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GAWMerge expands GWAS sample size and
diversity by combining array-based genotyping and
whole-genome sequencing
Ravi Mathur 1,10, Fang Fang 1,10, Nathan Gaddis1, Dana B. Hancock 1, Michael H. Cho 2,3,

John E. Hokanson4, Laura J. Bierut5, Sharon M. Lutz6, Kendra Young 4, Albert V. Smith7,8, NHLBI Trans-Omics

for Precision Medicine (TOPMed) Consortium*, Edwin K. Silverman2,3, Grier P. Page 1,9 &

Eric O. Johnson 1,9✉

Genome-wide association studies (GWAS) have made impactful discoveries for complex

diseases, often by amassing very large sample sizes. Yet, GWAS of many diseases remain

underpowered, especially for non-European ancestries. One cost-effective approach to

increase sample size is to combine existing cohorts, which may have limited sample size or

be case-only, with public controls, but this approach is limited by the need for a large overlap

in variants across genotyping arrays and the scarcity of non-European controls. We devel-

oped and validated a protocol, Genotyping Array-WGS Merge (GAWMerge), for combining

genotypes from arrays and whole-genome sequencing, ensuring complete variant overlap,

and allowing for diverse samples like Trans-Omics for Precision Medicine to be used. Our

protocol involves phasing, imputation, and filtering. We illustrated its ability to control

technology driven artifacts and type-I error, as well as recover known disease-associated

signals across technologies, independent datasets, and ancestries in smoking-related cohorts.

GAWMerge enables genetic studies to leverage existing cohorts to validly increase sample

size and enhance discovery for understudied traits and ancestries.
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Genome-wide association studies (GWAS) offer a powerful
tool for identifying genetic variants for complex diseases,
especially when large sample sizes are amassed. For dis-

eases with limited sample sizes or for which case-only cohorts are
available, public controls, who are not assessed for the disease,
can be used without bias to cost effectively improve statistical
power and novel locus discovery, if the disease prevalence is low
in the general population1–5. Case-only GWAS datasets may exist
for several reasons but primary among them is that the initial
study focused on phenotypes within a patient population (e.g., set
point viral load among those living with HIV6,7 or methadone
dosing among those with opioid use disorder (OUD)8,9) but these
case-only datasets could now be useful for GWAS of the primary
disease (HIV or OUD) if paired with public controls. Combining
cases and controls in this way is feasible even with samples
genotyped on different array-based technologies10–13. A sig-
nificant limitation of combining disease study cases with public
controls is that unbiased results are only achieved using the
intersecting set of variants genotyped across all arrays and cohorts
being combined13. This limitation effectively prevents combining
cohorts where the number of shared genotyped variants is too
small to form the basis for imputation or to provide whole-
genome coverage. An in-depth comparison of the Illumina
HumanHap, Illumina OmniExpress, and Affymetrix 6.0 arrays
found over 2,000,000 single nucleotide polymorphisms (SNPs) in
union but only 75,000 variants that intersect across all arrays14.
Additionally, reliance on array-based technology prevents use of
expanding whole-genome sequencing (WGS) resources with high
representation of non-European ancestry groups, like the Trans-
Omics for Precision Medicine (TOPMed) program, for public
controls. Being able to combine case and public control genotypes
from array- and/or sequencing-based platforms opens up the
increasing set of WGS resources for new GWAS. As of January
2021, there are at least 217 case-only studies containing
>136,000 samples across many genotyping platforms in the
database of Genetics and Phenotypes (dbGaP) (query= ‘case
set[Study Design]’). As of February 2020, freeze 6a, there
are >227,000 public controls with WGS data in resources
such as TOPMed (>155,000 samples)15, UK BioBank
(>50,000 samples)16, Gabriella Miller Kids First Pediatric Con-
sortium (>21,000 samples), and GenomeAsia 100K Project
(>1,700 individuals)17, which are eligible to be combined with
these case-only datasets for GWAS. Both the pools of case-only
data and WGS public controls will continue to increase. Although
the array genotyping may have a lower overall precision due to
the poor cluster separation in the genotype assignment pipeline
based on a 2-dimensional metrics, the average discordant calls
were below 1%18, which supports the feasibility to combine the
array genotyping data with WGS data.

The NHLBI-supported TOPMed program15 with its collection
of >155,000 human subjects with WGS data affords an unpar-
alleled opportunity to leverage public controls and greatly expand
GWAS sample sizes. With such a large sample size and one of the
most genetically diverse datasets (40% European, 31% African,
16% Hispanic, 9% Asian, and 4% Others) available, TOPMed has
the potential to overcome the aforementioned challenges of
applying public controls, as the WGS data should overlap all
variants measured on arrays, and the representation of non-
European populations will enhance the availability of diverse
public controls.

While incorporating public controls to maximize the utility of
genetic discovery is desirable, there is no established approach to
validly combine array- and sequencing-based genotype data. Each
of these technologies has its own strengths, weaknesses, and
different inter- and intra-technology measurement properties that
complicate combining data across technologies. Here, we

developed a protocol, Genotype Array-WGS Merge (GAW-
Merge), to combine genotypes from array and WGS to conduct
GWAS analyses. We illustrate our protocol’s validity and its
utility using TOPMed WGS samples as public controls combined
with case-only array-genotyped data for GWAS of the Chronic
Obstructive Pulmonary Disease (COPD) phenotype. COPD has
well-established GWAS hits, therefore easily testing replication of
signal, and it has high sample size for both European-ancestry
and African-ancestry groups within the TOPMed program.

Results
Protocol to integrate array and WGS data. GAWMerge is a
protocol that we developed to integrate array and WGS geno-
typing technologies that minimizes false positives while dis-
covering true association signals. Details of the protocol
development process are provided in the Methods section. The
final protocol consists of eight major steps (Fig. 1): (1) select
control dataset(s) with WGS genotype data; (2) extract the SNPs
from the WGS data of the control samples that match those for
the array-genotyped case samples; (3) independently subject the
case and control samples to the same quality control (QC) pro-
cedure (further details in the Methods); (4) phase the case and
control samples with the same software (further details in the
Methods); (5) merge the phased case and control data and impute
to the desired reference genome (e.g., 1000Genome, TOPMed
reference panel); (6) filter out genotyped SNPs with low quality
(empirical ER2 < 0.9)19 and re-impute; (7) test SNP associations
with phenotype of interest in case and control samples combined;
and (8) filter association results for minor allele frequency (MAF),
imputation quality (R2), and difference in imputation quality.

For selection of controls in step 1, it is crucial to choose
samples with an ancestral composition consistent with the case
samples, as population stratification is a strong confounding
factor for GWAS analysis. Additional demographic (e.g., age, sex)
and clinical variables (e.g., smoking status) should be considered
based on the datasets being combined.

Fig. 1 Overview of the protocol to use whole-genome sequencing (WGS)
data as public control in GWAS. *The quality control (QC) of the case and
public control data is conducted independently according to the steps
outlined in the methods.
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Our previous work13 suggested potential bias in association
testing when using genotypes imputed from the full sets of SNPs
from different genotyping arrays. Starting from the intersection of
genotyped SNP sets avoids such bias (step 2). We employed the
same strategy for merging array and WGS genotypes, but because
of the full genome coverage of WGS, the entire set of array SNPs
were used. We also investigated the intersection between the
WGS data in TOPMed and different targeted arrays (e.g.,
MetaboChip, Immnochip and OncoArray), and the overlapping
rates were all above 95% (Supplementary Table 1), therefore
validating the integrating of array and WGS data. The array and
WGS data were then independently QC’d using the same QC
steps (step 3). This then was followed by phasing, merging, and
imputation (steps 4–5). To further reduce potential bias between
the array-genotyped and WGS-derived SNPs, a second round of
imputation is performed after removing genotyped SNPs with
low empirical R2 (ER2 < 0.9, step 6, Supplementary Fig. 1).
Finally, following association testing (step 7), filtering based on
MAF ( > 0.01), imputation quality (R2 > 0.8), and imputation
quality difference between cases (i.e., array data) and controls
(i.e., WGS data) is step 8 (jR2

array � R2
WGSj< 0:1, Supplementary

Fig. 2) which minimizes technical variation in the combined case/
control data. More details regarding the development of the
protocol can be found in the “Protocol Development” section of
Methods.

Protocol evaluation design. To evaluate the performance of
GAWMerge, we used three smoking-related datasets: Collabora-
tive Genetic Study of Nicotine Dependence (COGEND)20,21,
Genetic Epidemiology of COPD (COPDGene) study22, and
Evaluation of COPD Longitudinally to Identify Predictive Sur-
rogate End-points (ECLIPSE)23. As indicated in Table 1, the three
datasets have different array platforms, providing the opportunity
to assess the performance of the protocol in different settings. In
both COPDGene and ECLIPSE, the COPD diagnosis followed the
Global Initiative for Chronic Obstructive Lung Disease severity
classifications, and COPD cases were defined as severity Grade
2–4 COPD (moderate, severe, and very severe COPD)24. The
study design to evaluate GAWMerge across (a) genotyping
technology (ensuring no technology driven false positives), (b)
type-I error (ensuring minimal false positive associations), and (c)
recovery of known GWAS hits (demonstrating capture of true
positives) is presented in Fig. 2.

Reproducibility across genotyping technologies. COPDGene
has both array and WGS genotype data on the same samples
available through TOPMed. Genotypes derived from array and
whole-genome sequencing data for the same samples should be
consistent but are often not18,25. To evaluate the consistency of
genotyping, we performed a technical comparison of array and
WGS data using the same set of samples from COPDGene
(n= 3235 with African-American ancestry). The array data were
phased independently and integrated with the WGS phased data
available in TOPMed, followed by imputation and association
testing using genotyping platform as the outcome. If the array-
and WGS-derived genotypes for the same set of samples were
equivalent, one would expect to observe no significant associa-
tions, but in fact we observed many false positives (Supplemen-
tary Fig. 3).

We suspected that the false positives we observed derived from
the phasing step since phasing of the array and WGS genotypes
was based on different sets of variants. In addition, the TOPMed
phased WGS data were derived from the samples of all studies26,
which is different from the sample set we used, the COPDGene
cohort, for phasing the array data. We repeated the technical

comparison, using the same set of QC-validated variants and
samples (Fig. 2a) as the basis for separate phasing of the array and
WGS data, followed by the subsequent steps in GAWMerge
(Fig. 1). The array data were specified as the case group for
association testing, and the WGS data were specified as the
control group, for European ancestry (EA) and African-ancestry
(AA) separately. The results (Supplementary Fig. 4) confirmed
that phasing based on a common set of variants and samples
followed by the additional steps of GAWMerge eliminated false
positives and made array and WGS data comparable for
conducting GWAS.

Controlling type-I error in case-only vs. public control GWAS.
We assessed type-I error in a comprehensive analysis involving
three smoking-related datasets and their meta-analysis, as shown
in Fig. 2b. To fully leverage the large sample size of the COPD-
Gene dataset, we evenly divided the EA samples into two subsets:
EA1 and EA2. COPDGene EA1 included all participants diag-
nosed with COPD (N= 2736) and randomly sampled partici-
pants with no COPD (N= 515). The resulting ratio of individuals
with COPD in COPDGene EA1 (84%) was close to the ratio in
ECLIPSE EA (87%). Three GWAS were conducted to assess type-
I error, as follows: (1) array data from COPDGene EA1
(N= 3251) vs. WGS from ECLIPSE EA (N= 1461); (2) array
data from COGEND EA (N= 1961) vs. WGS data from
COPDGene EA2 (with no COPD, N= 3251); and (3) array data
from COGEND AA (N= 712) vs. WGS from COPDGene AA
(N= 1710). All association models include ten principal com-
ponents as covariates to account for population substructure.
COPDGene, COGEND, and ECLIPSE are all smoking cohorts
and ratios of COPD were consistent across array and WGS
datasets, thus we expected no genome-wide significant association
signals (controlled type 1 error). Applying GAWMerge to these
data we observed no false positive signals in each separate GWAS
analysis (Supplementary Fig. 5) and in their meta-analysis (Fig. 3)
results.

Recovery of known COPD loci in case-only vs. public control
GWAS. The last evaluation step was to recover known GWAS
hits for COPD24,27. As shown in Fig. 2c, we conducted three
GWAS for COPD, as follows: (1) COPD cases from COPDGene
EA with WGS data (N= 2736) vs. controls from COGEND EA
with array data (N= 1961); (2) COPD cases from ECLIPSE EA
with array data (N= 1764) vs. controls from COPDGene EA with
WGS data (N= 2475); and (3) COPD cases from COPDGene AA
with WGS data (N= 813) vs. controls from COGEND AA with
array data (N= 712). Because COPD is highly comorbid with
smoking history, only smokers (current and former) were used as
controls to compare with COPD cases across these GWAS ana-
lyses. All association models include ten principal components as
covariates to account for population substructure. Results for
each GWAS analysis are presented in Supplementary Fig. 6.
Meta-analysis of the 3 analyses successfully recovered 5 out of 7
loci reported as COPD-associated (Fig. 4 and Table 2) at genome-
wide significance (P < 5 ´ 10�8, Supplementary Table 2). The
direction of association for all recovered SNPs was the same as
previously reported28. The two SNPs that did not exceed the
genome-wide significance threshold were nominally associated at
P < 0.05 in our analysis. These two SNPs were missing in Analysis
1 (COPD cases with WGS data from COPDGene EA Vs. smoking
controls with array data from COGEND EA) due to the filters
applied with the protocol; the reduced power caused by their
missingness likely explain the lower significance level observed.
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Discussion
In summary, we present GAWMerge, a protocol for integrating
array and WGS genotype data to conduct GWAS with a case-only
and public control design. This protocol overcomes previous
obstacles to using public controls13. The ability to use WGS data

for public controls (1) ensures complete overlap with variants on
any array used for genotyping of cases, and (2) provides a much
larger pool of public controls to draw from, especially for non-
Europeans, from ancestrally diverse resources like TOPMed. In
our proof-of-concept study, we applied GAWMerge to WGS data

Fig. 2 Evaluation design for GAWMerge. Evaluation design for a technical comparison, b type-I error assessment, and c known GWAS hits. *The samples
with European ancestry in COPDGene were evenly divided into two subsets of samples. EA1 includes all COPD cases and some COPD controls to match
the COPD prevalence in ECLIPSE. EA2 has all the rest COPD free samples.

Table 1 Dataset characteristics.

COGEND COPDGene ECLIPSE

Array type Illumina
HumanOmni2.5

Illumina HumanOmni1-
Quad_v1-0_B

Illumina HumanHap550v3.0

Array-genotyped data N, SNPs 2,443,179 1,051,295 561,466
Participants, total N 2,673 9,962 2,159
Ancestry group, N
(%)

European 1,961 (73%) 6,664 (67%) 2,159 (100%)
African
American

712 (27%) 3,298 (33%) NA

Sex, N (%) Males 1,019 (38%) 5,333 (54%) 1,367 (63%)
Females 1,654 (62%) 4,629 (46%) 792 (37%)

COPD diagnosis, N
(%)

Yes NA 4,280 (43%) 1,764 (82%)
No 3,632 (36%) 395 (14%)

Age (mean ± SD) 36.6 ± 5.6 59.6 ± 9.0 62.2 ± 8.2
WGS-genotyped dataa Participants, total N NA 9,737 1,484

Ancestry group, N
(%)

European NA 6,502 (67%) 1,461 (98%)
African
American

3,235 (33%) 23b(2%)

Sex, N (%) Males 5,213 (54%) 933 (64%)
Females 4,524 (46%) 528 (36%)

COPD diagnosis, N
(%)

Yes 4,186 (43%) 1,271 (87%)
No 3,549 (36%) 190 (13%)

Age (mean ± SD) 59.6 ± 9.0 62.7 ± 7.7

aAll WGS-genotyped data are from TOPMed freeze 6a.
bThe number of African American in ECLIPSE is too small and excluded from following analysis.
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from TOPMed (specifically, COPDGene and ECLIPSE cohorts)
as public controls for array-genotyped case datasets. We first
showed that the two genotyping technologies are compatible by
comparing array- and WGS-derived genotypes for the same

samples from COPDGene and demonstrating a lack of false
positives. We then showed that GAWMerge controls type-I error,
as evidenced by the expected lack of genome-wide significant
findings in a GWAS meta-analysis comparing smoker cases vs.

Fig. 3 Meta-analysis results from evaluation for type-I error. The Manhattan plot (a) shows the expected no signal, while the QQ-plot (b) shows no
inflation.

Fig. 4 Meta-analysis results for replication of GWAS hits for COPD. The Manhattan plot (a) shows the replicated signals, while the QQ-plot (b) shows
inflation due to the true signal.

Table 2 Recovery of GWAS-identified variants, following application of our protocol to each of 3 GWAS and their meta-analysis,
compared to published risk loci for COPD with combined data from COPDGene, ECLIPSE, NETT/NAS, and GenKOLS
(Norway)24.

SNP Position Risk Allele Related gene Reported
(N= 12,337)

Current meta-analysis (N= 10,461)

OR P-value OR Direction P-value

rs12914385 chr15:78898723 T CHRNA3 1.36 2.70E-16 1.28 +++ 3.35E-16
rs4416442 chr4:89866713 C FAM13A 1.36 9.44E-15 1.21 +++ 2.66E-10
rs793727 chr19:41302706 C CYP2A6 0.74 2.88E-09 0.84 --- 1.91E-08
rs4846480 chr1:218598469 A TGFB2 1.26 1.25E-07 1.19 +++ 9.37E-08
rs13141641 chr4:145506456 T HHIP 1.39 3.66E-15 1.23 ?++* 2.64E-07
rs754388 chr14:93115410 C RIN3 1.33 6.69E-08 1.12 ?++* 0.020
rs626750 chr11:102720945 G MMP3/12 1.36 5.35E-09 1.14 ?++* 0.005

*The question mark “?” means the SNP is missing from the first analysis, and it may result in reduced power in the final meta-analysis.
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smoker controls from independent datasets. Lastly, GAWMerge
recovered known COPD-associated findings from Hobbs et al28.
including CHRNA3 on chromosome 15, FAM13A on chromo-
some 4, CYP2A6 on chromosome 19, TGFB2 on chromosome 1,
and HHIP on chromosome 4. The key aspects of the protocol that
provide these unbiased findings are (1) phasing the array and
WGS data independently using only the intersection of variants
across technologies and (2) including the empirical R2 and R2

difference filters to remove poorly imputed and differently
imputed variants.

The development of GAWMerge was done with TOPMed
WGS and array genotyped-data, although it can be applied using
any case-only array-genotyped data with other WGS data
resources (e.g., UK BioBank16, Gabrielle Miller Kids First and/or
GenomeAsia 100K17 data). To incorporate new data, it will be
important to identify the phenotypic data which will be used to
combine controls with available cases. For example, we selected
controls based on the smoking status of the cohorts to minimize
bias due to smoking. Additional phenotypic and clinical data,
such as sex and age distributions, should be considered when
selecting the most appropriate controls for combining with
available cases. In this study we combined cases and controls
with the same ancestry to minimize bias. Further work is needed
to evaluate GAWMerge for mega analysis GWAS29. GAWMerge
was developed with imputation using the thousand genomes
reference population, although method can be applied using
other reference populations, such as the TOPMed reference
population on the Michigan Imputation Server19. Since
TOPMed samples are used as controls in GAWMerge, there will
be sample overlap between the input data and the TOPMed
reference population, which may cause bias and must be applied
cautiously. Further work is needed to evaluate the bias of such an
imputation strategy. The application of GAWMerge can be
conducted beyond the phenotypes tested here, where we plan to
expand its applications to other studies, such as opioid addiction
in the near future.

GAWMerge has some limitations. First, careful consideration
of not only ancestry, sex, and age distributions, but other sys-
tematic differences between a given case-only cohort and public
controls, like smoking status, is essential to unbiased use of public
controls and application of GAWMerge. All association analysis
conducted included ten principal components as covariates to
account for population substructure, although applying GWAS in
as homogenous population as possible is desirable. This
requirement places some limits on the public controls that can be
used for any given case-only cohort. Second, the additional QC
steps might mask some real trait-associated variants. In the
attempt to recover the known genetic variants associated with
COPD, there were two loci (RIN3 and MMP3/12) not reaching
the genome-wide significance in the meta-analysis (Table 2). The
three SNPs were filtered out in the first GWAS, comparing COPD
cases in COPDGene EA with WGS data and smoking controls in
COGEND EA with array data, due to high R2 difference between
the WGS and array data. Thus, GAWMerge may lose some
sensitivity while controlling type-I errors. There is also the
potential for reduced power to detect COPD associated genetic
variants here due to the missingness of lung function phenotypes
in COGEND public controls, with power being reduced relative
to the amount of COPD status misclassification among these
controls. Third, when GAWMerge has been tested as an appli-
cation of GWAS, it is limited by the MAF and genomic coverage
on array genotyping technologies. Since GAWMerge extracts only
SNPs within the array technology, the complete coverage of WGS
(over 410 million variants within TOPMed WGS data26) is not
fully utilized. Therefore, those rare variants and large insertions/
deletions only detected in WGS data were lost during the

extraction and merging processes (Supplementary Table 3).
However, coming from a case-only dataset with array-based
genotyping, the dominant scenario for use of GAWMerge, the
WGS is a substantial strength, accounting for all the array gen-
otyped variants except for technology based regional loss of
variants. With our strategy of WGS data as public controls for
GWAS, there will be regional loss in specific areas depending on
the array technology design and quality control of the sequencing.
A complete analysis of different regional genetic variants covered
specifically by array-genotyping platforms or sequencing will be
beneficial to calibrate the application of GAWMerge in the
future30,31.

Overall, GAWMerge presents a practical application of inte-
grating case-only array-genotyped data with WGS data as public
controls to enable new GWAS and enhance the potential for
discovering novel genetic loci. It is a general approach for
integrating array and WGS genotyping technologies. The sub-
stantial availability of case-only datasets in public repositories
and collected across many consortia makes the protocol broadly
applicable. With >155,000 samples with WGS data in the
TOPMed program, this is an ample resource for selecting public
controls for a variety of case-only disease datasets. With WGS
data the overlap of measured variants across genotyping plat-
forms is overcome. Furthermore, the diversity of individuals
within the TOPMed (>47,000 African, >23,000 Hispanic/Latino,
and >13,000 Asian ancestries) and increasing representation in
other resources make widespread use of non-European public
controls realistic. With many other WGS resources being
launched and released, the potential to use public controls to
increase sample size and leverage case-only cohorts is just
beginning.

Methods
Dataset descriptions. The Trans-Omics for Precision Medicine (TOPMed) pro-
gram aims to improve understanding of the diseases through the integration of
Whole-Genome Sequencing (WGS) and other omics data from pre-existing parent
studies having large samples of human subjects. The two studies used in this work,
Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene)
and Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints
(ECLIPSE), are both part of TOPMed. As of February 2020, TOPMed has gathered
data from ~155k participants with rich phenotypic data. TOPMed prioritizes to
increase ancestral and ethnic diversity, so ~60% of the sequenced participants are
of non-European ancestry (31% African, 16% Hispanic, 9% Asian, and 4% Others).

COPDGene (ClinicalTrials.gov: NCT00608764) is an ongoing study of over
10,000 non-Hispanic White and African American cigarette smokers. It was
designed to investigate COPD and other smoking-related lung diseases22.
COPDGene subjects were initially genotyped for ~1 million single nucleotide
polymorphisms (SNPs) using the HumanOmniExpress array (Illumina, San Diego,
CA). As part of TOPMed freeze 6a, WGS was conducted on 10,372 subjects.
Among them, 9,732 subjects overlapped with the subjects in the parent study
having array genotyped data, and thus were used in our analyses.

ECLIPSE was an observational study launched in 200623. It recruited 2,164
COPD subjects, 337 smoking controls, and 245 non-smoking controls. The
genotype data with Illumina HumanHap550v3.0 array (~550,000 SNPs) included
1,764 COPD subjects, 217 smoking controls, and 178 non-smoking controls. In
TOPMed freeze 6a, WGS was conducted on 1,271 COPD subjects and 190 smoking
controls.

COGEND was initiated in 2001 as a genetic study of nicotine dependence20,21.
Nicotine dependent cases and non-dependent smoking controls were identified
and recruited from Detroit and St. Louis. Over 2,900 donated blood samples were
collected and used to genotype ~2.5 million SNPs using the HumanOmni2.5 array.
After QC, 2,673 subjects were kept for following analyses.

The use of the TOPMed WGS data was approved by the TOPMed Methods
working group. Data approval of the dbGaP available data was approved by the
RTI-International Institutional Review Board. Informed consent for general
research use was obtained for all data by the original study.

GAWMerge development. Below we provide further details on the protocol steps,
and iterations used to devise the recommended thresholds.

Quality control (QC). We performed standard QC steps for both array genotyped
data and the subset of WGS data extracted in step 2 using PLINK32. Samples failing
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sex check or with >3% missing data were excluded. SNPs with missing rate >3% or
that failed Hardy-Weinberg Equilibrium check (p < 1e-4) were excluded from the
study. A structure analysis was conducted to match ancestries to 1000 genomes
reference haplotypes and mis-classified samples were excluded. In addition, we
adopted standard TOPMed filters (https://topmed.nhlbi.nih.gov/) for variant
selection. The variants that were labeled as follows were excluded: SVM (support
vector machine score more negative than −0.5 and hence fails the SVM filter),
CEN (falls in a centromeric region with inferred reference sequence), DISC (more
than 5 percent Mendelian inconsistencies), EXHET (has excessive heterozygosity
with HWE p-value < 1e-6) or CHRXHET (has excessive heterozygosity in
male chrX).

Combining array and WGS data. GAWMerge, a protocol for integrating array and
WGS data is shown in Fig. 1 and described in more detail in the Results. The WGS
data were first prepared by extracting the selected control samples and the variants
available within the array genotyping data. Utilizing the intersection of variants was
important, as many false positives were introduced without this step13. This
extraction of samples and variants was performed by BCFtools33. After QC, the
intersection of SNPs between the array and WGS data was extracted, and the
datasets were phased independently using SHAPEIT234,35. The datasets were then
merged using BCFtools33.

Imputation strategy. The merged array and WGS data were first imputed using
Minimac419 using the thousand genomes phase 3 version 5 EUR and AFR super
populations for EA and AA samples, respectively. The reference panel includes 503
EUR and 661 AFR samples with data on GRCh37 genome version. TOPMed WGS
data was converted from genome version GRCh38 to GRCh37 to match the
reference and array-genotyped data. Besides applying the standard imputation
quality measurement R2, we also observed poorly imputed variants indicated by
Empirical R2 (ER2). ER2 was defined only for genotyped variants as the squared
correlation between leave-one-out imputed dosages and the true, observed geno-
types. Under our first test for controlling type-I error (Fig. 2b), array data from
COPDGene EA1 (N= 3251) and WGS data from ECLIPSE EA (N= 1461), we
expected no genome-wide significant associations since all individuals were smo-
kers and no disease was being tested between the datasets. Without the ER2 filter,
we found many false positives (Supplementary Fig. 1a) based around the variant on
chromosome 10 (chr10:32370743, ER2= 0.391, MAF= 0.068). We recommend
removing such genotyped SNPs with ER2 < 0.9 from the analysis and re-running
imputation without these variants included. With this and other low-quality var-
iants removed, false positives were controlled (Supplementary Fig. 1b). With the
ER2 filter of 0.9, we found that 81.1% of SNPs met this criterion (Supplementary
Fig. 1c) and these removed SNPs were scattered across the genome (Supplementary
Fig. 1d).

Filtering association test results. Association analysis was conducted using rvTest36

with ten principal components included to account for population substructure.
Besides the common filters for minor allele frequency (MAF > 0.01) and imputa-
tion quality (R2 > 0.8), we also investigated the imputation quality difference
between array-genotyped samples and WGS-genotyped samples by comparing the
imputation quality within each sample type, R2

array and R2
WGS . We verified that the

imputation quality between the two types of data were similar. However, some
outliers (jR2

array � R2
WGSj ≥ 0:1) were a major source of false positives, and were

removed from the results as a post-association testing filter. Using the same test
between COGEND and COPDGene EA sample comparison, inflation of GWAS P-
values was apparent when jR2

array � R2
WGSj≥ 0:1, but otherwise no inflation was

observed (Supplementary Fig. 2a). An imputation quality difference of ≥0.1 only
filtered out about 5% of variants (Supplementary Fig. 2b), and the removed variants
were scattered throughout the genome (Supplementary Fig. 2c).

GAWMerge implementation. GAWMerge was developed within the DNANexus
computing environment (https://www.dnanexus.com/) and the BioData Catalyst
ecosystem37. The protocol within the DNANexus computing environment used
docker images, which have been packaged together into DNANexus applications.
The BioData Catalyst ecosystem37 protocol was implemented in the common
workflow language (CWL); therefore, it is interoperable in other computing eco-
systems. Both implemented workflows are built using the same docker images of
the underlying software programs (https://github.com/RTIInternational/biocloud_
docker_tools and https://hub.docker.com/u/rtibiocloud). The protocol has been
written to easily adapt to plink or vcf formats of the genotype files, therefore either
are acceptable. The BioData Catalyst workflow leverages key services, tools, and
workflows available within the ecosystem including BioData Catalyst Powered by
Gen3, BioData Catalyst Powered by PIC-SURE, and BioData Catalyst Powered by
Seven Bridges. These tools make discovery of data for use as public controls easy
with their easy-to-use web interface.

To discover optimal controls to combine with available cases, TOPMed
phenotypic data were easily accessible using the Gen3 and PIC-SURE tools within
the BioData Catalyst ecosystem. With these tools, users identify which studies were
comparable for use as public controls, urge the access request for these studies
within dbGaP, and then use as public controls with the protocol.

Computation of GAWMerge is comparable to other GWAS efforts. For
example, in the analysis comparing ECLIPSE WGS data and COPDGene EA array
data, phasing the 10,302 variants on chromosome 10 (overlapped with the array
data) of the 1,461 samples in ECLIPSE WGS data took ~9 h using a machine with
32GB memory and 16 CPUs. The following imputation ran on a machine with
16GB memory and 4 CPUs for 2 h and 37 min. Then the re-imputation runs for
similar amount of time.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The individual-level genotype and phenotype data used are all available through dbGaP.
The dbGap study accession number for COGEND is phs000404, for COPDGene are
phs000179 (parent study with array genotype data) and phs000951 (WGS data generated
by TOPMed), and for ECLIPSE are phs001252 (parent study with array genotype data)
and phs001472 (WGS data generated by TOPMed).

Code availability
The codes to run the protocol can be found at https://github.com/RTIInternational/
GAWMerge. https://doi.org/10.5281/zenodo.6841389.

Received: 21 December 2021; Accepted: 18 July 2022;

References
1. Luca, D. et al. On the use of general control samples for genome-wide

association studies: genetic matching highlights causal variants. Am. J. Hum.
Genet. 82, 453–463 (2008).

2. Cooper, J. D. et al. Meta-analysis of genome-wide association study data
identifies additional type 1 diabetes risk loci. Nat. Genet. 40, 1399–1401
(2008).

3. Rao, D. C. An overview of the genetic dissection of complex traits. Adv. Genet.
60, 3–34 (2008).

4. Todd, J. A. et al. Robust associations of four new chromosome regions from
genome-wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864 (2007).

5. Johnson, E. O. et al. KAT2B polymorphism identified for drug abuse in
African Americans with regulatory links to drug abuse pathways in human
prefrontal cortex. Addict. Biol. 21, 1217–1232 (2016).

6. van Manen, D. et al. Genome-wide association scan in HIV-1-infected
individuals identifying variants influencing disease course. PLoS One 6, e22208
(2011).

7. Xie, W. et al. Genome-wide analyses reveal gene influence on HIV disease
progression and HIV-1C acquisition in Southern Africa. AIDS Res. Hum.
Retrovir. 33, 597–609 (2017).

8. Lake, S. et al. The cannabis-dependent relationship between methadone
treatment dose and Illicit opioid use in a community-based cohort of people
who use drugs. Cannabis Cannabinoid Res.https://doi.org/10.1089/can.2021.
0080 (2021).

9. Lo, A. et al. Factors associated with methadone maintenance therapy
discontinuation among people who inject drugs. J. Subst. Abuse Treat. 94,
41–46 (2018).

10. Ho, L. A. & Lange, E. M. Using public control genotype data to increase power
and decrease cost of case–control genetic association studies. Hum. Genet.
128, 597–608 (2010).

11. Mukherjee, S. et al. Including additional controls from public databases
improves the power of a genome-wide association study. Hum. Hered. 72,
21–34 (2011).

12. Zhuang, J. J. et al. Optimizing the power of genome-wide association studies
by using publicly available reference samples to expand the control group.
Genet. Epidemiol. 34, 319–326 (2010).

13. Johnson, E. O. et al. Imputation across genotyping arrays for genome-wide
association studies: assessment of bias and a correction strategy. Hum. Genet.
132, 509–522 (2013).

14. Lindstrom, S. et al. A comprehensive survey of genetic variation in
20,691 subjects from four large cohorts. PLoS One 12, e0173997 (2017).

15. Kowalski, M. H. et al. Use of >100,000 NHLBI Trans-Omics for Precision
Medicine (TOPMed) consortium whole genome sequences improves
imputation quality and detection of rare variant associations in admixed
African and Hispanic/Latino populations. PLoS Genet 15, e1008500
(2019).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03738-6 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:806 | https://doi.org/10.1038/s42003-022-03738-6 |www.nature.com/commsbio 7

https://topmed.nhlbi.nih.gov/
https://www.dnanexus.com/
https://github.com/RTIInternational/biocloud_docker_tools
https://github.com/RTIInternational/biocloud_docker_tools
https://hub.docker.com/u/rtibiocloud
https://github.com/RTIInternational/GAWMerge
https://github.com/RTIInternational/GAWMerge
https://doi.org/10.5281/zenodo.6841389
https://doi.org/10.1089/can.2021.0080
https://doi.org/10.1089/can.2021.0080
www.nature.com/commsbio
www.nature.com/commsbio


16. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and
genomic data. Nature 562, 203–209 (2018).

17. Wall, J. D. et al. The GenomeAsia 100K project enables genetic discoveries
across Asia. Nature 576, 106–111 (2019).

18. Danilov, K. A., Nikogosov, D. A., Musienko, S. V. & Baranova, A. V. A
comparison of BeadChip and WGS genotyping outputs using partial
validation by sanger sequencing. BMC Genom. 21, 528 (2020).

19. Das, S. et al. Next-generation genotype imputation service and methods. Nat.
Genet. 48, 1284–1287 (2016).

20. Bierut, L. J. et al. Novel genes identified in a high-density genome wide
association study for nicotine dependence. Hum. Mol. Genet. 16, 24–35
(2007).

21. Saccone, S. F. et al. Cholinergic nicotinic receptor genes implicated in a
nicotine dependence association study targeting 348 candidate genes with
3713 SNPs. Hum. Mol. Genet. 16, 36–49 (2007).

22. Regan, E. A. et al. Genetic epidemiology of COPD (COPDGene) study design.
COPD 7, 32–43 (2010).

23. Vestbo, J. et al. Evaluation of COPD longitudinally to identify predictive
surrogate end-points (ECLIPSE). Eur. Respi.r J. 31, 869–873 (2008).

24. Cho, M. H. et al. Risk loci for chronic obstructive pulmonary disease: a
genome-wide association study and meta-analysis. Lancet Respir. Med. 2,
214–225 (2014).

25. Verlouw, J. A. M. et al. A comparison of genotyping arrays. Eur. J. Hum.
Genet. 29, 1611–1624 (2021).

26. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI
TOPMed Program. Nature 590, 290–299 (2021).

27. Cho, M. H. et al. A genome-wide association study of COPD identifies a
susceptibility locus on chromosome 19q13. Hum. Mol. Genet. 21, 947–957
(2012).

28. Hobbs, B. D. et al. Genetic loci associated with chronic obstructive pulmonary
disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet.
49, 426–432 (2017).

29. Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery
for complex traits. Nature 570, 514–518 (2019).

30. Abel, H. J. & Duncavage, E. J. Detection of structural DNA variation from
next generation sequencing data: a review of informatic approaches. Cancer
Genet. 206, 432–440 (2013).

31. Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the
Icelandic population. Nat. Genet. 47, 435–444 (2015).

32. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575
(2007).

33. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10,
giab008 (2021).

34. Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method
for thousands of genomes. Nat. Methods 9, 179–181 (2011).

35. Delaneau, O. & Marchini, J. Integrating sequence and array data to create an
improved 1000 Genomes Project haplotype reference panel. Nat. Commun. 5,
3934 (2014).

36. Zhan, X., Hu, Y., Li, B., Abecasis, G. R. & Liu, D. J. RVTESTS: an efficient and
comprehensive tool for rare variant association analysis using sequence data.
Bioinformatics 32, 1423–1426 (2016).

37. National Heart, Lung, and Blood Institute, National Institutes of Health
& U.S. Department of Health and Human Services. The NHLBI BioData
Catalyst. Zenodo https://zenodo.org/record/3822858#.YuAlZIRBzcs
(2020).

Acknowledgements
Primary support for developing GAWMerge, conducting analyses, and preparing the
manuscript was provided by National Institute on Drug Abuse grants to E.O.J.: R01
DA044014 (PI: E.O.J.); R01 DA043980 (M-PIs: Scacheri, E.O.J., Akbarian); R01
DA051908 (M-PIs: E.O.J. and Jacobson). Support for this work was provided by the
National Institutes of Health, National Heart, Lung, and Blood Institute, through the
BioData Catalyst program (award 1OT3HL142479-01, 1OT3HL142478-01,
1OT3HL142481-01, 1OT3HL142480-01, 1OT3HL147154-01). Any opinions expressed in
this document are those of the author(s) and do not necessarily reflect the views of
NHLBI, individual BioData Catalyst team members, or affiliated organizations and
institutions. Molecular data for the Trans-Omics in Precision Medicine (TOPMed) pro-
gram was supported by the National Heart, Lung and Blood Institute (NHLBI). Genome
sequencing for NHLBI TOPMed: COPDGene (phs000179.v6.p2) was performed at
NWGC (3R01HL089856-08S1, HHSN268201600032I, and HHSN268201600032I), and
Broad Genomics (HHSN268201500014C and HHSN268201500014C). Genome sequen-
cing for NHLBI TOPMed: ECLIPSE (phs001252.v1.p1) was performed at MDI
(HHSN268201600037I). Core support including centralized genomic read mapping and
genotype calling, along with variant quality metrics and filtering were provided by the

TOPMed Informatics Research Center (3R01HL-117626-02S1; contract
HHSN268201800002I). Core support including phenotype harmonization, data man-
agement, sample-identity QC, and general program coordination were provided by the
TOPMed Data Coordinating Center (R01HL-120393; U01HL-120393; contract
HHSN268201800001I). We gratefully acknowledge the studies and participants who
provided biological samples and data for TOPMed. The COPDGene project described was
supported by Award Number U01 HL089897 and Award Number U01 HL089856 from
the National Heart, Lung, and Blood Institute. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the National Heart,
Lung, and Blood Institute or the National Institutes of Health. The COPDGene project is
also supported by the COPD Foundation through contributions made to an Industry
Advisory Board that has included AstraZeneca, Bayer Pharmaceuticals, Boehringer-
Ingelheim, Genentech, GlaxoSmithKline, Novartis, Pfizer, and Sunovion. A full listing of
COPDGene investigators can be found at: http://www.copdgene.org/directory. The
ECLIPSE study (NCT00292552) was sponsored by GlaxoSmithKline. The ECLIPSE
investigators included: Bulgaria: Y. Ivanov, Pleven; K. Kostov, Sofia. Canada: J. Bourbeau,
Montreal; M. Fitzgerald, Vancouver, BC; P. Hernandez, Halifax, NS; K. Killian, Hamilton,
ON; R. Levy, Vancouver, BC; F. Maltais, Montreal; D. O’Donnell, Kingston, ON. Czech
Republic: J. Krepelka, Prague. Denmark: J. Vestbo, Hvidovre. The Netherlands:
E. Wouters, Horn-Maastricht. New Zealand: D. Quinn, Wellington. Norway: P. Bakke,
Bergen. Slovenia: M. Kosnik, Golnik. Spain: A. Agusti, J. Sauleda, P. de Mallorca. Ukraine:
Y. Feschenko, V. Gavrisyuk, L. Yashina, Kiev; N. Monogarova, Donetsk. United Kingdom:
P. Calverley, Liverpool; D. Lomas, Cambridge; W. MacNee, Edinburgh; D. Singh,
Manchester; J. Wedzicha, London. United States: A. Anzueto, San Antonio, TX; S.
Braman, Providence, RI; R. Casaburi, Torrance CA; B. Celli, Boston; G. Giessel, Rich-
mond, VA; M. Gotfried, Phoenix, AZ; G. Greenwald, Rancho Mirage, CA; N. Hanania,
Houston; D. Mahler, Lebanon, NH; B. Make, Denver; S. Rennard, Omaha, NE;
C. Rochester, New Haven, CT; P. Scanlon, Rochester, MN; D. Schuller, Omaha, NE;
F. Sciurba, Pittsburgh; A. Sharafkhaneh, Houston; T. Siler, St. Charles, MO; E.K.S., Boston;
A. Wanner, Miami; R. Wise, Baltimore; R. ZuWallack, Hartford, CT. ECLIPSE Steering
Committee: H. Coxson (Canada), C. Crim (GlaxoSmithKline, USA), L. Edwards
(GlaxoSmithKline, USA), D. Lomas (UK), W. MacNee (UK), E.K.S. (USA), R. Tal-Singer
(Co-chair, GlaxoSmithKline, USA), J. Vestbo (Co-chair, Denmark), J. Yates
(GlaxoSmithKline, USA). ECLIPSE Scientific Committee: A. Agusti (Spain), P. Calverley
(UK), B. Celli (USA), C. Crim (GlaxoSmithKline, USA), B. Miller (GlaxoSmithKline,
USA), W. MacNee (Chair, UK), S. Rennard (USA), R. Tal-Singer (GlaxoSmithKline,
USA), E. Wouters (The Netherlands), J. Yates (GlaxoSmithKline, USA). COGEND was
supported by grants from the National Cancer Institute (NCI; grant number P01
CA089392, PI: L.J.B.) and NIDA (R01 DA036583 and R01 DA025888, PI: L.J.B.), both of
the National Institutes of Health (NIH). Genotype data are available via dbGaP as part of
the “Genetic Architecture of Smoking and Smoking Cessation” (accession number
phs000404.v1.p1) and “Study of Addiction: Genetics and Environment (SAGE)” (acces-
sion number phs000092.v1.p1). Funding support for genotyping, which was performed at
CIDR, was provided by 1 × 01 HG005274-01 and by the NIH Genes, Environment and
Health Initiative [GEI] (U01 HG004422). CIDR is fully funded through a federal contract
from the NIH to The Johns Hopkins University, contract number HHSN268200782096C.
Assistance with genotype cleaning, as well as with general study coordination, was
provided by the GENEVA Coordinating Center (U01 HG004446).

Author contributions
R.M. and F.F. co-led the development of GAWMerge, all analyses, and the writing of the
manuscript. NG, DBH, GPP, and EOJ conceptualized and helped develop GAWMerge.
M.H.C., J.E.H., L.J.B., S.M.L., K.Y., and E.K.S. provided valuable cohort and TOPMed
datasets expertize used in the development of GAWMerge. All authors edited the
manuscript.

Competing interests
E.K.S. has received institutional grant support from GlaxoSmithKline and Bayer. M.H.C.
has received grant support from GSK and Bayer, and consulting or speaking fees from
Illumina, Genentech, and AstraZeneca. All other authors have no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-022-03738-6.

Correspondence and requests for materials should be addressed to Eric O. Johnson.

Peer review information Communications Biology thanks Ivar Grytten, Annalisa
Buniello and the other anonymous reviewer(s) for their contribution to the peer review
of this work. Primary Handling Editor: George Inglis. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03738-6

8 COMMUNICATIONS BIOLOGY |           (2022) 5:806 | https://doi.org/10.1038/s42003-022-03738-6 | www.nature.com/commsbio

https://zenodo.org/record/3822858#
http://www.copdgene.org/directory
https://doi.org/10.1038/s42003-022-03738-6
http://www.nature.com/reprints
www.nature.com/commsbio


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium

Michael H. Cho 2,3, John E. Hokanson4, Albert V. Smith7,8 & Edwin K. Silverman2,3

A full list of members and their affiliations appears in the Supplementary Information.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03738-6 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:806 | https://doi.org/10.1038/s42003-022-03738-6 |www.nature.com/commsbio 9

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-4907-1657
http://orcid.org/0000-0002-4907-1657
http://orcid.org/0000-0002-4907-1657
http://orcid.org/0000-0002-4907-1657
http://orcid.org/0000-0002-4907-1657
www.nature.com/commsbio
www.nature.com/commsbio

	GAWMerge expands GWAS sample size and diversity by combining array-based genotyping and whole-genome sequencing
	Results
	Protocol to integrate array and WGS data
	Protocol evaluation design
	Reproducibility across genotyping technologies
	Controlling type-I error in case-only vs. public control GWAS
	Recovery of known COPD loci in case-only vs. public control GWAS

	Discussion
	Methods
	Dataset descriptions
	GAWMerge development
	Quality control (QC)
	Combining array and WGS data
	Imputation strategy
	Filtering association test results
	GAWMerge implementation

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




