μ

M
)

110

100

120

90

Spik
e

Spik
e (

MCD)

Spik
e (

MCD + 
Metf

orm
in)

0

5

10

15

R
el

at
iv

e 
in

fe
ct

io
n

****
**

**
**

Non
-in

fec
ted

Spik
e

Spik
e (

MCD)

Spik
e (

MCD + 
Metf

orm
in)

Non
-in

fec
ted

Spik
e

Spik
e (

MCD)

Spik
e (

MCD + 
Metf

orm
in)

a
Ctrl

0% FBS
6h

MCD
6h

Ctrl
0% FBS

24h
MCD
24hCt

rl 
10

%
 F

BS
 6

h
Ct

rl 
10

%
 F

BS
 2

4h
130 NRP1

130

100 ACE2

Ponceau

Pr
ot

ei
n 

ex
pr

es
si

on

1

2

4

3

5

0

Control 6h
MCD 6h
Ctrl 24h
MCD 24h

**

ACE2 NRP1

p= 0.06

b Ctrl
10% FBS

6h

Ctrl
10% FBS

24h
Metf
6h

Metf
24h

130

130

100
ACE2

NRP1

Ponceau

Pr
ot

ei
n 

ex
pr

es
si

on

0.5

1

2

1.5

0

Control 6h
Metformin 6h
Ctrl 24h
Metformin 24h

ACE2 NRP1

** **

Fig. 5 Dysregulation of hepatocyte mitochondrial activity modulates ACE2 levels and increases susceptibility to infection. a Western blot showing the
modulation of ACE2 and NRP1 protein expression when incubated with methionine-choline deficient (MCD) medium for 6 and 24 h (along with their
respective controls. Quantification of ACE2 or NRP1 protein expression by densitometry is also shown (n= 3, unpaired t-test). b, c Western blot showing
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***<0.001).
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in COVID-19 patients was associated with hyperferritinemia60.
Our data sustain the idea that this misbalance in iron metabolism
and mitochondrial ROS production could partly result from the
alteration in the cellular oxidative homeostasis promoted by an
exacerbated mitochondrial activity in infected mouse and human
primary hepatocytes, triggering an apoptotic response.

A metabolic reprogramming similar to the Warburg effect in
cancer cells has been previously identified in the host cells under
SARS-CoV-2 infection61. Fluxomics analyses revealed that
infected hACE2 hepatocytes present a glycolytic phenotype
characterized by higher production of lactic acid and a more
active TCA. Experiments performed in human primary hepato-
cytes further evidenced a modulation of intracellular glucose and
extracellular lactate upon infection. These data are consistent with
previous work showing that viral infection promotes glycolysis62.
Remarkably, in our fluxomics results performed with the primary
hepatocytes, infection resulted in an increase of fumarate and
malate. This altered glycolytic metabolism could support the
replication of the virus in the liver and may also contribute to
evading cytotoxic immune responses by acidifying the extra-
cellular compartment.

Infection of hACE2 hepatocytes resulted in disturbances in
glucose and glutamine metabolism. In these circumstances,
enhancement of glutaminolysis metabolism with upregulation of
glutamate levels and triggering of TCA was also detected. This
metabolic pathway has been identified as a key player in infected
host cells, as previously reported for other viruses, and may
trigger replication of SARS-CoV-263. Our group has previously
described the alteration of this anaplerotic pathway with upre-
gulation of the enzyme glutaminase 1, which is responsible for
glutamine catabolism in the liver of patients with NAFLD64.
Therefore, there might be a glutamine-dependent link between
liver disease and SARS-CoV-2 infection.

The described metabolic switch was mediated in part by
inhibition of the RAS system through the interaction between the
spike and ACE2. Indeed, inhibition of the Mas receptor with
A779 amplified the observed phenotype. MAFLD patients
showed elevated levels of ACE2 and TMPRSS2 in the liver15,16.
Interestingly, high levels of Angiotensin-(1–7), the product of
ACE2, were able to revert MAFLD through the activity of its
receptor Mas, modulating hepatic mitochondrial function. Our
data suggest a compensatory mechanism that may help to prevent
impaired mitochondrial activity and liver damage. Although this
response may initially be beneficial for the hepatocyte, our results
identified a higher susceptibility to infection. These data support
the predisposition of MAFLD patients to a more severe COVID-
19 prognosis.

Metformin is a widely used pharmacological choice for the
treatment of hyperglycemia in MAFLD patients. Beyond its effect
on glucose metabolism, metformin improves mitochondrial
respiration, reducing Complex I activity through the activation of
5’ AMP-activated protein kinase (AMPK)65. Additionally, met-
formin has been associated with the modulation of post-
translational modifications, including ubiquitination of several
target proteins66,67. Thus, the effects of metformin were evaluated
in human and hACE2 primary hepatocytes under steatotic con-
ditions. This approach revealed downregulation of ACE2 levels in
hepatocytes treated with metformin, resulting in resistance to
infection. Importantly, ANG(1–7) levels were reduced under
metformin treatment, probably as a reduction of oxidative stress
and reduced ACE2 levels. These data suggest that metformin
treatment could be beneficial for COVID-19 patients previously
diagnosed with MAFLD and T2D.

In summary, our findings obtained from different models
demonstrate that hepatocytes are susceptible to infection, and
upon entrance of the virus, they experience a metabolic

reprogramming towards glycolysis but also mitochondrial dys-
function. Steatotic hepatocytes are more vulnerable to infection,
and under this context, metformin might prevent liver dysfunc-
tion caused by SARS-CoV-2.

Methods
Cell lines and human upcyte hepatocytes. Human liver epithelial THLE-2 cells
(ATCC Cat#: CRL-2706) were cultured under standard conditions (37 °C and 5%
CO2) in Bronchial Epithelial Cell Growth medium (Lonza Cat#: CC3170) sup-
plemented with 10% FBS (Gibco Cat#: 10270106), all items included in the Bul-
letKit (Lonza Cat#: CC4175), except for Gentamycin/Amphotericin (GA) and
Epinephrine, 1% PSA (Thermo Fisher Cat#: 15240062), 1% glutamine (Thermo
Fisher Cat#: 25030024), 5 ng/mL EGF (Thermo Fisher Cat#: PHG0315) and 70 ng/
mL Phosphorylethanolamine (Sigma Aldrich Cat#: P0503). Vero E6 cells (ATCC
Cat#: CRL-1586) were kindly provided by Nicola G.A. Abrescia (CIC bioGUNE)
and cultured in MEM (Gibco Cat#: 31095-029) supplemented with 10% FBS
(Thermo Fisher Cat#: 10270106) and 1% Penicillin-Streptomycin (P/S) (Thermo
Fisher Cat#: 15140122). HEK293T cells (Takara Bio Inc. Cat#: 632180) were cul-
tured in DMEM (Gibco Cat#: 41966-029) supplemented with 10% FBS and 1% P/S.
Second-generation human upcyte hepatocytes, culture medium, high-performance
medium, and thawing medium were all obtained from Upcyte Technologies
(Heidelberg, Germany) and cultured as previously described68.

Mouse models. All mouse experiments were carried out following the ethical
guidelines established by the Biosafety and Welfare Committee at CIC bioGUNE
(P-CBG-CBBA-0518). Humanized ACE2 (hACE2) and wild-type (WT) mice
(male, 18–20 weeks) were kindly provided by the Development & Plasticity of the
Neuroendocrine Brain laboratory (Institut National de la Santé et de la Recherché
Médicale, INSERM). They were maintained on a 12/12 h light/dark cycle at a
temperature of 21 ± 1 °C, the humidity of 45 ± 10%, and ad libitum access to water
and a standard chow diet (Teklad Global 14% Protein Rodent Maintenance diet;
Envigo RMS Spain Cat#: 2014C). All animal experiments were performed
according to the ARRIVE guidelines and carried out in accordance with the
National Institutes of Health guide for the care and use of Laboratory animals
(NIH Publications N0.8023, revised 1978) and the guidelines of the European
Research Council for animal care and use.

Isolation of primary hepatocytes. Isolation of primary hepatocytes was per-
formed as previously described64. Briefly, after anesthesia of hACE2 and WT mice
with isoflurane (1.5% isoflurane in O2) and insertion of a catheter into the vena
cava, the liver was perfused with buffer A (1X PBS, 5 mM EGTA) (37 °C, oxyge-
nated) while portal vein was cut. Buffer B (1X PBS, 1 mM CaCl2, collagenase type I
(Worthington)) (37 °C, oxygenated) was subsequently used to perfuse and dis-
aggregate the liver. Then, the disaggregated liver was placed in a Petri plate con-
taining 10%-FBS MEM medium supplemented with PSG and cells were
disassembled with the help of forceps and filtered through sterile gauze. Perfused
livers were first centrifuged at 400 RPM for 4 min at 4 °C and the pellet was
resuspended in 10%-FBS Minimum Essential Medium (MEM) (Gibco Cat#: 31095-
029) containing penicillin (100 U/mL), streptomycin (100 U/mL) and glutamine
(2 mM) (PSG) (Thermo Fisher Cat#: 10378-016). Subsequently, cells were washed
in MEM twice (500 RPM for 5 min at 4 °C) and plated on a collagen-coated plate.
Primary hepatocytes were cultured under standard conditions (37 °C and 5% CO2).

Generation of pseudotyped viral particles. In order to generate pseudotyped
viral particles expressing the spike protein of SARS-CoV-2, HEK293T cells were
transfected using a third-generation five-plasmid system kindly provided by Drs.
Jean-Philippe Julien (University of Toronto) and Jesse D. Bloom (Fred Hutchinson
Cancer Research Center), as previously described26. Briefly, plasmids encoding for
HDM-Hgpm2 (NR-52517), pRC-CMV-Rev1b (NR-52519), HDM-tat1b (NR-
52518), the SARS-CoV-2 spike protein (NR-52514), and the lentiviral backbone
that express ZsGreen (NR-52520) were administered to HEK293T cells (50–70% of
confluence) using JetPEI kit (Polyplus-transfection #101-10 N). Pseudotyped len-
tiviral particles were collected from supernatants 48 h after transfection and filtered
using a 0.45 µm filter (VWR Cat#: 514-0063). After concentrating the viral particles
using Lenti-X Concentrator (Takara Bio Inc. Cat#: 631231), they were stored in
PBS at −80 °C until use. Control pseudotyped viral particles were generated using
HEK293T cells. About 5 × 106 cells were seeded in T175 flasks in DMEM media
supplemented with 10%c FBS, glutamine and NEAA. For transfection, a mixture of
plasmids encoding for luciferase IRES ZsGreen, HDM-Hgpm2, pRC-CMV-Rev1b,
and HDM-tat1b were diluted in 2.5 mL of DMEM and then mixed with additional
2.5 mL of DMEM containing lipofectamine. After 24 h, the media was replaced
with complete media supplemented with 5 mM of sodium butyrate. After 60 h,
viral particles were collected and stored at −80 °C.

Titration of pseudotyped lentiviral particles and infection of hepatocytes.
Viral titration was performed in THLE-2 and upcyte second-generation human
hepatocytes cells as described in ref. 26. Cells were incubated with pseudotyped
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lentiviral particles for 48 h. The infected cells expressed ZsGreen, allowing their
detection by flow cytometry.

THLE-2 and primary hepatocyte treatments. Rates of infection on THLE-2 and
primary hACE2 or WT hepatocytes were calculated after incubation with pseu-
dotyped viral particles (MOI: 0.8). Cells were incubated for 48 h to allow expression
of ZsGreen, which allows detection of infected cells by flow cytometry. Steatotic
conditions were induced in primary hepatocytes as follows: incubation overnight
on 0%-FBS MEM medium containing PSG followed by incubation in methionine-
choline deficient (MCD) medium (Gibco Cat#: ME120128L1) supplemented with
PSG. Metformin (Sigma Aldrich Cat#: PHR1084) was administered at 1 mM (final
concentration) to primary hepatocytes after overnight incubation with 10%-FBS
MEM containing PSG. After 6 or 24 h, plates were washed thrice with PBS, frozen
(−80 °C), and processed for western blot analysis. Hepatocytes were cultured
overnight with 0%- FBS MEM (containing PSG) prior to incubation in an MCD
medium containing metformin (1 mM) for 10 h. Hereafter, plates were washed
thrice with PBS, frozen (−80 °C), and processed for western blot analysis or
incubated with pseudotyped viral particles for 48 h. For pharmacological inhibition
of the ACE2/ANG(1–7)/Mas axis, cells were treated with A779 (Tocris Bioscience
Cat#: 5937) for 1 h, followed by lentiviral infection.

Pull-down assay. Cells were resuspended in RIPA lysis buffer (ddH2O, 100 mM
NaCl, 1.6 mM Na2HPO4, 8.4 mM NaH2PO4, 0.5% (w/v) sodium deoxycholate,
0.1% (w/v) SDS and 0.005% (w/v) sodium azide, 1 μM sodium orthovanadate,
50 mM sodium fluoride, and Triton X-100 0.1%), sonicated and centrifuged at
14,000 RPM for 30 min at 4 °C. The pellet was discarded. Of total supernatant,
50 μL were kept for use as the control in the western blot assay. After quantifi-
cation, 1180 μg of protein were incubated with 2 μg of biotinylated S1 (Acrobio-
systems Cat#: S1N-C82E8) or RBD (Acrobiosystems Cat#: SPD-C82E9)
recombinant proteins for 2 h at 4 °C with constant inversion. Then, 50 µL of
prewashed High Capacity Neutravidin beads (Thermo Fisher Cat#: 11805845) were
added to the mix and incubated for an additional 30 min at 4 °C with constant
inversion. After centrifugation of beads, supernatants were kept as flowthrough
inputs for the western blot. Proteins bound to the beads were washed with RIPA
buffer for 5 min at RT with constant inversion and eluted in 17 µL of 5X Laemmli
buffer. Outputs from the pull-down assay were boiled for 10 min at 95 °C prior to
the western blot assay.

Western blot. Cell lysates were collected with RIPA lysis buffer and quantified
using a micro-BCA kit (Thermo Fisher Cat#: 10249133). Samples were boiled for
10 min at 95 °C in 5x Laemmli buffer, separated in an SDS-PAGE gel, and
transferred to a polyvinylidene difluoride membrane. Membranes were incubated
with 5% non-fat milk in tris-buffered saline buffer (10 mM Tris, pH 8.0, 150 mM
NaCl) with 0.1% Tween-20 detergent (TBST) for 1 h and incubated with anti-
ACE2 (Bioss Inc Cat #: BS-1004R), anti-NRP1 (Bio-Techne Corporation Cat#:
NBP2-67539), anti-TMPRSS2 (Bio-Techne Corporation Cat#: NBP3-00492), anti-
Phospho-AMPKα (Thr172) (Cell Signaling Cat#: 2531), and anti-β-actin (Sigma
Aldrich Cat#: A5441) primary antibodies at 4 °C for 16 h (dilution 1:1000 or 1:500
for the pull-down assay). Membranes were washed thrice for 10 min and incubated
with a secondary anti-rabbit-HRP antibody (Cell signaling Cat#:7074) for 1 h
(1:5000 dilution). Blots were washed again with TBST and developed with ECL
substrate (Bio-Rad Cat#: 1705061) on an iBright system (Invitrogen). Band den-
sitometry was performed using ImageJ.

Assessment of binding of recombinant RBD to the cell surface. The binding of
recombinant RBD (Acrobiosystems Cat#: SPD-C82E9) to THLE-2 and Vero E6
cells, as well as to primary hepatocytes, was measured as described in ref. 27. Briefly,
cells were harvested from culture plates using cell dissociation buffer (Thermo
Fisher Cat#: 13151-014), counted and 100,000 cells were distributed in 96-well
polystyrene conical bottom plates (Thermo Fisher Cat#: 249570). After washing
cells with blocking buffer (PBS containing 0.5% BSA; Sigma Aldrich Cat#: A9647),
they were incubated with biotinylated RBD (20 μg/mL) for 40 min on ice. After
incubation, cells were washed again with blocking buffer and incubated for an
additional 15 min with streptavidin-PE (1:200, Thermo Fisher Cat#: 12-4317-87)
on ice in a total volume of 100 μL of blocking buffer. Finally, cells were washed
twice and resuspended in a blocking buffer containing DAPI (Invitrogen Cat#:
D1306) to discriminate alive cells. All centrifugation steps were performed at 300×g
for 5 min at 4 °C. Cells were acquired on a FACSymphony cytometer (BD Bios-
ciences) and results were analyzed using FlowJo version 10 (BD Biosciences).

Proteomic analysis by LC-MS/MS. Cells were treated with cell lysis buffer (7M
urea, 2M thiourea, 4% CHAPS), vortexed, and spun down to remove debris.
Extracted protein was digested following the SP3 protocol described by ref. 69, with
minor modifications. Trypsin was added to a trypsin:protein ratio of 1:10, and the
mixture was incubated for 2 h at 37 °C. The resulting peptides were dried out and
resuspended in 0.1% formic acid. Samples were analyzed in a novel hybrid trapped
ion mobility spectrometry-quadrupole time-of-flight mass spectrometer (timsTOF
Pro with PASEF, Bruker Daltonics) coupled online to an EVOSEP ONE (EVOSEP).
This mass spectrometer takes advantage of a novel scan mode termed parallel

accumulation-serial fragmentation (PASEF), which multiplies the sequencing speed
without any loss in sensitivity70. Samples (200 ng) were directly loaded in a 15 cm
analytical column (EVOSEP) and resolved at 300 nl/min with a 44min gradient.
Protein identification and quantification was carried out using PEAKS software using
default settings. Searches were carried out against a database consisting of mice
protein entries (Uniprot/Swissprot), with precursor and fragment tolerances of 20
ppm and 0.05 Da. Only proteins identified with at least two peptides at FDR <1%
were considered for further analysis. Data was loaded onto Perseus platform71 and
further processed (log2 transformation, imputation). Statistical analyses between
groups were performed with a student’s t-test. Volcano plot and heatmaps showing
the 25-top upregulated and downregulated proteins were represented using GraphPad
PRISM v8 (GraphPad, San Diego, CA, USA). Enriched Gene Ontology/KEGG
pathways were inferred using DAVID (https://david.ncifcrf.gov/home.jsp).

OCR and ECAR calculation. Oxygen consumption rate (OCR) and extracellular
acidification rate (ECAR) was determined as previously described72 using a Sea-
horse XFe24 Analyzer (Seahorse Biosciences). For that, 20,000 primary hepatocytes
were plated and incubated with pseudotyped viral particles on an XF24 cell culture
microplate (Seahorse Bioscience). Real-time respiration assays were performed
after 48 h using DMEM medium (Thermo Fisher Cat#: 12800017) supplemented
with glutamine (1 mM), glucose (10 mM), and sodium pyruvate (2 mM) and
lacking bicarbonate. After analysis, cell density was measured by crystal violet for
data normalization.

Extracellular L-lactate concentration. L-lactate concentrations were determined in
infected or control primary hepatocytes using a commercial kit (Trinity Biotech
Cat#: 735-10) following the manufacturer’s recommendations.

Caspase-3 activity assay. Cells were washed with PBS twice and lysed in 30 µL of
caspase-3 reaction buffer (250 mM PIPES pH 7.4, 100 mM EDTA, 2.5% CHAPS,
and 125 mM DTT). Total protein was extracted, and protein concentration was
determined by the Bradford assay. Forty micrograms of total protein were added to
a mix containing 25 μM Ac-DEVD-AFC caspase-3 fluorogenic substrate (ALX-
260-032, Enzo Life Sciences) in reaction buffer to a final volume of 500 μL. Each
sample was measured in duplicate by adding 200 μL of the reaction mixture to each
well of a 96-well black flat bottom assay plate (Corning Cat#: 3915). The reaction
plate was incubated at 37 °C with gentle shaking for 4 h and fluorescence (λex=
390 nm and λem= 510 nm) was measured every hour in a SpectraMax M2/M2e
microplate reader (Molecular Devices). Caspase-3 activity was determined by
calculating the increase in fluorescence from 0 to 4 h after background correction
and normalized against the total protein.

Determination of mitochondrial reactive oxygen species (ROS). Mitochondrial
ROS production in primary hepatocytes was assessed using MitoSOX Red mito-
chondrial superoxide indicator (Invitrogen Cat #: M36008). Cells were labeled with
2 mM MitoSOX for 10 min at 37 °C in a CO2 incubator. After that, cells were
washed thrice with PBS. Five to ten random images per sample were taken using an
upright fluorescent microscope (Axioimager D1). The percentage of stained areas
were calculated using FIJI (ImageJ) and normalized by cell number.

Extracellular and intracellular ATP concentration. Extracellular and intracellular
ATP concentrations were measured using the ATPlite luminescence assay system
(PerkinElmer Cat#: 6016943), following the manufacturer’s recommendations and
normalizing by total protein content.

RNA extraction and quantification. RNA extraction and quantification by
quantitative PCR (Q-PCR) were performed as previously described15. Q-PCR
reactions were conducted in triplicate using gene-specific primers (Supplementary
Data 2). RNA expression levels were normalized to Arp for each sample.

Metabolic flux analyses. Primary mouse hepatocytes (500,000 cells) were incubated
with pseudotyped viral particles expressing the full-length spike of SARS-CoV-2
(MOI: 0.8) or recombinant RBD (20 ug/mL) for 48 h. After that, labeled 13C6-glucose
was added at a 10mM final concentration for 6 h. For metabolite extraction, 500 µL of
cold methanol and water (50/50% v/v) was added to the wells of the culture plates.
Plates were left on dry ice for 15min. Subsequently, 400 µL of the homogenate plus
400 µL of chloroform was transferred to a new aliquot and shaken at 1400 RPM for
1 h at 4 °C. Aliquots were centrifuged for 30min at 13,000 RPM at 4 °C to separate
the organic phase from the aqueous phase. A total of 250 µL of the aqueous phase was
transferred to a fresh aliquot and placed at −80 °C for 20min. Chilled supernatants
were evaporated with SpeedVac vacuum concentrators (Thermo Fisher) for 2 h. The
resulting pellets were resuspended in 150 µL of water/acetonitrile (40/60% v/v).
Samples were measured with a UPLC system (Acquity, Waters Inc., Manchester, UK)
coupled with a time-of-flight mass spectrometer (ToF MS, SYNAPT G2, Waters Inc.).
A 2.1 × 100mm, 1.7 µm BEH amide column (Waters Inc.), thermostated at 40 °C, was
used to separate the analytes before entering the MS. Mobile phase solvent A (aqueous
phase) consisted of 99.5% water and 0.5% FA and solvent B (organic phase) consisted
of 4.5% water, 95% MeCN, and 0.5% FA. In order to obtain a good separation of the
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analytes, the following gradient was used: from 10% A to 99.9% A in 2.6min in
curved gradient (#9, as defined by Waters), constant at 99.9% A for 1.6 min, back to
10% A in 0.3min. The flow rate was 0.250mL/min, and the injection volume was
4 µL. After every 12 injections, a QC sample was injected. Samples were injected in
duplicate ad random. The MS was operated in negative electrospray ionization full
scan mode. The cone voltage was 25 V and capillary voltage was 250 V. Source
temperature was set to 120 °C and capillary temperature to 450 °C. The flow of the
cone and desolvation gas (both nitrogen) were set to 5 and 600 L/h, respectively. A
2 ng/mL leucine-enkephalin solution in water/acetonitrile/formic acid (49.9/50/0.1 %
v/v/v) was infused at 10 µL/min and used for a lock mass which was measured each
36 for 0.5 s. Spectral peaks were automatically corrected for deviations in the lock
mass. Extracted ion traces for relevant analytes were obtained in a 20mDa window in
their expected m/z-channels. These traces were subsequently smoothed and peak
areas integrated with TargetLynx software. Signals of labeled analytes were corrected
for naturally occurring isotopes. The isotope corrected areas were adjusted by median
fold-change (MFC) adjustment. This is a robust adjustment factor for global varia-
tions in signal due to e.g., differences in tissue amounts, signal drift, or evaporation.
The MFC is based on the total amount of detected mass spectrometric features
(unique retention time/mass pairs). The calculations and performance of the MFC
adjustment factors are described in the following publications73,74. Finally, means
between duplicates of the adjusted areas were reported.

Assessment of extracellular angiotensin 1–7 (Ang1–7) levels. Assessment of
extracellular angiotensin 1–7 (Ang1–7) levels was performed by ELISA (Cloud-
Clone Corp. Cat#: CES085Mi), following the manufacturer’s recommendations.

Statistics. Statistical analyses were performed using GraphPad PRISM v8
(GraphPad, San Diego, CA, USA). Bar plots show the mean and the standard error
of the mean (SEM). Student’s t-test or one-way ANOVA test were applied as
appropriate (indicated on each figure legend).

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier PXD035263.
Uncropped and unedited blot images are provided in Supplementary Fig. 8. All source
data underlying the graphs and charts presented in the figures are presented in
Supplementary Data 3.
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