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Single-cell transcriptomic profiling unveils
dysregulation of cardiac progenitor cells and
cardiomyocytes in a mouse model of maternal
hyperglycemia
Sathiyanarayanan Manivannan1,2,7, Corrin Mansfield 1,2,7, Xinmin Zhang3, Karthik M. Kodigepalli4,

Uddalak Majumdar1,2, Vidu Garg 1,2,5,6 & Madhumita Basu 1,2,5✉

Congenital heart disease (CHD) is the most prevalent birth defect, often linked to genetic

variations, environmental exposures, or combination of both. Epidemiological studies reveal

that maternal pregestational diabetes is associated with ~5-fold higher risk of CHD in the

offspring; however, the causal mechanisms affecting cardiac gene-regulatory-network (GRN)

during early embryonic development remain poorly understood. In this study, we utilize an

established murine model of pregestational diabetes to uncover the transcriptional responses

in key cell-types of the developing heart exposed to maternal hyperglycemia (matHG). Here

we show that matHG elicits diverse cellular responses in E9.5 and E11.5 embryonic hearts

compared to non-diabetic hearts by single-cell RNA-sequencing. Through differential-gene-

expression and cellular trajectory analyses, we identify perturbations in genes, predominantly

affecting Isl1+ second heart field progenitors and Tnnt2+ cardiomyocytes with matHG. Using

cell-fate mapping analysis in Isl1-lineage descendants, we demonstrate that matHG impairs

cardiomyocyte differentiation and alters the expression of lineage-specifying cardiac genes.

Finally, our work reveals matHG-mediated transcriptional changes in second heart field

lineage that elevate CHD risk by perturbing Isl1-GRN during cardiomyocyte differentiation.

Gene-environment interaction studies targeting the Isl1-GRN in cardiac progenitor cells will

have a broader impact on understanding the mechanisms of matHG-induced risk of CHD

associated with diabetic pregnancies.
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Congenital heart disease (CHD) is the most common
developmental malformation in humans and the leading
cause of birth-defect related infant mortality1,2. CHD has

multifactorial etiology, and among this heterogeneous category of
developmental defects, some are the product of a
gene–environmental interaction1,3–6. A disease-causing genetic
abnormality is identified in ~20–30% of all CHD cases7–10,
however, the identification of genetic factors does not inform on
the phenotypic variability among CHD patients with identical
genetic variants. Numerous environmental factors, such as
maternal pre-existing illnesses, viral infections, and therapeutic
and nontherapeutic drug exposures have been identified to ele-
vate the risk of CHD6,11–14. A strong correlation has been
established between maternal pregestational diabetes mellitus
(matPGDM) and an increased occurrence of CHD in the infants
of diabetic mothers. In a study published in the American Journal
of Preventive Medicine, the researchers found that uncontrolled
blood sugar in women with type 1 or type 2 diabetes before
pregnancy led to ~2,670 babies with CHD each year15,16.
Therefore, it remains critical to understand the molecular
responses to maternal hyperglycemia (matHG), a primary ter-
atogen in matPGDM which alters CHD-risk genes to increase the
frequency of the disease. Additional studies are necessary to
explain the gene-environmental basis of cardiac lesions in
patients harboring identical genetic variants.

During cardiogenesis, four precursor populations have been
identified that contribute to different myocyte and nonmyocyte
heart cell lineages: first heart field (FHF), second heart field
(SHF), proepicardium, and cardiac neural crest (NC) cells17,18.
Understanding the genes involved in each lineage is therefore
essential for uncovering the environmental etiology of CHD17,19.
Epidemiological studies reveal that matPGDM increases risks of
most CHD phenotypes ranging from conotruncal and cardiac
septal defects to hypoplastic left heart syndrome16,20,21. A Danish
nationwide cohort study reported that the relative risk of cardiac
defects originating from the anterior SHF (truncus arteriosus,
tetralogy of Fallot, double-outlet right ventricle or DORV, left
ventricular outflow tract obstruction, ventricular septal defect) is
significantly higher from those lesions originated from the pos-
terior SHF16. Studies from our group and others using a mouse
model of diabetic embryopathy have recapitulated the occurrence
of human CHD phenotypes, which further established the
importance of gene-environment interaction22–24. However,
relatively little is known about the genetic and molecular basis of
these cardiac abnormalities (especially those with SHF origin)
upon intrauterine exposure to matHG. In normal development,
as the heart tube undergoes rightward looping during embryonic
days (E)8.5–E10.5, the myocardium from SHF adds to the
lengthening outflow tract (OFT) and further ballooning of future
chambers takes place25–27. The SHF or pharyngeal mesodermal
progenitor cells are situated medial to the FHF and are dis-
tinguished by the expression of genes encoding the transcription
factors (TFs) Isl1, Mef2c, Foxh1, Foxc1/c2, Hand2, Symd1 (Bop),
and growth factors Fgf8 and Fgf1028,29. Mouse knockouts tar-
geting several of these TFs show early lethality by E10.5 due to
failed looping, profound vascular defects, absent or single hypo-
plastic ventricular chamber, and defects in the coronary vessel
and epicardial development30,31. Cre-lineage tracing and retro-
spective clonal analysis in avian and mouse embryos have
demonstrated that SHF is multipotent and gives rise to the OFT,
right ventricle (RV), and atrial cardiomyocytes (CM)28,32,33 with
additional contributions to the smooth muscle cells (SMC) and
endocardial/endothelial cells (EC). The SHF specification and
differentiation to CM is a tightly regulated process28,34. However,
matHG induced transcriptional changes in SHF progenitors and
their descendants underlying the elevated risk of CHD are not

completely understood. Direct or indirect effects on the gene-
regulatory program driven by TFs (Isl1, Tbx1, Prdm1, Six1,
Nkx2.5, Gata4, Mef2c, Hand2), intracellular signaling pathways
(Bmp, Fgf, Shh, Wnt, Notch), and chromatin remodeling factors
(Smarca4, Smarcd3, Smarcc1) affect SHF deployment and result
in a higher incidence of CHD29,30,33. We and others have
demonstrated that exposure to matHG is a disruptor of gene-
expression within the signaling pathways, and epigenetic modi-
fiers, including Notch, Wnt, Bmp, Tgfb, Vegf, Shh, Hif1α, and
Jarid222,24,35,36. Gene-environment interaction studies between
matPGDM and Notch1, Nkx2.5, Ask1, and Hif1α haploinsuffi-
ciency further revealed an increased occurrence of CHD in
matHG-exposed embryos compared to controls22,24,36–38. While
these studies highlight the need to dissect the molecular
mechanism(s) of matHG exposure during cardiac development,
the effect of matHG-mediated transcriptional changes in diverse
cardiac cell lineages remain unknown. This impedes precise
understanding of the developmental toxicity elicited by matHG
in utero.

Here, we used the streptozotocin-induced (STZ) murine model
of matPGDM to study the impact of matHG on cellular and
molecular changes in developing embryonic hearts post looping
morphogenesis. We found direct evidence of altered gene
expression upon matHG exposure using single-cell RNA-
sequencing (scRNA-seq) analysis between normoglycemic con-
trol (CNTRL) and matHG-exposed E9.5 and E11.5 whole hearts.
Differential gene expression and functional enrichment analyses
revealed HG-responsive changes in Isl1+ multipotent SHF pro-
genitors at E9.5, and in Tnnt2+ CMs at E9.5 and E11.5. Further,
by in vivo SHF cell-fate mapping studies in CNTRL and matHG-
exposed Isl1-Cre+; RosamT/mG E9.5, E11.5, and E13.5 hearts, we
demonstrated CM differentiation defects when exposed to
matHG environment. The combination of scRNA-seq data and
in vivo validation of gene expression in Isl1+SHF-derived cells
have revealed that matHG leads to dysregulated expression of cell
lineage specifying TFs (Isl1, Tbx1, Tbx20, Fgf10, Mef2c, Nkx2-5,
and Hand2) in multipotent progenitor cells. Furthermore,
reduced CM proliferation and perturbations in the Isl1-
dependent gene regulatory network (Isl1-GRN) in matHG-
exposed embryos suggest underlying risk of CHD. Overall, this
study delineates the impact of matHG on CM dysregulation and
scRNA-seq data prioritizes on the cardiac progenitor cells as a
major contributor to matPGDM-induced CHD.

Results
Single cell RNA-sequencing identifies widespread transcrip-
tional dysregulation in E9.5 and E11.5 hearts in response to
matHG. To understand the cellular basis of matHG-induced risk
of CHD and compare the cardiac cell-type-specific transcriptional
responses in CNTRL and matHG-exposed embryonic hearts, we
applied in vivo 10XscRNA-seq. We used a well-established
murine matPGDM model that exhibits similar pathogenesis to
human type 1 diabetes mellitus24,39, in which we and others have
demonstrated increased incidence of septal defects, DORV, and
truncus arteriosus in matHG-exposed embryos22,24,36–38. For
scRNA-seq experiment, embryonic hearts from one litter were
harvested at E9.5 and E11.5 per condition to examine the effect of
matHG on critical stages of cardiac development post looping
morphogenesis and segmentation (Fig. 1a). Whole hearts were
microdissected and pooled from at least six embryos at each
timepoint and maternal hyperglycemic status (maternal B.G.=
145 mg/dl; n= 8 E9.5 embryos and 196 mg/dl; n= 7 E11.5
embryos used as untreated or CNTRL group and maternal
B.G.= 312mg/dl; n= 6 E9.5 embryos and 316 mg/dl; n= 7 E11.5
embryos used as experimental or matHG group). Cardiac tissues
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Fig. 1 Single-cell transcriptomic sequencing reveals cell type-specific response to maternal hyperglycemia in E9.5 and E11.5 hearts. a Workflow of the
single-cell RNA-sequencing, created with BioRender.com. A representative image of E9.5 and E11.5 embryos demonstrate the cardiac regions dissected,
and the pipeline for single-cell and 10X library preparation and next-generation sequencing At least six independent CNTRL and matHG-exposed embryos
per embryonic timepoints were pooled and used for scRNA-seq analysis. Dissected hearts are shown in the insets. Scale bars: 200 and 500 μm. b UMAP
plot of 8503 single-cell transcriptomes derived from CNTRL and matHG-exposed E9.5 and E11.5 hearts. Unsupervised clustering of cells with similar
transcriptional profiles was clustered into six distinct cardiac cell populations, designated as MP, EP, NC, EC, FM, and CM. Each dot represents an individual
cell and is colored according to cluster identities. Statistical tests for differential gene expression were applied to 8503 cells. c Heatmap shows the
expression of the top five marker genes in each cluster from E9.5 and E11.5 scRNA-seq data. The rows represent cells and are ordered by cell cluster
identities and hierarchical clustering. Normalized log expression levels are shown in yellow (high expression) and purple (low expression). d UMAP plots
split into CNTRL and matHG-exposed cells in each cluster at E9.5 and E11.5 hearts, colored according to the cluster identities. Total cells, n= 1989; CNTRL
E9.5, n= 2271; CNTRL E11.5, n= 2304; matHG E9.5, n= 1939, matHG E11.5. Numbers denote single-cell transcriptomes used to compare differential gene
expression analysis between two groups. e Barplot indicates the proportion of cells in each cluster (in percentages) normalized to the total number of cells
per sample at E9.5 and E11.5 stages (number of cells are in parenthesis). Colors indicate cluster identities. CNTRL control, matHG, maternal hyperglycemia,
UMAP Uniform Manifold Approximation and Projection, MP multipotent progenitor, EP epicardial, NC neural crest, EC endocardial/endothelial, FM fibro-
mesenchymal, CM cardiomyocytes.
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from each developmental stage were dissociated and processed to
obtain single-cell libraries using the 10xGenomics Chromium
controller and 3′ polyA-based gene expression analysis kit fol-
lowed by sequencing (Fig. 1a). Recently developed R Shiny apps
‘Natian’ and ‘Ryabhatta’ were used for pre-processing and
scRNA-seq data analysis40,41 as described in Supplementary
Fig. 1. We captured transcriptomic data from 3042 and
4632 single cells from CNTRL embryos and 4022 and 3785 single
cells from matHG-exposed E9.5 and E11.5 hearts, respectively. To
classify the cardiac cell clusters, Seurat-based unsupervised clus-
tering and Uniform Manifold Approximation and Projection
(UMAP) based dimensionality reduction was performed after
combining four samples at each developmental stage (Supple-
mentary Fig. 2a–d and Supplementary Fig. 3a–f). Cells that pas-
sed the quality control (QC) metrics including the number of
genes detected in each cell (nFeatureRNA), unique molecular
identifiers (UMI or nCountRNA), and ≤10% of the reads mapped
to mitochondrial genes, were used to analyze differentially
expressed genes (DEGs) (Supplementary Fig. 2a–d and Supple-
mentary Fig. 3a–f). The heatmap and UMAP distribution showed
that after combining four samples, we identified 14 clusters (C0-
C13) (Supplementary Fig. 2b, c), annotated based on the top five
cell-type-specific marker genes obtained from our data and
published scRNA-seq datasets of wt CNTRL embryonic
hearts42,43. Clusters representing C3, C6, C7, C11, C12, and C13
expressed endoderm, ectoderm, blood/hematoendothelial mar-
kers and therefore were removed from further analysis (Supple-
mentary Fig. 2c, e–g). In addition, we further extended the
analysis by integrating our data with wt CNTRL E9.25 mouse
heart cells reported by de Soysa, et al. (GSE126128)43. This
integration showed that the cell types we annotated using cluster
markers identified in our data closely track the cell types anno-
tated by de Soysa, et al. (Supplementary Fig. 2h). Moreover,
clusters that we removed from our analysis (did not have a pair in
de Soysa, et al.43). These clusters include ectodermal markers, low
UMI counts, and immune and blood cell markers. We note that
similar clusters were also identified by de Soysa, et al.,
(GSE126128; Extended Figure data 143) but excluded from fur-
ther analysis to study early cardiac development. We applied a
similar approach as described by de Soysa, et al. at each stage of
development, which identified nine clusters with the heatmap
showing the top five marker genes per cluster (Supplementary
Fig. 3g, h). We also performed a power analysis on the single-cell
data using two separate methods. Using SCOPIT44, for pro-
spective power analysis, we showed that we could detect a cell
type with a frequency of 1% in the observed population, with the
number of cells captured per sample per time point with high
confidence (Supplementary Fig. 4a–c). Also, using SCOPIT ret-
rospective analysis, we showed that the cell types with the lowest
frequency in each sample can be detected in other samples with
high confidence using the number of cells captured by our single-
cell data. This suggests that our sample size (in terms of the
number of cells) was sufficient to capture every cell type observed
in control E9.5 data across test conditions (Supplementary
Fig. 4a–c). This also means that we controlled for sampling bias
when evaluating cellular proportions. While the individual
embryos were not barcoded a priori, we used post hoc sequencing
analysis to infer the genotypes of the embryos using a genotype-
free demultiplexing tool “souporcell”45, which allowed us to infer
the genotypes of at least 6 embryos per sample (Supplementary
Fig. 5a–e).

Following the QC steps, the single-cell transcriptomes from a
total of 8503 cells were classified into six broadly defined cardiac
populations that were used to compare cell-type-specific DEGs
between CNTRL and matHG-exposed E9.5 (1989 and 2304 cells,
respectively) and E11.5 (2271 and 1939 cells, respectively) hearts

(Fig. 1b–d). These clusters represented Isl1+ and Tbx1+ multi-
potent progenitors (MP), Tnnt2+ and Actc1+ cardiomyocytes
(CM), Cdh5+ and Emcn+ endocardial/endothelial (EC), Postn+

and Sox9+ fibro-mesenchymal (FM), Wt1+ and Tbx18+

epicardial (EP), and Dlx2+ and Dlx5+ neural crest (NC) cells.
Clustering annotation was performed by finding the gene
expression signature of each cluster using marker genes that
delineate cell identities as described in published scRNA-seq
datasets (Supplementary Fig. 2h) from wt embryonic hearts41–43.
The UMAP and dot plots showed cluster-specific expression of
marker genes used to classify the above cell types (Supplementary
Fig. 6a, b).

Next, we compared the proportion of cell clusters per
embryonic timepoint between CNTRL and matHG-exposed
E9.5 and E11.5 hearts (Fig. 1e and Supplementary Fig. 7a, d).
CM were the most abundant cell type at both time points, yet
only significantly elevated in matHG-exposed hearts compared to
CNTRL at E11.5 (47.1% vs. 30.9%, p < 0.0001). The MP cell
population in matHG hearts was significantly decreased com-
pared to CNTRL at E9.5 (17.0% vs. 19.3%, p= 0.05) and E11.5
(7.9% vs. 11.6%, p < 0.0001). Similarly, the FM cells were
significantly lower in the E9.5 (1.5% vs. 5.4%, p < 0.0001) and
E11.5 (5.9% vs. 17.6%, p < 0.0001) hearts subjected to matHG
compared to CNTRL hearts. In contrast, a significant increase in
EC cells in response to matHG exposure only at E11.5 (26.4% vs.
21.9%, p= 0.0007). The proportion of EP cells was significantly
reduced at both E9.5 (3.9% vs. 13.4% p < 0.0001) and E11.5
(11.0% vs. 14.4%, p= 0.001) in matHG exposed hearts compared
to CNTRL. NC-derived cells were significantly enriched in
matHG-exposed E9.5 heart (26.4% vs. 9.8%, p < 0.0001) but
significantly reduced (1.5% vs. 3.5%, p < 0.0001) by E11.5 stage
(Fig. 1e and Supplementary Fig. 7a, d). These findings from
in vivo scRNA-seq data reveal that intrauterine exposure of
matHG induces diverse cellular responses and results in abnormal
cellular distribution at the early stages of cardiac development.

Hyperglycemia elicits transcriptional changes in multipotent
cardiac progenitor cells and cardiomyocytes. To gain a deeper
understanding of how matHG exposure affects multiple signaling
pathways and their intersection with transcriptional regulatory
networks in CM lineage, we examined the transcriptional changes
in MP and CM clusters from CNTRL and HG-exposed E9.5 and
E11.5 scRNA-seq data. The proportion of MP cells showed sig-
nificant differences between CNTRL and matHG-exposed E9.5
and E11.5 hearts, although CM were significantly altered only at
E11.5 (Fig. 2a and Supplementary Fig. 7a, d). However, the
normalized gene expression of Isl1+/Tbx1+/Tnnt2+ cells in
combined MP-CM clusters may suggest the presence of less
differentiated CM (Supplementary Fig. 8a, b). DESeq2 analysis in
E9.5 Isl1+ MP cells (log2FoldChange ≤−1 or ≥+1 and Padj ≤
0.05) revealed 262 DEGs between CNTRL and matHG-exposed
groups (Supplementary Data 1). Gene Ontology (GO) enrich-
ment analysis of the DEGs revealed perturbations in genes
associated with biological processes affecting (i) regionalization,
anterior-posterior pattern specification, cell-fate commitment, (ii)
cardiomyocyte, mesenchymal and neural crest cell differentiation,
and (iii) cardiac ventricle and septum development (Supple-
mentary Fig. 8c, Supplementary Data 2). DEGs associated with
these processes include Hox-family members, fibroblast growth
factors, Forkhead box members, T-box TFs, muscle-specific TFs,
and regulators of SHF development (Supplementary Data 1);
representative DEGs are shown in bubble plots (Supplementary
Fig. 9a). Hence, DEG analysis of E9.5 Is1l+ MP cells revealed
disruption of cardiac progenitor cell commitment genes asso-
ciated with altered CM fate in response to matHG.
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Next, differential expression analysis was performed in Tnnt2+

CM between CNTRL and matHG-exposed hearts at E9.5 and
E11.5, which revealed 357 and 326 DEGs, respectively (Supple-
mentary Data 1 and 3). GO analysis of CNTRL vs. matHG-
exposed E9.5 and E11.5 CM showed molecular changes
associated with (i) muscle contraction and myofibril assembly,

(ii) regulation of ion transport, (iii) cardiac muscle cell
differentiation and proliferation, (iv) regulation of Wnt, Bmp,
TGF and MAPK signaling pathways, (v) response to hypoxia, (vi)
H3K4 trimethylation, and (vii) mitochondrial organization with
the regulation of metabolic processes such as tricarboxylic acid
cycle (Supplementary Fig. 8d, e and Supplementary Data 2, 4).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03779-x ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:820 | https://doi.org/10.1038/s42003-022-03779-x | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


DEGs in E9.5 CM were primarily associated with cell differentia-
tion, voltage-gated calcium channels, and potassium channels,
regulators of cardiac contractility, transcriptional and chromatin
regulators. Likewise, in E11.5 CM, expression of genes regulating
the sarcomere assembly and cardiac muscle function, myocardial
TFs, Bmp, TGF and EGF receptor family genes, glucose and
mitochondrial metabolism were significantly perturbed with
matHG (Supplementary Fig. 8e). Representative DEGs are shown
in bubble plots (Supplementary Fig. 9b, c). Together, gene
expression differences demonstrate that matHG exerts develop-
mental toxicity on Isl1+ MP and in Tnnt2+ CM by affecting key
biological processes. This data also suggests that dysregulated
expression of genes important for CM lineage commitment is
likely contributing to a spectrum of conotruncal defects observed
in matHG-exposed fetuses.

Heterogeneity in matHG-induced gene expression differences
in MP and CM subtypes. To determine the effects of matHG on
transcriptional differences in MP and CM subpopulations, we
performed a sub-clustering analysis on the integrated E9.5 and
E11.5 scRNA-seq data (Fig. 2a). Unsupervised clustering of cells
showed two subpopulations of MP and four subpopulations of
CM present in the scRNA-seq data. Unsupervised clustering,
dimensionality reduction, and heatmap analysis identified the
marker gene expression in each subcluster. Based on the
expression of the top five markers per cluster from previously
published scRNA-seq data and overlap of wt E9.25 hearts42,43, the
MP cluster was further clustered into anterior/posterior SHF and
branchiomeric muscle progenitor (BrMP) cells, whereas CM were
subclustered as outflow tract (OFT), atrioventricular canal
(AVC), atrial-CM (Atr-CM) and ventricular-CM (Ven-CM)
(Fig. 2b). Marker gene expression for each CM subtype is shown
in dot plots (Supplementary Fig. 10a). CNTRL and matHG-
exposed E9.5 and E11.5 hearts showed significant differences in
distribution of MP-CM subpopulations (Fig. 2c and Supple-
mentary Fig. 7b, e). Upon matHG exposure, there was a sig-
nificantly higher proportion of BrMP cells at E9.5 (10.8% vs.
2.8%, p < 0.0001); fewer BrMP cells were captured in E11.5 hearts,
although not significantly different between treatments. There
was a lower proportion of SHF populations in both E9.5 (19.6%
vs. 30.7%, p < 0.0001) and E11.5 (14.1% vs. 26.1%, p < 0.0001)
matHG-exposed hearts compared to controls. Given the con-
tribution of MP cell subpopulations in heart development, the
changes in proportions of progenitor subpopulations suggest a
potential role of glucose sensitivity in cells from the SHF and

increased risk of CHD in the diabetic offspring16,46,47. This is
further reflected in the significant reduction of Tnnt2+ OFT-CM
(3.7% vs. 18.7%, p < 0.0001) and AVC-CM (0.6% vs. 3.3%,
p < 0.0001) at E11.5 with matHG (Supplementary Fig. 7b, e). We
found a trend towards reduction of Atr-CM (14.4% vs. 17.0%;
p= 0.083) and Ven-CM (27.6% vs. 33.0%; p= 0.004) at E9.5
upon matHG exposure compared to CNTRL, but were sig-
nificantly higher by E11.5 (26.0% vs. 16.6%; p < 0.0001 and 55.1%
vs. 34.2%; p < 0.0001 for Atr-CM and Ven-CM, respectively)
when subjected to matHG environment (Fig. 2c, d and Supple-
mentary Fig. 7b, e).

To characterize matHG-mediated transcriptional changes, we
evaluated the expression of marker genes in CM subpopulations
at two developmental timepoints (Supplementary Fig. 10b). DEG
analysis revealed a trend towards downregulation of Myl2+,
Gja1+, Pln+ and Cited1+ cells in Ven-CM, Bmp4+ and Itm2a+

cells in OFT-CM, Bmp2+, Rspo3+ and Tbx3+ cells in AVC-CM
and Nr2f1+ Atr-CM at E9.5 (Supplementary Fig. 10b, Supple-
mentary Data 5). In E11.5 hearts, Ven-CM expression of Gja1+,
OFT-CM expression of Bmp4+, Rgs5+ and Dlk1+, and Atr-CM
expression of Cacna2d2+, Tbx3+ AVC-CM and Kcan5+, Nr2f1+,
Nr2f2+ were significantly reduced with matHG. In contrast, there
was significant upregulation of Atr-CM expression of Ankrd1+,
Tubb5+, Myl9+, Myl1+ and Ven-CM expression of Tmsb10+,
Pfn1+, Prdx1+, Cfl1+ by E11.5 (Supplementary Data 6). MatHG-
driven dysregulation of TFs essential for SHF deployment and
genes encoding CM sarcomeric proteins48–55 suggest a plausible
underlying mechanism linking transcriptional changes to
diabetes-induced CHD and CM hypertrophy. This data also
suggests that elevated glucose levels during pregnancy might
affect fetal CM maturation by altering the expression of genes
essential for the sarcomeric organization.

Next, GO analysis was performed on MP-CM DEGs and
significantly enriched biological processes (FDR adjusted p value
≤0.05) were compared between maternal glycemic status in two
developmental stages (Fig. 2e, Supplementary Data 5–7). DEGs in
E9.5 SHF-derived cells were enriched in biological processes
related to cell proliferation/differentiation; and anterior-posterior
pattern specification, as described earlier in Supplementary
Fig. 8c, whereas the DEGs in Ven-CM were associated with
chamber development, muscle cell membrane polarization, and
muscle contraction. The OFT-CM, Atr-CM, and Ven-CM at
E11.5 hearts showed significant differences in gene expression
related to stress response, muscle cell differentiation, muscle
contraction, ATP-dependent metabolic processes, chromatin

Fig. 2 Marker Gene Expression profiling reveals differences in cardiac progenitor cells and cardiomyocyte subpopulations under matHG exposure.
a UMAP plots represent the distribution of MP and CM clusters in CNTRL and matHG-exposed E9.5 and E11.5 hearts. Total MP cells, n= 384; CNTRL E9.5,
n= 263; CNTRL E11.5, n= 392; matHG E9.5, n= 155, matHG E11.5. Total CM, n= 761; CNTRL E9.5, n= 703; CNTRL E11.5, n= 896; matHG E9.5, n= 913,
matHG E11.5. The percentage of MP and CM is indicated in parenthesis. Unsupervised clustering of combined MP (1194 cells; 14.1%) and CM (3273 cells;
38.5%) show cells with similar transcriptional profiles and subclustered into six cellular subtypes. MP cells were clustered into SHF and BrMP and CM
were clustered into OFT-CM, AVC-CM, Atr-CM, and Ven-CM subtypes based on marker gene analysis. Colors denote the identity of subclusters.
Statistical tests for differential gene expression were applied to 4467 cells. b The heatmap shows the expression of the top five marker genes in each
subcluster. The rows represent cells and are ordered by cell cluster identities and hierarchical clustering. Normalized log expression levels are shown in
yellow (high expression) and blue (low expression). c Barplot indicates cellular distribution in each subcluster (in percentages) normalized to the total
number of cells per sample at the E9.5 and E11.5 stages (number of cells is in parenthesis). Cluster identities are indicated in colors. d UMAP plots split into
CNTRL and matHG-exposed MP and CM subpopulations at E9.5 and E11.5 hearts, colored according to the cluster identities. matHG-exposed SHF and
BrMP cell populations at E9.5 and SHF, OFT, Atr, and Ven-CMs at E11.5 hearts are indicated by black and blue arrowheads, respectively. e Bubble plots
represent enriched GO terms (biological process) in E9.5 SHF and Ven-CM and in E11.5 OFT, Atr and Ven-CM exposed to matHG. The colors of the nodes
are illustrated from red to blue in descending order of −log10 (P value) and fold enrichment. The count represents gene number, also indicated by circle
size, whereas the color denotes the up (red) or downregulation (blue) of the specific GO term in the cellular subpopulations. The horizontal (X) axis
represents the −log10 (P value), and the vertical (Y) axis represents the GO terms. CNTRL control, HG hyperglycemia, MP multipotent progenitors, SHF
second heart field, BrMP branchiomeric muscle progenitors, OFT outflow tract, AVC atrioventricular canal, Atr atrial, Ven ventricular, CM cardiomyocytes,
GO gene ontology.
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modification and cell cycle genes (Fig. 2e, Supplementary
Data 5–7). Thus, DEG and GO enrichment analyses of MP-CM
subtypes showed that matHG disrupts the critical stages of heart
development by affecting genes related to pattern specification
and CM function.

Transcriptomic analysis reveals the effect of matHG exposure
on SHF-CM lineage. To investigate the impact of matHG on
transcriptional changes in MP-CM cell lineages, we performed
pseudotime ordering of CNTRL and matHG-exposed E9.5 and
E11.5 cells using both Monocle (version 2.0)56 and Slingshot
(version 1.8.0)57 independently. Pseudotime analysis using
Monocle2 revealed five distinct cell states, identified as States
1–5 (Fig. 3a). Overlaying the cluster identities with pseudotime
trajectory revealed the distribution of SHF, BrMP, OFT-CM,
AVC-CM, Atr-CM, and Ven-CM in each state. The cell com-
position suggested that States 1 and 5 are more progenitor-like,
comprised of 70.8% SHF, 10.9% BrMP, 18.0% OFT-CM, 0.1%
Atr-CM, and 0.2% Ven-CM (in State 1) and 50% SHF, 34.8%
BrMP, 14.3% OFT-CM, and 0.9% Atr-CM (in State 5). State
2 suggested an intermediate state for differentiating CM con-
taining 6.2% SHF, 0.5% BrMP, 64.1% OFT-CM, 6.7% Atr-CM,
and 22.6% Ven-CM. While cell type distribution in States 3 and
4 suggested that these states are comprised of differentiated,
more mature CM (Fig. 3a). State 3 was composed of 12.7%
OFT-CM, 25.8% Atr-CM, 52.8% Ven-CM, and 8.7% AVC-CM,
and State 4 had 1% SHF, 0.3% BrMP, 0.5% OFT-CM, 33.6%
Atr-CM, 64.4% Ven-CM, and 0.2% AVC-CM. The percentages
of cells/state were compared between CNTRL and matHG-
exposed groups at each timepoint and statistical significance
was determined using both chi-square and Fisher Exact tests
(Fig. 3b and Supplementary Fig. 7c, f). At E9.5, we found sig-
nificant differences in States 2, 3 and 5 with matHG, then
changes in cellular distribution across the trajectory were shown
to be significant in States 1–4 at E11.5 (Fig. 3b and Supple-
mentary Fig. 7c, f). We then explored the pseudotime changes
in this population along with the cell-cluster annotation from
the Seurat analysis. We generated a scatter plot of the cells by
plotting UMAP_1 reduction value from Seurat dimensionality
reduction analysis against Monocle2-computed pseudotime56.
Further, to capture the trajectories in this scatter plot, we used
Slingshot to draw smoothened trajectories (Fig. 3c). Similar to
DDRTree based reduction from Monocle256, Slingshot57 tra-
jectory analysis revealed progenitor-like States 1 and 5 (far left
in the pseudotime), intermediate State 2 with less differentiated
OFT-CM and Ven-CM and more differentiated Atr-CM and
Ven-CM present at States 3 and 4 (far right in the pseudotime),
superimposed with cluster identities as depicted in Fig. 3a. GO
enrichment analysis between States 1 and 5 and States 3 and 4
identified DEGs associated with heart development, tube mor-
phogenesis, metabolic processes, and cardiac muscle contrac-
tion, distinctly separating the progenitor cells and CM (Fig. 3d).
Principal component analysis plots for CNTRL and matHG-
exposed E9.5 and E11.5 are shown according to their true
pseudotime, with trajectories inferred by Slingshot (Fig. 3c).
This revealed differences in pseudotime trajectories at inter-
mediate State 2 at E9.5 with matHG exposure, are likely due to
an enriched population of less differentiated Tnnt2+ CM or
higher Isl1+ expressing cells (Fig. 3c). Trajectory-based DEG
analysis of States 1–5 was performed at each developmental
timepoints (Supplementary Data 8, 9). We analyzed the top 20
GO terms (biological processes) for each pseudotime state
obtained from GO enrichment analysis of DEGs. The enrich-
ment analysis of DEGs between CNTRL vs. matHG exposed
States 1 and 5 (progenitor-like) and States 3 and 4

(differentiated CM) revealed that matHG perturbed genes were
linked to cardiac development, tube morphogenesis, cell dif-
ferentiation, muscle structure development, and changes in
oxidative phosphorylation and ATP-dependent metabolic pro-
cesses (Fig. 3d, Supplementary Fig. 11a–e, and Supplementary
Fig. 12a–e). In summary, these findings from pseudotime
trajectory-based expression analysis reveal that matHG expo-
sure sensitizes MP-CM lineage to affect CM differentiation.

Fate mapping of SHF progenitors identifies impairments in
CM differentiation under matHG exposure. Marker gene ana-
lysis between CNTRL and matHG-exposed E9.5 and E11.5 hearts
across the pseudotime trajectory revealed changes in Isl1+Tbx1+

MP (States 1 and 5) and Tnnt2+Actc1+ CM (States 2–4) (Fig. 4a).
To examine the impact of matHG on the fate of SHF-derived CM
differentiation, we quantified the expression of Isl1 and Tnnt2
along the pseudotime trajectory normalized to total number of
cells from scRNA-seq data. A significantly higher percentage of
Isl1+Tnnt2+ expressing cells in the less differentiated inter-
mediate State 2 were noted in matHG-exposed E9.5 hearts (66/
1288 cells; 5.12%) compared to CNTRL hearts (12/1145 cells;
1.05%, p < 0.0001) and a significant reduction in Tnnt2+ CM
(differentiated, State 3) (229/1068 cells; 21.4% in matHG vs. 484/
966 cells; 50.1% in CNTRL, p < 0.0001) at E11.5 (Fig. 4a). This
observation suggested that SHF-derived CM differentiation might
be affected in response to matHG exposure.

To investigate if Isl1-derived CM differentiation is perturbed
in vivo, we used Isl1-Cre+/− and RosamT/mG dual reporter mice for
cell lineage tracing studies. CNTRL and STZ-treated matHG
RosamT/mG females were bred with Isl1-Cre+ males and E9.5,
E11.5, and E13.5 embryos were collected to analyze the impact on
CM differentiation (Fig. 4b). Average maternal B.G. level was
significantly higher in matHG-exposed (n= 11, 471.3 ± 182.9mg/dl)
than CNTRL (n= 9, 217.7 ± 27.7mg/dl) dams (two-tailed
p= 0.0007) (Fig. 4c and Supplementary Table 1). Representative
GFP expression in E9.5-E13.5 Isl1-Cre+; RosamTmG/+ embryos is
shown in Supplementary Fig. 13a. The pattern of GFP expression
mirrors previously described endogenous Isl1 expression in
pharyngeal mesoderm, cardiac OFT, and foregut endoderm at
E9.5 with extension to the regions of midbrain, forebrain, all cranial
ganglia, spinal motor neurons, dorsal root ganglia, and in the
posterior hindlimb of E11.5 and E13.5 Cre+ embryos58. Subse-
quently, we performed co-immunostaining experiments in the E9.5-
E13.5 transverse tissue sections with α-GFP (to mark Isl1-derived
cells) and α-Tnnt2 (to trace Isl1+SHF-derived CM) exposed to
CNTRL and matHG environment. Cell-fate mapping revealed a
significant reduction (p= 0.001) in the number of GFP+Tnnt2+

cells in matHG-exposed E9.5 hearts compared to CNTRL Cre+

embryos (Fig. 4d, e, p). Isl1-driven expression of GFP reporter was
similarly compared in E11.5 and E13.5 in CNTRL and matHG-
exposed Cre+ embryos. There was a significant reduction in Isl1-
derived OFT-CM and Atr-CM of matHG exposed E11.5 hearts
(both p= 0.029 and 0.007) and a trend toward fewer in the
RV (Fig. 4f–i, p). At E13.5, we found significant downregulation of
GFP+Tnnt2+ cells in both the OFT and RV (Fig. 4j–p, both
p= 0.003 and <0.0001). In addition to CM, Isl1+ SHF cells also give
rise to EC59. Therefore, we examined the effect of matHG on SHF-
derived EC cells by evaluating Emcn expression in scRNAseq data
(Supplementary Fig. 13b, c). Emcn mRNA expression was not
significantly altered with matHG, however we detected very few
Isl1+Emcn+ cells in situ at E9.5 and E11.5 hearts. Immunohisto-
chemical analysis of the cardiac sections showed no discernable
changes in GFP+Emcn+ cells marking SHF-derived EC in matHG-
exposed Is1l-Cre+; RosamTmG/+ E9.5 and E11.5 embryos (Supple-
mentary Fig. 13d–k). In conjunction with scRNA-seq, the in vivo cell
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lineage tracing data demonstrates that the Isl1+-SHF-cells are
sensitive to matHG environment resulting in impaired CM
differentiation.

Maternal hyperglycemia affects CM proliferation and lineage
specifying genes. The number of CM in the developing heart is
determined by both the proliferation of the precursor multipotent

cells as well as the expansion of the differentiating CM60. We and
others have previously demonstrated that matHG exposed
embryos with septal and conotruncal defects display reduced CM
proliferation at E13.5 as measured by the number of PHH3+ and
BrdU+ cells24,39. Here, by scRNA-seq we showed that genes and
pathways related to cell proliferation were also perturbed in E9.5
and E11.5 matHG-exposed CM (Supplementary Fig. 8d, e). To
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assess the impact of transcriptional changes of cell-cycle genes on
Isl1+SHF-derived CM proliferation, we compared the percentage
of mitotic cells between CNTRL and matHG-exposed hearts. We
performed co-immunostaining with α-GFP and α-PHH3(Ser10),
a mitosis maker in Is1l-Cre+; RosamTmG/+ E9.5 and E11.5 hearts
and found a trend towards lower GFP+PHH3+ cells at E9.5
(Fig. 5a–d, i) and significant downregulation by E11.5 (Fig. 5e–i,
p= 0.072 and 0.002) upon matHG exposure. Gene-expression-
based cell cycle scoring analysis61 of scRNAseq data also revealed
a lower proportion of matHG-exposed CM are in the S/G2/M
phases of the cell cycle compared to CNTRL embryos (Fig. 5j).
This data was corroborated by the expression of cell-cycle genes
(Mki67, Ccnd2, and Ccnd1) in the OFT-CM, AVC-CM, Atr-CM
and Ven-CM (Supplementary Data 5 and 6).

Next, to examine the differential expression of SHF progenitor/
CM differentiation markers obtained from scRNA-seq data, we
performed candidate gene-based qRT-PCR in CNTRL and
matHG-exposed Is1l-Cre+; RosamTmG/+ E9.5 and E11.5 hearts
(Fig. 5k–o). GFP+ and GFP− cells were obtained from Cre+

hearts by fluorescence-activated cell sorting (FACS). Significant
upregulation of GFP expression (83.6-136.9-fold) in CNTRL and
matHG-exposed Is1l-Cre+; RosamTmG/+ E9.5/E11.5 hearts com-
pared to GFP− population from the same sample confirmed an
effective isolation of two cell populations by FACS (Fig. 5p).
Comparison between CNTRL and matHG-exposed E9.5 GFP+

(Isl1-derived) cells revealed a downregulation of SHF and CM
markers including Isl1, Tbx1, Mef2c, Fgf10, Hand2, Nkx2-5,
Tbx20, Myl2, Cited2 in the presence of HG. At E11.5, Tbx1,
Mef2c, Hand2, Nkx2-5, Myl2, and Cited2 remained down-
regulated in matHG-exposed GFP+ cells; however, there was an
upregulation of Isl1, Fgf10 and Tbx20 transcripts compared to
CNTRL GFP+ cells. Therefore, reduced expression of genes
encoding CM lineage-specifying TFs at E9.5 and upregulation of
SHF progenitor markers at E11.5 in matHG-exposed embryos
suggest a potential mechanism for CM differentiation defects
contributing to an increased risk of CHD. Together, cell
proliferation and gene expression studies in Isl1-derived GFP+

cells reveal that the SHF-progenitor cells are sensitive to the
matHG environment which results in defective CM differentia-
tion and contributes to reduced proliferation.

Maternal HG perturbs Isl1-dependent gene regulatory net-
work. To build upon our findings from single-cell expression data
and matHG-induced cell fate mapping, we assessed HG-mediated
changes in the Isl1-dependent gene regulatory network (Isl1-GRN).
We reconstructed Isl1-GRN with a priori knowledge of

protein–protein interactions (PPI) and known genetic association
with supporting experimental evidence embedded in STRINGv11.5
database62,63. In conjunction with the DEGs in SHF (scRNA-seq
data), we created a list of 34 genes (in mice and humans) including
lineage specifying TFs, fibroblast growth factors (Fgfs), and epige-
netic modifiers previously reported by Black, B (2007) and from the
STRINGv11.5 database30,62,63. In vivo clonal analysis by Evans and
coworkers have found a broader contribution of Isl1-Cre-expressing
descendants to the heart64. The components of this GRN are known
to function as part of an Isl1-dependent core network for RV and
OFT development (Fig. 6a, b). The mouse and human PPI networks
(enrichment p value <1.0E-16) were created using STRINGv11.5
with Isl1 as a node (Fig. 6a, b). Functional enrichment analysis of
this GRN revealed changes in biological processes associated with
pattern specification, cell fate commitment and cardiac chamber
morphogenesis in both species. Using the WikiPathways database65,
we showed Bmp signaling, pluripotency genes, neural crest differ-
entiation, Id signaling and adipogenesis were mostly affected in
murine Isl1-GRN. Human homologs of the genes showed CHD-
associated genes (from DISEASES database63) and WikiPathways
linked to mesodermal commitment, cardiac progenitor differentia-
tion, BMP signaling, 22q11.2 copy number variation syndrome, and
ventricular septal defects (Fig. 6c). Violin plots showed significant
gene expression differences in Isl1-GRN components including Isl1,
Mef2c, Id2, Pdgfra, Pitx2, Mpped2, Foxp1, Crabp2, Tgfbi, Irx3,
Bmpr2, and Hes1 between CNTRL and matHG exposed E9.5 SHF
(Padj < 0.05) (Fig. 6d).

To further evaluate the effect of matHG on Isl1-GRN expression
in vivo, we quantified protein expression of Hand2, Nkx2-5, and
Mef2c. Gene expression at the transcript level was quantified in
CNTRL vs. matHG-exposed Isl1-Cre+; RosamTmG/+ E9.5 hearts
(Fig. 5p). Co-immunostaining with Hand2 and GFP revealed
significant downregulation of the protein expression in matHG-
exposed E9.5 OFT (Fig. 7a–c, p= 0.0005). Similarly, Nkx2-5+GFP+

expression was significantly downregulated in the OFT and RV
(Fig. 7d–f, p= 0.012), signifying the role of SHF progenitors in
matHG-induced conotruncal defects. Recent scRNA-seq studies in
Hand2-null embryos have shown the failure of OFT-CM specifica-
tion, whereas RV CM were shown to be specified, but failed to
properly differentiate and migrate43. Earlier studies have also
demonstrated that Nkx2-5 is required for SHF proliferation through
suppression of Bmp2/Smad1 signaling and negatively regulates Isl1
expression66,67. Based on scRNA-seq data, Mef2c-expression in
C57BL6/J (wt) hearts was higher in matHG-exposed E9.5 SHF cluster
compared to CNTRL hearts. Whereas qRT-PCR analysis in GFP+

cells and immunohistochemical staining in matHG-exposed E9.5 wt

Fig. 3 Pseudotime ordering of MP-CM clusters reveals altered CM differentiation trajectory in response to matHG exposure. a Pseudotime analysis of
CNTRL and matHG-exposed E9.5 and E11.5 MP and CM subpopulations (SHF, BrMP, OFT, AVC, Atr, and Ven-CM) using Monocle 2. The merged and
individual pseudotime trajectories are illustrated. Cells on the tree are colored according to cluster identities, state, and expression levels in pseudotime.
The top 500 genes with the highest variability in expression were used to construct the pseudotime tree. The arrangement of cells shows the cells on the
left side of the tree (dark blue) are less differentiated (progenitor-like) than those on the right side (bright yellow) and are more differentiated (CM
subpopulations). Overlaying the cluster information shows that cells in states 1 and 5 correspond to the SHF and BrMP cells and states 2, 3, and 4
correspond to less and more differentiated CM, shown by percentages in each state. b Barplot indicates the proportion of cells in MP-CM subpopulations
(in percentages normalized to total number of cells) across five pseudotime states (1–5) for CNTRL and HG-exposed E9.5 and E11.5 embryos. c Slingshot-
based pseudotime trajectories calculated from UMAP-pseudotime embedding illustrate the trajectories of MP-CM subpopulations in CNTRL and matHG
exposed E9.5 and E11.5 hearts (merged and split). State identities match the monocle states. Cells on the tree are colored according to cluster identities,
state, and expression levels in pseudotime. The black line represents the developmental trajectory in pseudotime. The red circle in the matHG-exposed
E9.5 trajectory indicates less differentiated CM at State 2, enriched by OFT-CM. d Functional enrichment analysis of differentially expressed genes
between CNTRL vs. matHG exposed States 1 and 5 (progenitor-like) and States 3 and 4 (differentiated CM) using ShinyGO v0.741. Y-Axis indicates the
pathway name or GO-term, X-axis indicates -log10(FDR) for the enriched pathways/terms. The bubble size indicates the number of genes. The color bar
indicates the adjusted p value (-log10(FDR), blue represents a higher value, and red represents a lower value. Statistical tests for differential gene
expression were applied to 4467 cells. MP multipotent progenitor, CM cardiomyocytes, CNTRL control, HG hyperglycemia, BrMP branchiomeric muscle
progenitors, OFT outflow tract, AVC atrioventricular canal, Atr atrial, Ven ventricular.
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and Is1l-Cre+; RosamTmG/+ hearts have demonstrated that Mef2c
protein expression was significantly downregulated in the distal OFT
in response to matHG (Fig. 7g–k, p= 0.015 and 0.003). This may
explain that this anterior SHF marker may denote only a subset of
the Isl1 domain and represent a separate subdomain within the SHF
and needs further investigation under HG setting. Finally, the
quantitative evaluation of HG-sensitive Isl1-GRN and its link to CM

defects led to our proposed “matHG-induced CHD model” (Fig. 7l),
where matHG perturbs Isl1-GRN in the SHF progenitors, leading to
impaired CM differentiation and increases the risk of CHD.

Discussion
In this study, we report two key findings based upon scRNA-seq
data generated in matHG-exposed embryonic hearts. First, we
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have segregated the transcriptional responses in matHG-exposed
hearts at single-cell resolution. Second, we extended the compu-
tational reconstruction of CM differentiation trajectories to
demonstrate that the matHG environment alters the gene reg-
ulatory network in Isl1+ SHF cells and CM subpopulations at the
early stages of heart development. Using in vivo cell-fate map-
ping, we were able to demonstrate that Isl1+ SHF-progenitor cells
are sensitive to matHG exposure, which leads to impaired CM
differentiation and proliferation. The molecular interactions of
Isl1-GRN obtained from single-cell expression data suggests its
regulatory role in matPGDM-induced CHD in fetuses. In sum-
mary, we provide the experimental evidence of developmental
toxicity of matHG on multiple cell lineages and focused our work
on impaired CM function derived from the Isl1+SHF lineage.

Genetic alterations of lineage specifying TFs, growth factors
and signaling molecules are considered to disrupt the spatio-
temporal regulation of complex three-dimensional heart struc-
tures. However, interaction of multiple genetic and
environmental factors is still considered as the primary etiology of
~85% of CHD19,68. Several of these CHD-causing variants are
well studied in murine heart development, but the environmental
etiology remains to be evaluated. Studies have shown that com-
plete deletion of some causative genes results in embryonic
lethality while heterozygous mice are often unaffected69,70.
Recently, disease modeling of GATA4 and TBX5 pathogenic
variants in human iPSC-derived CM and iPSCs-derived EC from
patients with bicuspid aortic valve and calcific aortic valve disease
with NOTCH1 haploinsufficiency have predicted that CHD-
linked GRN is sensitive to gene dosage71–73. These studies
strongly suggest the importance of cell type and gene dosage in
normal cardiac development. Like gene dosage, the impact of the
matHG dosage is also of high clinical relevance. Variability in the
adverse matHG environment in the presence or absence of
genetic variants could similarly influence the disease penetrance
and contribute to phenotypic severity observed in CHD patients.
The clinical manifestations of matPGDM-induced CHD are
variable, but the relative risk of CHD occurrence remains similar
among the offspring of type 1 and type 2 diabetic mothers16,
suggesting HG as a potential teratogen. Infants are born with
septal defects, conotruncal defects and heterotaxy at significantly
higher incidence to mothers with PGDM16,74. However, these
studies fail to differentiate between the contribution of genetic
variants and the maternal environment linked to CHD. Studies
using ex vivo and avian models have confirmed that matHG can
cause cardiac defects74,75. In an experimental model of

matPGDM, we and others have established a gene-environment
interaction and demonstrated an increased rate of matHG-
induced CHD with genetic haploinsufficiency of cardiac
genes13,24,36. Although the chemically (STZ) induced animal
model of matPGDM strongly mimics human type 1 pathology,
the effect of matHG could be applied universally to all preges-
tational diabetes diagnoses in future human-model studies.
Additional mechanistic studies are required (i) to identify HG-
sensitive cardiac regulatory genes and signaling pathways that
may be potential therapeutic targets, (ii) to distinguish the role of
HG-sensitive GRN in first and second myocardial cell lineages,
and (iii) to model HG-sensitive genes related to abnormal cardiac
development and CM dysfunction in the setting of matHG. The
heterogeneity of cardiac lesions in the offspring of diabetic
mothers also suggest a pleiotropic effect of matHG on diverse cell
types. Prior in vivo studies with wt embryonic hearts led us to
compare the breadth of cardiac phenotypes that occur under the
direct influence of the matHG environment24. Notably, the pre-
ponderance of conotruncal CHD, ranging from failure of heart
tube extension to arterial pole alignment defects, including
DORV, and tetralogy of Fallot29, suggest an SHF-origin. How-
ever, the toxicity of matHG on SHF lineage commitment remain
unclear.

Single-cell multi-omics platforms have enabled gene profiling
in humans and mice at an unprecedented resolution to reveal
progenitor cell specification and their fate choice76–79. In this
study, we uncovered transcriptional differences in CNTRL vs.
matHG-exposed E9.5 and E11.5 hearts using 10XscRNA-
sequencing. These two developmental timepoints were chosen
to understand matHG-induced molecular changes after cardiac
looping and segmentation to chambers. The differences in dis-
tribution of cell types between CNTRL and matHG-exposed
mesodermal and neural crest cell populations corroborate the
pleiotropic role of matHG exposure on cardiac development.
Based on the manifestation of CHD in the offspring of the dia-
betic mothers, we found that a population of Isl1+ cells that
marks the SHF show significant gene expression changes with
matHG. SHF gives rise to the OFT, RV, and portion of the atria,
where the expression of Isl1 is regulated as the cells adopt a
differentiated phenotype80. In human studies, loss-of-function
variants in ISL1 alone or in synergy with MEF2C, TBX20 or
GATA4 were shown to contribute to CHD and dilated
cardiomyopathy81. Mutations in ISL1 were found to be associated
with maturity-onset diabetes of the young and type 2 diabetes
patients81,82. In this study, we demonstrated that the Isl1+ MP

Fig. 4 Exposure to matHG impedes SHF-derived cardiomyocyte differentiation. a Schematics represent the trajectory of Isl1+Tbx1+ multipotent SHF and
Tnnt2+Actc1+ CM. Feature plots denote the gene expression profile of Isl1 (SHF-marker) and Tnnt2 (CM-marker) in CNTRL vs. matHG-exposed E9.5 and
E11.5 hearts across five pseudotime states (state 1–5) using Slingshot. Each dot represents single cells and color intensities (red for Isl1 and blue for Tnnt2)
display gene expression levels. The number and percentages of Isl1+Tnnt2+ cells in state 2 (less differentiated CM) and Tnnt2+ cells in State 3 (most
differentiated CM) were quantified and compared between two groups using the chi-square test with Yate’s correction. b Schematics represent the murine
model of diabetes to study SHF-descendants in response to matHG. Isl1-Cre+/− males bred to CNTRL, and STZ-treated matHG RosamT/mG reporter
females. Embryos were collected at E9.5, E11.5 and E13.5 stages to assess the effect of matHG on Isl1-derived CM differentiation. Cre− littermates are used
as an internal control. c Statistical comparison of maternal B.G. levels in CNTRL (n= 9 litters; 217.7 ± 27.7mg/dl) vs. STZ-treated RosamT/mG (n= 11 litters;
471.3 ± 182.9 mg/dl, * indicates p value <0.0001) dams at the time of embryo harvest. d–o Lineage-tracing in CNTRL and matHG-exposed Isl1Cre+;
RosamTmG/+ embryos compare Isl1-derived GFP+Tnnt2+ CM (yellow cells, shown in arrowheads) in E9.5 (di–ei), E11.5 (fi–ii) and E13.5 (ji-oi) hearts.
(dii–oii) Co-immunofluorescence images demonstrate GFP+ (Isl1-derived, in green) and Tnnt2+ (CM, in red) cells in E9.5, E11.5 and E13.5 embryonic hearts
exposed to CNTRL and matHG-environment. Nuclei stained with DAPI are shown in blue. p Quantification of Isl1Cre+; RosamTmG/+ genetically labeled GFP+

cells co-stained with Tnnt2+ CM at three developmental stages (n≥ 3 per timepoint/maternal diabetic condition) exposed to CNTRL and matHG
environment. * Indicates p value= 0.001 in E9.5, p= 0.029 (OFT), and p= 0.007 (Atr) in E11.5, p= 0.003 (OFT) and p < 0.0001 (Ven) CMs in E13.5
CNTRL vs. matHG-exposed embryos. SHF second heart field, CM cardiomyocytes, CNTRL control, HG hyperglycemia, A atria, V ventricle, LV left ventricle,
RV right ventricle, OFT outflow tract, IVS interventricular septum, AoV aortic valve, AVC atrioventricular cushion, DMP dorsal mesenchymal protrusion.
Data presented as mean ± SEM; Statistical comparisons made between CNTRL and matHG groups by unpaired t-test with Welch’s correction using
GraphPad Prism 9. Scale bars: 50 μm (di–ii, dii–iii) and 100 μm (ji–oi and jii–oii). Schematic diagrams in (a, b) created with BioRender.com.
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and Tnnt2+ CM populations subjected to intrauterine matHG
have significant differences in gene expression compared to other
cell types identified in scRNA-seq. The CM is the fundamental
work unit of the heart. Although CM fate is a developmental end
point, a diversity of CM subtypes exists within the heart83. After
ballooning morphogenesis, the expansion of chamber-specific
CM is followed by delamination and trabeculation, which

produce clear distinctions between the Atr-CM, Ven-CM, OFT-
CM, and AVC-CM42. Therefore, we performed subclustering and
pseudotemporal ordering of the MP-CM clusters to assess the
effect of matHG on CM subpopulations. Our data identified gene
expression differences in Six1+ Fst+ BrMP, Isl1+ Tbx1+Osr1+

SHF and Bmp4+Rgs5+ OFT, Bmp2+Rspo3+ AVC, Myl2+Pln+

Ven and Nr2f1+Kcna5+ Atr-CM subpopulations in matHG-
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exposed hearts compared to CNTRL hearts. Notably, matHG-
induced higher expression of Tbx1 in myogenic progenitors of
branchial arches and a reduction in SHF cells suggest spatial
dysregulation of these cardiac progenitor cells may contribute to
the risk of CHD (Supplementary Fig. 14a–g). Monocle2 and
Slingshot-based pseudotime trajectory analysis enabled us to
identify differences in (i) progenitor-like States 1 and 5, (ii)
intermediate and less differentiated OFT, and Ven-CM at State 2
and (iii) differentiated Atr-CM and Ven-CM at States 3 and 4.
State-specific gene-set enrichment analyses have revealed altera-
tions in PPAR, BMP, focal adhesion-PI3K-Akt-mTOR, adipo-
genesis, embryonic stem cell pluripotency pathways, calcium
signaling, myometrial relaxation, and contraction pathways,
HIF1α and p53 signaling, oxidative phosphorylation, pyruvate
metabolism, and glycolysis/gluconeogenesis in response to
matHG exposure. These metabolic changes found in E9.5-E11.5
CM might lead to delayed mitochondrial maturation under
matHG. By comparing the mitochondrial morphology at E9.5
and E13.5 myocytes, studies by Hom et al; have shown that an
open mitochondrial permeability transition pore is essential to
drive the maturation of mitochondria and CM differentiation and
that mitochondrial structure and function is dynamic during
cardiac development84. A recent study by Solmonson et al; have
applied in vivo isotope tracing and metabolomics approach to
reveal compartment-specific differences in glucose-6-phosphate
and other metabolites. Their data reveals the contribution of
maternally derived nutrients to embryonic glucose metabolism
and identified metabolic transition at E10.5-E11.585. This method
will inform our understanding of the developmental con-
sequences of intrauterine metabolic defects on metabolic transi-
tion in the intact fetoplacental unit.

Reconstruction of the Isl1-GRN provides a list of putative
candidate genes/pathways to evaluate gene-environment inter-
action in cardiac progenitor cells and CM differentiation to
facilitate our understanding of matHG-induced CHD. Because
matHG alters chromatin accessibility, and the Isl1/Ldb1 complex
can orchestrate genome-wide chromatin organization to instruct
the differentiation of multipotent cardiac progenitors, we theorize
that matHG exposure impacts long-range chromatin interactions
with Isl1-interacting loci and results in gene dysregulation24,86,87.
Additionally, our genetic cell fate mapping studies imply that the
SHF-derived CM are more HG-sensitive, and that CM differ-
entiation is affected in the setting of matHG exposure. Here, we
also demonstrated significantly reduced proliferation of Isl1+-
SHF-derived CM by E11.5 in matHG exposed embryos compared
to CNTRL, validating prior studies that showed impairments in

CM proliferation at E13.5 in matHG exposed embryos24,39.
Future BrdU pulse-chase experiments will test whether the pro-
liferative capacity of CM precedes the delayed CM differentiation
in reporter mouse lines to affect cardiac function. Several genes
encoding structural proteins associated with both cardiomyo-
pathies and CHD were also found to be dysregulated in matHG-
exposed embryos. For example, reduction of Tpm1+/Nkx2-5+

protein expression was detected in matHG-exposed E11.5 hearts
compared to CNTRL animals, also presented with trabecular
disorganization and thin ventricular wall (Supplementary
Fig. 15a–h).

In addition to transcriptional changes associated with MP-CM,
the scRNA-seq data revealed differential gene expression patterns
in endocardial/endothelial, mesenchymal, epicardial and neural
crest cell lineages. For example, EC dysfunction in mothers with
diabetes, obesity, and hypertension affect placental vascular
supply and has been shown to harm fetal circulation and devel-
opmental pathways that can persist after birth23,88–90. In this
study, we also performed DEG and functional enrichment ana-
lysis for EC, FM, EP, and NC clusters in CNTRL and matHG-
exposed hearts (Supplementary Data 1–4). Our data suggested
transcriptional changes in the genes associated with endothelial
dysfunction such as in extracellular matrix (ECM) organization,
angiogenesis, tube formation, OFT morphogenesis and heart
valve development (Supplementary Fig. 16a–i and Supplementary
Fig. 17a–g). The EC-FM genes including Notch1, Klf4, TGFb,
Snai2, Sox9, Vcan, Twist2, Pdlim3, Gata6, Bmp4, Msx1, and Pax3
were downregulated with matHG, and have been implicated in
endothelial to mesenchymal transition (EMT), mesenchymal cell
differentiation22,24,39. Significant reduction of FM cells and
downregulation of EMT genes - Vcan Sox9, Postn, and Bmp/Tgfb
signaling were detected in matHG-exposed E9.5 and E11.5 hearts
(Supplementary Fig. 16e–i). Proepicardium-derived cells exhibit a
migratory event at E9.5 in mice and are known to invade the
myocardium and the endocardial cushions to generate a majority
of vascular SMC and cardiac fibroblasts in the heart91,92. In the
Tbx18+ EP cluster, we found that the expression ofWt1, Dcn, and
Upk3b was significantly downregulated with matHG and Wnt
signaling inhibitor, and Sfrp1 was upregulated at E9.5 (Supple-
mentary Fig. 17e). Quijada P et al.; have demonstrated that EP-
EMT is followed by an activation of Fn1 expression is necessary
for ECM production and cell migration92. By immunohisto-
chemical staining, we showed that matHG reduced Fn1 protein
expression in E13.5 hearts (Supplementary Fig. 17f). Thus, EP
maker-gene expression data implies potential migratory defects in
proepicardial derived mesothelial cells in response to matHG.

Fig. 5 MatHG impairs cardiomyocyte proliferation and lineage specifying transcription factors. a–h Immunofluorescent co-staining of PHH3 (red) and
GFP (green) show Isl1-derived CM proliferation in CNTRL vs. matHG exposed E9.5 and E11.5 Cre− (mT) vs. Cre+ (mG) cardiac tissues (n≥ 4 embryos per
timepoint/maternal condition). The GFP+PHH3+ cells are quantified in (i), presented on a log10 scale. Nuclei stained with DAPI are shown in blue. Data
presented at mean ± SEM. Statistical comparisons made between CNTRL and matHG exposed E9.5 (p value= 0.072) and E11.5 (p value= 0.002) embryos
by unpaired t-test using GraphPad Prism 9, ns non-significant and * indicates two-tailed p value < 0.05. j Cell count and regression analysis on CM
subtypes (OFT, AVC, Atr and Ven-CM) using Seurat reveal count in cell-cycle phases (G1, S, and G2/M) in E9.5 and E11.5 embryonic hearts exposed to
CNTRL vs. matHG. k–n Representative fluorescence images show the endogenous GFP expression in CNTRL and matHG exposed E9.5 and E11.5 Isl1Cre+;
RosamTmG/+ (mG) embryos and in microdissected hearts. o Schematics show whole hearts dissociated into single cells by enzymatic digestion. GFP+ and
GFP− cells were sorted using FACS and relative gene expression levels (Log10 fold change) measured by SYBR green-based qRT-PCR analysis.
p Comparisons between CNTRL GFP+ vs. GFP− cells and matHG GFP+ vs. GFP− cells show enrichment of GFP and other SHF/CM markers (Isl1, Tbx1,
Fgf10, Mef2c, Tbx20, Hand2, Nkx2.5, Myl2 and Cited2). Colors indicate gene names. Comparative gene expression analysis was performed in CNTRL GFP+

vs. matHG GFP+ cells (Isl1-derived cells) at the E9.5 and E11.5 stages. At least three independent embryos/timepoint/maternal diabetic status were used
for qRT-PCR analysis. Data presented as Log10 (fold change) normalized to endogenous Gapdh. Statistical comparisons between groups were made in
GraphPad Prism 9. CNTRL control, HG hyperglycemia, A atria, V ventricle, LV left ventricle, RV right ventricle, AVC atrioventricular canal, IVS
interventricular septum, OFT outflow tract, FACS Fluorescence-Activated Cell Sorting, qRT-PCR quantitative real-time polymerase chain reaction, SHF
second heart field, CM cardiomyocytes. Scale bar: 50 μm (ai–di, aii–dii), 100 μm (ei–hi, eii–hii), 100 μm (ki, li), 50 μm (kii–lii), 1 mm (mi, ni), and 200 μm
(mii, nii).
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Apart from CHD, it is well established that matPGDM is sig-
nificantly linked to neural tube defects in embryos and neu-
ropsychological deficits in infants93. Here, we observed (i)
significantly higher expression of Dlx2+, and Dlx5+ NC cells in
matHG-exposed E9.5 hearts, which was diminished by E11.5 and
(ii) downregulation of Pax3 expression in matHG-exposed E11.5
embryos compared to CNTRL (Supplementary Fig. 17e, g). A

recent scRNA-seq study by Soldatov R et al., in E8.5–E10.5
Wnt1Cre/R26RTomato mouse embryos highlighted the branching
trajectory of differentiating NC cells, where expression of Dlx6 is
followed by activation ofMsx2, Hand2, and other cardiac markers
including Hand1 and Gata694. Therefore, further cell fate-
mapping studies in Wnt1 lineage are required to explain the
overabundance of NC-derived mesenchymal population in
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matHG-exposed E9.5 hearts and to determine whether a common
pathway leads to both conotruncal CHD and neural tube defects.
The unidentified population of the cells (in cluster 11) was found
to express primarily immune cell marker genes. However, there
were additional markers suggested that this cluster might con-
stitute doublets or multiplets. Analysis of this cell type, if deter-
mined not to be doublets, would be interesting from an immune
response standpoint. However, its characterization is beyond the
scope of this study.

While this study demonstrates matHG mediated changes in
mouse cardiac transcriptomes at the single-cell level, we recognize
that this study has several limitations. For single-cell tran-
scriptomics, pooled samples were derived from embryos regard-
less of CHD status. In the early stages of development, there are
not many structural defects that are visible without sectioning
and staining the embryos to perform this stratification. Thus,
some DEGs that were responsive to matHG may not have a direct
role in causing CHD and might serve as a modifier. Conversely,
the differential impact of matHG on CHD (cell type transition,
DEGs) may have been under/overestimated with mixed samples.
The second key limitation is that the data was obtained from a
single litter for each sample. This limitation affects our ability to
determine the effect of varying levels of matHG (multiple litters;
HG dosage) on the development and severity of CHD. While
single-cell transcriptional changes upon matHG exposure pro-
vided us a high-resolution view of the embryo’s cellular response
to this teratogen, they do not address the spatial transcriptional
programs within the important anatomical context, such as in the
OFT or chambers, nor directly address the potential contribution
of cellular crosstalk leading to conotruncal and septal defects.
Studies at earlier developmental time points and expanding on
the number of CNTRL and matHG exposed hearts may prove
essential in identifying the full spectrum of CHD. The tran-
scriptional profiles of SHF progenitor cells and their effect on CM
differentiation were further evaluated by cell-lineage-based stu-
dies. However, follow-up studies that examine the contribution of
EP, EC, and NC-derived signals to drive CM differentiation upon
matHG exposure will provide mechanistic insights into the
environmental basis of CHD. Another limitation of the scRNA-
seq analysis is processing power, as analyzing individual cells in a
population requires hundreds of thousands to millions of single
cells to be processed in a high throughput manner. While we used
common markers to classify MP, CM, EC, FM, EP, and NC
clusters, the ability to understand the complexity of a cell
population requires careful analysis from all aspects. Therefore,
the subpopulation of cells that we were unable to assign an
identity would need further characterization. Future studies are
required to carefully dissect the role of fetoplacental concentra-
tion gradient necessary for glucose transfer/utilization during the
early stages of embryonic development. Better insights into

matHG and fetal B.G. levels will provide a robust quantitative
measure in defining the abnormal cardiac outcome in the infants
of diabetic mothers. Overall, our findings provide mechanistic
insights into embryonic heart defects resulting from matHG,
consistent with previous studies that revealed matPGDM-exposed
offspring have a higher risk of conotruncal heart defects. It is vital
to collate the cell-type-specific transcriptomic and epigenomic
signatures in matHG-exposed embryos at multiple stages of
cardiac development. These findings will elucidate how crosstalk
between matHG and Isl1-GRN increase the risk of CHD in
patients harboring identical genetic variants.

Methods
Generation of chemically induced maternal pre-gestational diabetes mellitus
(matPGDM) murine model. Wildtype (wt) C57BL/6 J mice were purchased from
Jackson Laboratory (Stock Nos: 000664) for this study. A subset of six- to eight-
week-old female mice (~15–18 g body weight) were used to chemically induce type
1-like matPGDM. Mice fasted for an hour before treatment and Streptozotocin
(STZ, Fisher Scientific; NC0146241), dissolved in 0.01 mol/l citrate buffer (pH 4.5)
was intraperitoneally injected at 75 mg/kg/bodyweight for 3 consecutive days,
following a previously published protocol24. Seven days post-STZ treatment, mice
fasted for ~8 h during the light cycle, and maternal B.G. levels were tested using the
AlphaTrak veterinary blood glucometer calibrated specifically for rodents from tail
vein blood (Abbott Laboratories). Blood glucose data were documented before
initiating the timed breeding and during embryo collection. Mice with fasting
blood glucose ≥200 mg/dl (11 mmol/l) were defined as HG status as previously
published24. If the mice did not achieve the B.G. threshold after seven days, B.G.
was re-tested after fourteen days of STZ injection. After confirming the HG status,
mice were used for timed breeding. All the experimental mice were housed at the
animal facility of Nationwide Children’s Hospital (NCH), complied with all rele-
vant ethical regulations for animal testing and research accordingly to Abigail
Wexner Research Institute’s Animal Resource Center policies, and the NIH’s Guide
for the Care and Use of Laboratory Animals (National Academies Press, 2011). All
animal research has been reviewed and approved by an Institutional Animal Care
and Use Committee (protocols: AR13-00056 and AR20-00029).

Dissection of mouse embryos exposed to maternal control and hyperglycemic
environment. STZ-treated (matHG) and non-STZ-treated (CNTRL) females were
timed bred overnight with wt C57BL/6 J males. Mice were maintained on a 12-hour-
light/dark cycle, and in the morning, males and females were separated. When a vaginal
plug was observed it indicated embryonic day (E)0.5. Pregnant mothers were monitored
regularly and sacrificed for embryo harvest at E9.5 and E11.5 (for scRNA-seq analysis)
and E9.5-E13.5 timepoints (for immunostaining purposes). The embryological staging
and histological sectioning were followed as described by Savolainen, et al.25.

Tissue collection and workflow of single-cell RNA-sequencing. To prepare
scRNA-seq samples, the cardiogenic region was micro-dissected from multiple E9.5
and E11.5 embryos obtained from wt STZ-treated matHG and untreated CNTRL
female mice. Maternal B.G. levels were tested before harvesting embryos to ensure
diabetic status in CNTRL and STZ-treated females. The entire litter (n ≥ 6 embryos
per timepoint per maternal condition) was used to prepare single cells. First, whole
embryos were removed from the yolk sac, dissected in diethylpyrocarbonate-
treated 1X ice-cold PBS, and placed in 1XPBS. Pooled hearts/timepoint/maternal
condition were incubated in 1 mg/ml Collagenase II (Worthington; LS004176) and
1X TrypLE™ Select Enzyme (ThermoFisher Scientific, #12563029) for 15 min (for
E9.5 embryos) and 25 min (for E11.5 embryos) at 37 °C dry bath with occasional
stirring every 5 min for complete dissociation. The Collagenase/TrypLE solution

Fig. 6 Perturbations in the Isl1-gene regulatory network are intrinsic to matHG-induced CHD. a, b Identification of dysregulated genes in matHG-
exposed SHF and reconstruction of Isl1-GRN with 34 proteins with known genetic interactions and experimental evidence using STRING database, and
Black B, Semin Cell Dev Biol (2007)24 mapped for Mus musculus and Homo sapiens. STRING output of the identified dysregulated TFs show predicted
associations of Isl1-interacting proteins with protein–protein interaction (PPI) enrichment p value <1.0e-16. Network stats are highlighted, and line thickness
indicates the strength of evidence data in the STRINGv11.5 database. Isl1 is highlighted in the PPI network (in red). c Species-specific enriched GO terms
(biological processes), enriched pathways (WikiPathways database) and disease-associated genes (DISEASES database) are visualized. Count and
strength of network associated with GO-terms, pathways, and disease-associated genes sorted as descending negative FDR adjusted P value of enrichment
analysis. d Violin plots generated through Ryabhatta app show normalized UMI of Isl1-GRN components in CNTRL vs. matHG-exposed SHF at E9.5. This
data (as of version 4.0 of Seurat) is log normalized expression from https://natian-and-ryabhatta.web.app/plotting-options.html#violin-plot and plots
show median (center, horizontal line), 5th and 95th quantiles values. Show points on the Violin plot option display the cells that show expression present
within the cluster. * Indicates DESeq2 Padjusted (padj) value ≤0.05. CNTRL control, matHG maternal hyperglycemia, SHF second heart field, PPI
protein–protein interaction, GO gene ontology, GRN gene regulatory network, FDR false discovery rate, UMI Unique Molecular Identifier, scRNA-seq
single-cell RNA sequencing.
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was quenched immediately with complete DMEM media supplemented with 10%
FBS and pelleted down at 1000 rpm for 5 min at 4 °C. Cell pellets were dissolved in
0.04% bovine serum albumin, BSA (Fisher Scientific, #BP9703100) made in PBS
and filtered through a 40μm cell strainer (BD Falcon, #352340), centrifuged at
1000 rpm for 5 min at 4 °C, and resuspended in 50 μl 0.04% BSA/PBS. Cell
viabilities (>85-92%) were assessed using the Trypan blue (1450013; Bio-Rad)
exclusion method on CountessTM II FL Automated Cell Counter (ThermoFisher;

AMQAF1000). Single-cell libraries targeting ~4000 cell recovery/sample were
generated using 10X Genomics Chromium controller according to the manu-
facturer’s instructions using Chromium Single Cell 3′ Reagent Kit (v2 chemistry;
PN-120237). The cDNA and libraries were generated using the Chromium Single
Cell 3′ Library & Gel Bead Kit v2 and Chromium i7 Multiplex Kit (10X, PN-
120237, PN-120262) following the manufacturer’s protocol. The quality and con-
centrations of cDNA from each sample were measured using High Sensitivity
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D5000 ScreenTape® on Agilent 2200 TapeStation. After adjusting four samples
(CNTRL vs. matHG-exposed E9.5 and E11.5) to similar concentrations, single-cell
cDNA samples were processed for library preparation and quantified using High
Sensitivity D1000 ScreenTape®. Single-cell RNA-seq libraries were sequenced on
the Illumina Hiseq4000 platform with 2 × 150 bp read length at the Steve and
Cindy Rasmussen Institute for Genomic Medicine (IGM) in NCH. CNTRL and
matHG-exposed E9.5 libraries were pooled and sequenced in the same lane to
avoid batch effects. Similarly, CNTRL and matHG-exposed E11.5 single-cell
libraries were pooled and sequenced in one lane to avoid batch effects. Sequencing
parameters were selected according to the Chromium Single Cell v2 specifications.
All libraries were sequenced to a mean read depth of at least 50,000 reads per cell.

Single-cell RNA-seq data processing, quality control and unsupervised clus-
tering. We used the Cell Ranger ‘mkfastq’ function to demultiplex and convert Illu-
mina ‘.bcl’ output into fastq files. We mapped the fastq reads to the mouse genome
mm10 (GRCm38.p6) and gene annotation downloaded from 10X Genomics (https://
cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz) using the Cell
Ranger ‘count’ function and generated the gene-count matrix output. The Cell Ranger
output was used to create a Seurat object using the R Shiny app Natian (available
through www.singlecelltranscriptomics.org). The data processing pipeline and filtering
cutoffs are described in Supplementary Fig. 1. Seurat object creation and processing
steps described below were performed using Natian95. Natian is graphical user inter-
phase used to run the command line functions available through the R-package Seurat.
We created Seurat objects for each sample and added ‘DevStage’ and ‘Maternal’ meta
information to each object using ‘Add Timepoint/Treatment’ button in Natian to
define the developmental stage and the diabetes state of the dam, respectively. Then,
the low quality cells or those representing doublets were excluded from our analyses
using the following cutoffs: Number of genes expressed (nFeature_RNA) set to 500-
7000 and percentage of mitochondrial gene expression relative to the total expression
of the cell (percent.mt) ≤10%, we obtained 2823, 3239, 3836 and 3229 cells from
CNTRL-E9.5, CNTRL-E11.5, matHG-E9.5, and matHG-E11.5 respectively. Gene
expression was normalized, scaled and 50 principal components (PCs or dims) were
calculated from the expression of the highly variable genes using Natian. Using a
heuristic approach based on the elbow plot between the standard deviation calculated
from each dim, we chose 20-25 dims for each sample to perform dimensionality
reduction based on the Uniform Manifold Approximation and Projection (UMAP)96

algorithm using Natian. Cells were clustered using the Louvain algorithm using a
resolution determined based on the “clustree” diagram generated through Natian.
Next, we combined the data using regularized negative binomial regression
(‘SCTransform’ function in Seurat) and canonical correlation analysis (CCA) based
integration in Natian. We also tried integration without ‘SCTransform’ function to
examine the over-correction of cell types. There was no significant difference in the
clustering of cells based on the two approaches. We performed dimensionality
reduction and clustering of cells on the integrated data using a very broad clustering
parameter (resolution= 0.2).

Cell type identification, sub-clustering analysis and comparison to de Soysa
et al., wt embryonic scRNA-seq data. For scRNA-seq data, marker genes were
identified for individual clusters using a minimum percent expression of 50% and
log2fold change threshold of 0.25 (log2FC.threshold). From each cluster, the top 5
markers were selected based on average log2FC and used to classify each cluster in
Ryabhatta (available at www.singlecelltranscriptomics.org). The clusters were also
cross-referenced with known cell-type-specific marker gene expression using
publicly available wildtype scRNA-seq datasets at other embryonic time points42,43.
All sub-clustering analyses (on multipotent progenitor cell and CM subpopula-
tions) were processed using Ryabhatta using a similar number of principal com-
ponents and resolution parameters.

To identify cell types and sub-cell-types populating individual clusters we used
previously published embryonic heart single-cell data from E9.25 wtmice (GSE126128).
The count matrix file GSE126128_AllTimePoints_WT_10X.csv.gz was downloaded
from Gene Expression Omnibus. The meta data information containing cluster
information, and time point information was downloaded from UCSC Cell Browser
(https://cells.ucsc.edu/?ds=mouse-cardiac). The two datasets were used to generate a
Seurat object using Natian. In Natian, the ‘load the gene count matrix’ button was used
to start the process of creating the Seurat object. The data was loaded with the name
GSE126128 and used to create a Seurat object. Then, the ‘Add time point/treatment
information’ button was used to select the option to upload data using ‘Load meta data
from file’. The meta data information file from UCSC Cell Browser was then used to
populate the meta data slot of the Seurat object. Next, quality control is performed using
‘Perform initial QC analysis’. No cells are filtered as the data is already processed to
remove outliers. Following this, a standard analysis of single-cell data using
normalization, scaling data, and principal component analysis is performed using the
‘Filter cells and perform PCA’ button. We then used 20 dims (principal components)
and a resolution of 0.5 to perform dimensionality reductions using UMAP and tSNE
methods and cluster cells using the default Louvain algorithm using the ‘Use PCs and
cluster cells’ button. To add sub-cluster data for the multipotent and myocardium
populations, we used corresponding meta data files from UCSC Cell Browser. These
two files were combined and used to update the ‘meta.data’ slot of the Seurat object
using the ‘Resume processing Seurat file’, and ‘Add time point/treatment information’
button. This file was saved using the ‘Save Curr File’ button as an ‘.RDS’ file.

This ‘.RDS’ file was opened using Ryabhatta and split into 3 timepoints in the
‘meta.data’ slot using ‘Edit Meta data’ > ‘Create subset objects’. The E9.25 Seurat
subset object was integrated with the data generated by us using Natian. For the
integration, we used ‘Resume processing Seurat file’ button to load the individual
Seurat ‘.RDS’ files. Then we used the ‘Integrate Seurat files’ button to select the
E9.25 Seurat object from de Soysa et al. (GSE126128) and our data labeled
Manivannan et al., 2022 (GSE193746). With ‘Perform SC transformation on
individual data’ in the app selected, we integrated these two objects. The app
performed a default PCA and dimensionality reduction analysis to yield an
Integrated Seurat object. This Integrated Seurat object was then imported into
Ryabhatta to generate Supplementary Fig. 2.

Prospective and retrospective analysis of the number of cells required to
capture rare cell types. We used SCOPIT (https://alexdavisscs.shinyapps.io/scs_
power_multinomial/) for power analysis to evaluate the number of cells needed to
be captured in each sample44. For the prospective analysis, we changed the number
of cells required parameter while keeping the probability of capture and frequency
of the rarest cell type at 1% in 1 cluster. We then plotted the data as Cells per
individuum (per individual sample) against the minimum number of cells per
target cell type per individuum (per individual sample). We performed this analysis
with 99% probability and 95% probability of capturing the set number of cells.
Based on this, we calculated the expected number of a rare cluster (that occurs at
1% of the population) that can be captured at 95–99% probability.

For retrospective analysis, we computed the percentage of each cell type post
marker identification and clustering analysis. In this case, we used the population
frequency of cell types observed in control E9.5 as our observed frequency of each
cluster. We calculated the probability of capturing at least 20 cells of the lowest
frequency cluster (immune cells). Having captured 90 immune cells by sequencing
2741 cells after removal of outliers showed that the number of cells captured was
sufficient to capture rare cell types with an observed frequency of ~1%.

Genotype-free demultiplexing the scRNA-seq data using “souporcell”. To
separate pooled embryonic hearts post hoc sequencing, we used the genotype-free
demultiplexing tool ‘souporcell’45. This tool uses single nucleotide polymorphisms

Fig. 7 Molecular dysregulation in SHF underlies matHG-mediated risk of CHD. a–f Co-immunofluorescence staining shows Hand2 and Nkx2-5 (red,
shown in insets) protein expression overlaying with GFP expression (green) driven by Isl1 in E9.5 hearts subjected to CNTRL and matHG conditions. The
GFP+Hand2+ cells in E9.5 OFT in CNTRL and matHG-exposed embryos are shown in aii, bii (yellow arrowheads). GFP+Nkx2-5+ cells were shown in E9.5
OFT and RV-CM exposed to CNTRL and matHG environment (dii, diii, eii, eiii, yellow arrowheads). The relative fluorescence intensities of GFP+Hand2+

and GFP+Nkx2-5+ quantified in (c) (p value= 0.0005), and (f) (p value= 0.0121). Nuclei stained with DAPI are shown in blue. g, h Co-
immunofluorescence staining of Mef2c (red) and Tnnt2 (green) protein expression in CNTRL vs. matHG-exposed E9.5 wt hearts. Yellow and white solid
lines in (g) indicate distal and proximal OFT. White dotted lines in gii and hii indicates high magnification images shown in giii and hiii, respectively. Nuclei
stained with DAPI are shown in blue. (i, j) Mef2c (red) and GFP (green) protein expression shown in E9.5 Isl1Cre+; RosamTmG/+ (mG) hearts exposed to
CNTRL and matHG environment. Yellow arrowheads and dotted lines indicate the downregulation of Mef2c in the OFT. The relative fluorescence
intensities of Mef2c+ and GFP+Mef2c+ cells quantified in (k) (p value= 0.0151 and p value= 0.003, respectively). n≥ 3 embryos/group in which multiple
sections from each were used for quantification. Statistical comparisons made between CNTRL and matHG groups by unpaired t-test with Welch’s
correction using GraphPad Prism 9. Data presented as mean ± SEM and * Indicates two-tailed p value <0.05. l The proposed “matHG induced CHD model”
shows molecular dysregulation in Isl1-GRN components leads to impairments in CM differentiation and increases the risk of CHD (schematics created with
BioRender.com). A yellow asterisk indicates ventricular septal defects observed in matPGDM exposed embryos. CNTRL control, matHG maternal
hyperglycemia, OFT outflow tract, RV right ventricle, AS aortic sac, CM cardiomyocytes, CHD congenital heart defect, GRN gene regulatory network,
PGDM pregestational diabetes mellitus. Scale bars: 100 μm (ai, bi), 20 μm (aii–iii, bii–iii, di–iii, ei–iii), and (gi–ji, gii–jii and giii–jiii): 50 μm.
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(SNPs) identified from the single-cell transcriptome, the ambient RNA signal, and
the number of sub-samples (clusters) pooled together to demultiplex samples.
Souporcell uses the assumption that allele counts are derived using a binomial
distribution of the alternate alleles shifted by the ambient RNA signal. The model is
used to solve for the maximum-likelihood soup fraction with gradient descent. We
used the souporcell singularity image from shub://wheaton5/souporcell and use the
souporcell_pipeline.py script with the expected number of clusters to 8 for each
sample, the --max_loci at 6144 (three times the default) to infer individual samples.

Each sample (CNTRL E9.5, CNTRL E11.5, matHG E9.5, matHG E11.5) was run
independently through the souporcell process. The sample assignments from
souporcell for each genotype (0–7) were then added to the corresponding Seurat object
using Natian (Add Timepoint/Treatment button). We note that the genotypes for
individual samples are different, and the same numbers (genotype 0–7) used to
represent a genotype in two different samples do not indicate the same genotype.

Differential gene expression, Gene Ontology enrichment, and protein–protein
interaction analysis. Cluster-specific differential gene expression analysis was per-
formed between embryonic developmental stage and maternal diabetic status. Within
each group, we combined counts obtained for each gene to produce three in silico
replicates of the gene vs. expression count matrix. These in silico replicates were then
analyzed using DESeq2 to identify differentially expressed genes between various
conditions97. The statistical test for DESeq2 (pseudobulk) is the Wald test, with the P
value adjusted for multiple testing using the Benjamini and Hochberg method. Owing
to the high drop-out rate observed in the 10X drop-seq method, our approach
combining counts reduces noise and brings the data closer to bulk-RNA seq data
which are conventionally used in the DESeq2 pipeline97,98. The GO annotation of the
up/down-regulated DEGs was performed using ShinyGO v0.741 software, a web-based
graphical gene-set enrichment tool99. The biological process, affected by matHG
exposure was represented as fold enrichment, the number of genes in each GO-term
with -log10(FDR) values <0.05. Protein–protein Interaction (PPI) networks (mouse
and humans) of identified Isl1-interacting proteins (n= 34 proteins) were created
using STRINGv11.5. STRING database (https://string-db.org) is a curated knowledge
database of known and predicted protein–protein interactions62. Most of the Isl1-GRN
proteins were retrieved from published literature30 and demonstrated an established
link with each other in the interaction network.

Pseudo-time trajectory analysis. Cell trajectory analyses were performed on
matHG-exposed E9.5 and E11.5 vs. CNTRL E9.5 and E11.5 MP and CM sub-
populations using the Monocle 2 (http://cole-trapnell-lab.github.io/monocle-release/)
in Ryabhatta. The pseudotime data was further used to generate smooth trajectory
curves using Slingshot version 1.8.0 packages56,57. Differentially expressed genes were
determined using the FindAllMarkers function in the Seurat package implemented in
Ryabhatta for temporal ordering of these cardiac cells along the differentiation tra-
jectory in response to CNTRL vs. matHG environment.

Briefly, to evaluate the temporal changes to the cell type observed using Natian
processing and marker-based annotation, we extended dimensionality reduction
analysis by drawing from Pseudotime analysis using monocle in Ryabhatta and
UMAP-reduction performed in Natian using Seurat. We used Ryabhatta (running
monocle2 functions) to perform pseudotime analysis, which involves a
dimensionality reduction step using the DDRTree algorithm. The dimensions of
this reduction are called “Component_1” and “Component_2” (analogous to
UMAP_1 and UMAP_2). In this case, Component 1 closely tracks “pseudotime”
calculated by the “orderCells” function in monocle254. Therefore, we created a new
dimensionality reduction using the calculated “pseudotime” as the actual
“Component_1” and used the UMAP_1 dimension from the RunUMAP function
(Seurat) reduction as “Component_2”. The goal of this approach is to identify the
relative changes of cell types tracked using UMAP_1 with the Component_1
(pseudotime) from monocle254. To estimate the trajectory of the cells along with
this dimensionality reduction, we used Slingshot. This analysis permitted tracking
the different sub-clusters identified in the MP and CM clusters.

Second heart field cell-lineage tracing in a murine model of maternal
hyperglycemia. For Isl-1-derived cardiac cell-lineage tracing studies, we purchased
Isl-1Cre+/− male mice and double fluorescent RosamT/mG reporter mice from
Jackson Laboratory (Stock Nos: 024242 and 007676). Diabetes was chemically
induced in females as described earlier and maternal B.G. was tested fourteen days
after STZ treatment. Mice with fasting B.G. ≥ 250 mg/dl were defined as HG in
RosamT/mG strain. Adult males were bred with 6–8 weeks old STZ-treated and
CNTRL homozygous RosamT/mG female mice. Following timed breeding, CNTRL
and matHG-exposed Isl-1Cre+; RosamTmG/+ embryos at E9.5, E11.5, and E13.5
were harvested for histologic analysis. Cre- littermates were used as internal con-
trols. TdTomato and GFP fluorescence intensities of whole embryos were captured
using an Olympus BX51 microscope and matched with Cre genotyping profile.
Embryos were fixed in 4% paraformaldehyde for 24 h and changed to PBS the next
day and sent to Morphology Core at NCH for embedding and transverse (7 μm)
sectioning.

Immunofluorescence and immunohistochemical staining. For immuno-
fluorescence (IF) staining, E9.5, E11.5, and E13.5 paraffin-embedded cardiac

sections were deparaffinized using xylene and grades of ethanol, followed by
antigen retrieval using citrate-based Antigen Unmasking solution (H-3300, Vector
laboratories) using standard protocols24. After permeabilization and blocking with
1% BSA in PBS-Triton X-100 for 1 hour, tissue sections were probed overnight at
4 °C with primary antibodies including rabbit and mouse α-GFP (1:250; Abcam,
ab290 and 1:100; sc-9996), mouse α-Cardiac Troponin T (1:250; Abcam, ab8295),
rat α-Endomucin (1:250; Millipore, MAB2624), rabbit α-Sox9 (1:250, Abcam,
ab185230), rabbit α-Periostin (1:250; Abcam, ab14041), rabbit α-Transgelin or
SM22-α (1:250; Abcam, ab14106), rabbit α-Fibronectin (1:250; Abcam, ab2413),
rabbit α-Hand2 (1:250, Abcam, ab200040), rabbit and goat α-Nkx2-5 (1:250; CST-
E1Y8H, 8792 and 1:100; sc-376565), rabbit α-Mef2c (1:250, CST, D80C1), mouse
α-Tropomyosin (1:50; Clone CH1 DSHB) and mitosis marker, rabbit α-phospho-
Histone H3 (PHH3; 1:250, EMD Millipore, 06-570). Following a series of washing,
the sections were incubated with a donkey α-rat, α-rabbit, and α-mouse secondary
antibodies conjugated to Alexa Fluor 594/488 for 1 hour at room temperature in
the dark. After washing, sections were counterstained with Vectashield HardSet
Antifade Mounting Medium with DAPI (Vector laboratories). The images were
visualized using an Olympus BX51 fluorescence microscope.

For immunohistochemical (IHC) staining, embryonic heart sections were
deparaffinized in xylene and rehydrated in grades of ethanol and 1 × PBS. Briefly, after
antigen retrieval tissue, sections were incubated with 3% H2O2 diluted in water at room
temperature for 10min to quench endogenous peroxidase activity and blocked by 5%
normal goat serum in 1 × TBS containing 0.1% Tween-20 (Sigma-Aldrich) for 1 h at
room temperature to avoid nonspecific binding per manufacturer’s protocol. Following
this, sections were incubated with rabbit α-Tbx1 (1:200; Thermo Scientific, 34-9800)
diluted in SignalStain Antibody Diluent (8112, Cell Signaling Technology) overnight at
4 °C. Normal IgG served as a negative control. Next, sections were washed with 1 ×
TBST and incubated with SignalStain Boost IHC Detection Reagent (HRP, rabbit,
8114, Cell Signaling Technology) for 30min at room temperature. Sections were
washed three times with 1 × TBST and visualized using the SignalStain DAB Substrate
Kit (8059, Cell Signaling Technology) and imaged using Zeiss AxioImagerA2. All
staining experiments were performed at least in three independent embryos from
CNTRL and matHG exposure groups.

Tissue dissociation and GFP+ cell sorting from Isl1-RosamT/mG embryonic
hearts. The embryos were harvested at the E9.5 and E11.5 stages. CNTRL and
matHG-exposed hearts were isolated from mice carrying both tdTomato and GFP
fluorescence signals. Isolated hearts were digested with collagenase and 0.25%
trypsin-EDTA into single cells, and GFP+ and GFP− cells were sorted using FACS
(FACSAria™, Becton Dickinson) at the NCH flow cytometry core. Sorted cells were
collected into TRIzol (15596018, ThermoFisher Scientific) and stored at −20 °C
until RNA extraction. Sorting experiments were performed on at least three pooled
embryos per timepoint per maternal condition. At least three sets of pooled
embryos for all conditions were used for qRT-PCR assay.

RNA purification and quantitative real-time PCR. RNA was extracted from flow-
sorted GFP+ and GFP− cell populations exposed to CNTRL and matHG envir-
onment using TRIzol Reagent followed by chloroform-isopropanol extraction and
purification as described earlier24. Then RNA was quantified spectro-
photometrically and 500ng-1μg of total RNA was used for reverse transcription
using the SuperScript VILO cDNA Synthesis Kit (11754-050, ThermoFisher Sci-
entific). SYBR Green-based qRT-PCR was performed for SHF (Isl1, Nkx2-5, Tbx1,
Tbx20, Mef2c, Fgf10, Hand2), and CM (Myl2, Cited2) markers using StepOnePlus™
Real-Time PCR System (Applied Biosystems). Mean relative gene expression was
calculated after normalizing Ct values to Gapdh using the ΔΔCt method and
presented as Log10(Fold change). Three independent replicates were performed
after pooling three embryos per timepoint per maternal condition. Oligonucleotide
sequences of these genes are provided in Supplementary Table 2.

Statistics and reproducibility. All the experiments were performed at least in
triplicate and data are presented as the mean ± standard error of the mean (SEM)
(see figure legends for additional information). Except for scRNA-seq data, sta-
tistical significance between CNTRL and matHG-exposed groups was determined
by two-tailed unpaired t-test with Welch’s post-hoc correction, Fisher Exact test,
and Chi-square test with Yate’s correction using GraphPad Prism 9 software
package and https://www.graphpad.com/quickcalcs/contingency1/. Comparison
between two groups were considered statistically significant when the two-tailed p
value was ≤0.05. Image J (NIH) was used to quantify the IF and IHC images and all
the plots were generated by GraphPad Prism 9.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The single-cell RNA sequencing data underlying this study have been deposited in NCBI
Gene Expression Omnibus (GEO) database (GSE193746). The genotype data (vcf files)
has been submitted to figshare repository. Th source data underlying Figs. 1e, 2c, 3b, d,
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4c, p, 5i-j, p, 7c, f, k have been provided in Supplementary Data 10-21. Figure 6d has been
plotted from E9.5 scRNA-seq data, using the Shiny apps https://natian-and-ryabhatta.
web.app/plotting-options.html#violin-plot”, provided in the NCBI GEO accession
(GSE193746). Additional materials are available from the corresponding author upon
request.

Code availability
All the analyses were performed using standard protocols with previously described R
packages44,45,56,57. The R Shiny apps, Natian and Ryabhatta, developed to process,
analyze, and visualize our single-cell transcriptomic datasets are publicly available at
www.singlecelltranscriptomics.org 40. We have also compiled a free (open access) manual
for all users found in https://doi.org/10.5281/zenodo.6914947. The R scripts are available
upon request.
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