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Integrative transcriptome-wide analysis of atopic
dermatitis for drug repositioning
Jaeseung Song 1, Daeun Kim 1, Sora Lee1, Junghyun Jung1,3, Jong Wha J. Joo2 & Wonhee Jang 1✉

Atopic dermatitis (AD) is one of the most common inflammatory skin diseases, which sig-

nificantly impact the quality of life. Transcriptome-wide association study (TWAS) was

conducted to estimate both transcriptomic and genomic features of AD and detected sig-

nificant associations between 31 expression quantitative loci and 25 genes. Our results

replicated well-known genetic markers for AD, as well as 4 novel associated genes. Next,

transcriptome meta-analysis was conducted with 5 studies retrieved from public databases

and identified 5 additional novel susceptibility genes for AD. Applying the connectivity map to

the results from TWAS and meta-analysis, robustly enriched perturbations were identified

and their chemical or functional properties were analyzed. Here, we report the first research

on integrative approaches for an AD, combining TWAS and transcriptome meta-analysis.

Together, our findings could provide a comprehensive understanding of the pathophysiologic

mechanisms of AD and suggest potential drug candidates as alternative treatment options.
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Atopic dermatitis (AD) is one of the most common chronic
dermatological diseases. The prevalence of AD reported in
children worldwide in 2019 was 10–20% and is

increasing1,2. AD is characterized by skin lesion and pruritus,
which is not life-threatening but severely affects the quality of life.
It is sometimes accompanied by thyroid autoimmunities, mental
health problems, and cancerous diseases with/without infectious
complications3–5. Currently, monoclonal antibodies are used to
treat severe AD, while topical steroids and antihistamines are the
first-line treatment for mild-to-moderate AD6. However, long-
term use of topical steroids or antihistamines can cause unwanted
side-effects such as skin thinning, melanocyte inhibition, and
gastrointestinal effects7,8. Therefore, alternate strategies for
treating mild-to-moderate AD are necessary.

Several genetic risk factors or causal genes for AD have been
identified by functional and computational studies9,10. Genetic
variants associated with filaggrin (FLG), ovo-like transcriptional
repressor 1 (OVOL1), and interleukin 6 receptor (IL6R) were
suggested as risk loci for AD by a multi-ancestry genome-wide
association study (GWAS)9. Other functional or clinical studies
suggested IL-4, IL-13, toll-like receptor 2 (TLR2), matrix metal-
loproteinase 9 (MMP9), and MMP10 as susceptibility genes for
AD10,11. However, the underlying mechanisms of AD patho-
genesis have not yet been elucidated.

Since general GWAS utilizes large-scale genotype data to
identify genetic variants that influence disease pathogenesis, the
method is less optimized for interpreting multiple gene expres-
sion changes caused by variants in non-coding regions. Recently,
transcriptome-wide association study (TWAS) was suggested as
an improved approach to implement gene expression imputation
using GWAS results for better interpretation12,13. TWAS predicts
the gene expression levels of phenotypes by combining genotypes
and gene expression weights calculated using cis-expression
quantitative trait loci (eQTLs) with multiple prediction models.
TWAS has provided new insights into the underlying genetic/
transcriptomic mechanisms of several diseases and phenotypes,
including Alzheimer’s disease, pancreatic cancer, and neutrophil
development14–16.

We conducted TWAS using the largest up-to-date AD GWAS
dataset obtained from a European population. Transcriptome
meta-analysis with microarray and RNA sequencing (RNA-seq)
datasets were performed to identify gene expression changes that
could not be explained solely by the genetic backbone. The
connectivity between gene expression signatures from TWAS and
transcriptome meta-analysis was assessed by network analysis.
Finally, we performed in silico drug repositioning by combining
the results from TWAS and meta-analysis to identify alternative
therapeutic options to treat AD. To the best of our knowledge,
this is the first integrative analysis on AD to combine TWAS and
meta-analysis. We believe that our results can help expand
knowledge of the biological mechanisms of AD pathogenesis and
the development of the therapeutic options for AD.

Results
Enrichment analysis of GWAS signals from AD GWAS sum-
mary statistics. To examine the genetic landscape of AD, this
study uses the UK Biobank GWAS data consisting of 279,476
controls and 9831 AD patients. First, we examined whether the
GWAS signals for AD were specifically enriched in certain tissue or
cell types by using the functional mapping and annotation of
genetic association (FUMA). We found that the cis-regulated genes
of GWAS signals were mainly over-expressed in skin tissues
(Supplementary Fig. S1)17. Next, tissue- or cell-specific heritability
was analyzed using a linkage disequilibrium (LD) score regression
applied to specifically expressed genes (LDSC-SEG) using the

multi-tissue expression dataset and multi-tissue chromatin dataset
following Finucane et al.18. Heritability of AD GWAS signals on
the multi-tissue expression data showed significant enrichment
(false discovery rate (FDR) < 0.05) in the blood and immune-
related tissues (Supplementary Fig. S2a; Supplementary Data 1)
and this pattern was replicated in the multi-tissue chromatin
dataset (Supplementary Fig. S2b; Supplementary Data 2).

Transcriptome-wide associations for AD. To identify suscept-
ibility genes for AD, we performed TWASwith functional summary-
based imputation (FUSION), using eQTL panels from nine tissues
that can cover the systemic features of AD. The tissue panels were
skin-sun exposed, skin-not sun exposed, cells-transformed fibroblast,
spleen, thyroid, whole blood, cells-Epstein–Barr virus (EBV)-trans-
formed lymphocytes, Netherlands Twin Registry (NTR) blood, and
Young Finns Study (YFS) blood panel. Among the total of 52,860
associations, 25 genes in 31 loci remained statistically significant after
using a Bonferroni-corrected threshold (P < 0.05/number of asso-
ciations (52,860)= ~9.46 × 10−7) (Fig. 1a, Table 1, and Supple-
mentary Data 3). Although TWAS signals showed the highest mean
effect size in the skin-not sun-exposed panel, this was not dramati-
cally higher than the mean effect sizes of other panels, indicating that
the genetic features of AD may evenly affect the gene expression
levels of nine tissue panels (Supplementary Fig. S3). The numbers of
significant associations were six in skin-sun exposed, five in skin-not
sun exposed, five in cells-transformed fibroblast, one in spleen, seven
in thyroid, eight in whole blood, one in cells-EBV-transformed
lymphocytes, two in NTR blood, and three in YFS blood panel.
These results may represent the tissue-specific genetic features of AD
in skin functions, immunological abnormalities, and thyroid
autoimmunity.

Among these genes, 18 well-known AD risk genes such as FLG,
OVOL1, and IL6R were significantly associated with TWAS
signals for AD, confirming the validity of our methods. We
identified three non-coding RNAs significantly associated with
AD (AC007278.2, AC007248.7, and RP11-85K15.2) and four
novel AD genetic risk genes, leucine rich repeat and Ig domain
containing 4 (LINGO4), regulatory factor X5 (RFX5), prolyl-4
hydroxylase subunit alpha 2 (P4HA2), and RNA binding motif
protein 17 (RBM17), which were not identified in previous GWAS
studies. Among the 25 significantly associated TWAS genes, the
majority (76%), including previously reported and novel TWAS
genes, remained statistically significant after the permutation test
(P < 0.05), suggesting that our TWAS genes are statistically robust
findings.

Then, we compared the TWAS results with two other gene
prioritization methods: the multi-marker analysis of genomic
annotation (MAGMA) and the COLOC method19,20. While
MAGMA analyzes the associated genes based on their chromo-
somal positions, COLOC is an R package for analyzing
colocalization events to calculate posterior probabilities (PP) for
hypotheses 0–4 (H0–H4). We detected 68 genes significantly
associated with AD using MAGMA by applying a Bonferroni-
corrected threshold (P < 2.64 × 10−6) that overlapped with 12
genes from TWAS (Supplementary Fig. S4a). The COLOC results
showed 27 colocalized signals for AD (PP3+ PP4 > 0.8 and PP4/
PP3 > 2), among which more than half (15/27) were also
prioritized in TWAS (Supplementary Fig. S4b, c). Among the
27 genes from COLOC, 13 overlapped with the results from
MAGMA (Supplementary Fig. S4c). Nine genes were prioritized
with all three methods: OVOL1, ARFRP1, PPP2R3C, FAM177A1,
CLEC16A, SLC2A4RG, ZBTB46, IL6R, and IL18RAP (Supple-
mentary Fig. S4c).

To analyze whether novel TWAS genes were jointly associated
with AD, a conditional and joint analysis using FUSION was
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conducted with the TWAS results (Supplementary Fig. S5a–c and
Table 2). Among the four novel genes, LINGO4, RFX5, and
RBM17 remained jointly significant after the expected gene
expressions were removed. A subsequent analysis using the fine-
mapping of causal gene sets (FOCUS) was performed to
determine the genetic causality of three novel jointly significant
genes in AD pathogenesis. Two novel genes, LINGO4 and
RBM17, were included in credible sets with significant cross-
validation P-values (P < 0.05) in FOCUS and their posterior
inclusion probabilities (PIPs) indicating the nominal probability
of causality were calculated (Supplementary Fig. S6a, b and
Table 3). LINGO4 was significantly detected in two genotype-
tissue expression (GTEx) tissue panels: skin-sun exposed (PIP=
0.163) and skin-not sun exposed (PIP= 1). RBM17 was also
significantly detected in the skin-sun exposed panel
(PIP= 0.695).

Overall TWAS signals were analyzed with TWAS-gene set
enrichment analysis (TWAS-GSEA) software to determine their
enriched biological pathway. Fifteen gene sets among the Gene
Ontology–Biological Process (GO-BP) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) gene sets were significantly
enriched with TWAS signals across five tissue panels: skin-sun
exposed, skin-not sun exposed, YFS blood, whole blood, and
cells-EBV-transformed lymphocytes (Fig. 1b and Supplementary

Data 4). TWAS signals were enriched in cornified envelope and
peptide cross-linking in skin panels, which are well-known
representative molecular characteristics of AD. TWAS signals
from YFS blood and whole blood panels were significantly
enriched in cytokine production (type 1 helper T cell activation)
and hedgehog signaling pathways, which supports the notion that
T cell-mediated immune responses are crucial pathogenic
mechanisms of AD. In addition, we identified significant
enrichment in TWAS signals in immune cell differentiation and
meiotic cell cycle regulation from the cells-EBV-transformed
lymphocytes panel. Together, the functional annotation of TWAS
signals suggested that they mostly contribute to the abnormal
activation of immune responses and the development of AD skin
lesions.

Transcriptome meta-analysis for AD. Due to the complicated
nature of AD, there may be transcriptional changes that can be
marginally explained by genetic variations. Therefore, we con-
ducted transcriptome meta-analysis to find transcriptional
changes occurred by non-genetic factors. We collected skin
transcriptome datasets (control: 93; AD: 140) from five studies on
five different experiment platforms from public databases
(Table 4). Then, we integrated the datasets into a merged set,
removing the batch effects between individual studies. Principal

Gene Set

a

b
Member of gene set

Available genes

Fig. 1 Overall results from the TWAS and post-analysis. a AManhattan plot showing the TWAS results obtained using the FUSION software. The red line
indicates a Bonferroni-corrected threshold (P < 9.46 × 10−7), and the yellow dots correspond to the 25 TWAS-significant genes. b A heatmap showing the
result of TWAS-GSEA. The color of each cell indicates the number of available genes involved in the gene set divided by the total number of the genes in
the gene set. The cells marked with asterisks are the significantly enriched gene sets in the corresponding tissue panels.
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Table 1 List of significantly associated genes from TWAS.

Chromosome Gene Panel eQTL.ID Z (TWAS) P (TWAS) P (Permutation)

CRNN Skin - not sun exposed (suprapubic) rs4845763 4.9853 6.19E−07 0.1875
FLG Cells - transformed fibroblasts rs1552991 −6.244 4.27E−10 0.0498

Skin - sun exposed (lower leg) rs11204948 −7.4583 8.77E−14 0.0325
Thyroid rs4845737 −7.1502 8.67E−13 0.0194
Skin - not sun exposed (suprapubic) rs1552991 −6.6973 2.12E−11 0.0328
Cells - transformed fibroblasts rs1552991 −6.5511 5.71E−11 0.0188

1 FLG-AS1 Skin - sun exposed (lower leg) rs4845743 −5.9174 3.27E−09 0.0335
Spleen rs4845737 −5.5863 2.32E−08 0.0822
Thyroid −6.4987 8.10E−11 0.0353

IL6R Whole blood rs4845618 −4.9217 8.58E−07 0.0152
YFS blood rs4845623 −5.2654 1.40E−07 0.0108

LINGO4* Skin - not sun exposed (suprapubic) rs12128071 5.6211 1.90E−08 0.0307
RFX5* Thyroid rs6684085 −4.9048 9.35E−07 0.2308

2 AC007278.2 Whole blood rs1420106 −6.14 8.50E−10 0.0004
AC007248.7 Whole blood rs13015714 5.31 1.09E−07 0.0011
IL1RL1 NTR blood rs7559479 −5.7959 6.80E−09 0.0123
IL18RAP Whole blood rs3755267 −5.99 2.09E−09 0.0015

YFS blood rs3755266 −5.0088 5.48E−07 0.0085
5 KIF3A Skin - sun exposed (lower leg) rs3213639 −5.1391 2.76E−07 0.1111

P4HA2* Cells - transformed fibroblasts rs4705928 −5.085 3.68E−07 0.4444
10 RBM17* Skin - sun exposed (lower leg) rs8463 −5.6682 1.44E−08 0.005
11 OVOL1 Cells - EBV-transformed lymphocytes rs10791824 −5.6193 1.92E−08 0.001
14 FAM177A1 Skin - not sun exposed (suprapubic) rs11156875 5.0543 4.32E−07 0.0157

PPP2R3C NTR blood rs8014377 −5.3214 1.03E−07 0.0066
RP11-85K15.2 Whole blood rs13379372 5.3018 1.15E−07 0.0239

16 CLEC16A Thyroid rs2286975 5.0211 5.14E−07 0.0478
17 FAM134C Skin - not sun exposed (suprapubic) rs2293158 −4.9214 8.59E−07 0.0026
20 ARFRP1 Cells - transformed fibroblasts rs4809330 6.8397 7.93E−12 0.0019

Thyroid rs2315008 5.8079 6.33E−09 0.0082
Whole blood rs6062504 −5.5349 3.11E−08 0.0062

LIME1 Skin - sun exposed (lower leg) rs6011040 −5.2138 1.85E−07 0.1304
Whole blood rs4809330 −5.3781 7.53E−08 0.0227
YFS blood rs6011058 −6.1045 1.03E−09 0.0064

SLC2A4RG Thyroid rs1151622 6.0395 1.55E−09 0.0197
STMN3 Skin - sun exposed (lower leg) rs2315008 −5.5004 3.79E−08 0.0102

Whole blood rs6011040 5.43 5.64E−08 0.0093
ZBTB46 Thyroid rs2315654 6.9417 3.87E−12 0.0015
ZGPAT Cells - transformed fibroblasts rs1058319 5.3406 9.26E−08 0.0086

Genes marked with asterisks are novel genes that were not identified in the original GWAS study.

Table 2 Conditional and joint analysis results of novel TWAS genes in FUSION.

Gene Z (TWAS) P (TWAS) Z (Joint) P (Joint) Tissue

LINGO4 5.6 1.90E−08 5.6 1.90E−08 Skin - not sun exposed (suprapubic)
RFX5 −4.9 9.40E−07 −4.9 9.40E−07 Thyroid
RBM17 −5.7 1.40E−08 −5.7 1.40E−08 Skin - sun exposed (lower leg)

Only jointly significant genes are displayed. Z (TWAS) and P (TWAS) are the original z-statistics and P-values from TWAS, respectively. Z (Joint) and P (Joint) are the z-statistics and P-values after
conditioning on the TWAS signals, respectively.

Table 3 Fine-mapping results of the novel TWAS genes using FOCUS.

Gene Tissue Chromosome Model P (Cross-validation) PIP Region

LINGO4 Skin - sun exposed (lower leg) 1 enet 0 0.163 1:148512062-
1:151538786

Skin - not sun exposed (suprapubic) lasso 0 1 1:151539165-
1:153180729

RBM17 Skin - sun exposed (lower leg) 10 lasso 0.0399 0.695 10:5983762-
10:7171183

Only significant genes are displayed.
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component analysis (PCA) was conducted to verify that major
variances between samples were mainly due to disease state
(Fig. 2a).

A transcriptome meta-analysis for identifying differentially
expressed genes (DEGs) between AD and control groups was
conducted using the batch effect-corrected merged set. Using
merging data, we obtained robust genetic features (meta-
signatures) with increased statistical power. We identified 268
meta-signatures consisting of 196 up- and 72 downregulated
DEGs (FDR < 0.01 and |log2fold-change (FC)|values > 1). We
found that 226 genes from meta-signatures were included in at
least one of the single datasets, while 42 were only identified in
the meta-analysis (Fig. 2b). There was a clear distinction of gene
expression profiles between the control and AD samples (Fig. 2c).

Among 268 meta-signatures, we identified five novel genes not
previously reported as having associations with AD pathogenesis
(Table 5). Chromosome 1 open reading frame 162 (C1orf162) was
detected as a positively regulated gene and expresses a protein
located in the hydrophobic region of the cellular membrane21,22.
Nocturnin (NOCT) encodes a protein that is crucial in the
circadian system23. The multi-functioning gene TP53-induced
glycolysis regulatory phosphatase (TIGAR), known for its role in
the p53/TIGAR signaling pathway, was also significantly
upregulated24. There were two downregulated novel genes:
scinderin (SCIN) and BOC cell adhesion associated, oncogene
regulated (BOC). SCIN is associated with skin development or
epithelial–mesenchymal transition, whereas BOC is involved in
developmental pathways such as hedgehog pathway or neuronal
differentiation25–28.

We examined the expression profiles of TWAS genes in the
meta-analysis results. Among the 25 TWAS genes, 16 had
corresponding probes available in our merged set. Only FLG was
involved in both the TWAS signal and meta-signature. Other
TWAS genes, except RBM17 (FDR= 0.258, log2FC= 0.022),
showed marginally significant differential expression (FDR < 0.01,
|log2FC| > 0) in our meta-analysis (Supplementary Table S1).
Although there was only one direct overlap between TWAS genes
and meta-signatures, we observed significant correlations between
the two in gene-set levels (Supplementary Fig. S7). In line with
the significant enrichment of TWAS results in meta-signatures,
the functional enrichment results of the meta-analysis well
conformed with the TWAS-GSEA results. We found that 80% of
gene sets that were significantly enriched with TWAS signals were
also enriched with the pre-ranked gene lists generated using the
transcriptome meta-analysis (Supplementary Data 5). Together,
the meta-analysis using published transcriptome data showed the
reliability of the TWAS genes and identified five novel genes.

Network construction and sub-network analysis for integrating
TWAS and meta-analysis. To systematically assess the connec-
tions between TWAS genes and meta-signatures, we conducted
network analysis using both sets of genes as input nodes in the
search tool for the retrieval of interacting genes (STRING)
database (Supplementary Fig. S8a). After constructingT
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Table 5 List of the novel genes from the transcriptome
meta-analysis.

Gene Entrez ID log2FC P FDR

C1orf162 128346 1.011 3.94E−53 8.68E−52
NOCT 25819 1.0662 1.60E−81 2.87E−79
TIGAR 57103 1.1068 1.67E−70 1.17E−68
SCIN 85477 −1.2283 5.28E−85 1.37E−82
BOC 91653 −1.0288 2.01E−106 2.19E−103
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protein–protein interaction (PPI) networks composed of 243
nodes, we analyzed the sub-network clusters to examine the local
connections between TWAS genes and meta-signatures. Net-
works were clustered into 12 sub-networks, and the three clusters
with the top 25% rank scores were regarded as the main ones
(Supplementary Fig. S8b).

Cluster 1 showed the highest rank score (score: 12.383) with 48
genes that included three TWAS genes, 44 meta-signature genes,
and one gene from the STRING database (Fig. 3a). In cluster 1,
marker of proliferation Ki-67 (MKI67) was the hub gene with 30
degrees and 0.254 betweenness centrality (BC). Cluster 2
contained 30 upregulated and two downregulated meta-
signature genes and 11.355 rank score (Fig. 3b). The hub gene
for cluster 2 was interferon regulatory factor 7 (IRF7) that
presented 25 degrees and 0.272 BC. Cluster 3 had an 11.13 ranked
score and consisted of the most nodes (116) with seven TWAS
genes, 107 meta-signature genes, FLG (which was involved in
both TWAS genes and meta-signatures), and one gene added by
the STRING database. MMP9, which was an upregulated meta-
signature, was the hub gene for cluster 3, showing 38 degrees and
0.192 BC (Fig. 3c). The connections between TWAS genes and
meta-signatures in cluster 1 had the highest rank score and
cluster 3 harbored the most genes. This suggests that the
combination of TWAS genes and meta-signatures successfully
expanded the genetic signatures of AD.

Additionally, we analyzed the connections between genes from
our analyses and known AD-associated genes in functional

networks specific to three tissues (blood, blood plasma, and skin)
and 12 cell types (B-lymphocytes, culture condition CD8 cells,
dendritic cells, eosinophils, granulocytes, keratinocytes, mono-
cytes, mononuclear phagocytes, natural killer cells, neutrophils,
skin fibroblasts, and T-lymphocytes)29. We compared the
gene–gene functional connectivity of known AD markers and
289 genes from our analyses versus the connectivity of AD
markers and randomly selected 289 genes. In all 15 networks,
genes from our analyses showed significantly higher connectivity
(P < 0.001, one-tailed Mann–Whitney) with known AD markers
than random genes, suggesting their tissue- and cell-specific
functional involvement in AD etiology (Supplementary Fig. S9).

Identifying potential drug candidates for AD. Using TWAS
genes and meta-signatures, we discovered drug candidates for AD
via a drug-repositioning approach. The connectivity map
(CMAP) database contains the genome-wide transcriptional
change data after the addition of small molecules (perturbagens).
Enrichment scores of TWAS genes (TWAS-ES) and meta-
signatures (Meta-ES) for each perturbagen were calculated
using CMAP to select perturbagens with product scores >0.6
(Supplementary Data 6). Perturbagens selected as potential drug
candidates were pararosaniline (TWAS-ES: 0.875; Meta-ES:
0.981; product score: 0.858), 2-deoxy-D-glucose (TWAS-ES:
0.916; Meta-ES: 0.936; product score: 0.857), cantharidin (TWAS-
ES: 0.839; Meta-ES: 0.869; product score: 0.729), MG-132
(TWAS-ES: 0.683; Meta-ES: 0.984; product score: 0.672), and

a

c

b

667

Single study DEGs 

Meta-signature

42226

Fig. 2 Correction of batch effects and identification of meta-signatures for AD. a A scatter plot displaying the PCA results using all genes after the batch
effect correction. The shapes of the points indicate the samples from each dataset. Green and red color correspond to the healthy control samples and AD
samples, respectively. b A Venn-diagram comparing the DEGs from single studies with meta-signatures. c A heatmap of expression profiles of meta-
signatures across the samples.
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1,4-chrysenequinone (TWAS-ES: 0.836; Meta-ES: 0.736; product
score: 0.615) (Fig. 4a). To assess coherence between the drug lists
derived from the two different sources, we analyzed the correla-
tion between TWAS-ES and Meta-ES; those of each CMAP drug
that were significantly enriched (P < 0.01) in both TWAS and
meta-analysis were positively correlated (R= 0.414,
P= 2.791 × 10−11), indicating that the significantly enriched
drugs from TWAS and meta-analysis methods had significant
coherence (Fig. 4b).

Finding structurally or functionally similar molecules to
currently used drugs is a basic approach for drug repositioning.
Therefore, we assessed the similarities of structures and modes of
actions (MOAs) between our drug candidates and four reference
drugs used to treat AD selected from three categories: tacrolimus
as a topical calcineurin inhibitor, hydroxyzine and diphenhy-
dramine as antihistamines, and cefalexin as an antibiotic30–32. We
compared the chemical structures of our potential drug
candidates and the reference drugs using the cosine coefficient
(Fig. 4c). Our drug candidates showed a cosine coefficient in the

range 0.222–0.544 compared with reference drugs. Cantharidin
and 2-deoxy-D-glucose were similar to the reference drug
tacrolimus, and MG-132 to cefalexin and diphenhydramine,
suggesting their high potential as treatment options for AD.

We carried out network-based MOA analysis to investigate the
similarities in the transcriptional signatures of the drug
candidates and reference drugs. Each drug candidate connected
with at least one reference drug either directly or with just one
stopover, as shown in Fig. 4d. 2-deoxy-D-glucose was directly
connected to hydroxyzine and indirectly connected to tacrolimus,
which showed structural similarity with tyrphostin as a
stopover33. Pararosaniline had two indirect paths via a merged
gene signature from PEGylated liposomal doxorubicin (PLD+) or
an actin polymerase inhibitor, cytochalasin B, connected to
hydroxyzine34,35. Both 1,4-chrysenequinone and cantharidin
were directly connected to the reference drug cefalexin.

We identified potential drug candidates by analyzing gene lists
from TWAS and transcriptome meta-analysis with CMAP that
showed substantial similarities with currently used drugs in terms

a b

c
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1 42
-6.94 6.940.0

Weight Shape

*
Both 

analyses
Meta-

analysis
TWAS STRING
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Fig. 3 Sub-networks of the PPI network constructed with the functional protein association retrieved from the STRING database using the TWAS
genes and meta-signatures. The PPI network of the sub-network clustered using MCODE that were a cluster 1, b cluster 2, and c cluster 3. The size of each
node is proportional to the degree of the node. The weight of each node (Z (TWAS) or meta-analysis log2FC) is indicated by the color of the node. The
shape of the node indicates where the gene came from. A circle, rectangle, or triangle corresponds to genes involved in TWAS, meta-analysis, and the
STRING database, respectively. Significantly associated genes in both TWAS and meta-analysis are marked with a red asterisk.
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of chemical structures and MOAs, suggesting their potential for
ameliorating AD symptoms.

Discussion
TWAS calculates the expected gene expression values based on
large-scale GWAS, of which the sample number usually exceeds
those of transcriptome experiments from clinical studies. By
predicting tissue-specific expression levels of AD using TWAS, we
could identify four novel genes (Fig. 1a). LINGO4 is a gene
encoding a protein with an Ig-like C2 type domain and 13
leucine-rich domains. A previous study indicated the association
between LINGO4 and essential tremor in a Chinese population,
but the contribution of LINGO4 to AD has not been revealed, to
the best of our knowledge36. The gene product of RFX5 is
reported to be associated with interferon gamma activation or
major histocompatibility complex II gene expression, suggesting
its role in AD pathogenesis37–39. Several studies mentioned the
P4HA2 gene in AD or AD-like symptoms, but none of these
reports highlighted P4HA2 as a major risk factor for AD40–42.
The RBM17 gene encodes a protein that induces cell cycle-related
biological pathways43. This gene was mentioned in previous
reports but was never highlighted as a main causal genetic risk
factor for AD44,45. While recent research by Sobczyk et al. utilized
the GWAS summary statistics from the EAGLE Consortium,
which is the largest multi-ancestry study containing the genotypes
of AD patients and healthy controls of European, African,

Japanese, and Latin American ancestry, we used the summary
statistics of a European population from UK Biobank45. For this
reason, we may have estimated genetic risk factors for AD in the
European population more precisely, thereby identifying genes
that were not found in the previous study.

Functional annotation of TWAS signals also conformed to
known characteristics of AD pathogenesis (Fig. 1b). The most
well-known genetic risk factor, FLG, is associated with the cor-
nified envelope and peptide cross-linking, which are representa-
tive characteristics of AD and trigger skin barrier
dysfunctions46–48. Enriched pathways in blood-related panels
were related to immune responses such as the function and
regulation of type 1 helper T cells, which are a signature of the
transition from early- to chronic-stage AD49.

Our meta-analytic approach combined five independent tran-
scriptome datasets from previously published studies into a
merged set with adjusted batch effects (Fig. 2a). Even though
transcriptome meta-analyses have been previously performed,
our study used 233 samples, which is the largest sample to
date50–52. Because statistical power improves by increasing sam-
ple size, we obtained a meta-signature showing clear expression
patterns across the samples and identified five novel genes,
C1orf162, NOCT, TIGAR, SCIN, and BOC, that may play crucial
roles in AD pathogenesis (Fig. 2b, c). Notably, TWAS signals
were enriched in hedgehog signaling, and we identified the BOC
gene, which plays a role in hedgehog signaling, from the meta-
analysis (Figs. 1b and 2). The pathogenetic role of hedgehog

Fig. 4 Identification of potential drugs for AD through in silico drug repositioning. a A scatter plot of the calculated product score. Highly enriched drugs
(product score > 0.6) are marked with red and annotated. b A scatter plot showing the correlation between the enrichment of perturbagens calculated with
TWAS genes and meta-signatures. c The structure similarity analysis results comparing the potential drug candidates and reference drugs. The intensities
of red rhombi are proportional to the cosine coefficient similarity index. d A network showing the similarities in MOAs of potential drug candidates and
reference drugs. Red and blue nodes correspond to the potential drug candidates and reference drugs, respectively.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03564-w

8 COMMUNICATIONS BIOLOGY |           (2022) 5:615 | https://doi.org/10.1038/s42003-022-03564-w |www.nature.com/commsbio

www.nature.com/commsbio


signaling in AD has received some attention in recent experi-
mental studies, and our study also revealed the connection
between AD etiology and the abnormal activation of this sig-
naling pathway.

TWAS has advantages in its sample size and statistical power
for detecting genetic risk factors and their associated genes,
whereas transcriptome studies measure expression values. We
believe that integrating these two approaches complements what
each method lacks. TWAS genes and meta-signature genes of AD
were connected in two major sub-networks on the PPI network,
suggesting that these gene connections may relate to AD patho-
genesis (Fig. 3a–c).

We calculated product score using TWAS genes and meta-
signature as inputs and identified five potential drugs for AD:
pararosaniline, 2-deoxy-D-glucose, cantharidin, MG-132, and 1,4-
chrysenequinone (Fig. 4a–d). Pararosaniline, 2-deoxy-D-glucose,
cantharidin, and their derivatives had in vivo and/or clinical evi-
dence of ameliorating various dermatological conditions53,54. MG-
132 and 1,4-chrysenequinone inversed the gene expression patterns
of AD in our in silico approach. Pararosaniline is an organic
compound used as a fixation dye for frozen tissues or for the
detection of aldehydes in biological materials55. Gentian violet, a
hexamethyl form of pararosaniline, was previously used as an
antibiotic, but has recently received attention for its potential to
treat dermatologic diseases such as hypereosinophilic syndrome and
pachyonychia congenita52. The glucose derivative 2-deoxy-D-
glucose is used as an imaging agent for in vivo fluorescence ima-
ging and has been implicated in targeted cancer therapies56,57. It
also significantly ameliorates skin inflammation in dermatitis
mouse models53. Cantharidin is a natural terpenoid compound
produced in blister beetles, which were used in ancient Asia to treat
conditions such as arthritis, pneumonia, ulcers, and smallpox54.
Recent studies used cantharidin to manage dermatologic diseases
like molluscum contagiosum and warts58,59. MG-132 is a protea-
some inhibitor with anti-cancer activities that can also temporally
alleviate AD-like symptoms in a murine model60,61. 1,4-chrysene-
quinone, a para-quinone antioxidant is associated with antigen
presenting and processing62–64. Several studies have suggested 1,4-
chrysenequinone as a therapeutic agent for cancerous diseases65,66.
While our drug candidates showed moderate structural similarity
with known AD drugs (0.222 < cosine coefficient < 0.544), we
observed suggestive similarities in MOAs.

We combined two powerful approaches, TWAS and tran-
scriptome meta-analysis, to investigate the complicated biological
nature of AD and identified potential therapeutics through in
silico drug repositioning (Fig. 5). We identified novel genetic

factors associated with AD risk and/or pathogenesis, which have
roles in skin barrier abnormality, immune cell dysregulation, cell
cycles, and immune responses, through an integrative tran-
scriptome approach. Because we used an in silico approach, our
results may need to be validated with experimentation. While
animal models for AD are available, they are imperfect repre-
sentations of human AD and only have an AD-like
phenotype67,68. Transcriptomic profiles of each murine model
with AD-like phenotypes showed significant differences from
human AD, indicating that our genetic markers need to be vali-
dated in human patients69. However, since our drug candidates
are associated with ameliorating the symptoms of AD, the
effectiveness could be validated using in vitro and in vivo models.
We believe that our systematic large-scale analysis will expand the
understanding of the biological phenomena underlying AD in
humans.

Methods
Data collection and pre-processing for TWAS. GWAS summary statistics for AD
(Atlas ID: 3606; total: 289,307; control: 279,476; AD: 9831) based on UK Biobank
(UKB2) were retrieved from GWAS Atlas (https://atlas.ctglab.nl/)70,71. The retrieved
data were then converted into the LD score format using the LDSC software (version
1.0.1)72. An LD structure from the 1000 Genomes Project was used as the reference
LD block for TWAS73. Seven eQTL panels from the GTEx project version 7 (skin-sun
exposed, skin-not sun exposed, cells-transformed fibroblast, spleen, thyroid, whole
blood and cells-EBV-transformed lymphocytes), and two eQTL panels from indivi-
dual studies (NTR and YFS blood panel) were used as the pre-computed tissue-
specific gene expression weights for TWAS74–76. The reference LD structure and
eQTL panels were curated in the FUSION webpage (http://gusevlab.org/projects/
fusion/) and used for TWAS of AD GWAS summary statistics12.

Transcriptome data collection and processing. Transcriptome data were sear-
ched in Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) and
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/). Raw expression data and
counts were retrieved for microarray datasets and RNA-seq data, respectively. Data
derived from skin tissues of AD patients and healthy control groups were selected.
The selected data consisted of one RNA-seq experiment (GSE121212, 38 controls
and 27 AD patients) and four microarray experiments (GSE16161, GSE5667,
GSE120721, E-MTAB-8149 with 9, 5, 22, and 19 controls and 9, 6, 15, and 83 AD
patients, respectively). RNA-seq data were processed and normalized using edgeR
R package, and the counts per million (cpm) were calculated with DESeq2 R
package77–79. Microarray data were normalized using the robust multi-array
average method in the oligo R package80.

Tissue-specific enrichment analysis of GWAS signals. Tissue specificity analysis
based on the GWAS data was conducted with the GENE2FUNC process of the
FUMA web server17. The threshold for enrichment significance was Bonferroni-
corrected P < 0.05. Tissue-specific heritability enrichment analysis was performed
with LDSC-SEG on the multi-tissue expression and chromatin datasets that contained
the tissue-specific gene expressions and epigenetic chromatin modifications,
respectively18. Tissues with FDR < 0.05 were regarded as significantly enriched.

Fig. 5 A schematic workflow of an integrative transcriptome-wide analysis for AD. Left panel delineates the identification of candidate genes and right
panel describes the integrative analysis for analyzing the gene-gene connectivity and identifying the drug candidate for AD.
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Transcriptome-wide association analysis. FUSION performs summary-based
gene expression imputation to identify the association between expected gene
expression values and the trait by applying weighted-linear mixed models using
pre-computed eQTL panels composed of cis-effects on SNP-gene regulation and
SNP-trait effects. TWAS for AD summary statistics was performed using the
default parameters of FUSION. Gene expression was calculated with four models:
best linear unbiased predictor, Bayesian sparse linear mixed model, elastic net, and
least absolute shrinkage and selection operator. The result from the best per-
forming model of each gene was displayed as the expected gene expression value. A
permutation test was performed using FUSION to evaluate the robustness of the
TWAS signals (number of permutations: 100,000).

Gene prioritization analysis. The MAGMA was performed with the FUMA web
server (https://fuma.ctglab.nl/), and the COLOC analysis was implemented for the
genes that showed P < 0.05 with FUSION software17,19. The significance threshold
for the MAGMA was determined as a Bonferroni-corrected threshold (P < 0.05/the
number of analyzed genes (18,899) = ~2.64 × 10−6). Each hypothesis represents
the following phenomenon in our analysis. H0: there is no causal variant; H1: there
are only causal variants between genotype and phenotype; H2: there are only causal
variants for eQTL; H3: phenotype and gene expressions are driven by two different
causal variants; and H4: phenotype and gene expressions share the same causal
variant. Following Li et al., we determined the threshold of colocalization as
PP3+ PP4 > 0.8 and PP4/PP3 > 281.

Post-analysis of TWAS results. To assess the associations of multiple TWAS
signals in the same loci, we conducted conditional and joint analysis for TWAS-
significant loci with a FUSION post-process function. To support the robustness of
novel TWAS signals, we performed fine-mapping of TWAS associations using the
FOCUSmethod (version 0.6.10) proposed byMancuso et al., while eQTL panels were
confined to the tissue where TWAS-significant loci of interest were observed82.
FOCUS identifies credible gene sets containing causal genes at the nominal con-
fidence level (over 90%). Additionally, the biological pathways related to TWAS
signals were analyzed by GSEA using a TWAS-GSEA (v.1.2, https://github.com/
opain/TWAS-GSEA) with GO-BP and KEGG reference gene sets retrieved from the
molecular signatures database (MsigDB, http://software.broadinstitute.org/gsea/
msigdb)21,22,83–85. Tissue-specific effects of TWAS results were analyzed by calcu-
lating the mean of squared Z (TWAS) for each tissue following Mancuso et al.86.

Transcriptome meta-analysis. Individual datasets were merged by corresponding
the common Entrez IDs. The cpm values of the RNA-seq dataset were adjusted as
log2(cpm+ 0.25) to avoid negative values following Mooney et al. with slight
modifications87. Briefly, cpm values were used instead of fragments per kilobase
per million mapped reads (FPKM) values. Batch effects between datasets were
corrected using the ComBat function in the sva R package88. DEGs between the
control group and AD group were identified using the limma R package89. DEGs
with positive and negative log2FCs were regarded as upregulated and down-
regulated meta-signatures, respectively.

Validating correlation between TWAS results and meta-analysis. GSEA was
performed to examine the functional correlation between TWAS results from each
panel and the results from transcriptome meta-analysis. GSEA pre-ranked method
was performed on the gene sets with up- or downregulated meta-signatures and
TWAS results ranked with the Z (TWAS) values from each panel. The significance
threshold for enrichment was set as FDR < 0.25 following the recommendation of
MsigDB. Functional annotation of the meta-analysis results was performed with
GSEA pre-ranked method by ordering the genes by their log2FC values. To analyze
the overlapping enrichment with TWAS-results, we applied the gene sets used for
TWAS-GSEA as the reference gene sets.

Network analysis. The significant genes from TWAS and DEGs from tran-
scriptome meta-analysis were used as the input nodes for network analysis.
STRING (https://string-db.org/) was used to construct PPI networks90. Con-
structed networks were processed using Cytoscape (version 3.8.2), and sub-network
analysis was performed with the MCODE Cytoscape plug-in and the NetworkA-
nayzer Cytoscape tool91–93.

The list of the 2817 known AD-associated markers was downloaded from Open
Targets Platform (https://platform.opentargets.org/)94. Tissue- or cell-specific
functional networks were retrieved from HumanBase (https://hb.flatironinstitute.
org/), and 15 AD-related tissue- or cell-specific networks were selected29. Selected
networks were for three tissues (blood, blood plasma, and skin) and 12 cell types
(B-lymphocytes, culture condition CD8 cells, dendritic cells, eosinophils,
granulocytes, keratinocytes, monocytes, mononuclear phagocytes, natural killer
cells, neutrophils, skin fibroblasts, and T-lymphocytes). Because the edge weights
were extremely skewed and we did not want to select ‘not-available’ values,
log2(connectivity score+1) was used to scale them. They were then analyzed with a
one-tailed Mann–Whitney test.

Drug repositioning with computational tools. The CMAP is a web-based drug-
repositioning tool that analyzes the input up- and down-gene signatures of in vitro-
derived drug signatures in the CMAP database (https://portals.broadinstitute.org/
cmap/) by Kolmogorov–Smirnov statistics95. TWAS-significant genes and meta-
signatures were separately used as input for the analysis. Both gene lists were
converted to the corresponding Affymetrix probe identifiers, and the queries were
executed by reversing the AD signatures. Enrichment scores for each drug were
combined by calculating individual product scores following Liu et al., and can-
didates with a product score > 0.6 were selected96.

Similarity analysis with currently approved drugs for AD. The connectivity
between approved AD drugs and our drug candidates was assessed following Kim
et al.97. Among approved AD drugs, small molecules that are available in MAN-
TRA 2.0 were selected as reference drugs. MOA similarities were analyzed with the
MANTRA 2.0 web-based platform98. The maximum number of neighboring nodes
was set to 10, and the MOA similarity network was visualized by Cytoscape
(version 3.8.2). Structural information on the molecules in.sdf format was retrieved
from DrugBank (https://drugbank.ca) and PubChem (https://pubchem.org) using
the rcdk R package99. For comparison of structural similarities, the extended
connectivity fingerprint with a diameter set to 4 was calculated for each molecule,
and the cosine coefficients between the drug candidates and the reference drugs
were calculated with the Rcpi R package100.

Statistical analysis. Statistical analyses were conducted using the statistical
computing programming language R (version 4.0.3). The results were visualized
with R package ggplot2 and ggrepel (https://github.com/slowkow/ggrepel).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GWAS summary statistics used in this study can be found in GWAS Atlas (https://
atlas.ctglab.nl/) with the accession ID 3606. Multi-tissue expression or chromatin datasets
for LDSC-SEG analysis can be found in following github page (https://github.com/bulik/
ldsc/wiki/Cell-type-specific-analyses). Tissue-specific eQTL panels can be found in GTEx
Portal (https://gtexportal.org/home/), and pre-computed weights can be downloaded
from the FUSION web page (http://gusevlab.org/projects/fusion/). Transcriptome data
from AD patients are available in NCBI-GEO (GSE121212, GSE16161, GSE5667, and
GSE120721) and EBI-ArrayExpress (E-MTAB-8149). Previously reported AD marker
genes were searched on Open Targets Platform (https://platform.opentargets.org/).
Tissue- and cell type-specific reference networks were retrieved from HumanBase
(https://hb.flatironinstitute.org/). Functional gene sets retrieved from MsigDB (http://
software.broadinstitute.org/gsea/msigdb) were used in this study.

Code availability
The following tools, software, and packages were used in this study: FUMA: https://fuma.
ctglab.nl/; FUSION: http://gusevlab.org/projects/fusion/; LDSC, version 1.0.1: https://
github.com/bulik/ldsc; FOCUS, version 0.6.10: https://github.com/bogdanlab/focus;
TWAS-GSEA, version 1.2: https://github.com/opain/TWAS-GSEA; sva, version 3.34.0:
https://www.bioconductor.org/packages/release/bioc/html/sva.html; limma, version
3.42.2: https://www.bioconductor.org/packages/release/bioc/html/limma.html; oligo,
version 1.54.1: https://www.bioconductor.org/packages/release/bioc/html/oligo.html;
edgeR, version 3.32.1: https://www.bioconductor.org/packages/release/bioc/html/edgeR.
html; DESeq2, version 1.26.0: https://www.bioconductor.org/packages/release/bioc/html/
DESeq2.html; GSEA, version 4.1.0: https://www.gsea-msigdb.org/gsea/index.jsp;
STRING: https://string-db.org/; Cytoscape, version 3.8.2: https://cytoscape.org/;
HumanBase, https://hb.flatironinstitute.org/; CMAP, https://portals.broadinstitute.org/
cmap/; MANTRA 2.0: https://mantra.tigem.it/; Rcpi, version 1.26.0: https://www.
bioconductor.org/packages/release/bioc/html/Rcpi.html; rcdk, version 3.5.0: https://cran.
r-project.org/web/packages/rcdk/index.html; and ggrepel, version 0.8.2: https://cran.r-
project.org/web/packages/ggrepel/index.html.
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