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Degron masking outlines degronons, co-degrading
functional modules in the proteome
Mainak Guharoy 1,2,3✉, Tamas Lazar 1,2, Mauricio Macossay-Castillo1,2 & Peter Tompa 1,2,4✉

Effective organization of proteins into functional modules (networks, pathways) requires

systems-level coordination between transcription, translation and degradation. Whereas the

cooperation between transcription and translation was extensively studied, the cooperative

degradation regulation of protein complexes and pathways has not been systematically

assessed. Here we comprehensively analyzed degron masking, a major mechanism by which

cellular systems coordinate degron recognition and protein degradation. For over 200 sub-

strates with characterized degrons (E3 ligase targeting motifs, ubiquitination sites and dis-

ordered proteasomal entry sequences), we demonstrate that degrons extensively overlap

with protein-protein interaction sites. Analysis of binding site information and protein

abundance comparisons show that regulatory partners effectively outcompete E3 ligases,

masking degrons from the ubiquitination machinery. Protein abundance variations between

normal and cancer cells highlight the dynamics of degron masking components. Finally,

integrative analysis of gene co-expression, half-life correlations and functional relationships

between interacting proteins point towards higher-order, co-regulated degradation modules

(‘degronons’) in the proteome.
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Precise control over the abundance of proteins is critical for
cellular homoeostasis and the regulation of cellular path-
ways. In vivo protein abundance, often thought to be pri-

marily regulated by gene transcription and mRNA translation1, is
also markedly affected by protein degradation2,3, specifically
regulating biological pathways4,5. Synergy between transcription,
translation and degradation is important for the operation of
proteome modules (circuits, subnetworks, pathways), as demon-
strated by transcriptional networks organized into modules of co-
expressed genes2,6. Previous proteome-wide studies showed that
functionally related proteins have correlated turnover and similar
half-lives1,7–9, possibly due to mutual stabilization of the inter-
action partners and/or the masking of their proteolytic
determinants10,11. Clearly, more work is required to characterize
the systems-level coordination of protein degradation.

The ubiquitin-proteasome system (UPS) regulates biological
processes via targeted degradation12. Target protein (substrate)
selection is based on the specific recognition of degradation ele-
ments (degrons) by E3 ubiquitin ligases13. Substrate degrons
display a tripartite hierarchy14 consisting of a primary degron (a
sequence motif that recruits an E3 ligase), secondary degron (sites
of substrate ubiquitination, Ubsites), and tertiary degron (an
intrinsically disordered region, IDR, that facilitates engagement
and initial substrate unfolding by the proteasome) (Fig. 1a, b).
Cooperative and successive action of all three degron elements
enables the specific targeting and degradation of most UPS

substrates. Previously, we observed that degrons are preferentially
located within IDRs of substrates14,15. IDRs potentially enable
interactions with multiple partners16, being enriched in interac-
tion motifs and posttranslational modification (PTM) sites that
modulate binding preferences17. We reasoned that if binding sites
for alternative partners overlap with degrons, the resulting
competing interactions would mask and interfere with degron
function, preventing their recognition by UPS components
(Fig. 1c). Thereby, the structural plasticity of IDRs that enable
embedding a dense network of overlapping interaction sites, can
regulate protein turnover and exert dynamic control over the
coordination of cellular pathways.

In fact, several studies have demonstrated that protein-protein
interactions (PPIs) stabilize interacting proteins and coordinate
their turnover. Degron masking was observed among transcrip-
tion factors (TFs), for example, the yeast transcriptional repres-
sors, MATa1 and MATα218. In fact, MATα2 possesses multiple
degrons that all overlap with corepressor binding sites19. E2F1, an
important cell cycle regulatory TF, is stabilized by degron
masking upon binding to the retinoblastoma tumor suppressor
protein20. Among C/EBP TFs, NF-IL6 (C/EBPβ) is stabilized by
homodimerization, and C/EBPγ and C/EBPζ are stabilized upon
heterodimerization with NF-IL621. Other important examples
include β-catenin and p53, both of which are stabilized against
proteasomal degradation by multiple PPIs, with important
functional consequences (Supplementary Table 1). The overlap of

Fig. 1 Schematic of tripartite degrons and their masking by PPIs. a Tripartite degron organization, and, (b) schematic overview of how each of the degron
components mediates specific steps in substrate selection and degradation in the UPS (adapted from Guharoy et al.14). Firstly, E3 ligases target specific
substrates via primary degrons, followed by ubiquitination of single (or multiple, neighboring) lysines, K, by complexes consisting of E3 ligase and
appropriate E2 conjugating enzyme(s). Ub-tagged substrates are then targeted to the 26 S proteasome for degradation. Tertiary degrons (located within or
near Ubsites) are IDRs that initiate substrate unfolding and entry into the proteasomal core. c Alternate partners, APs, can bind to substrate segments
harboring degron element(s), masking them from the UPS machinery. Binding site data analyzed in this study were obtained from (d) IntAct24,
UniProtKB33, and (e) motif data from the Eukaryotic Linear Motif (ELM) resource35.
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degrons with regions of the protein involved in multimer
assembly, such as transmembrane domains, is also a common
feature in the quality control of secretory and membrane proteins:
unassembled subunits undergo ER-associated degradation
(ERAD)22,23.

Although these examples hint at widespread tuning of degron
accessibility by PPIs, degron masking has not been systematically
assessed. Here we used our previously assembled datasets of
experimentally validated degrons14, onto which we mapped
experimentally derived partner binding sites to explore potential
degron masking (Fig. 1d, e). This study allowed us to understand
how PPIs can interfere with degron function and influence pro-
tein stability. We also analyzed protein abundances to assess
binding competition between E3s and degron masking partners
and compared degron masking complexes in normal and disease
cells. Finally, to achieve a proteome-scale perspective, we analyzed
the Saccharomyces cerevisiae interactome by integrating multiple
datasets (protein half-lives, abundances, gene co-expression and
gene ontology data). Physically interacting proteins had corre-
lated half-lives, mRNA co-expression and showed functional
similarity. We propose that degron shielding by PPIs results in
mutually correlated turnover (degradation) profiles between
functionally connected, physically interacting groups of proteins
(we termed such functionally interconnected PPI modules as
“degronons”), highlighting the importance of this basic regulatory
mechanism in cellular proteostasis.

Results
Protein-protein interactions masking degron elements. To
assess the effect of PPIs on protein stabilities and to dissect
mechanisms, firstly we performed an extensive literature review
and identified examples (Supplementary Table 1) where PPIs
were demonstrated to inhibit degradation and increase protein
half-lives. The proteins were diverse, both structurally and
functionally, highlighting the potentially broad scope of this
regulatory phenomenon. However, in most cases, the nature and
location of degron(s) and the regions where stabilizing partners
bind, remained unidentified. Therefore, we asked if stabilization
resulted from partner proteins binding to sites overlapping sub-
strate degrons, thus masking them from the UPS machinery
(Fig. 1c). To answer this question systematically, we used our
previously collected datasets of UPS substrates with experimen-
tally annotated degrons14, onto which we projected experimen-
tally derived PPI binding site information (Fig. 1d), obtained
from the IntAct database24. As illustrated in Fig. 1a, b, degrons
are constituted of primary, secondary and tertiary elements14.
Primary and secondary degrons were experimentally determined,
whereas tertiary degrons were predicted as the IDR nearest in
sequence to each Ubsite and containing at least 20 consecutive
disordered residues14. We based this definition on studies into the
initiation of degradation of ubiquitinated substrates by the 26 S
proteasome25.

Many substrates had PPI partners whose annotated binding
sites overlapped with substrate degrons (Fig. 2a–c). Our dataset
contained 157, 42 and 34 proteins with annotated primary,
secondary and tertiary degrons, respectively (Supplementary
Data 1); information about binding partners were available for
136, 40 and 33 proteins respectively, and binding site annotations
were found for 89, 32 and 27 proteins. UPS-related partners were
filtered out based on GO annotations (Supplementary Data 2), to
identify bona fide stability-modulating partners that participate in
functions other than degradation targeting. After filtering,
degron-overlapping binding sites were identified for 62, 26 and
24 substrates, corresponding to the three degron categories. For
certain substrates, highlighted on Fig. 2a–c, the proportion of

these degron masking, alternative partners (APs) amount to a
sizeable fraction of the total number of partners, indicating tight
and prevalent degron regulation by PPI-based masking. These
substrates included highly connected (hub) proteins (e.g., human
p53 (gene name: TP53), androgen receptor, p27, p21, c-Jun, β-
catenin, HIF1α; Fig. 2a–c).

Figure 2d–f show specific examples where structural data
enables us to visualize degron masking. The disordered
N-terminal transactivation domain (TAD) of p53 contains the
primary degron (19FSDLWKLL26) targeted by the E3 Mdm2/
Hdm2. This degron is masked in the interface between p53 TAD
and the nuclear receptor coactivator binding (NCBD) domain of
CREB-binding protein, CBP26 (Fig. 2d). Moreover, p53 TAD
binds several additional domains of CBP (TAZ1, TAZ2 and KIX)
and the CBP paralog, p300, as well as other APs. TAD:TAZ1 and
TAD:TAZ2 complexes similarly demonstrated the bipartite TAD
interface, masking the Mdm2-binding degron27 (Supplementary
Fig. 1). Upon DNA damage, multisite phosphorylation of p53 on
Ser15, Thr18 and Ser20 significantly reduce binding affinity to
Hdm2, and multiple CBP/p300 domains successfully compete for
the p53 TAD28; thus, degron masking stabilizes p53 and
contributes to transcriptional stress response by enhanced CBP/
p300 recruitment.

Figure 2e illustrates masking of a secondary degron: the
degradation-linked Ubsite (Lys97) of the transcriptional coactivator
YAP1 is masked in the complex with TEAD1. Of three distinct
YAP1 segments that wrap around TEAD1, the segment 86–100
(containing Lys97) is most crucial for complex formation29.
Although its side chain points outwards from the surface, Lys97
would have significantly lower backbone flexibility in the complex,
reducing productive nucleophilic attack on E2~Ub conjugates.
Moreover, steric hindrance should preclude access by E3/E2
complexes, preventing ubiquitination. The tertiary degron of
YAP1 is also the region 80–171 (Supplementary Fig. 2a, b), partly
masked by TEAD1. The homologous TEAD2 and TEAD4 also
mask these degrons (Supplementary Fig. 2c). TEAD TFs have been
implicated in oncogenic functions of YAP30 and stability regulation
by degron masking may be a conceivable mechanism.

Concerning the tertiary degron, the majority of experiments
had been performed using model substrates, engineering
combinations of structured domains and IDRs25,31. Tertiary
degrons in our dataset were all predicted as the IDR nearest in
sequence to each experimental Ubsite. Many of these IDRs
contain annotated partner-binding sites (Fig. 2c), suggesting that
certain interactions might inhibit degradation by reducing
accessibility of the tertiary degron for proteasomal engagement.
In a recent study, the N-terminal IDR of yeast Mdy2 was
demonstrated to perform the role of the tertiary degron in a
physiological setting32. However, in complex with Get4, this IDR
is masked (Fig. 2f) and Mdy2 is significantly stabilized32.

To better understand the functional relevance of degron
masking, the masking partners were analyzed to see whether (and
to what extent) they exhibit any tendency towards functions
similar to that of the substrates whose degradation they
potentially regulate. Taking the proteins analyzed in Fig. 2, we
quantified (using Gene Ontology Biological Process term
comparisons, as described in Methods) the pairwise functional
similarity between substrate-partner pairs and the subset of
substrate-degron masking partner pairs (Supplementary Fig. 3).
We expected both groups to exhibit functional similarity, since
these are all high-confidence, experimentally verified, physically
interacting proteins. Hence, they must share certain similar
cellular functions and participate in common pathways. Inter-
estingly, the degron masking partners showed significantly higher
functional similarity to their corresponding substrates (whose
degrons they mask) as compared to general interaction partners
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of those substrates (Supplementary Fig. 3). Therefore, this
strongly indicates that protein stability is extremely well regulated
and that degron masking partners must constitute, in a sense, a
‘special’ subset of a substrate protein’s interactome. Furthermore,
this observation was consistent for the masking partners of all
three degron types, strongly suggestive of the relevance of
masking all degron elements (primary, secondary, and tertiary).

Of note, certain PPI partner(s) may mask multiple degrons
simultaneously, especially when they are located proximally, as
illustrated by β-catenin and HIF1α (Supplementary Figs. 4, 5).
IntAct binding site annotations are often obtained from deletion
experiments used to map binding domains or from mutational
studies highlighting the contributions of specific residues
(Supplementary Fig. 6a). The length distribution of degron-
overlapping binding segments showed that segments <100 AA
were most prevalent, although longer segments were also found
(Supplementary Fig. 6b). Longer segments may reflect limitations
in binding-site resolution, but also raise the possibility of masking
multiple degrons, as alluded to above. In addition to IntAct24, we
queried UniProtKB33 for curated annotations such as binding
sites, functional sites, PTMs and other relevant biochemical
information indicating physical degron masking and functional
interference (Supplementary Data 3–5). Previously, we showed
that degrons are preferentially present in substrate IDRs14. These
observations emphasize that by utilizing IDRs to embed degrons,
unique IDR properties, such as structural adaptability that
enables multi-partner binding can result in molecular mechan-
isms for regulating protein stability.

Short interaction motifs overlapping with degrons enable
regulation of protein stability. Next, we analyzed the overlap of
degrons with annotated functional protein motifs, since motif
data provide a precise delineation of PPI sites (Fig. 1e). Since
primary degrons constitute a prominent class of Short Linear
Motifs (SLiMs)34 (short, often intrinsically disordered functional
sites typically 3–20 residues in length; also called Eukaryotic

Linear Motifs, ELMs), we queried the ELM database35 for motifs
that overlap with degrons (see Methods). We demonstrate here
how multiple, clustered motifs act as input sites for signal inte-
gration and enable complex regulatory decisions on substrate
degradation. Depending on their functional type and context,
overlapping motifs influence degron function by providing
binding sites for negative regulators (the interaction initiates/
enables substrate degradation) or positive regulators (whose
binding prevents degradation) of half-life. Although experimen-
tally verified ELMs remain limited36 which precludes a statistical
analysis, nevertheless, we found numerous degron overlapping
ELMs (Fig. 3a; Supplementary Data 6–8). Qualitatively, therefore,
it is clear that all three degron elements are potentially impacted
by these overlapping ELMs and the proteins that they recruit, and
as more ELMs are identified over time, further cases will be
identified.

Modification and docking motifs were the most common
(Fig. 3a): docking motifs recruit enzymes (e.g., kinases) that
modify the substrate at nearby modification motifs. The latter,
depending on their single or combinatorial PTM status, create
ultrasensitive interaction switches17,34. Kinases including cyclin-
dependent kinases (CDKs), PLK-1 and GSK3β can negatively
regulate half-life, phosphorylating and activating substrate
phosphodegrons, which are then recognized by SCF E3s37.
Conversely, kinases also function as positive regulators in cases
where phosphorylation, either of the degron or its neighborhood,
prevents degron recognition by forming phospho-inhibited
modules38. An example is Cdc6, an essential licensing factor
involved in DNA replication origin firing. Adjacent to its KEN
degron are a cyclin docking motif and a Cdk2 phosphorylation
site (Fig. 3b). CDKs promote licensing by employing these motifs
to phosphorylate Cdc6 upon cell cycle reentry following
quiescence; phosphorylation stabilizes Cdc6 by preventing its
association with APC/C(Cdh1)39.

Figure 3a highlights the importance of docking and modifica-
tion sites not only for primary degrons, but also for regulating

Fig. 2 Degron masking by PPIs. Plots showing the total number of experimentally identified PPI partners from IntAct (each data point corresponds to one
substrate) versus the number of partners whose known binding site overlaps with (a) primary, (b) secondary, and (c) tertiary degrons. Substrates for
which at least 10 degron masking APs were identified are labeled. The insets show a zoom-in view of the clustered data points at the bottom left of each
plot. d–f Examples from each degron category where available structural data showed the degron containing segment in complex with a non-UPS masking
partner, AP. Domain diagrams showing the location of the degron element and the substrate segment (in red) present in the crystal structure of the
substrate-AP complex; drawn with PyMol (https://pymol.org/).
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Ubsites and tertiary degrons. Although the majority of over-
lapping modification motifs were related to phosphorylation, we
also found overlapping SUMOylation motifs. For Ubsites,
crosstalk with sumoylation can be important for degradation
regulation40. Furthermore, since many degradation-linked
Ubsites are actually located within the tertiary degron14,
sumoylation could also regulate proteasomal degradation initia-
tion. Similarly, in addition to kinases, other enzymes also regulate
degradation. For example, p53 has a docking motif for the
peptidyl-prolyl cis-trans isomerase, Pin1, located next to several
Ubsites (Fig. 3c). High Pin1 activity results in weak p53
ubiquitination41; in contrast, when Pin1 activity is low, strong
p53 polyubiquitination and increased degradation was
observed41. Upon DNA damage, p53 associates with Pin1 and
is stabilized. Thus, it is plausible that due to the adjacency of
Ubsites and the Pin1 docking site, when Pin1 levels and activity
are high, it not only catalyzes cis-trans isomerization, but also
effectively masks the Ubsites, preventing p53 polyubiquitination.
Another example highlights a deubiquitinase (Usp7) docking
motif that negatively regulates Mdm2 degradation42. Lys446 is
the major site for Mdm2 auto-ubiquitination43 and the tertiary

degron, containing the Usp7 docking motif, is located just
upstream (AA 370–428) (Fig. 3d). Therefore, Usp7 likely
stabilizes Mdm2 via a dual mechanism: it deubiquitinates
Lys446 and sterically hinders proteasomal access to the tertiary
degron (effectively weakening affinity to and decreasing protea-
somal residence time).

Ligand binding motifs were also found to overlap degrons
(Fig. 3a): these recruit diverse partners in order to assemble
macromolecular complexes, such as signaling assemblies34.
Incorporation into complexes would stabilize the substrate by
masking its degrons and thereby determine its functional lifetime
(Fig. 3e). This would also serve to degrade ‘excess’ free subunits,
regulate complex stoichiometry and prevent non-functional
interactions44. Cellular compartmentalization is another impor-
tant factor regulating spatiotemporal substrate availability: an
overlapping targeting motif (such as a nuclear localization signal
or nuclear export signal) could alter the localization of substrates
vis-à-vis cognate E3s (Fig. 3e). Localization is also often
controlled by phosphorylation45, meaning that modification
motif(s) typically form part of the regulatory module. Finally,
the overlap of a cleavage motif with an internal degron can also
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Fig. 3 Overlap of degrons with Eukaryotic Linear Motifs (ELMs). a Plot showing the number of overlapping (or adjacent) ELMs relative to the primary,
secondary and tertiary degrons in our dataset. The overlapping ELMs are color coded according to their functional category (defined by ELM curators).
b–d Examples from each degron category (degron sequence in red) showing the details of one (or more) overlapping/adjacent motifs (shown in bold
italics). Additionally, panel (d) shows the IUPred75 predicted disorder profile of the substrate (MDM2) showing how the tertiary degron (the region shaded
red in the disorder profile) was defined as the IDR nearest to the degradation-linked Ubsite, K446. e Outline demonstrating multiple possibilities of degron
masking based on the different ELM types and their functional outcomes.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03391-z ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:445 | https://doi.org/10.1038/s42003-022-03391-z | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


result in several scenarios (Fig. 3e): it could either abolish an
existing degron, if the cleavage site were located within the
degron; or activate it if cleavage makes it more accessible.
Furthermore, cleavage by endoproteases can potentially form new
N- or C-degrons46. In summary, these diverse scenarios utilize
multiple, distinct, sequential or mutually exclusive PPIs to exert
conditional control over degradation. Again, by embedding
degrons within functionally dense IDRs, sets of overlapping
motifs can form complex degradation regulatory modules
(Fig. 3e).

Protein abundances and binding competition in degradation-
regulatory modules. Degron overlapping motifs combinatorially
create degradation regulatory modules (Fig. 4a). We analyzed
primary degron overlapping ELMs of human substrates
(Supplementary Data 6), by annotating the partner proteins,
APs, recruited to each overlapping motif, based on database
and manual curation (Table 1). Several of them were modifying
enzymes (e.g., kinases) that affect substrate levels by
modulating the PTM status of the degron or its neighborhood,
changing interaction specificity towards different partner(s). To
assess binding competition and to estimate relative motif occu-
pancies, we analyzed cellular abundances of the protein groups
(substrates, E3s, and APs). Competition should be predominantly
driven by relative abundances since the motif lengths are com-
parable and motif-based interactions are mostly weak and tran-
sient (Kd typically in the low μM range)17. We also collected
available binding (Kd) data of substrate-E3 and substrate-AP

pairs for primary degron containing substrates (Supplementary
Data 9). Overall, the Kd distributions of these two groups did not
show any significant difference (Supplementary Fig. 7a), thereby
indicating that relative protein abundances should indeed be
more of an influencing factor in competitive binding to over-
lapping motifs.

We obtained protein concentrations from PaxDb47, which
provides normalized, proteome-wide abundances (see Methods).
Overall, E3s were significantly lower in abundance compared to
substrates (P= 1.25E–12), and, more strikingly, E3s were ~10-
fold less abundant than APs (P= 1.13E–62) (Fig. 4b). PaxDb
datasets are grouped into four categories (whole-organism,
integrated, tissues and cell lines; Supplementary Data 10).
Quantitatively similar patterns of relative abundances (E3s <
substrates < APs) emerged even when segregated by dataset type
(Supplementary Figs. 8, 9). On average, cellular concentrations of
E3s are limiting relative to APs; therefore, APs should exert
strong regulatory effects by masking degrons for a substantial
fraction of substrate lifetime. For those substrates where we
obtained Kd data for both substrate-E3 and substrate-AP(s)
binding, the measured ranges of Kd values for AP interactions are
either very similar to or smaller than the Kd’s measured for E3
interactions (except for p53) (Supplementary Fig. 7b). Taken in
conjunction with the greater abundances of APs as compared to
E3s, this gives greater confidence to the proposed model that APs
will mask substrate degrons for a significant proportion of
substrate lifetime. Moreover, the formation of alternative
complexes ensures functional lifetime of the substrates
and enables their cellular functions, via competitive and

Fig. 4 Substrate degradation regulatory modules and their analysis based on protein abundances. a After identifying interacting proteins for a selected
substrate (its “local interactome”), available binding site/motif information is used to identify partners whose binding sites overlap substrate degrons. This
subset of partners constitutes a degradation regulatory module (or subnetwork) for the substrate of interest. b Based on this concept, we identified the
protein components that comprised the primary degron regulatory subnetworks for selected human substrates (Table 1). Relative protein abundances were
compared after grouping into the three relevant categories: substrates, E3 ligases (including E3 adaptor subunits), and the degron masking alternate
partners (APs). The total number of abundance data points for each of these groups: substrates (N= 1069), E3s (472) and APs (3838). For comparison,
the abundance distribution for the entire human proteome is also shown. Outliers not shown in the boxplots. c Scatter plot of substrate and corresponding
E3 ligase pairwise abundances across all 170 PaxDb datasets. Abundances were taken from each individual PaxDb dataset, whenever data for both proteins
of a pair (i.e., substrate, E3) were available. d Scatter plot between the abundance value of each substrate and summed abundances of all its corresponding
masking partners (APs), from each PaxDb dataset, wherever data for all the proteins of each group (i.e., substrate and its corresponding APs) were
available. Spearman’s correlation coefficients (rS) and corresponding p-values are shown on the figures.
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context-dependent degron masking. Thus, degradation is tightly
regulated, with defined spatiotemporal windows when substrate
degrons get unmasked. Once triggered, given the processive
nature of E3s, their low abundances should suffice for efficient
degradation. Furthermore, additional mechanisms can directly
regulate E3 activity48, including PTM-mediated (in)activation
and/or changes in cellular localization.

Next, we analyzed substrate–E3 and substrate–AP abundance
correlations. Although we expected large (biological) variability
since the analysis included all PaxDb datasets, substrate–E3 pairs

exhibited a moderate, but statistically significant correlation
(Spearman rS= 0.4; P= 1.8E-21) (Fig. 4c). Balanced abundances
of interacting proteins can prevent promiscuous (potentially
deleterious) interactions49, which is particularly important here,
since most of the substrates were IDR-rich, interaction-prone
hubs. IDR-containing proteins have tightly regulated endogenous
levels50 with targeted degradation constituting an important
avenue for regulation. Therefore, there should be a strong
pressure to maintain correlated E3–substrate abundances across
diverse cell types (Fig. 4c). In contrast, substrate–AP pairs showed

Table 1 Selected human degradation substrates, their corresponding E3 ligases (or the adaptor subunit, in case of multi-subunit
E3s) and degronon components.

Substrate protein (Gene name,
UniProt ID)

Primary degron E3 ligase (Gene
name, UniProt ID)

Degronon componentsa(Gene name,
UniProt ID)

G1/S-specific cyclin-E1 (CCNE1,
P24864)

393LLTPPQS399 FBXW7 (Q969H0) GSK3B (P49841), CDK2 (P24941)

Numb-like protein (NUMBL,
Q9Y6R0)

577FEAQWAAL584 MDM2 (Q00987) EPS15 (P42566), EPS15L1 (Q9UBC2)

Cellular tumor antigen p53
(TP53, P04637)

19FSDLWKLL26 MDM2 (Q00987) PIN1 (Q13526), CSNK1D (P48730), GSK3B
(P49841), PRKDC (P78527), ATM (Q13315),
bCREBBP (Q92793)

Myc proto-oncogene protein
(MYC, P01106)

55LLPTPPLS62 FBXW7 (Q969H0) PIN1 (Q13526), BIN1 (O00499), GSK3B
(P49841), MAPK1 (P28482), bDYRK2
(Q92630), bPPP2R5D (Q14738)

Mitotic checkpoint serine/
threonine-protein kinase BUB1
(BUB1, O43683)

534NKENY538 FZR1 (Q9UM11) CDC20 (Q12834)

Claspin (CLSPN, Q9HAW4) 29DSGQGS34 BTRC (Q9Y297) PLK1 (P53350), CASP3 (P42574)
Cyclin-dependent kinase
inhibitor 1B (CDKN1B, P46527)

183SVEQTPKK190 SKP2 (Q13309),
CKS1B (P61024)

CCNE1 (P24864), CDK2 (P24941), PIN1
(Q13526), YWHAQ (P27348), bAKT1
(P31749)

Cyclin-dependent kinase
inhibitor 1 (CDKN1A, P38936)

145TSMTDFYHSKRRL157 DTL (Q9NZJ0) PCNA (P12004), AKT1 (P31749), PRKCA
(P17252), KPNA1 (P52294), bCCNE1
(P24864), bCDK2 (P24941)

Uracil-DNA glycosylase (UNG,
P13051)

58PGTPPSS64 FBXW7 (Q969H0) bGSK3B (P49841), RPA2 (P15927), bCCNE1
(P24864), bCDK2 (P24941)

Transcription factor AP-1 (JUN,
P05412)

227EEPQTVPEM235

236PGETPPLS243
COP1 (Q8NHY2),
FBXW7 (Q969H0)

GSK3B (P49841), DYRK2 (Q92630), PRKDC
(P78527), UBE2I (P63279), SUMO1 (P63165)

Cell division control protein 6
homolog (CDC6, Q99741)

80KKENG84 FZR1 (Q9UM11) CCNE1 (P24864), CDK2 (P24941)

FYVE, RhoGEF and PH domain-
containing protein 3 (FGD3,
Q5JSP0)

75DSGIDS80 BTRC (Q9Y297) GSK3B (P49841)

Catenin beta-1 (CTNNB1,
P35222)

32DSGIHS37 BTRC (Q9Y297) GSK3B (P49841), bCSNK1A1 (P48729), bAXIN1
(O15169)

FYVE, RhoGEF and PH domain-
containing protein 1 (FGD1,
P98174)

282DSGIDS287 BTRC (Q9Y297) GSK3B (P49841)

Sequestosome-1 (SQSTM1,
Q13501)

347DPSTGE352 KEAP1 (Q14145) GABARAP (O95166), GABARAPL1 (Q9H0R8),
MAP1LC3A (Q9H492)

Cyclin-dependent kinase
inhibitor 1 C (CDKN1C, P49918)

306SVEQTPRK313 SKP2 (Q13309),
CKS1B (P61024)

CDK2 (P24941), bCCNE2 (O96020)

Zinc finger protein SNAI1 (SNAI1,
O95863)

95DSGKGS100 BTRC (Q9Y297) GSK3B (P49841)

Hypoxia-inducible factor 1-alpha
(HIF1A, Q16665)

400LAPAAGDTIISLDF413 VHL (P40337) EGLN1 (Q9GZT9), UBE2I (P63279), SUMO1
(P63165)

Double-strand-break repair
protein rad21 homolog (RAD21,
O60216)

169EIMREG174 (internal N-end degron
exposed by cleavage after R172)

UBR1 (Q8IWV7) bATE1 (O95260), ESPL1 (Q14674)

Sterol regulatory element-
binding protein 1 (SREBF1,
P36956)

425LTPPPS430 FBXW7 (Q969H0) GSK3B (P49841), PLK1 (P53350), bCDK1
(P06493), bCCNB1 (P14635)

aPrimary degron overlapping motifs were identified from the ELM database (annotated in Supplementary Data 6). The specific proteins that bind to these overlapping motifs were identified based on
descriptions provided in ELM35, switches.ELM78 and UniProtKB33.
bAdded as degronon components, based on literature description, as being involved in affecting the stability of the corresponding substrate by binding to (and/or involved in post-translationally
modifying) primary degron overlapping sites.
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a weak correlation (rS= 0.2) (Supplementary Fig. 10), likely
arising from factors such as context-dependent signaling in
different cell types. Moreover, multiple APs compete for binding
to each substrate (Table 1). Unlike substrate–E3 relationships,
where a tighter connection in terms of abundances is required for
the control of substrate function (e.g., the duration and amplitude
of activity via degradation), the situation with APs is more
complex. However, in contrast to individual APs, summed AP
abundances per substrate showed a larger, significant correlation
(rS= 0.34; P= 1.3E-14) (Fig. 4d), indicating that higher (cumu-
lative) AP abundances translate into higher substrate levels, likely
reflecting greater stabilization attributable to degron masking.

Biological and disease-linked variation within degradation
regulatory modules. PaxDb provides abundance datasets for
normal human tissues as well as cell lines; among the latter, the
majority were cancer cell lines (Supplementary Data 10). We used
this data to investigate how abundances of degradation module
components (Table 1) vary within and between tissues and cell
lines. Many proteins showed large variations within each category
(Fig. 5a and Supplementary Fig. 11), demonstrating that degra-
dation regulatory modules may be configured differently (in
terms of component abundances and therefore relative motif
occupancies), depending on cellular (or disease) context. More-
over, when compared between tissues and cell lines, several
oncogenic substrates (e.g., Bub1, Claspin, Myc, p53; Fig. 5a), E3s
and APs showed significant differences (also see Supplementary
Discussion).

We propose that by simultaneously exploring abundance
variations of all proteins within each degradation regulatory
module (e.g., the p53 module, Fig. 5b), one can potentially
identify relevant (e.g., disease-specific) changes in the expression
of stabilizing (or degradative) complexes. Fig. 5c is a heatmap
showing the abundance variation of the p53 degradation
regulatory module components (highlighted in Fig. 5b on the
network view) across a selection of PaxDb datasets. The left-most
group of datasets in Fig. 5c are “integrated” datasets, generated by
PaxDb following a weighted averaging procedure for organisms/
tissues for which multiple individual experimental datasets were
available, leading to a “best-estimate” abundance quantification47.
The color scale uses ranked abundances indicating the relative
position of each protein within each abundance dataset. Rank 1
and 100 indicates that the specific protein occurs within the top
1% (most abundant) and bottom 1% (least abundant), respec-
tively, of that dataset (see Methods). p53 abundances were very
low in normal (unstressed) tissues and no data were available for
almost all tissue datasets (the respective cells are therefore colored
white indicating absent abundance data; it is very likely that wt-
p53 levels were below measurement threshold) (Fig. 5c). In
contrast, p53 abundances increase in all the cell lines shown (all
are cancer cells, except HEK293) and therefore become measur-
able. It is possible that (much of) the p53 species measured in
these cells could be oncogenic, gain-of-function (GOF) p53
missense mutants (mut-p53) that impart proliferative properties
to cancer cells51. Stabilization may be a result of the upregulation
of APs or, alternately, oncogenic mutations may directly increase
protein stability or affect the binding of degron-shielding
partners. In fact, mut-p53 is stabilized under tumor-related
stress51 and in conjunction with higher CBP abundances (Fig. 5c),
could imply that many GOF properties of mut-p53 may result
from the higher amounts of mut-p53–CBP/p300 complexes that
can transactivate tumor cell gene expression. Indeed, inhibiting
the mut-p53-p300 interaction abolished tumor-promoting prop-
erties of mut-p5352. Expression of several kinases that phosphor-
ylate and stabilize p53 upon stress (ATM, DNA-PK, etc.) are also

higher in cell lines (Fig. 5c). ATM phosphorylates Ser15
(overlapping the Mdm2-binding degron; Fig. 5b) and stabilizes
mut-p53 by preventing polyubiquitination; ATM inhibition
restores mut-p53 polyubiquitination53.

Therefore, the approach we propose underlines the importance
of studying the relative expression of alternate complexes within
each substrate’s degradation regulatory network (defined on the
basis of degron overlapping PPI sites; Figs. 4a, 5b). For a substrate
of interest and its local interactome (Fig. 5b), by identifying
specific interaction partners whose binding sites overlap and
thereby shield degrons (Fig. 5b), we can use that PPI subset for
further correlative analysis of gene/protein expression (demon-
strated here using protein abundances, Fig. 5c). Whenever such
information is available, we can deduce how altered abundances
(Fig. 5c) shift the balance of competition, highlighting the (sub)
set of complexes with higher expression likelihood in specific cell
(or disease) subtypes. These could then be prioritized for
functional analysis of downstream signaling and potentially
targeted for therapy.

Co-regulated degradation modules (“degronons”) point to
functional assemblies. The modular organization of the pro-
teome requires the co-regulation of functional units (complexes,
pathways, networks) at all levels: transcription, translation and
protein degradation. Such coordination clearly exists for protein
production1 and pertinent concepts, such as operon and regulon,
have been well established54. In this section, we analyzed PPI
networks of the yeast Saccharomyces cerevisiae to understand
globally, how physical interactions coordinate protein stabilities
and functional relationships, and specifically, if co-regulated
degradation units (“degronons”) can be identified. Yeast is an
extensively studied model organism with multiple high-coverage,
high-quality datasets (protein half-lives, abundances, gene co-
expression, GO annotations) available. We selected two PPI
networks (see Methods): (1) a high-confidence network of S.
cerevisiae soluble proteins (“Collins” network55), and, (2) the
multi-validated BioGRID yeast network56.

Each network was decomposed into binary PPI pairs (forming
direct, physical interactions) and their relevant properties were
analyzed (Fig. 6a). Firstly, we observed a marked preference for
interacting pairs to exhibit highly similar half-lives (Fig. 6b);
significantly different in behavior from random PPI networks (see
Methods). Importantly, the pattern persisted for both networks
and multiple half-life datasets (Supplementary Fig. 12), reflecting
a biological constraint for physically interacting proteins to have
correlated stabilities. This could be interpreted as active (co-)
degron masking and/or physical co-stabilization due to binding.

These correlated local interactome elements can be considered
as “elementary degronons”, representing synchronized protein
pairs. To analyze the extent to which they correspond to
functional units, we grouped all binary PPI pairs into three
categories, based on their half-life ratios (calculated as smaller/
larger T1/2 value): resulting in pairs with similar (0.8–1.0),
different (0.5–0.8) and very different (0.0–0.5) half-lives. The
number of pairs in the ‘similar’ category were much higher than
in the other categories (Fig. 6b). For each protein pair, we
analyzed their functional similarity (calculated as GO Biological
Process semantic similarity; see Methods) (Fig. 6c) and gene co-
expression (quantified as the Pearson correlation coefficient of
their corresponding mRNA expression profiles; see Methods)
(Fig. 6d). We observed highly significant increases of functional
similarity and gene co-expression with increasing half-life
similarity of the PPI pairs, indicating that functional protein
modules (interacting pairs with correlated functions) are not only
strongly co-regulated at the expression (mRNA) level but also
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show high synergy in turnover. These observations were
independent of the PPI network, as both the Collins and
BioGRID networks showed similar profiles. In contrast, the
relative abundance of PPI pairs (the ratio of abundances of the
two proteins comprising each interacting protein pair) showed a
less dramatic increase as a function of the T1/2 ratio category
(Fig. 6e), suggesting that subunit stoichiometry may be largely
independent of component half-lives.

Having observed that direct partners in PPI networks exhibit a
significant tendency towards similar half-lives (Fig. 6b), we next

asked whether this trend extended to non-adjacent pairs along
defined PPI paths, that would indicate larger, co-degrading
functional units (degronons). To this end, we identified shortest
paths between all (i,j) protein nodes in the Collins network (see
Methods), and calculated T1/2 ratios for indirectly linked pairs
(i.e., 2nd, 3rd, …, nth neighbors). Moving along these paths, the
strong T1/2 ratio signal, seen for direct neighbors, dropped
significantly as from the 3rd neighbor onwards, to levels observed
for random PPI pairs (Fig. 6f). However, we reasoned that strong
half-life correlations could persist over a longer range for
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pathways whose members had close functional similarity. To
validate this possibility, we identified the subset of pathways
where every member had high BP GO SemSim to the first
(starting) member. Within such functionally connected paths,
every protein exhibited highly similar T1/2 values to the first
member (Fig. 6g). Remarkably, correlated stabilities extended as
far as 6th (or farther) neighbors, satisfying the criterion for
degronons, coordinated degradation sub-networks within the
interactome. For degronons of length ≥6, we identified protein
members and their participating complexes (Supplementary
Data 11): their functions included translation initiation (e.g.,
eukaryotic translation initiation factor, eIF1, 2, and 3 complexes;
Fig. 6h) and RNA splicing (U2 and U6 snRNP, U4/U6.U5 tri-
snRNP complexes and splicing factor, SF3 components of the
spliceosome). These examples make a strong case for the
existence of interconnected, functional modules whose degrada-
tion may be synchronized by degron masking.

Finally, although it might seem conceivable that any (even
non-specific) interaction might physically stabilize proteins, all
the data on degron masking presented in this paper collectively
argue that stabilization mediated by PPIs is necessarily specific
and regulated. Fig. 6i presents additional data showing a complete
absence of correlation between protein half-lives and the (total)
number of interaction partners, or between half-lives and the
mean abundance of all partners (Fig. 6i, inset), indicating that
only certain interactions with specific degron-masking partners
should impart stabilization in a biological context.

Discussion
Protein turnover receives dynamic input from multiple pathways,
manifesting in degron masking by alternate PPIs that integrate
cell state and signaling information. In vivo dynamics of com-
plexes in which degrons get shielded determines the functional
longevity of proteins. Complex assembly affects degron exposure
and activity either by direct masking within the interface (Fig. 1)
or by inducing conformational changes leading to intramolecular
shielding. Here, we presented a comprehensive analysis of
degron-overlapping binding sites (Fig. 2) and sequence motifs
(Fig. 3), outlining a broad mechanistic framework of stability
regulation by degron masking. We expect that the framework
presented here, combining degron identification and partner
binding site information, will inspire dedicated studies on sub-
strates of interest and provide a foundation for guiding experi-
mental design.

Given that degrons are mostly present in IDRs14,15, both local
dynamics and long-range structural rearrangements upon bind-
ing could contribute to masking. Locally, folding-upon-binding of
IDRs influences degron accessibility: for example, free IκBα has a
C-terminal IDR responsible for its Ub-independent, 20 S pro-
teasomal degradation. However, in complex with NF-κB, the IDR
gets folded and masked in the interface, stabilizing IκBα57. Local

conformational preferences are also influenced by PTMs58, which
can impact degron accessibility. IDRs host multiple PTM sites,
allowing interplay between modifying enzymes and regulatory
partners (Fig. 3). Furthermore, PTMs can mask degrons (stereo)
chemically by modifying the charge, size and topological features
of binding sites. For example, ubiquitination itself can modulate
stability by regulating PPIs59. Importantly, IDRs also enable Ub-
independent, degradation “by default” via 20 S proteasomes60 and
the masking of IDRs by PPIs are known to inhibit
degradation60,61. Since IDR-containing proteins may be subject to
both Ub-dependent and Ub-independent pathways, the fact that
IDRs are enriched in PPI sites (Figs. 2c, 3a) strongly suggests that
IDR masking could regulate both 20 S and 26 S proteasomal
degradation pathways.

In the context of the tripartite degron model14, the E3 binding
motif (primary degron) is clearly important for Ub-dependent
degradation, conferring specificity to substrate recruitment13 and
making primary degron masking an important regulatory step.
However, Ubsites and degradation initiation segments are equally
important for the complete degradation cycle. For example,
Ubsite mutations block substrate degradation leading to disease14.
Masking substrate Ubsite(s) will therefore make them inaccessible
(or less accessible) for E2-catalyzed Ub-transfer and can stabilize
substrates, independent of primary degron recognition. Further-
more, the dynamics of Ubsite-masking complexes could result in
differences in the rates of synthesis of polyUb chains on sub-
strates. That could hypothetically have interesting implications,
such as influencing the ordering of substrate degradation in cell
cycle regulation by the anaphase-promoting complex/
cyclosome62 or cell-type specific regulation of protein stability.
Similarly, if the tertiary degron (disordered proteasomal entry
site) is bound by a partner (Fig. 2f), this results in substrate
stabilization32, demonstrating that the tertiary degron can also be
independently regulated via masking. Another example involves
the efficient degradation of Calpain-cleaved Retinoblastoma
protein, involving tertiary degron exposure following internal
cleavage (the tertiary degron in this case can be considered as
shielded intra-molecularly)63. In summary, the masking of each
of the tripartite degron elements (both by intra and inter-
molecular PPIs) may independently regulate degradation, with
combinatorial masking of multiple substrate degrons also possible
(Supplementary Figs. 4, 5).

In this study, we also proposed a framework for defining
degradation-regulatory PPI modules (subnetworks) based on
degron-overlapping binding sites (Fig. 4) and analyzed their
tissue-specific and disease-linked variation based on component
abundances (Fig. 5). Given that alternate, overlapping binding
motifs that recruit competing partners are equivalent in length
and a comparison of Kd values showed that no significant dif-
ferences exist between E3 and APs that bind to these overlapping
motifs (Supplementary Fig. 7), binding occupancy would depend

Fig. 5 Protein abundance variations within degradation regulatory modules. a Abundance variations of substrates (from Table 1) across the entire
available set of tissue and cell-line PaxDb datasets. Number of available protein abundance data points per substrate (tissue, cell line data points): CCNE1
(3,17), NUMBL (26, 36), P53 (1, 23), MYC (2, 16), BUB1 (18, 36), CLSPN (6, 35), CDN1B (29, 18), CDN1A (5, 19), UNG (30, 36), JUN (6, 20), CDC6 (3,
26), FGD3 (12, 18), CTNB1 (73, 52), FGD1 (13, 27), SQSTM (43, 52), CDN1C (18, 24), SNAI1 (1, 5), HIF1A (3,7), RAD21 (42,52) and SRBP1 (12, 24). b Map
of the interaction partners of human p53 (TP53). Partners that mask the MDM2-binding primary degron of p53 are highlighted (within boxes) in the
interactome map. All these proteins bind to the same segment of p53 (aa 10–40, shaded yellow) as the E3 ligase Mdm2 and the specific binding motifs for
each of these partners are marked in red, and shown below the domain diagram of p53. c Abundance variations for components of the p53 primary
degron’s degradation regulatory network are shown as a heat map across a selected subset of PaxDb datasets (“integrated” datasets, individual tissue
datasets derived from Wilhelm et al.76 and cell line datasets derived from Geiger et al.77). Protein abundances are represented as ranked abundances that
signify the relative abundance of each protein within an abundance dataset (see Methods). Darker red color indicates that the protein is among the most
abundant ones within the given dataset, whereas dark blue indicates that it is among the least abundant ones (each column is from a specific abundance
dataset). Cells colored white indicate missing abundance data for that protein in that abundance dataset.
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largely on relative abundances of the proteins involved. The
formation of substrate-AP complexes should also modulate sub-
strate residence times on cognate E3 ligases and via this
mechanism disassociate E3 abundances as a limiting factor for
substrate turnover, i.e., once degrons get unmasked, E3 activity
might no longer be constrained by its typically low abundances
(Fig. 4b). It should also be pointed out that beyond Kd and
abundances, interaction kinetics also will influence the balance of
competing interactions. However, such data are extremely scarce
and, being highly sensitive to experimental conditions, are per-
haps less reliable than thermodynamic values. Here, for the
abundance analysis of degradation regulatory networks, we
focused on PPI partners that masked primary degrons (Figs. 4, 5),

whereas the full network would include partners that mask sec-
ondary and tertiary degrons as well. Such detailed studies, of
future interest, would necessitate focusing on select substrates,
employing structural, biochemical and cellular approaches. For
instance, identifying degrons and characterizing a (more) com-
plete set of degron masking partners is challenging in itself.
Manifestly clear, even from this initial analysis, is the inherent
complexity of such networks, both in terms of the number of
potential regulatory partners and their cell-specific variation
(Fig. 5), resulting in diverse functional outcomes. Detailed ana-
lysis of such systems is beyond the scope of this study and further
work will be required to identify alternate complexes and their
relative expression associated with disease.
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Co-stabilization of interacting proteins appears to be a com-
mon regulatory paradigm, as reflected by the highly similar half-
lives of yeast PPI pairs (Fig. 6b). Both large-scale11 and individual
studies have demonstrated that sequestration within complexes
stabilizes subunits, and in certain cases, subunit stabilities were
mutually interdependent (e.g., yeast Matα2/Mata1 and Droso-
phila Homothorax/Extradenticle; Supplementary Table 1). Such
assembly principles regulate subunit stoichiometries since ‘excess’
proteins, not incorporated into functional complexes, are degra-
ded to avoid potential negative effects44. This behavior points to
likely degron unmasking upon subunit dissociation (and for
unassembled subunits). Furthermore, in many co-regulated
complexes, the loss of one subunit reduced the protein (but not
mRNA) levels of the other subunit(s)64. Here, we observed that
yeast PPI pairs having highly similar half-lives were: (1) func-
tionally similar (Fig. 6c), and (2) exhibited strong mRNA co-
expression (Fig. 6d). Thus, interacting proteins forming (parts of)
functional complexes exhibited correlated expression as well as
correlated stabilities (functional lifetimes). Significantly, even in
larger multiprotein complexes, forming interaction ‘paths’ in PPI
networks (Fig. 6g, h), the subunits possessed similar half-lives,
indicating stringent requirement for collective stability to ensure
functional coherence for the entire complex. Such interconnected
groups of proteins, characterized by high functional coherence
(e.g., co-complex membership), we termed ‘degronons’ to high-
light their strongly correlated half-lives. We speculate that degron
masking within such assemblies are likely to be a feature of their
functional regulation. Another potential phenomenon to keep in
mind would be the possibility of “collective destabilization”,
wherein a single E3 ligase potentially targets multiple substrates
in the same regulatory network. However, it must be emphasized
that degrons remain unidentified65 for the majority of eukaryotic
proteins, and therefore, our view on degron masking by PPIs is

inevitably incomplete and will predictably expand in the future to
include many more examples, eventually resulting in a more
complete, proteome-wide view.

Methods
Degron datasets. UPS degradation substrates and their experimentally validated
degrons compiled in our previous study14 were used (see Supplementary Data 1).

PPI binding site information. For each substrate, IntAct24, UniProtKB33 and the
ELM resource35 were queried for relevant binding site information (motif data in the
case of ELM database) for partner proteins. Only experimentally identified PPI sites/
motifs that overlapped with known degron(s) were considered. We considered strictly
overlapping as well as adjacent binding sites/motifs; the latter defined as binding sites
whose boundary was within 10 amino acids (along the sequence) of a known degron.
IntAct data (in psimitab format) was parsed to keep only interactions between protein
partners. We generated a distribution of their Interaction Confidence scores (Sup-
plementary Fig. 6c); based on this, we retained PPI pairs with scores ≥0.3; this kept the
large majority of data but removed a few pairs with low scores. From the “interactor
features” annotation columns, we searched for the following information: “sufficient
binding region”, “binding-associated region” and “necessary binding region”. Under
these headings, IntAct annotates experimental information about the required binding
site(s) for partner proteins, whenever that data is available. As shown in Supple-
mentary Fig. 6a, the first two definitions accounted for the majority of PPI site
information for our dataset. Of note, PPIs associated with such detailed annotations
typically have higher confidence scores. Additionally, we also used mutation infor-
mation falling under the following headings: “mutation decreasing interaction”,
“mutation disrupting interaction”, “mutation disrupting interaction strength”,
“mutation decreasing interaction strength”, “mutation disrupting interaction rate”,
“mutation increasing interaction”, “mutation increasing interaction strength”. If
mutation(s) in/around a degron interferes with partner binding, that is also evidence
that the relevant site is likely a physical interaction site. From UniProtKB, we manually
curated the annotations for each substrate protein to identify relevant information that
might indicate physical degron masking or information pointing to functional inter-
ference with degron function.

Protein abundance data. Protein abundances were obtained from The Protein
Abundance Database (PaxDb)47. In total, 170 human abundance datasets were
downloaded and analyzed. The datasets were grouped into the following four

Fig. 6 Interactome-level stability and functional analysis of the S. cerevisiae proteome. a Dissection of the yeast PPI network into binary, physically
interacting protein pairs for the analysis of relevant pairwise properties. b Distribution of half-life ratios of PPI pairs compared versus those of PPI pairs from
randomized networks (average ± 1 standard deviation range, calculated on 10 random networks, shown in red). c Pairwise functional similarity (estimated
using GO BP semantic similarity score) for PPI pairs, grouped according to their half-life ratios, from the Collins and BioGRID networks. The numbers of PPI
pairs in the three half-life ratio groups (Very different, Different and Similar) were respectively: 25, 250, 730 (Collins) and 104, 532 and 968 (Biogrid).
P-values between the groups: Collins (Very different vs. Different: 0.014, Very different vs. Similar: 8.1E-5, Different vs. Similar: 1.3E-7); Biogrid (Very
different vs. Different: 5.9E-6, Very different vs. Similar: 2.3E-16, Different vs. Similar: 3.9E-16). Half-life dataset from Martin-Perez was used, as in (b).
d Gene co-expression values for corresponding PPI pairs, grouped according to their half-life ratios, from the Collins and BioGRID networks. The numbers
of PPI pairs in the three half-life ratio groups (Very different, Different and Similar) were respectively: 71, 830, 2422 (Collins) and 250, 1332 and 2047
(Biogrid). P-values between the groups: Collins (Very different vs. Different: 1.08E-13, Very different vs. Similar: 4.0E-31, Different vs. Similar: 2.7E-104);
Biogrid (Very different vs. Different: 1.4E-39, Very different vs. Similar: 4.8E-88, Different vs. Similar: 3.5E-78). Half-life dataset from Martin-Perez was
used for grouping the PPI pairs. e Protein abundance ratios for PPI pairs, grouped according to their half-life ratios, from the Collins and BioGRID networks.
The numbers of PPI pairs in the three half-life ratio groups (Very different, Different and Similar) were respectively: 75, 942, 2844 (Collins) and 282, 1498
and 2295 (Biogrid). P-values between the groups: Collins (Very different vs. Different: 0.0014, Very different vs. Similar: 0.001, Different vs. Similar: 1.0E-
68); Biogrid (Very different vs. Different: 0.4, Very different vs. Similar: 9.4E-8, Different vs. Similar: 2.0E-25). Half-life dataset from Martin-Perez was used
for grouping the PPI pairs. Outliers are not shown for the boxplots in panels (c–e). f Half-life ratios of all protein (node) pairs in the Collins network as a
function of network distance (i.e., path length, based on shortest paths derived between each pair of nodes). The number of data points (i.e., half-life ratios)
per path length category: 3861 (path length= 1), 13037 (2), 18859 (3), 24734 (4), 28607 (5) and 48146 (>=6). For comparison, the red line corresponds
to the median half-life ratio for random PPI pairs (‘direct’ partners from random networks, i.e., path length= 1) while the red zone shows the 25th to 75th
percentile range of the same random distribution. Half-lives were from the Martin–Perez dataset. g Half-life ratios of protein pairs along all shortest
network paths (1st protein versus every pathway member) as a function of network (path) length in the Collins network. The subset of paths comprising
proteins having high functional similarity (“High BP SemSim paths”, defined using a BP SemSim cutoff of 0.6; i.e., each member had a BP SemSim value
≥0.6 compared to the first protein in the path) are compared to “All paths”. The number of data points (i.e., half-life ratios) per path length bin: (“All paths”
1: 416572, 2: 421070, 3: 376141, 4: 311569, 5: 228675, >=6: 249655; “High BP SemSim paths” 1: 1577, 2: 473, 3: 111, 4: 28, 5: 4, >=6: 2). Outliers are not
shown on the boxplot. h Examples of multiple, highly interconnected yeast degronon networks (see Supplementary Data 11 for the precise pathway
definitions). These correspond to multi-protein complexes characterized by extremely high functional similarity and physical interconnectedness between
their subunits (with multiple interaction edges connecting subunits and many shared subunits among the complexes; the proteins in light blue were not
part of the degronon pathways but are members of the relevant complexes). Most importantly, they share very similar half-lives between subunits, central
to the degronon concept. i Scatter plot of yeast protein half-lives as a function of their total number of interaction partners (from the Collins network) and
the mean abundance of partners (inset).
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categories: integrated datasets, whole organism datasets, tissue/organ-specific datasets
and cell-line datasets (detailed list in Supplementary Data 10). These groups were
based on the “#organ” and “#integrated” descriptor fields provided in the PaxDb data
files. Since multiple whole-organism as well as tissue-specific datasets are available for
H. sapiens, PaxDb employs a weighted averaging procedure to create “integrated”
datasets which present “best-estimate” quantifications at the respective whole-
organism (and specific tissue) levels47. PaxDb provides abundance data expressed in
parts per million (ppm), describing relative abundances of each protein with reference
to all the other protein molecules in the sample (i.e., the entire expressed proteome in
that dataset). Therefore, within datasets, ppm values reflect proportional abundances
and are useful for comparison-based statistics. Plots of dataset consistency, dataset
coverage, size and other relevant properties are shown in Supplementary Fig. 13.
PaxDb abundances are also comparable across cells of different volumes or across
tissues of different cellular and extracellular compositions (see https://pax-db.org/
help). Nevertheless, for cross-dataset comparisons, for example when comparing
degradation regulatory module component abundances across cell and tissue types
(Fig. 5 and Supplementary Fig. 11), we devised a ranking scheme to account for
possible effects of dataset size differences on our observations. The rationale behind
the ranking procedure was the following: PaxDb datasets span a certain range in terms
of dataset size (i.e., number of detected proteins) and coverage (fraction of the pro-
teome covered in each dataset); Supplementary Fig. 13c, d. However, since the ppm
convention requires that the total abundance per dataset must always sum to ~1
million (Supplementary Fig. 13b), protein-specific comparisons of ppm values across
datasets which have large differences in dataset size (or coverage) may not be ideal. For
datasets of comparable size, this is much less of an issue. Therefore, to circumvent this
potential problem, we converted ppm abundances in each dataset to ranked abun-
dances. This was done by first sorting all the proteins in a given dataset (from highest
to lowest by ppm value), then dividing the dataset into 100 equally populated bins and
finally, calculating the ranked bin for each protein. The rank bin conversion was
performed separately for each abundance dataset. A lower rank bin for a protein
implies that it has higher abundance relative to the other proteins in the dataset. For
example, rank 1 for a certain protein indicates that the protein is within the top 1%
most abundant proteins measured in that dataset. This procedure essentially provides
a numeric and directly comparable value that can be used for abundance comparisons
both within and between datasets. However, we would point out that the essential
trends in the data and their biological interpretations would remain the same irre-
spective of whether comparisons were made based on ppm abundances or ranked
bins. For example, the same trends between relative abundances of substrates, E3
ligases and APs were clearly apparent when using either ppm values (Supplementary
Fig. 8) or rank bins (Supplementary Fig. 9).

Yeast protein–protein interaction (PPI) networks. Genome-wide protein-pro-
tein interaction (PPI) datasets of Saccharomyces cerevisiae were taken from two
sources:

(1) The high confidence PPI network of soluble yeast proteins derived by
Collins et al.55, built by merging interaction datasets (obtained using affinity
purification/mass-spectrometry approaches) from two high-throughput
studies by Krogan et al.66 and Gavin et al.67 The Collins et al. study used
a Purification Enrichment (PE) statistical scoring system to identify high
confidence interactions55, resulting in 9070 interactions among 1622 distinct
proteins. We also used the Collins dataset in a recent publication68 and
concluded that the network was of high quality.

(2) The multi-validated (MV), S. cerevisiae PPI network (version March 2018)
from the BioGRID database56. These included literature-annotated PPIs
detected using both high and low-throughput methods and included co-
complex and binary interactions. Interaction reliability criteria were based
on the number of different experimental techniques used to detect each
physical interaction and the number of publications reporting the
interaction. This dataset contained 14,285 interactions among 3737 proteins,
and similar to the Collins network was curated for our recent publication68.

Generation of randomized PPI networks. Ten different, random PPI networks
were generated based on each of the Collins and BioGRID PPI networks, preser-
ving the total number of protein nodes and the node degree distribution of each
input network. The same protocol was also used in our recent publication68. First,
binary interactions (i.e., edges) in the input network were shuffled randomly using
the sample_degseq function of the igraph R package (http://www.igraph.org/r),
avoiding repeated interactions and self-loops. Next, the node identities (i.e., protein
ids) were randomly shuffled using the sample function, performed without repla-
cement, using the R base package (http://www.r-project.org). Finally, the resulting
networks were edited to eliminate any (few) remaining interactions that were also
present in the original (starting) PPI network.

Half-life datasets. Two recent half-life datasets from S. cerevisiae were used from:
(1) Martin-Perez and Villen69 and, (2) Christiano et al.70 From the Martin-Perez
dataset, we obtained relative protein half-life values (half-life normalized by cell
growth) averaged over two replicates for the prototrophic strain. From the
Christiano dataset, protein half-lives (provided in minutes) were obtained.

Gene Ontology (GO)-based semantic similarity calculation. Functional simi-
larity between two interacting proteins was evaluated using the GO semantic
similarity measure. Functional annotations were obtained from the Gene
Ontology71 (July 2016). Only GO terms based on the evidence codes ‘IDA’
(Inferred from Direct Assay) and ‘IPI’ (Inferred from Physical Interaction) from
the Biological Process (BP) ontology were considered. We used the semantic
similarity measure developed by Wang et al.72, available as an implementation in
the R-package, GOSemSim73. The GO BP SemSim score provides a numeric
estimate of the similarity of two sets of GO terms (corresponding to the functional
annotation of two proteins) based on their location in the GO hierarchical graph
and relationships to ancestor terms.

Gene co-expression data. Pearson’s correlation coefficients calculated between
mRNA expression profiles of S. cerevisiae gene pairs, obtained from
COXPRESdb74, were used to represent gene co-expression levels (1.0 indicates
highly correlated co-expression). COXPRESdb computes mRNA expression pro-
files from expression (microarray) data measured under different conditions.

PPI network paths. The Collins network was input into the NetworkX (Network
Analysis) Python package (https://networkx.github.io) as a graph object. Then the
all_pairs_shortest_path algorithm was run on the graph to define shortest paths
between all pairs of nodes (proteins). The output paths provide information on the
starting and final members as well as intermediate path members (proteins).

Statistical tests. All statistical tests for calculating statistical significance (P-
values) between groups were performed using the Mann-Whitney U-test (two-
sided), unless otherwise specified.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the relevant data(sets) are included in the manuscript and the supplementary
information files.

Code availability
Code (Python and R scripts) used to analyze the datasets and to generate the figures in
this paper are available from the corresponding authors upon request.
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