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LSH-GAN enables in-silico generation of cells for
small sample high dimensional scRNA-seq data
Snehalika Lall1, Sumanta Ray 2,3✉ & Sanghamitra Bandyopadhyay1✉

A fundamental problem of downstream analysis of scRNA-seq data is the unavailability of

enough cell samples compare to the feature size. This is mostly due to the budgetary

constraint of single cell experiments or simply because of the small number of available

patient samples. Here, we present an improved version of generative adversarial network

(GAN) called LSH-GAN to address this issue by producing new realistic cell samples. We

update the training procedure of the generator of GAN using locality sensitive hashing which

speeds up the sample generation, thus maintains the feasibility of applying the standard

procedures of downstream analysis. LSH-GAN outperforms the benchmarks for realistic

generation of quality cell samples. Experimental results show that generated samples of LSH-

GAN improves the performance of the downstream analysis such as feature (gene) selection

and cell clustering. Overall, LSH-GAN therefore addressed the key challenges of small sample

scRNA-seq data analysis.
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Recently, the emergence of high dimensional biological data
such as single-cell RNA sequence (scRNA-seq) data has
posed challenges to machine-learning researchers1,2. The

high dimension, and small-sample size (HDSS) data handling is
difficult for downstream analysis particularly for feature selection
(FS). It affects later stages of downstream analysis such as cell
clustering, marker selection, and annotation of cell clusters. A few
outliers can drastically affect the FS techniques, and the selected
feature sets may not be adequate to discriminate the classes3.
Moreover, high dimensionality increases the computational time
beyond acceptability.

High dimensional small-sample (HDSS) data is prevalent in
the single-cell domain due to the budgetary constraint, ethical
consideration of single-cell experiments, or simply because of the
small number of available patient samples. Whatever the reason
is, too few observations (cell sample) in the single-cell data may
create problems in the downstream analysis. This is because a
small-sample size may not reflect the whole population accu-
rately, which surely degrades the performance of any model. The
general pipeline of scRNA-seq downstream analysis starts with
preprocessing (normalization, quality control) of the raw count
matrix and then going through several steps which include
identification of relevant genes, clustering of cells, and annotating
cell clusters with marker genes4–8. Each step has a profound effect
on the next stage of analysis. The gene selection step identifies the
most relevant features/genes from the normalized/preprocessed
data and has an immense impact on cell clustering9,10. The
general procedure for selecting relevant genes which are primarily
based on high variation (highly variable genes)11,12 or sig-
nificantly high expression (highly expressed genes)4 suffers from
a small-sample effect. The general FS techniques also failed to
provide a stable and predictive feature set in this case due to an
ultra-large size of feature (gene). One way to solve this issue is
to go for a robust and stable technique that does not overfit the
data. A few attempts9,13,14 were observed recently which embed
statistical and information-theoretic approaches. Although these
methods result in stable features, however, these are not per-
formed well in small-sample scRNA-seq data.

Recently computational researchers are gaining interest in this
field. Some methods like cscGAN15, Splatter16, SUGAR17 are
already developed which uses different techniques (like generative
model, statistical framework) to successfully simulate the samples
of specific cell types or subpopulations. The challenge in this task
is to handle the sparsity and heterogeneity of the cell populations
which define the specific characteristics of scRNA-seq data.
In this paper, we propose a generative model to sort out this
problem in HDSS scRNA-seq data. We use generative adversarial
model to generate realistic cell samples from a small number
of available samples of HDSS scRNA-seq data. Generative
adversarial network (GAN)18–21 has already been shown to be
a powerful technique for learning and generating complex
distributions22,23. However, the training procedure of GAN is
difficult and unstable. The training suffers from instability
because both the generator and the discriminator model are
trained simultaneously in a game that requires a Nash equili-
brium to complete the procedure. Gradient descent does this, but
sometimes it does not, which results in a costly time-consuming
training procedure. The main contribution here is in modifying
the generator input that results in a fast training procedure. We
create a subsample of original data based on locality-sensitive
hashing (LSH) technique and augment this with noise distribu-
tion, which is given as input to the generator. Thus, the generator
does not take pure noise as input, instead, we introduce a bias in
it by augmenting a subsample of data with the noise distribution.

Researchers are still trying to find improved versions of the
GAN to use in different domains. Most of the variations such as

progressive GAN (PGAN)24, Wasserstein GAN (WGAN)22 try to
train the model quicker than the conventional GAN. Unlike
PGAN and WGAN, conditional GAN (CGAN)25 operates by
conditioning the conventional model on additional data sources
(maybe class label or data from different modalities) to dictate the
data generation. In our model, we direct our attention to the
additional sample generation from HDSS data. However, the
generated sample size becomes increasingly large with more
features, the generation of which may not be feasible for con-
ventional generative models. Augmenting subsample of real data
distribution (pdata(x)) with the prior noise (pz(z)) makes the
training procedure of our model faster than the conventional
GAN. We theoretically proved that the global minimum value of
the virtual training criterion of the generator is less than the
traditional GAN (<−log4).

Here, we provide the following: (i) The proposed model
address the problem of downstream analysis (particularly gene
selection and clustering) on HDSS scRNA-seq data. (ii) LSH-
GAN is able to generate realistic samples in a faster way than the
traditional GAN. This makes LSH-GAN more feasible to use in
the feature (gene) selection problem of scRNA-seq data. (iii) LSH-
GAN can produce more realistic cell samples than the other
existing benchmarks. (iv) Here we derive a training procedure of
generator that combines subsamples of original data with pure
noise and takes this as input. (v) For a fixed number of iteration
LSH-GAN performed better than the traditional GAN in gen-
erating realistic samples. (vi) Gene selection and clustering on the
generated samples of LSH-GAN provide excellent results for
small-sample and large-feature sized single-cell data.

Results and discussion
In the following, we first describe the workflow of our analysis
pipeline. Next, experimental validation of the proposed model is
carried out by comparing it with several state-of-the-arts in real-
life scRNA-seq data. Finally, we used LSH-GAN to select genes
from HDSS scRNA-seq data. We use benchmark gene selection
techniques on the generated samples and used one single-cell
clustering technique to validate the selected genes.

Proposed model: LSH-GAN. Figure 1 describes the workflow of
our analysis pipeline. Figure 1a describes the application of the
proposed LSH-GAN model in the feature selection task of the
HDSS scRNA-seq data, while Fig. 1b depicts basic building blocks
of the model. The following subsections describe in brief.

LSH step: sampling of input data. Locality-sensitive hashing
(LSH)14,26,27 is widely used in nearest neighbor searching to
reduce the dimensionality of data. LSH utilizes locality-sensitive
hash functions which hash similar objects into the same bucket
with a high probability. The number of buckets is much lesser
than the universe of possible items, thus reduces the search space
of the query objects (see Supplementary Note 1 for a detailed
description of LSH technique). The intuition behind LSH step is
to capture non-redundant and widely separated samples from the
original scRNA-seq data, which helps to learn the complex dis-
tribution of the data in a holistic way. Please note that the aim of
LSH step is to provide a prior sense of information about real data
distribution to the generator network.

In this work first, the unique hash codes which depict the local
regions or neighborhoods of each data point are produced. For
this, we utilized python sklearn implementation of LSHForest
module with default parameters.

An approximate neighborhood graph (k-nn graph) is con-
structed by using k= 5 for each data point. This step computes
the euclidean distances between the query point and its candidate
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neighbors. Sampling is carried out in a ‘greedy’ fashion where
each data point is traversed sequentially and its corresponding
five nearest neighbors are flagged out which never visited again.
Thus after one traversing a sub-set of samples is obtained which is
further down-sampled by performing the same step iteratively.

Generator of LSH-GAN. The generator function (G) is modified
by augmenting its taken input data. Instead of giving the pure
noise (pz(z)) as input we augment a subsample of real data dis-
tribution (pdata(x)) with it. The sampling of the input data is done
in the LSH step. Thus the generator (G) function builds a map-
ping function from bz to data space (x) as Gðbz; θgÞ and is defined
as: Gð:Þ : bz ! x. Modifying the generator in this way we claim
that it can increase the probability of generating samples of real
data in lesser time.

Discriminator of LSH-GAN. Here discriminator (D) takes both
the real data pdata(x) and generated data coming from generator
(GðbzÞ), with probability density (pbzðbzÞ) and returns the scalar
value, D(x) that represents the probability that the data x is
coming from the real data: D(.): x→ [0, 1].

So, the value function can be written as:

LðD;GÞ ¼ min
G

max
D

ðEx�pdataðxÞ logðDðxÞÞ þ Ebz�pbzðbzÞ logð1� DðGðbzÞÞÞÞ
ð1Þ

D and G form a two-player minimax game with value function
L(G,D). We train D to maximize the probability of correctly
validating real data and generated data. We simultaneously train
G to minimize logð1� DðGðbzÞÞÞ, where GðbzÞ represents the
generated data from the generator by taking the noise (pz) and the
sampled data pxs ðxsÞ as input.

Feature/gene selection using LSH-GAN. The generated cell sam-
ples are utilized for the gene selection task. We have employed
five well-known gene selection methods (with default parameters)
of scRNA-seq data adopted for validation: GLM-PCA28, CV2

Index, M3Drop29, Fano Factor30, and Highly Variable Gene
(HVG) selection of Seurat V431. Single-cell clustering method

(SC3) technique is utilized to validate the selected genes from the
generated samples.

The whole algorithm and the sampling procedure are described
in Table 1.

Experimental settings. The number of nearest neighbor (k) and
the number of iteration (t) are two main parameters of the LSH
step (see Table 1), tuning of which affects the amount of sampling
given to the generator for training the LSH-GAN model. We vary
k and t in the range {5, 10, 15, 20} and {1, 2}, respectively, and
choose that value for which the Wasserstein distance22 between
generated and real samples are reported to be minimum. We
fixed the amount of sampling using k= 5, t= 1 for Pollen, Yan,
Darmanis datasets and k= 5, t= 2 for Klein dataset and Mela-
noma datasets (see Supplementary Table 1). Similarly, we choose
the epoch (eopt), which results in the lowest Wasserstein metric.
For example, we take eopt as 10k, 30k, 10k, 15k, and 25k for the
dataset Darmanis, Yan, Pollen, Klein, and Melanoma, respectively
(see Supplementary Fig. 2). For generating hash code from LSH
sampling, LSHForest of scikit-learn version 0.19.2 is utilized.

We take the adaptive learning rate optimization algorithm
implemented in ADAM optimizer in python Tensorflow version
1.9.2. Generator (G) and discriminator (D) uses 2-layer multi-
layer perceptrons with hidden layer dimension as (16, 16). For
traditional GAN, we retain the same settings as LSH-GAN for G
and D networks.

For benchmarking our method we have utilized three state-of-
the-art techniques widely used for sample generation: cscGAN15,
SUGAR17, and Splatter16. For these three methods, We adopted
the code (with default parameters) provided on the Github page
of the original publications.

Five well-known gene selection methods (with default para-
meters) of scRNA-seq data are adopted for validation:
GLM-PCA28, CV2 Index, M3Drop29, Fano Factor30, and Highly
Variable Gene (HVG) selection of Seurat V431. We select the top
500 features (genes) using all three feature selection methods
on scRNA-seq datasets. For validation purposes, Wasserstein
metric22 is utilized to estimate the quality of the generated
data. Clustering of scRNA-seq data is performed using SC332

technique with default parameters. Clustering performance is

Fig. 1 Workflow of LSH-GAN. aGene selection task in HDSS scRNA-seq data using generated sampleswith LSH-GANmodel. bDetail architecture of LSH-GAN.
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evaluated using the adjusted Rand index (ARI), normalized
mutual information (NMI).

LSH-GAN improves performance of traditional GAN on
simulated data. First, we train the LSH-GAN on HDSS synthetic
data and generate realistic samples to compare against the tra-
ditional GAN model. For this, we create a 2-class non-over-
lapping Gaussian mixture data consisting 100 samples and 1000
features by taking the mean (μ) of the data in the range of 5 to 15
for class-1 and −15 to −5 for class-2. The covariance matrix (Σ)
is taken for all the samples using the formula Σ= (ρ∣i−j∣), where i,
j are row and column index, and ρ is equal to 0.5. We calculate
Wasserstein metric to estimate the quality of the generated data.
The Wasserstein distance between the real data distribution
(pdata) and the generated data distribution (pg) to estimate the
quality of the generated data. We use different settings of kth
(k= 5, 10, 15, 20) nearest neighbor to generate subsample of data
from LSH sampling procedure. In each case, the sampled data
(pxs ) is augmented with prior noise (pz) and given to the gen-
erator of LSH-GAN for model training.

For comparison with the traditional GAN model, we use the
data with train: test split of 80:20 and calculate the Wasserstein
metric between the test sample and the generated sample. Table 2
shows the values of the metric for LSH-GAN and traditional
GAN model in different range of epochs and nearest neighbors k.
A closer look into Table 2 reveals that the performance of LSH-
GAN (at 10,000 epoch and k= 5) is far better than the traditional

GAN model with 25,000 epochs. Notably, for less amount of
sampling (larger k), LSH-GAN needs more iterations for training.
As for particular example, the performance of LSH-GAN
achieved on 20,000 epoch and k= 20 is rivaled only at 10,000
epoch for k= 10. Thus it is evident from the results that reducing
the amount of sampling needs more epochs and thus needs more
training time for the LSH-GAN model to converge. Figure 2 also
supports this statement. Here, the two models (LSH-GAN, and
traditional GAN) are trained to simulate a two-dimensional
synthetic data of known distribution, for which the LSH-GAN
can able to generate samples that are more real than the
traditional GAN, in a lesser number of iteration.

Comparison of LSH-GAN with benchmarks in HDSS scRNA-
seq data. We compare LSH-GAN with four existing benchmarks:
cscGAN15, splatter16, SUGAR17, traditional GAN18, and its two
variants f-GAN23 and w-GAN33. Since the evaluation of the
generative model is notoriously difficult34,35, we first use Was-
serstein distance to compare the real data distribution and gen-
erated data distribution coming from different competing models.
We also used UMAP visualization, and marker genes expression
to visualize the generated cell samples. We create UMAP visua-
lization for LSH-GAN, SUGAR, and cscGAN, as these methods
are more associated with the generation of single-cell data.
Figure 3a–c shows the two-dimensional UMAP representation of
generated and real cell samples from the test data for four
competing models. Melanoma data is utilized for this experiment.
As can be seen from this figure, LSH-GAN can able to retain the
distribution of the original cell samples. This can also be sup-
ported by the Wasserstein distance (see Fig. 3f) measured
between real data and generated data distribution. To know how
the expression of the marker genes is retained in the generated
data, we plot the expression of marker gene CD8A (marker for
CD8 T cell) and MS4A1 (marker for B cell) in the two-
dimensional UMAP space for both the real and generated sam-
ples of LSH-GAN (see Fig. 3d, e). It reveals from the figure that
marker genes CD8A and MS4A1 show similar expression pat-
terns (high expression) both in real and generated cell samples.

We also validate the generated samples by training a classifier
(random forest) to see whether it can able to distinguish the
samples coming from two different distributions (real and
generated). The aim is to see whether the model can discriminate
between the real and generated cell samples accurately. Table 3

Table 2 Wasserstein distance between generated and real
data distribution.

Nearest neighbor Model Epoch

10,000 15,000 20,000 25,000
Wassertein distance

k= 5 LSH-GAN 0.46 0.35 0.33 0.45
k= 10 LSH-GAN 1.09 0.89 0.83 0.82
k= 15 LSH-GAN 1.36 0.89 1.45 0.87
k= 20 LSH-GAN 1.53 1.35 1.19 0.83

GAN 1.71 1.73 1.75 1.70

Model is trained on synthetic data of size 100 × 1000 Gaussian mixture data with two non-
overlapping classes.
The minimum distances are represented as bold face.

Table 1 LSH-GAN algorithm.

Input: Data Matrix (x), number of Training iterations, number of nearest-neighbor (k), number of iterations for sub-sampling (t)
Output: Generated data (Gout).
1: for number of training iterations do
2: xs = LSH-SAMPLING(x,k,t)
3: augment pxs ðxsÞ with prior noise pz(z) and give this (pẑðẑÞ) to the generator, G.

4: real data pdata(x) and generated data pg(x) is given to discriminator D.
Update the Discriminator, D

5: Δd ¼ ∑n
i¼1 logðDðxiÞÞ þ logð1� DðGðbzÞiÞÞÞ

Update the Generator, G
6: Δg ¼ ∑n

i¼1 logð1� DðGðbzÞiÞÞÞ
7: end for

{The adaptive momentum gradient decent rule is used in our experiment.}
8 procedure LSH sampling(x, k, t)
9: Execute Locality Sensitive Hashing (LSH) on x and prepare a k-Nearest Neighbor list for each data point.
10: for number of iteration of sub-sampling t do
11: visit each data point sequentially in the order as it appears in data.
12: if the data point is not visited earlier, select the data point and discard all its k neighbors from its nearest-neighbor list.
13: end for
14: end procedure
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shows the cross-validation AUC score of the random forest
classifier for five scRNA-seq datasets. It reveals from the table that
for LSH-GAN, the AUC scores hardly reach 0.6 (only for
melanoma data) suggesting a chance-level performance of RF
model. This suggests the generated data obtained from LSH-GAN
is highly similar to the real data.

Gene selection from generated sample of HDSS scRNA-seq
data. Here, we aim to address the problem of gene selection in

HDSS scRNA-seq data using the generated samples. We augment
the generated sample with original data to make the sample to
feature ratio as 1.5. The augmented data is utilized for gene
selection. Here, we have employed five feature selection methods
(Highly Variable Gene (HVG) selection of Seurat V3/V4,
M3Drop, GLM-PCA, and Fano Factor, CV2-index), widely used
for the gene selection task in scRNA-seq data and one single-cell
clustering method (SC3) technique to validate the selected genes
from the augmented data.

Fig. 2 A toy example demonstrating generation of a two dimensional data of known distribution. Results show the distribution of generated data and
real data for traditional GAN (upper row, a) and LSH-GAN (lower row, b).

Fig. 3 Comparisons of LSH-GAN with the state-of-the-arts on the melanoma data. a–c UMAP visualization of real and generated cell samples of
melanoma data. d UMAP visualization of real scRNA-seq data with the original labels. e Expression values (shown in color bar) of two marker genes CD8A
(marker of CD8 T cell) and MS4A1 (marker of B cell) in real and generated data. f Barplot describing the Wasserstein distance between the generated and
real cell sample.
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LSH-GAN is compared with five other state-of-the-arts in four
HDSS scRNA-seq datasets (Darmanis, Yan, Pollen, and Klein
datasets). We exclude Melanoma data for this analysis as it
already has larger sample size compared to the feature size
(sample:feature is 3.46). The aim is to know whether the selected
features/genes from the generated combined data can lead to a
pure clustering of cells. Table 4 shows the comparisons of the ARI
and NMI values resulting from the cell clustering. It is evident
from the table that features/genes selected from the generated
combined data of the LSH-GAN model produce better clustering
results than the other competing models. The last column of
Table 4 shows the ARI and NMI scores of clustering results with
the selected features (genes) from original scRNA-seq data.

Selected genes using LSH-GAN can effectively predict cell
clusters. Here our aim is to investigate whether the selected genes
from generated scRNA-seq data are effective for cell clustering.
We have utilized the generated data from the four scRNA-seq
datasets for gene selection. A widely used single-cell clustering
method SC332 is adopted for cell clustering. Figure 4a depicts the
t-SNE visualization of predicted clusters and their original labels

for Yan and Pollen datasets (see Supplementary Note 3 and
Supplementary Fig. 1 for the results of the other two datasets).
Figure 4b represents heatmaps of cell × cell consensus matrix.
Each heatmap signifies the number of times a pair of cells is
appearing in the same cluster32. Here two cells are said to be in
different clusters if the score is zero (blue color). Similarly, a score
‘1’ (red) signifies two cells that belong to the same class. Thus
completely red diagonals and blue off-diagonals represent a
perfect clustering. A careful notice on Fig. 4a and b reveals a
perfect match between the original and predicted labels for YAN
and Pollen datasets.

LSH-GAN is robust for data with different batches. To know
how the generated data of LSH-GAN is affected by the data of
different batches, we performed this analysis. We first download
the processed datasets from a github repository (https://github.
com/JinmiaoChenLab/Batch-effect-removal-benchmarking) of
Tran et al.36. The data consists of human blood dendritic cell
(DC) cells created with Smart-Seq2 technology in two different
batches. Both batches contain 96 pDC and 96 double negative
cells. Each batch has one biologically similar unshared cell type:

Table 3 Table shows results of applying random forest classifier for discriminating real and generated samples coming from
different competing methods.

AUC Score

Yan Darmanis Pollen Klein Melanoma

cscGAN 0.65 ± 0.02 0.68 ± 0.01 0.64 ± 0.02 0.62 ± 0.02 0.66 ± 0.01
Splatter 0.69 ± 0.01 0.69 ± 0.02 0.67 ± 0.03 0.65 ± 0.01 0.72 ± 0.02
SUGAR 0.67 ± 0.02 0.66 ± 0.03 0.61 ± 0.02 0.64 ± 0.02 0.68 ± 0.01
GAN 0.72 ± 0.02 0.71 ± 0.02 0.73 ± 0.02 0.72 ± 0.02 0.76 ± 0.03
f-GAN 0.69 ± 0.01 0.70 ± 0.02 0.63 ± 0.02 0.62 ± 0.02 0.61 ± 0.03
w-GAN 0.61 ± 0.01 0.67 ± 0.03 0.63 ± 0.02 0.61 ± 0.02 0.64 ± 0.02
LSH-GAN 0.59 ± 0.01 0.60 ± 0.02 0.58 ± 0.02 0.57 ± 0.01 0.60 ± 0.01

The average AUC score (with 5-fold cross-validation) is reported for each dataset.
The lowest AUC scores are highlighted with bold face.

Table 4 The table shows adjusted Rand index (ARI), and normalized mutual information (NMI) scores of clustering results on
real-life scRNA-seq data.

Dataset FS Method Clustering results on scRNA-seq data

using features from combined data using features from
original data

LSH-GAN SUGAR cscGAN Splatter GAN

ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI NMI

Darmanis GLM-PCA 0.634 0.66 0.413 0.43 0.531 0.54 0.42 0.43 0.129 0.15 0.4 0.41
Fano Factor 0.535 0.54 0.319 0.328 0.457 0.467 0.38 0.4 0.27 0.28 0.34 0.36
CV2 Index 0.598 0.61 0.42 0.453 0.51 0.53 0.481 0.51 0.461 0.48 0.457 0.462
M3Drop 0.648 0.665 0.513 0.537 0.58 0.59 0.507 0.52 0.48 0.512 0.46 0.48
HVG (Seurat V4) 0.68 0.702 0.51 0.54 0.556 0.573 0.539 0.54 0.46 0.472 0.43 0.427

Yan GLM-PCA 0.895 0.9 0.709 0.713 0.798 0.8 0.715 0.72 0.62 0.63 0.66 0.678
Fano Factor 0.821 0.843 0.79 0.8 0.801 0.81 0.768 0.77 0.73 0.75 0.713 0.72
CV2 Index 0.891 0.913 0.801 0.812 0.825 0.84 0.793 0.81 0.719 0.743 0.7 0.723
M3Drop 0.898 0.904 0.802 0.82 0.796 0.81 0.79 0.823 0.761 0.783 0.71 0.732
HVG (Seurat V4) 0.91 0.917 0.811 0.82 0.891 0.9 0.802 0.81 0.81 0.83 0.8 0.81

Pollen GLM-PCA 0.835 0.82 0.78 0.77 0.819 0.8 0.793 0.8 0.788 0.77 0.78 0.76
Fano Factor 0.933 0.913 0.878 0.86 0.916 0.88 0.88 0.87 0.815 0.8 0.712 0.7
CV2 Index 0.94 0.921 0.906 0.88 0.908 0.89 0.89 0.86 0.831 0.81 0.81 0.8
M3Drop 0.918 0.9 0.864 0.854 0.897 0.87 0.79 0.77 0.758 0.74 0.735 0.723
HVG (Seurat V4) 0.958 0.93 0.916 0.9 0.897 0.876 0.868 0.85 0.801 0.79 0.82 0.81

Klein GLM-PCA 0.815 0.79 0.769 0.75 0.784 0.76 0.731 0.71 0.581 0.57 0.66 0.64
Fano Factor 0.8 0.78 0.742 0.72 0.782 0.761 0.77 0.76 0.699 0.66 0.796 0.77
CV2 Index 0.82 0.79 0.71 0.7 0.761 0.75 0.709 0.69 0.69 0.67 0.68 0.65
M3Drop 0.837 0.824 0.794 0.77 0.769 0.74 0.718 0.7 0.61 0.6 0.607 0.59
HVG (Seurat V4) 0.898 0.86 0.861 0.84 0.857 0.83 0.785 0.77 0.73 0.71 0.739 0.71

Data generated by the five competing methods are utilized for gene selection. Five gene selection methods are utilized to find out the most variable genes, which are further used for clustering of original
scRNA-seq data. The last column represents the clustering results using the selected features from the original scRNA-seq data.
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CD141 cells in the first batch and CD1C cells in the second batch.
The two batches contain a total of 288 cells over 16,594 genes. We
have applied LSH-GAN on the first (or second) batch and select
genes from the generated data. These genes are utilized to cluster
the second (or first) batch. In both cases, we got high ARI scores
(0.834 and 0.891 for two cases, respectively). For gene selection,
we have utilized HVG of Seurat v4.

Conclusions. In this paper, we present a novel and faster way of
generating cell samples of HDSS single-cell RNA-seq data using a
generative model called LSH-GAN. We update the training
procedure of GAN using locality-sensitive hashing which can
produce realistic samples in a lesser number of iteration than the
traditional GAN model. We utilized the generated data in the
standard procedure of downstream analysis for analyzing real-life
scRNA-seq data. Particularly, we demonstrated that the recent
and benchmark approaches of gene selection and cell clustering
produce excellent results on the generated cell samples of LSH-
GAN. Our preliminary simulation experiment also suggests that
for fixed number of training iteration the proposed model can
generate more realistic samples than the traditional GAN model.
This observation is also established theoretically by proving that
the cost of value function is less than −log4 which is the cost for
traditional GAN at the global minimum of virtual training cri-
terion (pg= pdata).

We demonstrated that the generated samples of LSH-GAN are
useful for gene selection and cell clustering in HDSS scRNA-seq
data. particularly the excellent results of LSH-GAN over the
recent benchmark methods support its usability for generating
realistic cell samples. For validation of the generated cell samples,
we use the conventional steps of downstream analysis for scRNA-
seq data. We employ five widely used gene selection techniques
and one single-cell clustering technique for gene selection and
grouping of cells. The precise clustering of cells demonstrates the
quality of generated cell samples using the LSH-GAN model.

One limitation of our method is that for feature selection we
hardly found any linear relationship between the clustering

results with the sample size of generated scRNA-seq data. The
correct sample size should be selected by using a different range
of values between 0.25p to 1.5p, where p is the feature size. There
may be some effects of different parameters related to single-cell
clustering (SC3 method) and feature selection (e.g., different FS
methods, number of selected features, etc.) which may play a
critical role in the clustering performance. However, we found
clustering results are always better for the generated data with
more than 1p (p is the feature size) sample size. This observation
suggests that for feature selection in HDSS data, whenever we
produce samples larger than the feature size we will end up with a
better clustering. The feasibility of generating such samples is
justified by the faster training procedure of LSH-GAN model.

It may interesting to speculate how well LSH-GAN can be
useful for generating data of other domains, such as for image
analysis, bulk RNA-seq analysis, and spatial transcriptomics. For
bulk RNA-seq data, one can directly apply LSH-GAN, keeping
the same setup of LSH-based sampling procedure (see Supple-
mentary Note 4 for one such analysis). For image data, the LSH-
based sampling procedure needs to be further developed, so that
it can be useful to capture non-redundant images (a subsample of
image) from the whole datasets. For spatial transcriptomic
domain, the obtained data from the technology has spatial
arrangement of cell types within a tissue and thus extremely
useful to understand normal development and disease pathology.
In-silico generation of this data may find great interest to the
machine learning researcher as the model should capture the
location-wise heterogeneity of the real samples.

Taken together, the proposed model can generate good quality
cell samples from HDSS scRNA-seq data in a lesser number of
iteration than the traditional GAN model. Results show that LSH-
GAN not only leads over the benchmarks in the cell sample
generation of scRNA-seq data but also accelerates the way of gene
selection and cell clustering in the downstream analysis. We believe
that LSH-GAN may be an important tool for computational
biologists to explore the realistic cell samples of HDSS scRNA-seq
data and its application in downstream analysis.

Fig. 4 Clustering results of Pollen and Yan datasets. a Two-dimensional UMAP visualization of clustering results (original and predicted labels).
b Consensus clustering plots of obtained clusters.
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Methods
Overview of datasets. We have used five public benchmark scRNA-seq datasets:
Melanoma37, Pollen38, Darmanis39, Yan40, and Klein41 downloaded from Gene
Expression Omnibus (GEO) https://www.ncbi.nlm.nih.gov/geo/. Table 5 shows a
detailed summary of the used datasets (see Supplementary Note 2 for description).
The sample:feature ratio for all the datasets except Melanoma is <0.012. For
Melanoma the ratio is quite large (3.41). We retain this data to know the efficacy of
our model in both small and large sample data.

Data preprocessing. The raw count matrixM 2 Rc ´ g , where c and g represent the
number of cells and genes, respectively, is normalized using Linnorm42 Bio-
conductor package of R. We select cells having more than a thousand expressed
genes (non zero values) and choose genes having a minimum read count more than
5 in at least 10% of the cells. log2 normalization is performed on the transformed
matrix by adding one as a pseudo count.

Formal details of LSH-GAN. In this section, we first provide a short description of
GAN and then explain the theoretical foundation of LSH-GAN model.

Generative adversarial network. GAN is introduced in ref. 18 which was proposed
to train a generative model. GAN consists of two blocks: a generative model (G)
that learn the data distribution (p(x)), and a discriminative model (D) that esti-
mates the probability that a sample came from the training data (X) rather than
from the generator (G). These two models can be non-linear mapping functions
such as two neural networks. To learn the generator distribution pg over data x, a
differentiable mapping function is built by generator G to map a prior noise
distribution pz(z) to the data space as G(z; θg). The discriminator function D(x; θd)
returns a single scalar that represents the probability of x coming from the real data
rather than from generator distribution pg. The goal of the generator is to fool the
discriminator, which tries to distinguish between true and generated data. Training
of D ensures that the discriminator can properly distinguish samples coming from
both training samples and the generator. G and D are simultaneously trained to
minimize log 1� DðGðzÞÞð for G and maximize log(D(x)) for D. It forms a two-
player min–max game with value function V(G,D)

min
G

max
D

VðG;DÞ ¼ Ex�px ðxÞ½logðDðxÞÞ� þ Ez�pz ðzÞ½1� logðDðGðzÞÞÞ� ð2Þ
Locality sensitive hashing generative adversarial network. For LSH-GAN, a sub-
sampling of real data pxs ðxsÞ is augmented with the prior noise distribution, pz(z).
Due to this additional information in generator, we assume that the probability
DðGðbzÞÞ will increase by a factor, ζ.

The value function of LSH-GAN can be written as:

LðD;GÞ ¼ min
G

max
D

ðEx�pdataðxÞ logðDðxÞÞ þ Eẑ�pẑ ðẑÞ logð1� DðGðẑÞÞÞÞ ð3Þ
Proposition 1. L(D,G) is maximized with respect to discriminator (D), for a

fixed generator (G), when

D�
GðxÞ ¼

pdataðxÞð1� ζÞ
pdataðxÞ þ pg ðxÞ

ð4Þ

Proof. Equation (3) can be written as

LðD;GÞ ¼
Z
x
pdataðxÞ logðDðxÞÞdx þ

Z
ẑ
pẑðẑÞ logð1� fDðGðẑÞÞ þ ζgÞdẑ

¼
Z
x
pdataðxÞ logðDðxÞÞ þ pg ðxÞ logð1� fDðxÞ þ ζgÞdx

ð5Þ

[As the range of D GðbzÞð is within the domain of real data x so we can write this]
We know that, the function y ¼ a log x þ b logð1� ðx þ ζÞÞ will have

maximum value, at x ¼ að1�ζÞ
aþb , for any (a, b) ∈ R2{0, 0} and ζ∈ (0, 1). So, the

optimum value of D for a fixed generator, G is:

D�
GðxÞ ¼

pdataðxÞð1� ζÞ
pdataðxÞ þ pg ðxÞ

ð6Þ

The training objective for discriminator D is to maximize the log-likelihood of the
conditional probability P(Y= y∣x), where Y signifies whether x is coming from real

data distribution(y= 1) or coming from the generator(y= 0). Now the equation
(3) can be written as

CðGÞ ¼ max
D

LðG;DÞ

¼ Ex�pdataðxÞ logðD
�
GðxÞÞ

�
þ Eẑ�pg ðẑÞ logð1� D�

GðGðẑÞÞÞ
¼ ðEx�pdata ðxÞ logðD

�
GðxÞÞ þ Ex�pg ðxÞ logð1� D�

GðxÞÞÞ

¼ Ex�pdata ðxÞ log
pdataðxÞð1� ζÞ
pdataðxÞ þ pg ðxÞ

þ Ex�pg ðxÞ log 1� pdataðxÞð1� ζÞ
pdataðxÞ þ pg ðxÞ

 ! ð7Þ

Theorem 1. At pg(x)= pdata(x) (global minimum criterion of value function
L(G,D)), the value of C(G) is less than ð�log 4Þ.

Proof. From equation (7) we get

CðGÞ ¼ Ex�pdataðxÞ log
pdataðxÞð1� ζÞ
pdataðxÞ þ pg ðxÞ

 !
þ Ex�pg ðxÞ log 1� pdataðxÞð1� ζÞ

pdataðxÞ þ pg ðxÞ

 !

¼ Ex�pdataðxÞ log
pdataðxÞð1� ζÞ
pdataðxÞ þ pg ðxÞ

 !
þ Ex�pg ðxÞ log

ζpdataðxÞ þ pg ðxÞ
pdataðxÞ þ pg ðxÞ

 !

¼ logð1� ζÞ þ Ex�pdataðxÞ log
pdataðxÞ

pdataðxÞ þ pg ðxÞ

 !" #

þ Ex�pg ðxÞ log 1þ ζpdataðxÞ
pg ðxÞ

 !
þ Ex�pg ðxÞ log

pg ðxÞ
pdataðxÞ þ pg ðxÞ

 !" #

¼ logð1� ζÞ þ Ex�pg ðxÞ log 1þ ζpdataðxÞ
pg ðxÞ

 !" #

þ Ex�pdata ðxÞ log
pdataðxÞ

pdataðxÞ þ pg ðxÞ

 !"
þ Ex�pg ðxÞ log

pg ðxÞ
pdataðxÞ þ pg ðxÞ

 !#

¼ logð1� ζÞ þ Ex�pg ðxÞ log 1þ ζpdataðxÞ
pg ðxÞ

 !" #
þ ð� log 4Þ þ 2JSDðpdataðxÞjjpg ðxÞÞ
h i

ð8Þ
where, JSD(pdata(x)∣∣pg(x)) represents Jensen–Shannon divergence between two
distributions pdata and pg. Now, if the two distributions are equal, Jensen–Shannon
divergence (JSD) will be zero. Thus, for global minimum criterion of the value
function (pg= pdata) Eq. (8) reduces to

CðGÞ ¼ logð1� ζÞ þ logð1þ ζÞ þ ð�log 4Þ ¼ log
ð1� ζ2Þ

4
≤ ð�log 4Þ ð9Þ

This completes the proof.
As explained in the above proof, the generator function of LSH-GAN does not

take prior noise (p(z)) as input instead a subsample of the original dataset is
augmented with the noise. By adding this term, without loss of generality we
assume that the probability DðGðbzÞÞ will increase by a term ζ. The assumption is
justified by the input of the generator, which takes some amount of real data
samples with the noise (p(z)) from the very first step of the training. The output of
the generator GðbzÞ, is more close to the real data distribution than the output G(z)
generated from the random noise (p(z)). This cause a small increase of the value
DðGðbzÞÞ, which we assume as ζ. This ultimately leads to a lower value of the cost
function than (−log4), which is the value of the cost function of original GAN at
the global minimum criterion of value function L(G,D) (pg(x)= pdata(x)).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the datasets are downloaded from Gene Expression Omnibus (GEO) https://www.
ncbi.nlm.nih.gov/geo/, with accession no. GSE36552 (Yan Dataset), GSE65525 (Klein
dataset), GSM1832359 (Pollen dataset), GSE67835 (Darmanis dataset), and GSE72056
(Melanoma dataset).

Code availability
The corresponding software is available at https://github.com/Snehalikalall/LSH-GAN
and https://doi.org/10.5281/zenodo.5903223.
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Table 5 A brief summary of the datasets used in the
experiments.

# Serial Dataset name Features Instances Class

1 Yan40 20,214 90 7
2 Klein41 24,175 2717 4
3 Darmanis39 22,088 466 9
4 Pollen38 23,794 299 11
5 Melanoma37 19,783 68,579 14
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