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Integrative multi-omic analysis identifies
genetically influenced DNA methylation
biomarkers for breast and prostate cancers
Anita Sathyanarayanan 1,2✉, Hamzeh M. Tanha 1,2, Divya Mehta 1,2 & Dale R. Nyholt 1,2✉

Aberrant DNA methylation has emerged as a hallmark in several cancers and contributes to

risk, oncogenesis, progression, and prognosis. In this study, we performed imputation-based

and conventional methylome-wide association analyses for breast cancer (BrCa) and pros-

tate cancer (PrCa). The imputation-based approach identified DNA methylation at cytosine-

phosphate-guanine sites (CpGs) associated with BrCa and PrCa risk utilising genome-wide

association summary statistics (NBrCa= 228,951, NPrCa= 140,254) and prebuilt methylation

prediction models, while the conventional approach identified CpG associations utilising

TCGA and GEO experimental methylation data (NBrCa= 621, NPrCa= 241). Enrichment ana-

lysis of the association results implicated 77 and 81 genetically influenced CpGs for BrCa and

PrCa, respectively. Furthermore, analysis of differential gene expression around these CpGs

suggests a genome-epigenome-transcriptome mechanistic relationship. Conditional analyses

identified multiple independent secondary SNP associations (Pcond < 0.05) around 28 BrCa

and 22 PrCa CpGs. Cross-cancer analysis identified eight common CpGs, including a strong

therapeutic target in SREBF1 (17p11.2)—a key player in lipid metabolism. These findings

highlight the utility of integrative analysis of multi-omic cancer data to identify robust

biomarkers and understand their regulatory effects on cancer risk.
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Breast cancer (BrCa) and prostate cancer (PrCa) are com-
mon cancers in women and men, respectively. Globally,
BrCa accounted for 15% of cancer-related deaths in women

while PrCa accounted for 6.7% of cancer-related deaths in men in
20181. Despite occurring in different organs and sexes, they share
roughly similar lifetime risks, hormonal involvement, and genetic
factors in oncogenesis2–4. In addition, a family history of BrCa is
associated with PrCa risk, and vice versa5,6. With the increasing
incidence of these cancers, it is crucial to identify effective bio-
markers and understand the underlying molecular similarities.

DNA methylation is an epigenetic mechanism that includes the
addition of a methyl group to 5’ cytosine at cytosine-
phosphate–guanine sites (CpGs). It regulates gene expression
(e.g., DNA methylation in promoter regions correlates negatively
with gene expression), chromatin structure formation, alternative
splicing of mRNA precursors and normal mammalian
development7. Aberrant DNA methylation has emerged as a
hallmark in several cancers contributing to risk, oncogenesis,
progression, and prognosis8–10. In BrCa, distinct DNA methyla-
tion patterns have been associated with molecular subtypes,
oestrogen receptor status, germline BRCA1 pathogenic variation,
and prognosis11,12. Similarly, in PrCa, distinct DNA methylation
signatures are observed among benign, primary, and metastatic
prostate tissues, as well as subtypes of PrCa13–15.

DNA sequence variants, such as single-nucleotide poly-
morphisms (SNPs), have been shown to affect DNA methylation
levels at CpGs. These variants are known as DNA methylation
quantitative trait loci (meQTLs). MeQTL SNPs have been asso-
ciated with the risk of numerous cancers, including breast and
prostate cancers16. A recently developed approach—imputation-
based methylome-wide association study (i-MeWAS)—integrates
meQTL SNP information and results from genome-wide asso-
ciation studies (GWAS) to predict methylation of genetically
influenced CpGs associated with the GWAS disease17. The
approach imputes the methylation levels for a disease-associated
dataset based on individual-level genotype data utilising meQTL

SNP-based prediction models. The prediction models are gener-
ated using genotype and methylation measurements obtained
from the same healthy individuals. Next, the associations of the
imputed methylation levels with the disease are tested to find
significant CpG associations. Methylation imputation and asso-
ciation testing can also be performed using GWAS summary
statistics (GWAS-SS). Integrated analyses of meQTL SNPs and
GWAS SNPs through approaches such as i-MeWAS aid the
discovery of novel CpG biomarkers by leveraging the power of
large GWAS and help ascertain the functional consequence of
GWAS SNPs. Furthermore, by focusing on the genetically influ-
enced CpG methylation associations, the approach limits biases
due to confounding effects of the disease, medication, environ-
mental effects and reverse causation on methylation levels,
thereby providing robust biomarkers.

In this study, we propose a bioinformatics pipeline combining
the i-MeWAS and conventional methylation association
approach to identify an enriched set of genetically influenced
CpGs associated with BrCa, PrCa and both cancers. For the genes
associated with the identified CpGs, we perform differential gene
expression analysis using TCGA datasets to explore the
mechanistic link between the omic layers and gain further
insights into the biological functions through pathway analysis.
Lastly, through conditional analysis, we investigate the meQTL
SNPs of the implicated CpGs for novel ‘secondary’ association
signals.

Results
Genetically influenced and differentially methylated CpGs in
individual cancers. We developed a three-step bioinformatics
pipeline based on blood and tumour tissues to detect genetically
influenced differentially methylated CpGs associated with cancer
(Fig. 1). The discovery step includes three differential methylation
analyses using (i) cancer GWAS-SS and meQTL-based genetic
prediction models (i-MeWAS), (ii) tumour and healthy methy-
lation samples (TH-DM) and (iii) tumour and histologically
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Fig. 1 Bioinformatics pipeline to identify cancer-associated genetically influenced DNA methylation biomarkers (CpGs). The pipeline involves three
steps including imputation-based and conventional methylome-wide association analyses using GWAS summary statistics and TCGA datasets,
respectively, in the discovery step, enrichment testing and identification of an enriched set of cancer-associated CpGs in the overlap step, and lastly,
functional characterisation of the CpGs, differential expression and pathway analysis of the genes associated to the CpGs, and genetic analyses in the
characterisation step. CpGs cytosine-phosphate-guanine sites, DM differentially methylated, MeWAS methylome-wide association study, NAT
histologically normal tissue adjacent to the tumour.
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normal adjacent to the tumour (NAT) methylation samples (TN-
DM). While i-MeWAS identifies the differentially methylated
(DM) CpGs in blood by imputation, the latter approaches iden-
tify the DM CpGs by comparing the observed measurements
between tumour and control tissues using linear regression. The
overlap step involves stepwise enrichment analysis to find a sig-
nificant set of overlapping DM CpGs across the differential
methylation analyses and are designated as cancer-associated
CpGs. The characterisation step involves the characterisation of
cancer-associated CpGs via differential gene expression, the
directional effect of differential methylation, functional enrich-
ment and conditional analyses.

For BrCa analysis, we used the GWAS-SS from ref. 18. The
DNA methylation data for 499 tumours and 91 NAT samples,
and 81 healthy samples, collected by TCGA19, and GEO
GSE10196120, respectively, were downloaded from EWAS Data
Hub21. We tested differential methylation of 72,531 genetically
influenced CpGs and detected 1892, 6319 and 5831 DM CpGs in
the i-MeWAS, TH-DM and TN-DM analyses, respectively
(FDR < 0.05). Stepwise enrichment identified 77 DM CpGs
associated with BrCa (referred to as BrCa CpGs) (Fig. 2a and
Supplementary Data 1). Of these, 22 and 10 CpGs were hypo-
and hypermethylated, respectively, across all differential methyla-
tion analyses. Although not individually significant, when jointly
examined we observed a significant enrichment of BrCa CpGs in
the 5’-UTR, 3’-UTR, and intronic regions (5’-UTR+ intronic+ 3’-
UTR; binomial test: observed= 58.44%, expected= 44.48%,
P= 0.016; Supplementary Data 2). We also observed a significant
depletion of BrCa CpGs in the 1 kb region upstream of the gene
transcription start site compared to the tested set of CpGs
(binomial test: observed= 3.90%, expected= 15.81%, P= 0.002;
Supplementary Data 2). Based on independent linkage disequili-
brium (LD) blocks of the human genome defined in ref. 22, the 77
BrCa CpGs were distributed across 58 distinct LD blocks.
Although most of the associated CpGs were located in distinct
LD blocks, five LD blocks contained three CpGs, and nine LD
blocks contained two CpGs. Functional characterisation per-
formed using eForge v223 identified that the BrCa CpGs were
enriched with H3K4me1 histone marks in the majority of the
tissue types, including blood (P= 1.64 × 10−5), breast
(P= 1.13 × 10−3) and ovary (P= 7.19 × 10−7) (Supplementary
Fig. 3).

For PrCa analysis, we used the GWAS-SS from ref. 24, and the
DNA methylation data for 189 prostate tumour and 82 NAT
samples collected by TCGA13 and GEO GSE7693825 were
downloaded from EWAS Data Hub21. Due to the small number
of healthy prostate samples with methylation data available, the
discovery step included only i-MeWAS and TN-DM analyses. We
tested 71,933 genetically influenced CpGs and identified 1714 and
2623 DM CpGs in the i-MeWAS and TN-DM analyses,
respectively (FDR < 0.05). The overlap step identified 81 PrCa
associated DM CpGs (referred to as PrCa CpGs) (Fig. 2b and
Supplementary Data 3). There were 25 and 17 CpGs hypo- and
hypermethylated, respectively, in both differential methylation
analyses. There was a marginally significant increase in the
proportion of PrCa CpGs in upstream (P= 0.091), ncRNA
intronic (P= 0.078) and 5’-UTR+ intronic+ 3’-UTR
(P= 0.074) regions and a near significant decrease in intergenic
region (P= 0.051) compared to the set of all CpGs tested
(Supplementary Data 4). With respect to LD blocks, the 81 PrCa
CpGs were distributed across 46 distinct LD blocks. We observed
one LD block containing eight CpGs, one LD block containing six
CpGs, two LD blocks containing four CpGs, three LD blocks
containing three CpGs, 11 LD blocks containing two CpGs, and
the remaining 28 CpGs in distinct LD blocks. Functional
characterisation showed that the PrCa CpGs were significantly

enriched with H3K4me1 histone marks in most of the tissue types
including blood (P= 8.79 × 10−7) and breast (P= 3.34 × 10−4)
(Supplementary Fig. 4).

Differential methylation influencing gene expression. To
determine if the DM CpGs associated with cancer were involved
in transcription regulation, we tested for differential expression of
the CpG-associated genes using TCGA tumour and NAT gene
expression data. We used three approaches to define the genes
associated with the CpGs: (i) ANNOVAR-based, (ii) distance-
based and (iii) eQTL-based. For the ANNOVAR- and
distance-based genes, differential expression was analysed using
DESeq226 and mediation analysis, while for eQTL-based genes,
differential expression was analysed using FUSION software27.
Lastly, we explored the biological functions of the differentially
expressed genes (DEGs) via pathway analysis using the EnrichR28

webtool.

ANNOVAR-based. To identify the CpG-associated DEGs, we
annotated the CpGs to genes using ANNOVAR followed by
differential gene expression analysis. In BrCa, the 77 BrCa CpGs
were annotated to 83 genes by ANNOVAR29 which had valid
measurements in the TCGA BrCa gene expression dataset. We
identified 65 DEGs (FDR < 0.05) (Fig. 2a and Supplementary
Data 5), of which 42 were upregulated (mean fold change= 1.76)
and 23 were downregulated (mean fold change= 0.45). We
investigated the relationship between methylation and gene
expression by comparing the direction of differential expression
of the DEGs with that of the differential methylation of the
associated BrCa CpGs in the TN-DM analysis. The 65 DEGs were
associated with 63 BrCa CpGs, forming 72 unique CpG-gene
pairs. A negative correlation was observed in 40 CpG-gene pairs.
For example, the CpGs in CDC7, MICAL2 and MUC1 were
hypomethylated, while the genes were upregulated. In contrast, a
positive correlation was observed in 32 CpG-gene pairs where
both the methylation and the gene expression either increased or
decreased in tumour samples compared to NAT samples (Fig. 2a
and Supplementary Data 5). Following this, we conducted a
conservative mediation analysis to examine the conditional dif-
ferential expression of the genes given the methylation status of
the associated CpG. We identified 14 genes to be differentially
expressed after conditioning for CpG methylation (conditional
association FDR < 0.05; Supplementary Data 6). The 14 DEGs
were associated with 13 BrCa CpGs and formed 14 CpG-
gene pairs.

The PrCa CpGs were annotated to 61 genes by ANNOVAR
and differential expression analysis in TCGA PrCa gene
expression dataset detected 40 DEGs (FDR < 0.05). Of these, 18
were upregulated (mean fold change= 1.70) and 22 were
downregulated (mean fold change= 0.53) (Fig. 2b and Supple-
mentary Data 7). The 40 DEGs were associated with 47 CpGs and
formed 50 unique CpG-gene pairs, of which 29 CpG-gene pairs
exhibited a negative correlation between methylation and gene
expression and 21 CpG-gene pairs exhibited a positive correla-
tion. Next, we conducted the meditation analysis which identified
four genes with significant evidence for differential expression
after conditioning for CpG methylation (conditional association
FDR < 0.05; Supplementary Data 8). The four DEGs were
associated with four CpGs and formed six CpG-gene pairs.

Distance-based. To identify the CpG-associated DEGs, we first
estimated the proportion of DEGs in the flanking regions of
varying lengths from 1 kb to 10Mb around a CpG. This was
followed by the selection of the flanking region that showed the
maximum decrease in the proportion of DEGs when increasing
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Fig. 2 Identification of cancer-associated CpGs and differential expression analyses of the associated genes. Results from the overlap step of the
pipeline and differential expression analyses of the genes associated with the enriched CpGs in (a) breast cancer (BrCa) and (b) prostate cancer (PrCa).
Due to the unavailability of healthy prostate methylation data, the overlap step in PrCa did not include differential methylation between tumour and healthy
tissues. For differential expression analysis, the CpGs were annotated to genes through ANNOVAR-, distance- and eQTL-based approaches. The
differential expression was conducted in the TCGA gene expression dataset using DESeq2 for ANNOVAR- and distance-based genes and using the GWAS
summary statistics and FUSION for eQTL-based genes. Up and Down for gene in the matrix refer to up- and downregulated gene expression while Hypo
and Hyper for CpGs indicate hypo- and hyper-methylation, respectively. CpGs cytosine-phosphate–guanine sites, DEGs differentially expressed genes, DM
differentially methylated, NAT histologically normal tissue adjacent to the tumour.
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the region length. The DEGs of the selected region were assigned
as the CpG-associated DEGs.

In BrCa, we selected the 132 DEGs in the ±25 kb flanking
window as the likely implicated DEG set (~6% decrease was
observed when increasing the window size from 25 to 50 kb,
Supplementary Data 9 and 10). Mediation analysis of the genes in
the ±25 kb flanking window of the BrCa CpGs found 26 DEGs
after conditioning for CpG methylation (conditional association
FDR < 0.05; Supplementary Data 11). In PrCa, the maximum
decrease in the proportion of DEGs (~11%) was seen when
increasing the flanking region from 10 kb (54.35%) to 25 kb
(43.75%) and the 50 DEGs in the ±10 kb flanking window were
chosen as the implicated DEG set (Supplementary Data 12 and
13). Mediation analysis of the genes ±10 kb flanking window
provided evidence for one gene to be differentially expressed
given the CpG methylation (conditional association FDR < 0.05;
Supplementary Data 13).

eQTL-based. The CpG-associated DEGs were selected as those
genes that were differentially expressed as well as genetically
influenced by the same SNPs that influence the enriched CpGs.
To identify the genes genetically influenced by the same SNPs as
the enriched CpGs, gene expression prediction models developed
based on expression quantitative trait loci (eQTL) SNPs for the
genes were downloaded from FUSION27. Next, those genes with
significant enrichment of the meQTL SNPs (based on binomial
tests) in their expression prediction models were selected. To
identify the CpG-associated DEGs, we performed an imputation-
based differential expression analysis for the selected genes using
FUSION27. As SNP-based expression prediction models are
available for individual tissues, we examined the genetically
influenced genes in whole blood and breast tissue for BrCa, and
whole blood and prostate tissue for PrCa.

In BrCa, we identified 115 and 149 genes in breast tissue and
whole blood, respectively, with significant enrichment of meQTL
SNPs in their prediction models (FDR < 0.05). Of these, 47 and 59
genes in breast tissue and whole blood, respectively, were
differentially expressed (FDR < 0.05; Supplementary Data 14). A
total of 46 of the 47 DEGs in breast tissue were downregulated,
while 31 of the 59 DEGs were upregulated in whole blood. In
PrCa, 41 and 52 genes in prostate tissue and whole blood,
respectively, were significantly enriched with meQTL SNPs in
their prediction models (FDR < 0.05). Of these, 10 and 18 were
differentially expressed in prostate tissue and whole blood,
respectively (Supplementary Data 15). In prostate tissue five of
the 10 DEGs were upregulated, while in whole blood 13 of the 18
DEGs were upregulated.

Pathway analysis. We identified the pathways associated with the
DEGs using EnrichR28. In BrCa, the pathways associated with
ANNOVAR-based DEGs were broadly related to cancer, cell
differentiation and cellular processes such as cell communication,
junction and adhesion, as well as hormonal regulation (Table 1).
The distance-based DEGs were associated with pathways related
to cancer, DNA repair and cell death and the eQTL-based genes
were associated with an endocrine system and lipid metabolism
pathway. In PrCa, the pathways associated with ANNOVAR-
based and distance-based DEGS displayed substantial overlap
(Table 2). These pathways were related to lipid metabolism,
laminopathy and apoptosis. Pathway analysis of eQTL-based
genes did not identify any significant pathways.

Directional effect of differential methylation in individual
cancers. Given global hypomethylation and site-specific hyper-
methylation have been reported in breast and prostate

cancers30–32, we examined the association of hypo- and hyper-
methylated CpGs with each cancer. For this, we selected the
nominally significant hypo- or hypermethylated CpGs (uncor-
rected P < 0.05) in the discovery step and conducted the overlap
step in the pipeline.

In both cancers, we did not find evidence for significant
genome-wide hypermethylation (Supplementary Data 16). How-
ever, the site-specific analysis identified hypermethylated CpGs
enriched in 5’-UTR, exonic, 3’-UTR, downstream, ncRNA exonic,
and ncRNA intronic regions in BrCa, and 3’-UTR region in PrCa
(Supplementary Data 17).

Concerning hypomethylation, significant genome-wide hypo-
methylation was observed in BrCa (P < 1 × 10−16) and an
enriched set of 298 hypomethylated CpGs associated with BrCa
were identified (Supplementary Data 16). To explore the potential
biological implication of genome-wide hypomethylation, we
identified the associated genes using ANNOVAR annotation
followed by differential expression and pathway analyses. There
were 218 DEGs (FDR < 0.05), including 128 upregulated genes
(mean fold change= 2.36) and 90 downregulated genes (mean
fold change= 0.56). The pathway analysis of 218 DEGs using
EnrichR28,33 webtool identified 141 pathways that were related to
the endocrine system, lipid metabolism, signal transduction and
cancer (Supplementary Data 18). In PrCa, there were 400
overlapping hypomethylated CpGs between i-MeWAS and TN-
DM showing marginally significant enrichment (P= 0.068,
Supplementary Data 16). It is possible that the unavailability of
a sufficient number of tumour methylation samples, as well as
healthy methylation samples, could have decreased the statistical
power to find an enriched set of hypomethylated CpGs in PrCa.
However, the current results from directional analysis support
previous findings30–32 that there is genome-wide hypomethyla-
tion in PrCa. There were 184 significant DEGs (FDR < 0.05)
associated with these 400 hypomethylated CpGs, comprising 93
upregulated genes (mean fold change= 1.76) and 91 down-
regulated genes (mean fold change= 0.56). The DEGs were
significantly involved in seven pathways including transcription
regulation and oestrogen response (FDR < 0.05, Supplementary
Data 18).

Genetic analysis of the meQTLs associated with BrCa and PrCa
CpGs. Having characterised the enriched CpGs and the asso-
ciated genes, we next investigated the associated meQTL SNPs.
The 77 BrCa CpGs were influenced by 3040 unique meQTL SNPs
and the 81 PrCa CpGs were influenced by 3049 unique meQTL
SNPs. We estimated the contribution of these meQTL SNPs to
familial relative risk (FRR) of BrCa and PrCa using the method
provided in ref. 18, and the BrCa GWAS-SS and PrCa GWAS-SS,
respectively. We estimated that the 3040 meQTL SNPs associated
with the BrCa CpGs explain 36.25% of the assumed overall BrCa
FRR of 218, while the 3049 meQTL SNPs associated with the PrCa
CpGs explain 86.92% of the assumed PrCa FRR of 2.534.

As the i-MeWAS approach predicts the effects of CpG
methylation on a disease by considering the effects of SNPs on
CpG methylation and disease, we examined the GWAS associa-
tion of SNPs in ±1Mb flanking genomic regions around the
associated cancer CpGs. Among the 77 BrCa CpGs, 37 had at
least one genome-wide significant SNP (PGWAS ≤ 5 × 10−8) in the
flanking regions, 25 had at least one suggestive SNP
(5 × 10−8 < PGWAS ≤ 1 × 10−5), and 15 were present in novel
genomic regions—i.e., the flanking regions had no genome-wide
significant or suggestive SNPs (Fig. 3 and Supplementary
Data 19). Among the 81 PrCa CpGs, we identified 48, 28 and 5
PrCa CpGs in genome-wide significant, suggestive and novel
genomic regions, respectively (Supplementary Data 20).
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We hypothesised that the CpGs in the novel and suggestive
genomic regions were significant in our enrichment pipeline
because, among the predictor meQTL SNPs for such CpGs, there
may be multiple independent signals that jointly contribute to
cancer via methylation regulation. To test this, we performed an
iterative conditional analysis of the meQTL SNPs using the
conditional and joint (COJO) analysis function from the genome-
wide complex trait analysis (GCTA) software (version 1.93.2)35.
We start the iteration by conditioning on the meQTL SNP with
the most significant cancer GWAS association (PGWAS). Next, we
select the meQTL SNP with the smallest conditional P (Pcond)
value less than the cut-off P= 0.05. We then perform conditional
analysis incorporating the newly selected meQTL SNP. We repeat
the steps until no new meQTL SNP satisfies the selection criteria

(Pcond < 0.05). The selected meQTL SNPs are interpreted as being
associated with cancer via their effect on DNA methylation
at CpGs.

In BrCa, stepwise conditional analysis of the meQTL SNPs of
CpGs in suggestive and novel regions found evidence for multiple
independent meQTL SNPs for 28 CpGs at Pcond < 0.05 associated
with BrCa (Supplementary Data 21). Of note are the independent
meQTL SNPs of cg14494596 (3q21.31), cg03958883 (11q13.4)
and cg16555866 (17q25.3) as they showed increased evidence for
association after stepwise conditional analysis (Table 3). For 11
CpGs, the conditional analysis found no secondary meQTL SNPs
(Pcond < 0.05) after the first iteration indicating that a single
meQTL SNP was driving the association of the CpG with BrCa
risk. Of these 11 single meQTL SNPs, seven were suggestive or

Table 1 Pathways of ANNOVAR-, distance- and eQTL-based differentially expressed genes associated with breast cancer CpGs.

Gene association approach Pathway database Pathway FDR

ANNOVAR-based BioPlanet Cell–cell communication 2.44 × 10−3

Cell junction organisation 6.13 × 10−3

Cell adhesion molecules (CAMs) 3.42 × 10−2

Circadian rhythm 3.89 × 10−2

Elsevier Oestrogen deficiency in female obesity 6.64 × 10−3

Circadian clock in sleep regulation 2.92 × 10−2

Telogen maintenance in androgenic alopecia 4.03 × 10−2

Local oestrogen production in endometriosis 4.46 × 10−2

KEGG Cell adhesion molecules 2.20 × 10−2

Tight junction 3.35 × 10−2

MSigDB UV response Dn 1.12 × 10−2

Mitotic spindle 3.21 × 10−2

Oestrogen response early 3.21 × 10−2

Apical junction 3.21 × 10−2

Reactome Cell–cell communication 6.87 × 10−3

Cell junction organisation 1.78 × 10−2

Distance-based BioCarta Role of BRCA1, BRCA2 and ATR in cancer susceptibility 1.83 × 10−2

Caspase cascade in apoptosis 1.83 × 10−2

Elsevier Oestrogen deficiency in female obesity 9.40 × 10−4

eQTL-based WikiPathway Glycerolipids and glycerophospholipids 2.04 × 10−2

Fatty acid beta-oxidation 3.83 × 10−2

Table 2 Pathways of ANNOVAR- and distance-based differentially expressed genes associated with prostate cancer CpGs.

Gene association approach Pathway database Pathway FDR

ANNOVAR BioCarta Caspase cascade in apoptosis 9.61 × 10−4

Elsevier Lipodystrophy, familial partial 2.03 × 10−3

Familial partial lipodystrophy type 2 progression (hypothesis) 2.82 × 10−3

Hutchinson-Gilford Progeria syndrome 3.12 × 10−3

Nuclear lamina cleavage 3.62 × 10−3

Nuclear envelope in cell division 3.62 × 10−3

mTOR signalling 3.43 × 10−2

KEGG Glutathione metabolism 2.90 × 10−2

Reactome Detoxification of reactive oxygen species 2.97 × 10−2

WikiPathway The influence of laminopathies on Wnt signalling 1.34 × 10−2

The overlap between signal transduction pathways that contribute to a range of
LMNA laminopathies

2.71 × 10−2

Distance BioCarta Caspase cascade in apoptosis 1.50 × 10−3

Elsevier Lipodystrophy, familial partial 3.18 × 10−3

Familial partial lipodystrophy type 2 progression (hypothesis) 4.41 × 10−3

Hutchinson-Gilford Progeria syndrome 4.88 × 10−3

Nuclear lamina cleavage 5.65 × 10−3

Nuclear envelope in cell division 5.65 × 10−3

WikiPathway The influence of laminopathies on Wnt signalling 2.07 × 10−2

The Overlap between signal transduction pathways that contribute to a range of
LMNA laminopathies

4.18 × 10−2

Note: In PrCa, pathway analysis of the eQTL-based DEGs did not identify any significant pathways.
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very close to suggestive significance (5 × 10−8 < PGWAS < 8 ×
10−5) while the remaining meQTL SNPs were nominally
significant (8 × 10−5 < PGWAS < 2 × 10−3). In PrCa, the stepwise
conditional analysis identified multiple independent meQTL
SNPs for 22 CpGs associated with PrCa (Supplementary Data 22).
For eight CpGs on 17p11.2 that were analysed together, we
identified seven significant meQTL SNPs after conditional
analysis. All the meQTL SNPs showed an increase in association
with PrCa risk after conditional analysis (Table 4). For CpGs
where conditional analysis found no secondary meQTL SNPs, the
single meQTL SNP was either suggestive or close to suggestive
(PGWAS < 5 × 10−4). Taken together, the significant evidence of
residual association and low linkage disequilibrium (LD) among
these meQTL SNPs support these to be true independent

secondary associations jointly implicated in cancer via their
effect on DNA methylation at CpGs.

For the CpGs in genome-wide significant regions (NBrCa= 37,
NPrCa= 48), we hypothesised that the genome-wide significant
SNPs in the region are mediating the cancer risk effects via the
meQTL SNPs and their effect on DNA methylation at CpGs.
Hence, we estimated the LD between the meQTL SNPs and the
genome-wide significant SNPs using the 1000 Genome Phase 3
for the European population as a reference panel and LDlinkR R
package36. We found 28 and 19 CpGs in the genome-wide
significant regions in BrCa and PrCa, respectively—having at
least one meQTL SNP in moderate to strong LD (r2 > 0.4) with at
least one genome-wide significant SNP (Supplementary Data 23
and 24). These results indicate that (i) the association of these
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Fig. 3 LocusZoom plots of the ±1Mb flanking regions for selected breast cancer (BrCa) CpGs. The red line in the gene panel indicates the genomic
location of the CpG site. Panel a is an example of a BrCa CpG with genome-wide significant SNPs in the flanking region, panel b is an example of a BrCa
CpG with suggestive SNPs in the flanking region, and panel c is an example of a BrCa CpG identified in a novel region (i.e., no genome-wide significant or
suggestive SNPs present in the flanking region).
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CpGs to BrCa or PrCa is likely due to their meQTL SNPs being in
LD with BrCa or PrCa genome-wide significant SNPs, and (ii) the
remaining CpGs with no strong LD with an individual genome-
wide significant BrCa or PrCa GWAS SNP could suggest that the
predictor SNPs are in LD with multiple secondary association
signals that require more powerful GWAS to identify.

Pleiotropic genetically influenced and differentially methylated
CpGs in breast and prostate cancers. Given the strong evidence for
shared genetic risk factors between BrCa and PrCa, we investi-
gated the presence of pleiotropic genetically influenced DM
CpGs. To this end, we examined the implicated BrCa and PrCa
CpGs that were annotated to the same genes. There were six
common genes—BRI3, LRATD2, PCAT1, LOC102724265,
LINC01488 and SREBF1—that were associated with four BrCa
and four PrCa CpGs, including one common CpG (cg08129017)
in SREBF1 (Table 5). To confirm if the remaining three BrCa and
PrCa CpG pairs of each gene are pleiotropic, we investigated the
LD between the meQTL SNPs associated with the BrCa CpG and
that of the PrCa CpG. The presence of at least one pair of meQTL
SNPs with at least moderate LD (r2 > 0.4) suggests that the CpGs
are likely pleiotropic. We found that all three BrCa and PrCa CpG
pairs were linked via moderate to strong LD between their pre-
dictor meQTL SNPs; thus indicating that these CpGs are likely
pleiotropic genetically influenced and differentially methylated
CpGs in breast and prostate cancers.

To identify further pleiotropic DM CpGs, we conducted two
similar but distinct overlap analyses: (i) overlap of i-MeWAS results
based on meta-analysed BrCa and PrCa GWAS-SS with BrCa TN-
DM and PrCa TN-DM results; and (ii) overlap of i-MeWAS results
based on individual cancer GWAS-SS with BrCa TN-DM and PrCa
TN-DM results. Both overlap analyses were based on 68,613 CpGs
for which methylation measurements were available in all datasets.
For the overlap analysis using the meta-analysed GWAS-SS, BrCa
and PrCa GWAS-SS were combined using an inverse-variance
weighted fixed-effect meta-analysis with the GWAMA software37.
Meta-analysis of the GWAS-SS can increase the statistical power to
identify pleiotropic genetic loci and consequently provide more

information to predict the common genetically influenced DM
CpGs in both cancers. i-MeWAS of the meta-analysed GWAS-SS
(BrCa+ PrCa i-MeWAS) identified 2395 DM CpGs, while the
BrCa TN-DM and the PrCa TN-DM identified 5541 and 2633 DM
CpGs, respectively (FDR < 0.05). Pairwise overlap showed signifi-
cant enrichment between all pairs except BrCa+PrCa i-MeWAS
and PrCa TN-DM (one-side binomial test P= 0.06; Supplementary
Data 25). Overall, eight overlapping DM CpGs between the three
DM analyses were identified (Fig. 4a and Table 6) with six CpGs
exhibiting consistent differential methylation direction in all three
analyses. We further examined the association significance of the
SNPs present in the ±1Mb flanking regions of the eight common
CpGs in the meta-analysed BrCa+PrCa GWAS and found that two
CpGs, cg07421287 on 1p13.3 near KCNA3 and cg09205595 on
7q36.1 near AGAP3, were present in novel genomic locations—i.e.,
there were no genome-wide significant SNPs (PGWAS < 5 × 10−8) in
the flanking genomic regions (Supplementary Fig. 5). We also
examined the eight regions in the individual BrCa and PrCa
GWAS-SS and found three CpGs, cg07421287 (1p13.3),
cg09205595 (7q36.1) and cg08129017 (17p11.2) were present in
genomic regions with no genome-wide significant SNPs in both
GWASs (Supplementary Data 26).

While conducting a meta-analysis of the two cancers can
increase the statistical strength of the SNPs, it assumes that a
genetic variant (allele) has a homogeneous effect on the risk of
both cancers. In the extreme example of a genetic variant having
opposite effects on BrCa and PrCa risks, the effects would cancel
each other out and produce no evidence for association in a meta-
analysis. To overcome this potential issue, we performed the next
overlap analysis using the DM CpGs from independent i-MeWAS
analysis of BrCa and PrCa GWAS-SS. After correction for 68,613
tests, 1800 and 1629 were predicted as differentially methylated in
the BrCa i-MeWAS and PrCa i-MeWAS, respectively (FDR <
0.05). The overlap of these results along with the BrCa and PrCa
TN-DM results identified one common CpG (cg08129017)
(Fig. 4b), which showed similar hypermethylation across all
DM analyses (Table 6). It should be noted that the pairwise
overlap was significant for all pairs except BrCa i-MeWAS and

Table 3 Significant secondary associations identified around selected breast cancer CpGs through conditional analysis of
predictor meQTL SNPs.

CpG Chr Location (bp) Cytoband meQTL SNP Location (bp) Effect allele Breast cancer GWAS results Conditional
analysis, LD
from 1000G
phase 3 (EUR)

Frequency β PGWAS Pconda

cg14494596 3 48542040 3q21.31 rs34071734 49425004 A 0.061 −0.042 1.56 × 10−3 –
rs767512 48023924 C 0.290 −0.018 9.24 × 10−3 4.95 × 10−3

rs13095891 48381826 T 0.053 −0.036 1.15 × 10−2 5.93 × 10−3

rs112445131 47786930 T 0.175 −0.012 1.51 × 10−1 4.59 × 10−3

rs3895736 48658467 A 0.172 −0.013 1.20 × 10−1 1.70 × 10−3

rs73078357 48695834 C 0.126 −0.014 1.45 × 10−1 1.36 × 10−2

cg03958883 11 73020729 11q13.4 rs11235743 73124826 G 0.216 0.023 2.59 × 10−3 –
rs11602616 72364077 C 0.166 0.025 4.34 × 10−3 7.24 × 10−3

rs7116276 72276606 T 0.315 0.013 5.76 × 10−2 1.68 × 10−2

rs77383504 72265531 G 0.055 0.024 1.13 × 10−1 1.95 × 10−2

rs11235541 72285444 A 0.046 0.017 3.12 × 10−1 4.50 × 10−2

rs61893925 72274449 T 0.111 0.019 5.88 × 10−2 3.59 × 10−2

cg16555866 17 80830922 17p11.2 rs78483419 80870884 C 0.180 −0.032 7.78 × 10−5 –
rs8076573 80496771 G 0.712 0.025 1.62 × 10−3 4.98 × 10−4

rs78165269 80601498 C 0.304 −0.024 8.72 × 10−4 2.79 × 10−3

rs4789841 80739952 T 0.073 −0.024 6.73 × 10−2 1.07 × 10−2

Chr chromosome.
aAt each CpG site, the Pcond for a meQTL SNP is the association significance after conditioning on all the meQTL SNPs present in the rows above it. For example, the Pcond of rs7116276 is calculated after
conditioning on rs11235743 and rs11602616.
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PrCa TN-DM (one-sided binomial test P= 0.25, Supplementary
Data 25).

As the cg08129017 CpG was consistently identified across
different analyses, we examined the associated meQTL SNPs and
genes. We found that the meQTL SNPs showing similar nominal
associations (1 × 10−5 < PGWAS < 0.05) in the individual BrCa and
PrCa GWAS-SS reached genome-wide significance (PmetaGWAS <
5 × 10−8) in the meta-analysed BrCa+PrCa GWAS-SS (Supple-
mentary Data 27). The heterogeneity of SNP effects (Cochran’s
Q) for each SNP was estimated using GWAMA software37 and
displayed no significant heterogeneity at threshold Phet < 0.05 for
nominal evidence. Stepwise conditional analysis of the meQTL
SNPs in the meta-analysed BrCa+PrCa GWAS-SS provided
evidence for two independent associations (rs2236513, Pcond=
6.41 × 10−9 and rs12943647, Pcond= 9.55 × 10−3; LD
r2= 0.0004) with both BrCa and PrCa. While cg08129017 was
consistently hypermethylated across all analyses, differential
expression analysis of the SREBF1 gene annotated to this CpG
by ANNOVAR showed a small but significant upregulation in
both cancers. We observed a differential expression fold change of
1.26 (PDeSEQ2= 4.12 × 10−23) and 1.41 (PDeSEQ2= 1.46 × 10−3)
for BrCa and PrCa, respectively (Supplementary Data 5 and 7). In
addition, we sought to test the differential expression of RAI1 and
TOM1L2 genes that were also located in the ±25 kb flanking
region of this CpG and had valid gene expression information in
both cancer datasets. However, these genes were differentially
expressed only in BrCa (RAI1 gene: fold change= 1.52,
PDeSEQ2= 3.48 × 10−14 and TOM1L2 gene: fold change= 0.83,
PDeSEQ2= 2.98 × 10−3).

Discussion
This study systematically tested the associations of genetically
influenced DNA methylation at CpGs with BrCa and PrCa using
GWAS-SS and experimental methylation datasets. We discovered
77 and 81 DM CpGs associated with BrCa and PrCa, respectively.
Combined with differential gene expression and genetic analyses,
we provide insight into the probable relationships between the
different omics.

Our multi-omics study overcomes limitations faced by con-
ventional GWAS analyses. First, detecting novel genome-wide
significant signals by GWAS is challenging due to the lack of
statistical power. This is often addressed by increasing the sample
size, either through genotyping more samples or using meta-
analysis approaches38. Our enrichment pipeline integrates
methylation information with GWAS-SS to identify novel risk
SNPs that influence methylation at CpGs that would otherwise
require larger GWASs to identify. The BrCa GWAS-SS18 used in
this study reported 167 variants associated with BrCa risk. Of the
77 BrCa CpGs identified through the stepwise enrichment pipe-
line, 36 CpGs were present within 1Mb of 30 out of the 167 risk
variants. The latest BrCa GWAS39 comprises 133,384 cases and
113,789 controls, an increase of 10 and 9% in cases and controls,
respectively, compared to the GWAS meta-analysis used in our
study. The authors reported 22 additional risk variants, thus,
summing to 189 variants associated with BrCa risk. In line with
our expectations, we found an additional seven (total 43) of the
77 CpGs were present within 1Mb of 35 out of the 189 risk
variants (Supplementary Data 28). We also found a similar
increase in CpGs near the latest PrCa GWAS variants. The PrCa
GWAS-SS24 used in the enrichment pipeline reported 146 PrCa
risk variants for men of European ancestry. Of the 81 PrCa CpGs
identified, 47 were present within 1Mb of 35 out of the 146 risk
variants. The latest trans-ancestry GWAS meta-analysis for
PrCa40 comprises approximately two-fold more cases and con-
trols (107,247 cases and 127,006 controls including 85,554 casesT
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and 91,972 controls of European ancestry) and reported 32
additional PrCa risk variants for men of European ancestry, thus,
summing to 178 PrCa risk variants for European men. We found
an additional two (total 49) of the 81 PrCa CpGs were present
within 1Mb of 43 out of 178 risk variants (Supplementary
Data 29). Furthermore, the identified cancer-associated CpGs can
guide the search for additional risk variants. Through approx-
imate conditional analysis of the meQTL SNPs of the cancer-
associated CpGs, we discovered several putative multi-SNP
associations in both cancers (Supplementary Data 21 and 22).
Of note are the SNPs on 3p21.31, 11q13.4 and 17q25.3 for BrCa
and SNPs on 17p11.2 (Tables 3 and 4) for PrCa. The SNPs in
these regions showed increased association significance compared
to single-SNP analyses, suggesting that these SNPs may be
identified as genome-wide significant signals in larger GWASs

and may be important modifiers of risk at these genomic loci.
Taken together, these results provide compelling evidence for the
utility of our approach to discover robust novel risk loci and
biomarkers by leveraging information from multiple omic data-
sets without further genotyping and sequencing.

Second, although GWAS have successfully identified hundreds
of risk loci for BrCa and PrCa, identifying the mechanistic link
between the variants and disease remains a challenge. Our results
provide evidence for molecular links between the genetic
sequence variants, DNA methylation, gene expression, and cancer
risk. For example, the hypomethylation of the BrCa DM CpG
cg15699386 (on 1q22 in the intronic region of MUC1) increases
the risk of BrCa and (as seen in the i-MeWAS and conventional
differential methylation analysis results) is consistent with the
effect of its most significant predictor meQTL SNP (rs4971059)

a) b)

Fig. 4 Cross cancer analysis to identify the pleiotropic DM CpGs between breast cancer (BrCa) and prostate cancer (PrCa). a Venn overlap of
i-MeWAS results using BrCa and PrCa meta-analysed GWAS-SS (BrCa+PrCa i-MeWAS), differential methylation results of tumour vs NAT in BrCa (BrCa
TN-DM), and differential methylation results of tumour vs NAT in PrCa (PrCa TN-DM). b Venn overlap of independent i-MeWAS results using BrCa
GWAS-SS (BrCa i-MeWAS) and PrCa GWAS-SS (PrCa i-MeWAS), and independent differential methylation results of tumour vs NAT in BrCa (BrCa TN-
DM) and PrCa (PrCa TN-DM). i-MeWAS, imputation-based methylome-wide association study.

Table 6 Common differentially methylated CpGs in breast and prostate cancers identified using overlap analyses.

CpG CHR Location (bp) Cytoband Gene BrCa+PrCa
i-MeWAS
Z score

BrCa
i-MeWAS
Z score

PrCa
i-MeWAS
Z score

BrCa TN-
DM Z score

PrCa TN-
DM Z score

cg07421287* 1 111218287 1p13.3 KCNA3 3.14 0.71 4.17 −4.97 −5.83
cg24789467*# 5 132159003 5q31.1 SHROOM1 −4.29 −2.99 −3.15 −4.13 −3.73
cg09205595*# 7 150782539 7q36.1 AGAP3 3.51 2.96 1.91 3.75 4.12
cg26405020# 15 91427363 15q26.1 FES, FURIN −5.10 −4.03 −3.14 3.23 3.71
cg14918082* 17 7833237 17p13.1 KCNAB3, TRAPPC1 −3.73 −2.14 −3.30 −5.02 −4.78
cg08129017 17 17728660 17p11.2 SREBF1 5.64 3.58 4.58 5.20 3.29
cg20513976* 20 62367893 20q13.33 LIME1 −3.97 0.84 −7.71 −2.93 −5.21
cg12413156* 20 62368256 20q13.33 LIME1 −3.82 1.40 −8.20 −3.30 −3.74

BrCa breast cancer, PrCa prostate cancer, i-MeWAS imputation-based methylome-wide association study, TN-DM tumour vs normal tissue adjacent to tumour differential methylation.
*and #indicate that the CpGs that were not significantly differentially methylated in BrCa i-MeWAS analysis (FDR > 0.05) PrCa i-MeWAS analysis (FDR > 0.05), respectively. The row in bold font
indicates the common DM CpG between the eight DM CpGs identified through the overlap analysis using BrCa+PrCa meta-analysed GWAS-SS (Fig. 4a) and the one DM CpG identified through the
overlap analysis of individual GWAS-SS (Fig. 4b).

Table 5 Breast cancer (BrCa) and prostate cancer (PrCa) differentially methylated CpGs annotated to the same genes.

Gene BrCa CpG PrCa CpG Common meQTL SNPs LD of r2 > 0.4 between meQTL SNPs of BrCa and PrCa CpGs

BRI3 cg01877450 cg23245481 0 7 BrCa meQTL SNPs with 2 PrCa meQTL SNPs
LRATD2, PCAT1 cg16015285 cg03374695 2 4 BrCa meQTL SNPs with 17 PrCa meQTL SNPs
LOC102724265, LINC01488 cg08885142 cg18498241 2 16 BrCa meQTL SNPs with 16 PrCa meQTL SNPs
SREBF1 cg08129017 cg08129017 NA NA
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on BrCa risk. SNP rs4971059 is a robust BrCa risk SNP and the
risk allele has a negative effect on methylation of the cg15699386
CpG. This is further supported by the negative correlation
between the CpG and MUC1 in our differential expression ana-
lysis and literature evidence, where overexpression of the gene is
associated with increased BrCa risk41. Thus, it can be hypothe-
sised that a functional consequence of rs4971059 is mediated by
decreased methylation of the cg15699386 CpG which increases
MUC1 gene expression and thereby increases BrCa risk. A posi-
tive correlation between SNPs, CpG methylation and cancer risk
was observed in 20 hypomethylated and nine hypermethylated
CpGs in BrCa (Supplementary Data 30) and in 15 hypomethy-
lated and 12 hypermethylated in PrCa (Supplementary Data 31).
In addition, identification of moderate to strong LD (r2 > 0.4)
between the genome-wide significant SNPs and the meQTL SNPs
of 28 and 19 BrCa and PrCa CpGs, respectively, suggests that the
genome-wide significant SNPs likely modulate cancer risk by
influencing DNA methylation.

Our results have excellent potential to aid the clinical transla-
tion of BrCa and PrCa GWAS findings. For example, investiga-
tion of the DEGs associated with BrCa and PrCa CpGs using
Drug Gene Interaction Database v4.2.042, identified 74 and 31
genes that are potentially druggable genes in BrCa and PrCa,
respectively (Supplementary Data 32 and 33). Common germline
variants associated with overall BrCa survival is unknown43. In
our approach, the i-MeWAS and TH-DM analyses identify the
DM CpGs between the two extreme states (i.e., healthy and
cancer), while TN-DM analysis identifies DM CpGs between
cancer and NAT—which is often considered as an intermediate
state between healthy and cancer44. Thus, suggesting that the
enriched CpGs and genetic biomarkers are likely to be associated
with both risk and progression. We interrogated the prognostic
ability of the BrCa CpGs using their methylation status and
overall survival data from the TCGA BrCa dataset with the
MethSurv tool45 and identified that the methylation values of 36
BrCa CpGs were significant predictors of overall survival after
correcting for age, clinical stage of the tumour, and oestrogen
receptor status (FDR < 0.05; Supplementary Data 34). Successful
replication of these results in independent datasets could enable
clinical applications such as blood-based tests for diagnosis and
prognosis.

The cross-cancer overlap analyses of the genome-wide sig-
nificant DM CpGs from imputation-based and conventional
differential methylation analyses implicated hypermethylation
at the cg08129017 CpG in the Sterol Regulatory Element
Binding Transcription Factor 1 (SREBF1) gene (17p11.2),
which has not been previously associated with either cancer via
GWAS analysis. SREBF1 encodes a transcription factor that
binds to the sterol regulatory element-1 (SRE1) and is involved
in sterol synthesis and lipid metabolism. Emerging evidence
shows that dysregulated lipid metabolism is a metabolic hall-
mark of cancer and increased lipid uptake is required for
tumourigenesis, progression and metastasis46. Thus, increased
expression of SREBF1 can aid in the increased demands of
lipids for tumour cell proliferation. Furthermore, upregulation
of SREBF1 is reported to be correlated with poor prognosis in
BrCa and PrCa47,48 and hence, a potential therapeutic target to
treat both cancers49. Over expression of SREBF1 has also been
implicated in other cancers (e.g., ovarian, pancreatic and
glioma) and has been found to facilitate invasion50–52.
Although hypermethylation at cg08129017 was consistently
associated with BrCa and PrCa in our analyses, our differential
expression analyses found SREBF1 to be significantly upregu-
lated in both BrCa and PrCa—which contradicts the classical
view where DNA methylation is associated with suppression of
gene expression. However, there is a growing body of evidence

for a more complex relationship between DNA methylation and
gene expression, including a significant proportion of hyper-
methylated genes associated with upregulated gene
expression53,54. These studies, combined with our results,
provide strong support for further BrCa and PrCa research and
clinical applications involving SREBF1, for example, using
targeted DNA demethylating therapy55. The eight cross-cancer
CpGs were annotated to genes involved in transport (KCNA3,
KCNAB3 and TRAPPC1), signal transduction (AGAP3 and
LIME1), microtubule assembly (FES and SHROOM1), and
metal binding (FURIN and AGAP3). Aberrant DNA methyla-
tion of ion channel genes (KCNA3 and KCNAB3) and sub-
sequent dysregulation of their expressions are known to
contribute to carcinogenesis56, and suggested as potential tar-
gets for therapy57. The FES gene, a proto-oncogene, is fre-
quently amplified in BrCa58,59 and its overexpression is
attributed to tumour growth, angiogenesis and metastasis60. It
is also an indicator of recurrence in PrCa61. Multiple lines of
evidence exist for the oncogenic activities of FURIN and its
potential for targeted therapy62–64.

A recent study conducted by Yang et al. also analysed the
association between genetically influenced DNA methylation at
CpGs and BrCa risk65. We identified eight BrCa CpGs over-
lapping with their CpG set. Another study by Wu et al. analysed
the association between genetically influenced DNA methyla-
tion at CpGs and PrCa risk66. Here, we identified 15 PrCa CpGs
overlapping with the CpGs identified in their study. The small
overlap between the results is likely due to the following two
reasons. First, the discrepancy in the genetically influenced
CpGs analysed—we analysed 72,531 and 71,933 CpGs for BrCa
and PrCa, respectively, while Yang et al. analysed 62,938 CpGs
for BrCa and Wu et al. analysed 77,243 CpGs for PrCa. The
second relates to important differences in the analysis pipelines.
In our study, after the identification of DM CpGs via
imputation-based i-MeWAS, we find additional evidence for
DM of the CpGs in tumour tissues, whereas the Wu et al. and
Yang et al. studies identified CpGs based solely on blood-tissue-
based imputation.

Our study has two primary limitations. First, the methylation
prediction models used in i-MeWAS are based on blood and not
cancer-associated tissue. Indeed, the use of prediction models
developed using methylation data from disease-relevant tissues
will likely detect tissue-specific and further cancer-associated
CpGs. However, the current TCGA dataset(s) lack sufficient
power to develop accurate genetic prediction models. For exam-
ple, there are <150 prostate tumour samples of European ancestry
with genotype and methylation data in TCGA, whereas the
blood-based prediction models used in this study were developed
using genotype and methylation data from 533 healthy indivi-
duals of European ancestry. There is evidence for the presence of
consistent meQTLs across various tissues67 and earlier i-MeWAS
studies have shown that blood could be used as a proxy tissue to
capture the CpG signature68,69. In addition, the integration of
observed methylation data from tumour tissues in our approach
aids to mitigate the spurious associations due to the hetero-
geneous nature of blood while identifying a robust and reliable set
of implicated CpGs. Another limitation concerns the availability
of methylation data from prostate tumour and NAT tissue
samples. A larger sample size of the observed methylation dataset
could have enabled improved enrichment estimation and further
exploration of the functional role of hypomethylation in PrCa
(e.g., via pathway analysis).

In conclusion, we demonstrated the application of our
pipeline in breast and prostate cancers and identified novel
putative loci, biomarkers and genes associated with cancer risk.
The results provide evidence for common genetic and

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03540-4 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:594 | https://doi.org/10.1038/s42003-022-03540-4 | www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


methylation influences shared between the two cancers. Our
pipeline can be applied for diverse cancers and cancer-related
traits such as survival. Such analyses can improve our under-
standing of the role of the common variants and DNA
methylation in oncogenesis and progression, and offer oppor-
tunities for further targeted research and clinical application,
particularly via blood-based tests for cancer.

Methods
Studies and quality control
GWAS studies. The GWAS summary statistics (GWAS-SS) for BrCa (122,977 cases
and 105,974 controls of European ancestry) and PrCa (79,148 cases and 61,106
controls of European ancestry) were used in this study. For more details on the
sample characteristics and meta-analysis, refer to refs. 18,24. Information including
SNP id (in the form of b37 chromosome:basepair location), effect allele, and effect
size (β) was extracted for analysis with EstiMeth and FUSION.

DNA methylation datasets. DNA methylation data measured using Illumina
Infinium Human Methylation 450 K BeadChip in TCGA and GEO Omnibus
studies for BrCa and PrCa were downloaded from the EWAS Data Hub
database21 (https://bigd.big.ac.cn/ewas/datahub; download date: May 20, 2020).
The data was downloaded from the EWAS Data Hub database as it hosts curated
data. The curation steps performed by EWAS Data Hub to normalise and
remove batch effects included - (i) normalisation of Type I probes among the
arrays, (ii) bias correction associated with the technical difference between Type
I and Type II array designs using Beta-Mixture Quantile Normalization (BMIQ)
method70, (iii) removal of CpGs with high detection P (P > 2.2 × 10−16) and (iv)
removal of samples with more than 20% of the CpGs with high detection P
values. For more details on the data curation performed by EWAS Data Hub,
refer to ref. 21.

The TCGA19 study for BrCa included methylation measurements of breast
tumour and histologically normal tissue adjacent to the tumour (NAT) samples.
The GSE10196120 study included methylation measurements of healthy breast
samples. The samples from both datasets were restricted to Caucasian females to
ensure population similarity with the GWAS data. For PrCa analysis, prostate
tumour and NAT samples from TCGA13 and GSE7693825 studies were
downloaded. Here, the samples were restricted to Caucasian males to match the
GWAS population. After downloading the samples, we performed further quality
control for both BrCa and PrCa. This included the removal of CpGs with missing
values in more than 10% of the samples in the tumour, NAT and healthy
samples71. Missing values for the remaining selected CpGs were given the median
values72. Lastly, we conducted PCA analysis to identify outlier samples. We
detected outlier samples in the PrCa dataset (Supplementary Fig. 1). The box and
whiskers plot of principal component 1 values was used to systematically remove
the outlier samples in each category (TCGA tumour, TCGA NAT, GSE76938
tumour and GSE76938 NAT samples) (Supplementary Fig. 2). The final BrCa
methylation dataset analysed in this study included 499, 91, and 81 tumour, NAT,
and healthy samples, respectively, while the PrCa dataset included 189 and 82
tumour and NAT samples, respectively.

Gene expression datasets. RNASeq gene expression datasets from the TCGA study
for BrCa and PrCa were downloaded from the Toil RNASeq recompute
compendium73, hosted by the UCSC Xena browser74. Only those samples
matching the tumour and NAT samples in the TCGA DNA methylation dataset
were retained for differential gene expression analysis which resulted in 497 breast
tumour and 78 NAT samples for BrCa, and 134 prostate tumour and 26 NAT
samples for PrCa.

Differential methylation using i-MeWAS. To identify the DM CpGs through the
i-MeWAS approach, we used the EstiMeth R package17. The package can impute
differential methylation of 86,518 genetically influenced CpGs using meQTL SNP-
based prediction models. The prediction models were built using DNA methylation
and genotype data profiled from blood samples of 533 healthy young adults of
European ancestry. A prediction model for each CpG is built using linear regres-
sion with elastic net regularisation fitted between the DNA methylation intensity
and the common cis SNPs associated with the CpG. Common cis SNPs are SNPs
with minor allele frequency >0.5 and present within 1 Mb from the CpG. In
addition, only those SNPs that were overlapping with the 1000 Genome Phase 3
reference panel for the European population (N= 503) were used in the model
building.

To impute the differential methylation Z score (i.e., the differential
methylation association score), the function MetaMethScan available in the
package was used. The function implements an imputation approach similar to
the MetaXcan approach75 which is the linear combination of the SNP weights,
SNP covariance structure (linkage disequilibrium (LD) matrix), and the GWAS
effect size to estimate the differential methylation Z score. The 1000 Genome
Phase 3 reference panel for the European population was used to estimate LD
between SNPs. The GWAS-SS of BrCa and PrCa were provided as input to

predict the genetically influenced DM CpGs. Following the estimation of the
differential methylation Z scores of the CpGs, the P values for the Z scores based
on normal distribution were adjusted for multiple hypothesis testing using the
Benjamini-Hochberg method implemented in the “p.adjust” function in R. CpGs
with FDR < 0.05 were considered statistically significant DM CpGs associated
with cancer risk.

Differential methylation using experimental data. We performed two differ-
ential methylation analyses using the experimental DNA methylation data (i)
tumour vs healthy samples (TH-DM) and (ii) tumour vs NAT samples (TN-DM).
For both analyses, DM CpGs were detected using linear regression modelling as
follows:

DNAmethylation β value of a CpG site
� � � Sample typeþ Ageþ Age2

þTop principal components
ð1Þ

where the tumour and healthy samples were coded as case and control, respec-
tively, for sample type in the TH-DM analysis, while tumour and NAT samples
were coded as case and control, respectively, for sample type in the TN-DM ana-
lysis. We used the first ten and five principal components in the model for BrCa
and PrCa, respectively. The significance values (P) obtained for the coefficient
estimate for sample type were adjusted using the Benjamini–Hochberg method and
CpGs with FDR < 0.05 were considered statistically significant DM CpGs.

Stepwise enrichment analysis. Stepwise overlaps between i-MeWAS, TH-DM
and TN-DM results were estimated, and the overlap significance was assessed using
a one-sided binomial test. In the first iteration (Fig. 1, Iteration 1), the overlap
between i-MeWAS and TH-DM is tested. Here, the null hypothesis is that the
proportion of overlapping DM CpGs from i-MeWAS is equal to the observed
proportion of DM CpGs in TH-DM analysis. We reject the null hypothesis when
the proportion of overlapping CpGs is greater than the observed proportion at
P < 0.05 and proceed to conduct the second iteration (Fig. 1, Iteration 2). Here, the
null hypothesis is that the proportion of overlapping CpGs from Iteration 1 with
TN-DM analysis is equal to the observed proportion of DM CpGs in TN-DM
analysis. When the evidence for enrichment is statistically significant (P < 0.05), we
selected the set of overlapping CpGs from Iteration 2 as the cancer-associated
CpGs. In PrCa analysis, sufficient samples for healthy prostate were unavailable;
hence, enriched CpGs were identified through overlap analysis between i-MeWAS
and TN-DM results.

Location and functional annotation of CpGs. The ANNOVAR software tool29

was used to annotate the selected CpGs to genes and their genomic location such as
exonic, intronic, 5’-UTR, 3’-UTR, intergenic, splicing (when a variant is within
2 bp of a splicing junction), upstream, and downstream (CpG overlaps 1 kb region
upstream and downstream, respectively, of transcription start site). The eForge v2.0
tool23 along with the Consolidated Roadmap Epigenomics data76 was used to
assess the enrichment of the CpGs in histone modification marks (H3K4me3,
H3K4me1, H3K27me3, H3K36me3 and H3K9me3).

Differential gene expression analysis. Candidate genes for differential expres-
sion analysis were chosen using three approaches: (i) ANNOVAR, (ii) distance-
based and (iii) eQTL-based. The ANNOVAR approach used ANNOVAR
software29 to annotate genes to the enriched CpGs. The annotated genes were
tested for differential expression using the DESeq2 R package with default para-
meter setting26 which included the removal of genes with less than ten counts.
After correcting the P values for multiple testing using the Benjamini–Hochberg
approach, genes with FDR < 0.05 were selected as DEGs.

In the distance-based approach, we examined the DEGs present within varying
flanking distances around a CpG to identify the candidate gene set. Cut-offs from
1 kb to 10Mb were used to define the genomic windows. Differential expressions of
the genes present (including partially present genes) within each window were
tested using DESeq2 with default parameter setting and the P values were corrected
for multiple testing using the Benjamini-Hochberg method. Genes with FDR < 0.05
were selected as DEGs in each window. Next, enrichment of DEGs in each genomic
window was estimated using the one-sided exact binomial test with genome-wide
differential expression rate as the null proportion (NullBrCa= 0.492,
NullPrCa= 0.302). The gene set with maximum decrease in enrichment when
increasing the cut-off distance was chosen as the most likely DEGs associated with
the enriched CpGs.

Lastly, an eQTL-based approach was used to determine genetically regulated
genes associated with the enriched CpGs. Using the methylation prediction models
(obtained from EstiMeth) and the gene expression prediction models (obtained
from FUSION27), we associated a gene to a CpG if the SNPs that were used for the
gene expression prediction (eQTL SNPs) were significantly enriched with meQTL
SNPs of that CpG. As expression prediction models are available at the tissue level,
we examined independently whole blood and breast tissue for BrCa, and whole
blood and prostate tissue for PrCa. Enrichment was tested using a one-sided
binomial test and the null proportion was defined as the median SNP overlap
proportion in genes that have at least one overlapping SNP (NullBrCa,
Breast= 0.009202, NullBrCa,Whole blood= 0.008972, NullPrCa, Prostate= 0.009852,
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NullPrCa, Whole blood= 0.010399). Following correction for multiple testing using the
Benjamini–Hochberg method, genes with binomial test significance FDR < 0.05
were selected. Differential expression of the selected genes was tested using the
FUSION software27. The input to FUSION includes the genetic prediction models
of the selected genes and cancer GWAS summary results. Multiple testing
correction was done using the Benjamini–Hochberg method and genes with
FDR < 0.05 were selected as the differentially expressed genes.

Mediation analysis. To determine if the enriched CpGs were involved in tran-
scription regulation, we tested the conditional differential expression of the CpG-
associated genes in tumour vs NAT samples given the methylation status of the
CpG. For this analysis, we used the log2 rsem normalised gene expression data for
tumour and NAT samples for BrCa and PrCa provided by TCGA. The gene
expression data was downloaded from the UCSC Xena browser. The conditional
differential expression of a gene was tested using linear regression as follows:

Gene Expression � SampleTypeþ CpGmethylation

þSampleType � CpGmethylation
ð2Þ

where Gene Expression refers to log2 rsem normalised expression of the gene,
SampleType refers to whether the sample is tumour or NAT, CpG methylation
refers to the methylation level (beta value) of the associated CpG, and the inter-
action term SampleType*CpG methylation refers to the conditional association of
the gene expression to sample type given the CpG methylation. Genes with sta-
tistically significant SampleType*CpG methylation term after correction for mul-
tiple testing (conditional association FDR < 0.05) were considered significantly
differentially expressed genes given CpG methylation.

Pathway analysis of genes. The functional implications of the different gene sets
identified in this study were investigated through pathway analysis with Enrichr
(https://amp.pharm.mssm.edu/Enrichr/)28,33. It performs statistical enrichment
using Fisher’s exact test and the P values obtained from the tests were adjusted for
multiple testing using the Bonferroni method. The pathway databases that were
examined include the NCATS BioPlanet 2019, Elsevier, Kyoto Encyclopedia of
Genes and Genomes (KEGG) 2019, Human WikiPathways 2019, MSigDB and
Reactome. In all the databases, only those pathways with at least two overlapping
genes were selected.

Contribution of meQTL SNPs to the familial relative risk of breast and
prostate cancers. We estimated the proportion of breast and prostate cancer
familial risk contributed by the meQTL SNPs associated with BrCa and PrCa CpGs
using a log-additive model provided in ref. 18:

∑
i
pi 1� pi
� �ðβ2i � τ2i Þ=lnðλÞ ð3Þ

where pi is the minor allele frequency for the meQTL SNP i, βi is the log(odds ratio)
or effect size for the meQTL SNP i in the relevant cancer GWAS, τi is the standard
error of βi, and λ represents the overall familial relative risk. For BrCa λ= 2 and for
PrCa λ= 2.5.

Identification of independent SNPs using conditional analysis. Among the
enriched CpGs, we selected those CpGs with no genome-wide significant SNPs
(PGWAS < 5 × 10−8, PGWAS obtained from the GWAS summary results) in ±1Mb
flanking genomic regions. For the selected CpGs, we conducted an iterative con-
ditional analysis of the predictor SNPs (meQTLs SNPs) using the genome-wide
complex trait analysis (GCTA) software (version 1.93.2)35. To avoid false-positive
results, for two or more of the selected CpGs present within 1Mb of each other, we
analysed the meQTL SNPs of these CpGs together. We begin by choosing the
meQTL SNP with the smallest PGWAS value less than the threshold = 0.05. The
association significances of the remaining meQTL SNPs are calculated condition-
ing on the selected meQTL SNP. Next, a new meQTL SNP with the lowest con-
ditional P (Pcond) value less than the threshold value is selected and we perform a
second iteration of conditional analysis along with the newly selected meQTL SNP.
We repeat the steps until no meQTL SNP can be selected. To avoid multi-
collinearity, the meQTL SNPs in high LD (r2 >0.9) with previously selected meQTL
SNPs are not chosen. The 1000 Genome Phase 3 reference panel for the European
population, downloaded from https://ctg.cncr.nl/software/magma77, was provided
to estimate LD. The final list of selected independent meQTLs was chosen as the
novel secondary loci contributing to cancer via methylation regulation.

GWAS Meta-analysis. We meta-analysed the BrCa and PrCa GWAS-SS using the
GWAMA software37 using an inverse-weighted fixed-effect model. The combined
associations for 11,784,678 unique imputed and genotyped SNPs present in both
GWASs were estimated. The Cochran’s Q heterogeneity statistic and the associated
P values (Phet) for each SNP were also estimated using the GWAMA software
during the meta-analysis.

Statistics and reproducibility. All statistical analyses including binomial tests and
multiple testing corrections were conducted in R version 3.6.3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets used in the analysis are publicly available. The BrCa GWAS summary results
are available at http://bcac.ccge.medschl.cam.ac.uk/ and the PrCa GWAS summary
results are available at http://practical.icr.ac.uk/blog/?page_id=8164. The curated DNA
methylation datasets for both cancers (TCGA, GSE101961, and GSE76938) are available
at the EWAS Data Hub database (https://bigd.big.ac.cn/ewas/datahub)21. The TCGA
gene expression datasets for both cancers are available at the UCSC Toil RNAseq
recompute compendium73 (https://xenabrowser.net/datapages/?hub=https://toil.
xenahubs.net:443). The analysis scripts can be provided by the corresponding authors
upon request.
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