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Genome-wide CRISPR screen for HSV-1 host
factors reveals PAPSS1 contributes to heparan
sulfate synthesis
Takeshi Suzuki 1, Yoshitaka Sato 1,2✉, Yusuke Okuno3, Fumi Goshima1, Tadahisa Mikami4, Miki Umeda1,

Takayuki Murata1,5, Takahiro Watanabe1, Koichi Watashi6,7,8,9, Takaji Wakita6, Hiroshi Kitagawa 4 &

Hiroshi Kimura 1✉

Herpes simplex virus type 1 (HSV-1) is a ubiquitous pathogen that causes various diseases in

humans, ranging from common mucocutaneous lesions to severe life-threatening encepha-

litis. However, our understanding of the interaction between HSV-1 and human host factors

remains incomplete. Here, to identify the host factors for HSV-1 infection, we performed a

human genome-wide CRISPR screen using near-haploid HAP1 cells, in which gene knockout

(KO) could be efficiently achieved. Along with several already known host factors, we

identified 3′-phosphoadenosine 5′-phosphosulfate synthase 1 (PAPSS1) as a host factor for

HSV-1 infection. The KO of PAPSS1 in HAP1 cells reduced heparan sulfate (HepS) expression,

consequently diminishing the binding of HSV-1 and several other HepS-dependent viruses

(such as HSV-2, hepatitis B virus, and a human seasonal coronavirus). Hence, our findings

provide further insights into the host factor requirements for HSV-1 infection and HepS

biosynthesis.
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Herpes simplex virus type 1 (HSV-1), a ubiquitous patho-
gen, causes various diseases in humans, ranging from the
common mucocutaneous lesions to the severe life-

threatening encephalitis1. Once infected, HSV-1 establishes
latent infections in peripheral neurons and occasionally reacti-
vates to cause recurrent lesions2. HSV-1 affects a broad range of
hosts3 and exclusively induces cell death via its cytopathic effect
in vitro. It employs two modes to transmit from virus-producing
cells to uninfected cells. Cell-to-cell infection occurs in the reac-
tivation process. In this mode, viral particles transmit through a
direct interaction between infected and neighboring uninfected
cells4. In cell-free transmission, HSV-1 spreads to new hosts and
often between cells within the same host, after which extracellular
viral particles released from virus-producing cells enter the target
cells. The attachment of the virus particle to the cell surface is the
initial step in the cell-free infection of HSV-1. Evidence has
demonstrated that HSV-1 glycoproteins (gC and/or gB) on the
viral envelope interact with heparan sulfate (HepS) on the cell
surface for attachment5. Subsequently, attachment to HepS
enhances the interaction between gD and one of its receptors (i.e.,
nectin-1, HVEM, or 3-O-sulfated HepS)6–8, inducing a con-
formational change in gD, and recruiting gB, gH and gL9,10. This
tetrameric complex of glycoproteins mediates viral entry into the
cells via receptor-mediated fusion between the viral envelope and
the host cell11,12. Specifically, four viral glycoproteins (gB, gD, gH,
and gL) are required and considered sufficient for viral entry into
host cells13. However, the host factors involved in this process
have not been fully understood.

HepS is a linear polysaccharide ubiquitously expressed on the
cell surface and in the extracellular matrix. HepS chains cova-
lently bound to proteins are known as HepS proteoglycans
(HSPGs)14. These chains are heavily modified via sulfation at
various positions on their sugar residues, imparting an overall
high negative charge and creating binding sites for different
molecules. Physiologically, HepS plays a vital role in regulating
various cellular functions, such as cell growth, adhesion, angio-
genesis, and blood coagulation, through interactions between
HSPGs and their partner molecules15. Furthermore, HepS is
utilized by various viruses for efficient infection, owing to its
molecular diversity. In addition to HSV-1, studies have identified
HepS as a factor that facilitates the binding and cell entry of
numerous viruses, including HSV-216, human coronavirus
(HCoV) OC4317, severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2)17,18, Ebola virus19, human immunodeficiency
virus (HIV)20, and hepatitis B virus (HBV)21. However, the fac-
tors involved in regulating HepS biosynthesis are currently not
completely understood.

Therefore, in this study, we performed a genome-wide CRISPR
screen for HSV-1 host factors and highlighted the importance of
HepS in HSV-1 infection. As a result, we identified 3′-phos-
phoadenosine 5′-phosphosulfate synthase 1 (PAPSS1) as a critical
factor for HSV-1 infection. The genetic ablation of PAPSS1 was
sufficient to abolish HepS expression in HAP1 cells and conse-
quently reduce the binding of various pathogenic viruses.
Moreover, while the single KO of PAPSS1 slightly affected HepS
biosynthesis in some PAPSS2-expressing cell lines, the double KO
of PAPSS1 and PAPSS2 resulted in reduced HepS expression and
higher resistance against HSV-1 infection in human retinal pig-
ment epithelial-1 (RPE-1) cells, indicating a redundant role of
PAPSS1 and PAPSS2 in HepS biosynthesis.

Results
A genome-wide CRISPR screen identifies host factors for HSV-
1 infection. To identify the genes required for HSV-1 infection,
we performed a genome-wide CRISPR screen using a human

near-haploid cell line (HAP1) (Fig. 1a). We used haploid cells
because of their higher efficiency in generating loss-of-functional
mutations relative to diploid cells22. First, we established
HAP1 cells that stably expressed Cas9 (HAP1/Cas9). Then, we
transduced these cells using a pooled lentivirus, encoding single-
guide RNAs (sgRNAs) and targeting 19,052 genes (6 sgRNA/gene),
1864 microRNA (miRNA) (4 sgRNA/miRNA), and 1000 non-
targeting control sgRNAs at a multiplicity of infection (MOI) of
0.3. The transduction step ensured that each cell generally
expressed only one sgRNA. After the mutagenesis by lentiviral
transduction and antibiotic selection for a week, we infected 20
million cells with HSV-1 at an MOI of 0.1 and selected the sur-
viving cells. Subsequently, the survivor cells were subjected to a
second challenge with HSV-1 at two weeks after the first HSV-1
challenge, to enable the enrichment of cells resistant to HSV-1
infection. The cells were expanded further for 2 weeks, and the
genomic DNA of the survivor cells was extracted and subjected to
sequencing. As shown in Fig. 1b, sgRNAs in the virus-infected
group were selected from <3% of the total sgRNAs in the duplicate
screening step, and then each gene was ranked as either the most
enriched sgRNA or the second-most enriched sgRNA23 (Fig. 1c).
The known HSV-1 entry receptor NECTIN-1, which interacts with
HSV-1 glycoprotein D6, was ranked at the top in our enrichment
analysis, demonstrating the technical quality of the screening
process. Additionally, seven genes in the HepS biosynthesis path-
way (XYLT2, B4GALT7, B3GAT3, EXTL3, EXT1, EXT2, and
SLC35B2) were markedly enriched (Fig. 1c). While these six former
genes encode enzymes that catalyze the HepS backbone
formation14 (Fig. 1d), SLC35B2 serves as the transporter of ade-
nosine 3′-phospho 5′-phosphosulfate (PAPS), the universal sulfuryl
donor for sulfation. PAPS was previously reported to be involved in
HepS biosynthesis24,25. We focused on the genes supported by
≥2 sgRNAs with >150 RPM for further validations since a sgRNA
targeting EXT2 showed the lowest abundance (150.5 RPM) among
these HepS-related genes (Fig. 1c; Supplementary Table 1). In
addition toNECTIN1 and HepS-related genes, our screen identified
three candidate genes (i.e., IRF2BPL, PAPSS1, and VANGL2) and a
candidate miRNA (MIR4647) (Fig. 1c).

We performed validation experiments for NECTIN1, several
HepS-related genes (including XYLT2 and EXT2), and three
additional candidate genes. Among the HepS-related genes, we
selected XYLT2 and EXT2 for validation since XYLT2 initiates the
biosynthesis of glycosaminoglycan chains26, and EXT2 is involved in
the later step of chain formation27 (Fig. 1d). Then, we generated one
or two HAP1 knockout (KO) clones for each gene via the CRISPR-
Cas9 approach using several sgRNAs (Supplementary Fig. 1a). Later,
these clones were infected with HSV-1, and their viabilities were
measured at 48 h post-infection (hpi). Results showed that the
cytopathic effects of HSV-1 infection were significantly suppressed
in the KO clones of NECTIN1, XYLT2, EXT2, and PAPSS1
compared with the wild type (WT) and nontargeting control cells
(Fig. 1e). We also confirmed this validation through HSV-1
infection at a different MOI (Supplementary Fig. 1b). We observed
that the perturbation of MIR4647 by a miRNA inhibitor did not
suppress the cytopathic effects of HSV-1 infection (Supplementary
Fig. 2). Of note, the genomic locus of MIR4647 is overlapped in the
3′-UTR of SLC35B228, suggesting the possibility that sgRNAs
targeting MIR4647 reduce the expression of SLC35B2.

Therefore, our screening process collectively identified NEC-
TIN1, PAPSS1, and a series of genes in the HepS biosynthesis
pathway as important for HSV-1 infection.

XYLT2 and EXT2 enhance the binding of HSV-1 to the cell
surface through HepS expression. Next, to investigate the role of
genes that catalyze the sugar chain formation of HepS in HSV-1
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infection, two KO clones of XYLT2 and EXT2 each and their
rescued clones were obtained using HAP1 cells (Fig. 2a).
Fluorescence-activated cell sorting (FACS) analysis with an anti-
HepS antibody revealed that HepS expression was downregulated
to background levels in both the XYLT2- and EXT2-KO clones
and the same extent in the heparinase-treated cells (Figs. 2b, c).
Furthermore, treatment with an antagonist to HepS, Surfen,
inhibited HSV-1-infection-mediated cell death (Fig. 2d).
Although the XYLT2- and EXT2-KO clones demonstrated higher
survivability against HSV-1 infection than the control clone at 48
hpi (Fig. 2e), the complementation of the lost gene canceled the

resistance (Fig. 2e). Consistent with these findings, progeny virus
production was also reduced in the KO clones by 1–2 log fold
compared with the control clone (Fig. 2f). Subsequently, since
HepS involves the binding of HSV-1 on the cell surface12, we
performed a binding assay using XYLT2- and EXT2-KO
HAP1 cells. The levels of viral DNA on the cell surface were
dramatically decreased by 30–200 fold in both XYLT2- and
EXT2-KO clones (Fig. 2g). To further investigate the roles of
these genes in HSV-1 infection using epithelial cells, which are
HSV-1 natural targets, we obtained XYLT2- and EXT2-KO clones
using RPE-1 cells (Supplementary Fig. 3a). Similar to HAP1 cells,
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XYLT2- and EXT2-KO RPE-1 cells showed reduced HepS
expression and higher resistance against HSV-1 infections than
the control clone (Fig. 2h and Supplementary Fig. 3b, c). These
findings confirmed that HepS enhances the attachment of HSV-1
particles on the cell surface, assisting the cell-free infection of
HSV-1.

HepS is important for HSV-1 cell-to-cell infection. In addition
to cell-free infections, we investigated whether HepS contributed
to the other modes of HSV-1 transmission, i.e., cell-to-cell
infection. XYLT2 initiates sugar chain formation by transferring
one xylose to the serine residues of core proteins, followed by the

conjugation of two galactose molecules and one glucuronic acid
(Fig. 1d). These first four sugars are shared by other glycosami-
noglycans: chondroitin sulfate and dermatan sulfate26. Therefore,
to ensure that only HepS expression was affected, an EXT2-KO
clone and its rescue clone in RPE-1 cells were generated using the
CRISPR-Cas9 system (Fig. 3a). Here we employed RPE-1 cells to
accurately calculate the plaque areas because the plaque forma-
tion in HAP1 cells by HSV-1 infections showed an obscure
margin. The reduced HepS expression of EXT2-KO RPE-1 cells
was recovered by complementing with EXT2 (Figs. 3b, c). Sub-
sequently, RPE-1 WT cells infected with HSV-1 were used as an
inoculate, after which these inoculates (30 cells/well) were
cocultured with a pre-seeded EXT2-KO clone or nontargeting
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control clone. Neutralizing antibodies against HSV-1 were added
to the media to prevent cell-free spread. The plaque sizes for the
EXT2-KO clone were decreased compared with that of the non-
targeting control clone at 72 hpi (Figs. 3d, e), whereas the number
of plaques was almost the same (Figs. 3d–f). Furthermore, the
complementation of EXT2 recovered the plaque size (Figs. 3d, e).
These findings propose that HepS contributes to both the cell-free
and cell-to-cell infection of HSV-1.

Knockout of PAPSS1 in HAP1 cells impairs the biosynthesis of
HepS and reduces the attachment of HSV-1 on the cell surface.
Our screening identified PAPSS1 as a host factor of HSV-1
infection (Fig. 1). PAPSS1 encodes an enzyme that synthesizes
PAPS. PAPS is synthesized by PAPSS1 in the cytosol or nucleus,
then transported into the lumen of the Golgi apparatus, where
sulfation of various substrates, including HepS, occurs29,30

(Fig. 4a). The transporter of PAPS is encoded by SLC35B2, which
was also highly enriched in our screen (Fig. 1), and it was pre-
viously considered essential in HepS biosynthesis in HAP1 cells
and 293 T cells24,25. Thus, we hypothesized that PAPSS1 is also
required for HepS biosynthesis. To test this, we obtained two
PAPSS1-KO clones of HAP1 cells and the rescued clones
(Fig. 4b). We analyzed HepS expression by FACS analysis. As
shown in Figs. 4c, d, FACS analyses revealed drastically dimin-
ished background-level HepS expression in PAPSS1-KO clones,
which was rescued by the complementation of PAPSS1. Fur-
thermore, HepS chain analysis by high-performance liquid
chromatography (HPLC) demonstrated that although the total
amount of HepS disaccharides was reduced by approximately
30%, the sulfation degree was decreased approximately by 20-fold
in PAPSS1-KO cells (Fig. 4e, Supplementary Fig. 4, and Supple-
mentary Table 2). Consequently, PAPSS1-KO cells exhibited a
robust resistance against HSV-1 infection, presenting a >90%
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survival rate at 48 hpi (Fig. 4f). The knockout of PAPSS1
decreased the binding of virus particles on the cell surface
(Fig. 4g), causing a reduction in progeny virus production by
2–3 log fold (Fig. 4h).

We further examined whether PAPSS1 contributes to the
binding of other viruses that are already known to use HepS for

binding16,17,21. Likewise, for HSV-1, the binding of HSV-2, HBV,
and HCoV OC43 was significantly reduced in the PAPSS1-KO
clones compared with the control cells (Fig. 4i). Hence, our
cumulative findings suggested that PAPSS1 influences HepS
biosynthesis, contributing to viral infections by assisting the
binding of virus particles.
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PAPSS1 influence on HepS biosynthesis depends on PAPSS2
expression. We further investigated whether PAPSS1 was
necessary for HSV-1 infection and HepS biosynthesis in RPE-1
cells. As shown in Fig. 5a, PAPSS 1-KO RPE-1 cells showed
significantly, but weaker resistance against HSV-1 infection than
XYLT2- and EXT2-KO clones (Fig. 2h). Consistent with this,
FACS analysis presented a slight reduction in the HepS expres-
sion of PAPSS1-KO RPE-1 cell clones (Figs. 5b, c). To evaluate
the impact of PAPSS1-KO on HepS biosynthesis in other cell
lines, we additionally obtained PAPSS1-KO clones using human
gastric adenocarcinoma (AGS) cells and lung adenocarcinoma
A549 cells (Supplementary Fig. 5). The PAPSS1-KO clones of
AGS cells showed reduced HepS expression to the background
level, similar to HAP1 cells. However, the PAPSS1-KO clones of
A549 cells showed a limited reduction in HepS expression, similar
to RPE-1 cells (Figs. 5b, c). This limited effect of PAPSS1-KO on
HepS biosynthesis implied the expression of a paralog enzyme,
PAPSS2. When we investigated the level of PAPSS2 expression, it
correlated with the limited reduction of HepS expression by
PAPSS1-KO (Fig. 5d). To assess the functional redundancy
between PAPSS1 and PAPSS2, we generated PAPSS2-KO clones
and double KO (DKO) clones of PAPSS1 and PAPSS2 using RPE-
1 cells (Fig. 5e). Similar to single PAPSS1-KO clones, single
PAPSS2-KO clones showed a limited reduction of HepS expres-
sion in RPE-1 cells and little or no gain of resistance to HSV-1
infection. However, DKO clones showed a strong decrease in
HepS expression and robust resistance to HSV-1 infections
(Figs. 5f–h). These findings propose the redundant role of
PAPSS1 and PAPSS2 in the HepS biosynthesis of RPE-1 cells.

Discussion
Loss-of-function genetic screening has identified various host fac-
tors required for viral infection31,32. This screening strategy
involves the isolation of mutations that render host cells resistant to
viral infection using a knockdown or knockout mutant library.
Compared with previous gene knockdown approaches, such as
RNAi, the complete ablation of gene expression using a haploid
screen or CRISPR screen produces clearer phenotypes on virus
infection, enabling the identification of critical host factors for viral
infection. This approach has been applied previously to uncover
host factors involved in viral entry. Haploid screens via insertional
mutagenesis discovered essential receptors for the Ebola virus33

and Lassa virus34,35. Recently, CRISPR screening identified host
factors that regulate SARS-CoV-217,36,37, common cold
coronaviruses17,37, HIV38, adeno-associated virus39, flavivirus40,
and Zika virus41. In addition to identifying the entry receptor of the

Lassa virus, Jae et al. revealed the gene networks encoding for
enzymes and accessory factors involved in the O-linked glycosy-
lation of α-dystroglycan35. Likewise, we also performed a genome-
wide CRISPR screen for HSV-1 host factors and revealed a set of
genes involved in HepS biosynthesis, including a viral entry
receptor, NECTIN1. The biosynthesis of HepS has also been
reported as a sequential multistep process that occurs in the Golgi
apparatus (Fig. 1d)42. Our results showed that knocking out XYLT2
and EXT2 caused a severe defect in HepS expression on the cell
surface (Fig. 2). XYLT2 is a glycosyltransferase that initiates the
biosynthesis of glycosaminoglycan chains (both HepS and chon-
droitin sulfate/dermatan sulfate) in proteoglycans26, and EXT2 is
involved in heparan sulfate chain elongation27. In contrast to the
genes related to the backbone formation of HepS, no other sulfo-
transferases were enriched in our screening process, possibly
because of their functional redundancy.

Additionally, all the host factors identified in our screening
were involved in viral attachment and entry, the earliest stage of
viral infection. This bias might be caused by the long selection
period of our screening. The cells lacking host factors engaged in
the later stages of infections would not allow viruses to replicate
or mature, but allow to enter the cell. The cytopathic and cyto-
cidal effects are caused even by the entry of UV-inactivated HSV-
143,44 and replication-defective mutants45. Alterenatively, the cells
lacking host factors engaged in the later stages of infections could
not propagate sufficiently or underwent apoptosis for harboring
viruses46,47. Therefore, the cells allowed viruses to enter the cell
might be eliminated during the selection.

Although we demonstrated that HepS contributed to both the
cell-free and cell-to-cell infection of HSV-1 (Figs. 2 and 3), how
HepS is involved in the cell-to-cell infection of HSV-1 remains
unclear. During vaccinia virus infection, the viral factor, F11L,
and a vaccinia growth factor contribute to the cell-to-cell spread
of the vaccinia virus via the activation of RhoA- and EGFR-
mediated cell motility, respectively48–50. Cell motility is essential
for the dissemination of various viruses48,51–53. Recently, it was
reported that the interaction between HSV-1 glycoprotein E and
prohibin-1 activates the MAPK/ERK pathway, promoting cell-to-
cell spread54. This signaling pathway also promotes cell
motility55,56. Similarly, HepS on the cell surface can serve as an
anchor to facilitate the endocytosis of growth factors, subse-
quently inducing rapid and efficient motility57–59. These findings
invoke a model in which HSV-1 uses HepS to promote cell
motility, increasing cell-to-cell contact with the neighboring
uninfected cells. However, further studies are warranted to
determine how HepS contributes to HSV-1 cell-to-cell trans-
mission, for instance, whether the motility of the infected cells is

Fig. 4 PAPSS1 is an important gene for HepS biosynthesis. a Schematic representation showing the contribution of PAPSS1 and SLC35B2 to the sulfation of
substrates within the Golgi apparatus. b Western blotting confirming the absence or complementation of PAPSS1 expression in the KO and rescued clones
of HAP1 cells. c, d HepS expression analysis by FACS. The graph summarizes the MFI of HepS expression analysis of three independent experiments (d).
The results are presented as means ± SEM. e HepS disaccharide analysis by HPLC. The total amount and the sulfation degree of HepS disaccharides of the
WT, nontargeting Ctrl, and PAPSS1-KO clones of HAP1 cells were measured. The results are presented as means ± SEM of four independent experiments.
f Viability of PAPSS1-KO clones of HAP1 cells after HSV-1 infection. The cells were infected with HSV-1 at a MOI of 9. Their cell viabilities were measured
using the MTS assay at 48 hpi. The results are presented as means ± SEM of three independent experiments. g Binding of HSV-1 in the PAPSS1-KO clones.
The cells were adsorbed with HSV-1 at an MOI of 50 for 1 h at 4 °C. The nontargeting control cells that were mock-infected with PBS were used as a
negative control. After removing the residual viruses, the viral DNA was extracted and quantified using qPCR. The results are presented as means ± SEM of
three independent experiments and are shown as the relative DNA level compared with that of the control. h Progeny virus production of HSV-1 in the
PAPSS1-KO clones. The cells were infected with HSV-1 at an MOI of 1. The progeny viruses were collected at 48 hpi and titrated using the plaque assay.
The results are presented as means ± SEM of three independent experiments. i Binding of the indicated viruses in the control and the PAPSS1-KO clones.
The cells were adsorbed with the virus for 1 h at 4 °C. The non-targeting control cells that were mock-infected with PBS were used as a negative control.
After removing the residual viruses, the viral DNA (HSV-2 and hepatitis B virus) or RNA (human coronavirus OC43) was extracted. The viral genome was
quantified using qPCR. The results are presented as means ± SEM of three independent experiments and shown as relative DNA levels compared with that
of the control. Asterisks, p < 0.05; Double asterisks, p < 0.01; N.D. not detected; n.s. not significant.
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affected by HepS expression on their cell surface and/or by the
MAPK/ERK pathway via HepS-dependent endocytosis.

The HepS chain’s modification is complex, occurring via sul-
fation. As a result, its molecular diversity generates binding sites
for multiple protein ligands60,61. This study identified PAPSS1 as
a critical factor of HepS biosynthesis in HAP1 cells (Fig. 4).
PAPSS1 produces the universal sulfate donor PAPS required for
the sulfation of polysaccharides. We demonstrated a diminished
HepS expression of PAPSS1-KO clones through FACS analysis.
Consistent with this, HepS disaccharide analysis also revealed a
decrease in the level of HepS disaccharides and entire sulfation,
resulting in reduced viral attachment on the cell surface in
HAP1 cells (Fig. 4). In humans, PAPS, the sole source of sulfate, is
synthesized from adenosine 5-prime triphosphate (ATP) and

inorganic sulfate by two enzymes; PAPSS1 and PAPSS2. While
PAPSS1 is ubiquitously expressed in human adult tissues, PAPSS2
shows a more restricted expression pattern62,63. In this study, KO
analysis of these enzymes showed PAPSS1 and PAPSS2 functions
to be redundant during HepS biosynthesis in RPE-1 cells (Fig. 5).
In a previous study, defects in PAPSS2 caused the Pakistani type
of spondyloepimetaphyseal dysplasia62,64. However, no infor-
mation is available on why the ubiquitously expressed PAPSS1
cannot compensate for the loss of PAPSS2 activity. Differences in
subcellular compartmentalization30, catalytic efficiency, and
expression patterns during cartilage and bone development62,63

might explain the differential effects of PAPSS1 and PAPSS2.
In summary, our study findings confirmed the significance of

HepS in HSV-1 infection and identified PAPSS1 as the key factor
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Fig. 5 PAPSS1-dependency of HepS biosynthesis differs between cell lines due to the PAPSS2 expression. a Cell viability of PAPSS1- KO of RPE-1 cell
clones after HSV-1 infection. The cells were infected with HSV-1 at a MOI of 9. Their cell viabilities were measured using the MTS assay at 48 hpi. The
results are presented as means ± SEM of three independent experiments. b, c HepS expression analysis of PAPSS1-KO clones of RPE-1, AGS, and A549 cells
by FACS (b). The graph summarizes the MFI of the HepS expression analysis of three independent experiments (c). The results are presented as
means ± SEM. d Western blotting showing the expression of PAPSS1 and PAPSS2 in HAP1, RPE-1, AGS, and A549 cells. The arrowhead indicates the cross-
reactive band of PAPSS1. e Western blotting confirming the absence of PAPSS1 and/or PAPSS2 expression in the KO clones of RPE-1 cells. The arrowhead
indicates the cross-reactive band of PAPSS1. f, g HepS expression analysis of PAPSS2-KO and PAPSS1- and PAPSS2-double KO (DKO) clones of RPE-1 cells
by FACS (f). The graph summarized the MFI of HepS expression analysis of three independent experiments (g). The results are presented as means ± SEM.
h Viability of PAPSS2-KO and DKO clones of RPE-1 cells after HSV-1 infection. The cells were infected with HSV-1 at an MOI of 9. The cell viabilities were
measured by the MTS assay at 48 hpi. The results are presented as means ± SEM of three independent experiments. Double asterisks, p < 0.01; n.s. not
significant.
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for HepS biosynthesis. The CRISPR-mediated inactivation of
PAPSS1 abolished the sulfated HepS expression on the cell sur-
face, which resulted in the reduced binding of various pathogenic
viruses in HAP1 cells. Furthermore, in some other cells that
express PAPSS2, such as RPE-1 and A549 cells, PAPSS2 com-
pensated for PAPSS1 in HepS biosynthesis. Therefore, our study
provides further insights into the host factors required for HSV-1
infection and HepS biosynthesis regulation.

Methods
Cells and virus stocks. HAP1 cells were purchased from Horizon (Cambridge,
UK) and cultured in Iscove’s Modified Dulbecco’s Medium (IMDM) (Nakalai
Tesque, Kyoto, Japan) supplemented with 10% fetal bovine serum (FBS), 1%
GlutaMAX (Thermo, Waltham, MA, USA), and 1% penicillin-streptomycin (Pen/
St) (Thermo). HEK293T (CRL-3216; ATCC), A549 (CCL-185; ATCC), and Huh7
(RCB 1942; RIKEN BRC Cell Bank) cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) (Sigma-Aldrich, St. Louis, MO, USA) supplemented with
10% FBS, 1% GlutaMAX, and 1% Pen/St. RPE-1 cells (CRL-4000; ATCC) were
cultured in DMEM/F-12 medium (Nakarai Tesque) supplemented with 10% FBS,
1% GlutaMAX, and 1% Pen/St. Vero cells (CCL-81; ATCC) were cultured in
Eagle’s minimal essential medium supplemented with 10% calf serum (CS), 1%
L-glutamine (Thermo), and 1% Pen/St. AGS cells (CRL-1739; ATCC) were cul-
tured in RPMI-1640 medium (Nakalai Tesque) supplemented with 10% FBS, 1%
GlutaMAX, and 1% Pen/St. HepAD38 cells (a gift from Christoph Seeger) were
cultured as described previously65. All cells were maintained at 37 °C and 5% CO2

unless otherwise indicated.
HSV-1 strain F and HSV-2 strain 186 were propagated in Vero cells. HCoV

strain, OC43, was obtained from ATCC (VR-1558) and propagated in Huh7 cells
at 35 °C. HBV genotype D (subtype ayw) was prepared from HepAD38 cells, as
described previously65.

Antibodies, plasmids, and reagents. Anti-HepS (10E4 epitope; H1890, 1:50)
mouse monoclonal antibody was purchased from US Biological Life Sciences
(Salem, MA, USA). Anti-XYLT2 (G-1; sc-374134, 1:500), anti-EXT2 (A-2; sc-
514092, 1:500), anti-PAPSS1 (A-2; sc-376244, 1:500), anti-PAPSS2 (SQ-19; sc-
100801, 1:500) and normal mouse IgM (sc-3881, 1:50) antibodies were obtained
from Santa Cruz Biotechnology (Dallas, TX, USA). Anti-IRF2BPL (NBP2–56241,
1:500) antibody was purchased from Novus Biologicals (Littleton, CO, USA). Anti-
VANGL2 (clone 2G4; MABN750, 1:500) antibody was obtained from Merck
(Darmstadt, Germany). Anti-GAPDH (D16H11; #5174, 1:2000), horseradish
peroxidase-conjugated anti-mouse or anti-rabbit secondary antibodies (#7074 and
#7076, 1:1000 and 1:1000) were purchased from Cell Signaling Technology
(Danvers, MA, USA). A horseradish peroxidase-conjugated anti-rat (SA00001-15,
1:1000) secondary antibody was obtained from Proteintech Group (Rosemont, IL,
USA). Alexa Fluor 488-conjugated anti-mouse IgM secondary antibody (A-10680,
1:50) was obtained from Thermo.

The full-length cDNAs of EXT2, NECTIN1, PAPSS1, and XYLT2 were obtained
by reverse transcriptase-PCR (RT-PCR) and cloned into the CSII-CMV-MCS-
IRES2-Bsd vector (RIKEN BioResource Center, Wako, Japan) using the In-Fusion
cloning system (Takara Bio, Kusatsu, Japan). The primers used for RT-PCR are
listed in Supplementary Table 3. To KO the gene of interest, sgRNA was designed
using CHOPCHOP (https://chopchop.cbu.uib.no)66 and cloned into px459 (a gift
from Feng Zhang; #48139, Addgene, Watertown, MA, USA) or lentiviral
expression constructs containing Cas9 and blasticidin- or neomycin-resistant
genes, generated by VectorBuilder® (Shenandoah, TX, USA). The oligos of the used
sgRNAs are shown in Supplementary Table 4. Inserted DNA sequences of each
vector were confirmed through direct DNA sequencing.

Surfen hydrate (S6951) and heparinase II (#P0736) were purchased from
Sigma-Aldrich and New England Biolabs (Ipswich, MA, USA), respectively.
miRNA inhibitors (SMI-001-MIMAT0019709 and SMC-2101) were purchased
from Bioneer Corporation (Daejeon, Republic of Korea). Lipofectamine 2000 was
obtained from Thermo.

Genome-wide CRISPR screen. HAP1/Cas9 cells were generated through lentiviral
transduction with lentiCas9-blast (a gift from Feng Zhang; #52962, Addgene), followed
by antibiotic selection with blasticidin for seven days. To establish CRISPR KO
libraries, 120 million HAP1/Cas9 cells were transduced with each lentiviral human
GeCKO v2 library A and B (SureGuide GeCKO v2.0 Human Exome CRISPR Library;
Agilent Technologies, West Cedar Creek, TX, USA) at an MOI of 0.3. Cells were
subsequently selected using puromycin and cultured for 7 days. This culturing equates
to >500-fold coverage of the library after selection. Twenty million selected cells
(estimated coverage: 150 cells/sgRNA) were subjected to the first HSV challenge at an
MOI of 0.1 with 5mg/mL of pooled human IgG (Equitech-Bio, Kerrville, TX, USA).
Survivor cells were cultured for 2 weeks, followed by a second HSV challenge at an
MOI of 0.1 without IgG. After an additional 2 weeks, 20 million viable cells were
harvested, followed by gDNA extraction with the QIAmp DNA Mini Kit (QIAGEN,
Hilden, Germany). To ensure that HSV-1 attacked all the cells during the selection
period, the same number of HAP1/Cas9 cells were infected with HSV-1 and cultured

likewise, and the survival of none of the cells was confirmed. The control group was
mock-infected with PBS and cultured for the same period as the HSV-challenged
group. To evaluate sgRNA enrichment, regions containing sgRNA cassette were
amplified using the PrimeSTAR GXL DNA Polymerase (Takara Bio) and primers
complementary to a common sequence of the lentivirus. For the first round of PCR, 35
reactions containing 1 μg gDNA were set up and amplified for 24 cycles. First, the PCR
products were pooled, mixed, and subsequently subjected to second PCR. Then 5mL
of the mixed first PCR product were amplified for six cycles with index primers during
the second round. PCR products were purified using the Agencourt AMPure XP beads
(Beckman Coulter, Pasadena, CA, USA) and sequenced on the Illumina HiSeq2500
(Illumina, San Diego, CA, USA) according to the manufacturers’ instructions. Primer
sequences used in the study are listed in Supplementary Table 5.

Generation of clonal knockout and complemented cell lines. HAP1, AGS, or
A549 cells were transfected with three different px459-sgRNA targeting the gene of
interest (triple-target CRISPR) as described previously67. Next, the cells were
selected using puromycin for 5 days. RPE-1 cells were transduced with a lentiviral
vector generated by VectorBuilder®, followed by 7 days of antibiotic selection using
blasticidin or neomycin. Clonal lines were established by limited dilution after
selection. KO was confirmed through Sanger sequencing or Western blotting.

Lentiviral transduction was performed to generate stable cell lines
complementarily expressing a selected gene of interest under a CMV promoter.
Lentivirus was produced by transfecting HEK293T cells with CSII plasmids,
pCMVR8.74 (a gift from Dider Trono and Yasuo Ariumi; #22036, Addgene) and
pCMV-VSV-G (a gift from Bob Weinberg; #8454, Addgene). KO cells were
transduced with the lentivirus encoding the gene of interest. Transduced cell
populations were selected with blasticidin and the transgene expression was
confirmed by immunoblotting.

Heparinase treatment. Cells were washed twice with PBS and incubated with 2 U/
mL heparinase II diluted in PBS for 1 h at 37 °C. The cells were washed twice again
with PBS and then subjected to subsequent experiments.

HepS staining. Cells were harvested using the TrypLE Select Enzyme (Sigma-
Aldrich), washed with PBS, and subsequently incubated with monoclonal anti-
HepS antibody diluted in PBS+ 2% FBS. After 1 h of incubation at 4 °C, the cells
were washed with PBS+ 2% FBS and incubated with Alexa 488-conjugated sec-
ondary antibody. The cells were again washed twice with PBS+ 2% FBS. Fluor-
escence was measured using the FACS Canto2 (BD Biosciences, Freemont, CA,
USA) and analyzed using FlowJo software (FlowJo Inc, Ashland, OR, USA).

Cell viability assay. Cell viability was measured using the Cell Titer 96 AQueois
One Solution reagent (Promega, Madison, WI, USA). In brief, wells containing
100 μL of the medium in 96-well plates were supplemented with 20 μL of 3-(4,5-
Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-
zolium, inner salt (MTS) reagent, followed by 2 h of incubation at 37 °C. Then, the
absorbance was recorded at 490 nm using a 96-well plate reader (Sunrise Basic;
Tecan Japan, Kawasaki, Japan).

Progeny virus titer measurement. Cells were infected with HSV-1 at an MOI of
1. After 24 h of incubation at 37 °C, the cells were collected with the supernatant
and stored immediately at −80 °C. The samples were frozen and thawed thrice
before titration. On the next day, 100 μL of the samples serially diluted in PBS were
inoculated on pre-seeded Vero cells, then incubated at 37 °C for 1 h adsorption.
After adsorption, 1 mL fresh medium containing 5% CS was added, and the cells
were incubated for 48 h. These cells were fixed with 10% formaldehyde and stained
with 0.5% crystal violet. Plaques were observed and counted.

Virus binding assay. For the virus binding assay, 2 × 105 cells were seeded into 24-
well plates. On the next day, the medium was replaced with fresh medium con-
taining 5 μg/mL of surfen hydrate or DMSO, followed by incubation for 1 h at
37 °C. The cells were inoculated with viruses in 100 μL ice-cold PBS. After 1 h of
adsorption on an ice bath, the cells were washed with ice-cold PBS three times and
collected for DNA extraction using the DNeasy Blood and Tissue Kit (QIAGEN) or
RNA extraction with the NucleoSpin RNA Plus (Takara Bio). The HSV-1 and 2
viral DNA levels were measured via qPCR as previously described68. The HBV
DNA and cDNA of HCoV OC43 were measured and normalized by GAPDH using
the following primers: For HBV, 5′-GTG TCT GCG GCG TTT TAT CA-3′ and 5′-
GAC AAA CGG GCA ACA TAC CTT-3′; for HCoV OC43, 5′-CGA TGA GGC
TAT TCC GAC TAG GT-3′ and 5′-CCT TCC TGA GCC TTC AAT ATA GTA
ACC-3′; for GAPDH, 5′-TGC ACC ACC AAC TGC TAG C-3′ and 5′-GGC ATG
GAC TGT GGT CAT GAG-3′.

Cell-to-cell spreading assay. WT RPE-1 cell monolayers were exposed to HSV-1
at an MOI of 50 for 1 h at 37 °C to enable virus entry. Then, the cells were washed
twice with PBS, followed by treatment with 40 mM of citrate buffer (pH 3.0) for
1 min to deactivate the extracellular residual viruses. The cells were again washed
twice with PBS and collected to inoculate onto 90% confluent monolayers of
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uninfected RPE-1 clones. Approximately 30 cells/well were inoculated with
infection media (IMDM+ 1% FBS) containing 5 mg/mL of pooled human IgG,
which was previously reported to be a sufficient concentration to neutralize nearly
all virions per 1 × 106 PFU69. At 72 hpi, the cells were fixed for 10 min in 10%
formaldehyde and stained with 0.5% crystal violet. The number of plaques was
counted manually by direct observation, and the area of plaques was analyzed using
ImageJ Fiji software70.

Quantification of HepS chains. Glycosaminoglycans (GAGs) from cultured cells
were prepared as described previously71 with slight modifications. Briefly, the cells
were homogenized in ice-cold acetone at least three times, and air-dried. The dried
materials (correspond to acetone powders) were exhaustively digested with heat-
activated actinase E (10% [w/w] of dried materials) in 0.1M borate buffer, pH 8.0,
containing 10mM CaCl2, at 55 °C for 48 h. The digest was treated with 5% tri-
chloroacetic acid, and the resultant acid-soluble fraction was adjusted to contain 80%
ethanol. The resultant precipitate was dissolved in water and subjected to gel filtration
on a PD-10 column (Cytiva), using water as an eluent. The flow-through fractions
were collected, evaporated to dryness, and dissolved in water (crude GAG fractions).

An aliquot of the crude GAG sample was digested with a mixture of heparinase
(0.5 mIU, Seikagaku, Tokyo, Japan) and heparitinase (0.5 mIU, Seikagaku) in
20 mM sodium acetate, pH 7.0, containing 2 mM calcium acetate at 37 °C for 4 h.
The digests were derivatized with fluorophore 2-aminobenzamide and analyzed by
anion-exchange high-performance liquid chromatography on a PA-G column
(YMC, Kyoto, Japan), as described previously72. The identification and
quantification of the resulting disaccharides were achieved by comparison with
authentic unsaturated HepS disaccharides (Seikagaku).

The HepS sulfation degree was calculated as the mol% of the total sulfated HepS
disaccharides multiplied by their respective sulfate group numbers (1, 2, or 3).

Statistics and reproducibility. Data were processed using Microsoft Excel. All
analyses were performed using two-tailed Student’s t-test. P < 0.05 was considered
statistically significant. Results are presented as means ± standard error of mea-
surement (SEM) of at least three independent experiments. The sample sizes and
number of replicates were described in the figure legends. The experiments were
not randomized and the investigators were not blinded.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The full list of raw sequencing read counts from the genome-wide CRISPR screen is
available in Supplementary Data 1. All NGS datasets have been deposited in the DNA
Data Bank of Japan (DDBJ; https://www.ddbj.nig.ac.jp/index-e.html) with the accession
number DRA014278. Source data behinds the graphs in this article are provided in
Supplementary Data 2. Uncropped blots are shown in Supplementary Fig. 6. All
materials and other data are available from the corresponding authors on reasonable
request.
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