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GATA6 is predicted to regulate DNA methylation
in an in vitro model of human hepatocyte
differentiation
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Hepatocytes are the dominant cell type in the human liver, with functions in metabolism,

detoxification, and producing secreted proteins. Although gene regulation and master tran-

scription factors involved in the hepatocyte differentiation have been extensively investigated,

little is known about how the epigenome is regulated, particularly the dynamics of DNA

methylation and the critical upstream factors. Here, by examining changes in the tran-

scriptome and the methylome using an in vitro hepatocyte differentiation model, we show

putative DNA methylation-regulating transcription factors, which are likely involved in DNA

demethylation and maintenance of hypo-methylation in a differentiation stage-specific

manner. Of these factors, we further reveal that GATA6 induces DNA demethylation toge-

ther with chromatin activation in a binding-site-specific manner during endoderm differ-

entiation. These results provide an insight into the spatiotemporal regulatory mechanisms

exerted on the DNA methylation landscape by transcription factors and uncover an epige-

netic role for transcription factors in early liver development.
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Hepatocytes, the major parenchymal cells in the liver, are
responsible for key liver functions such as metabolism
and detoxification. In embryogenesis, the first fate deci-

sion to the hepatocyte lineage is the differentiation of primitive
streak cells to definitive endoderm (DE) cells, which are a com-
mon precursor of endoderm tissues such as the liver, pancreas,
and gut. Hepatoblasts are hepatic progenitor cells derived from
the DE cells, which then sequentially differentiate into fetal-like
hepatocytes and mature hepatocytes. Thus, hepatocytes emerge
from pluripotent stem cells through several progenitor cell types.

Several transcription factors (TFs), including c-Jun, members
of the Hepatocyte Nuclear Factor (HNF), and GATA family
genes, are known to play important roles in liver development
and hepatocyte differentiation1–5. Notably, GATA6 knock-out
mice die around E5.5 due to a deficiency of extra-embryonic
endoderm development, which can be rescued by tetraploid
embryo complementation assays, indicating that GATA6 is
required for liver development and hepatic specification3,5. Thus,
multiple TFs sequentially and coordinately regulate peripheral
genes necessary for hepatocyte differentiation.

Gene expression dynamics are regulated not only by the
action of transcription factors but also by epigenetic mod-
ifications such as DNA methylation. DNA methylation of gene
regulatory regions appears to be associated with silencing the
expression of the downstream gene6. Therefore, the DNA
methylation profile is dramatically altered during embryogen-
esis and cellular differentiation, with roles in tightly regulating
the expression of downstream genes7. Indeed, DNA methyla-
tion plays a crucial role in the expression of numerous liver-
specific genes8,9, and DNA methyltransferase (DNMT) inhibi-
tors facilitate trans-differentiation of adipose tissue-derived
stem cells or mesenchymal stem cells to hepatocyte-like cells
(HLCs)10,11. Collectively, these findings show that DNA
methylation is a crucial factor for hepatic differentiation.

The gain of DNA methylation is directly achieved by de novo
DNMTs and is maintained during cell divisions by a maintenance
DNMT. On the other hand, DNA demethylation is achieved by cell
proliferation dependent passive DNA demethylation12 or active
DNA demethylation based on sequential oxidative processes by ten-
eleven translocation (TET) enzymes13, followed by base-excision
repair14. In addition, the oxidized forms of methylated cytosine (5-
hydroxymethyl cytosines (5hmC), 5-formyl cytosine (5fC), and
5-carboxy cytosine (5caC)) are also depleted by passive demethy-
lation mechanisms as these bases are not recognized by the main-
tenance DNA methylation mechanism15. Thus, DNA methylation
is a balance between the gain and loss of methylated bases.

In addition to the mechanisms by which DNA methylation is
gained and lost, mechanisms underlying spatiotemporal regula-
tion of DNA methylation are also critical in understanding the
overall dynamics of DNA methylation. We and other groups
recently reported that some TFs regulate the timing and site-
specificity of DNA demethylation16–18. Thus, a growing body of
evidence suggests critical roles for TFs in the regulation of DNA
methylation. However, the epigenetic roles of TFs specific for
hepatocyte differentiation are yet to be identified.

In the present study, we combine TF binding motif (TFBM)
over-representation analysis for differentially methylated regions
with transcriptome analysis. We identified TFs with putative roles
in regulating DNA methylation during hepatocyte differentiation
by studying in vitro process of hepatocyte differentiation from
human induced pluripotent stem cells(iPSCs). Of these TFs, we
demonstrated that GATA6 is a master regulator for DNA
demethylation and chromatin activation during the differentia-
tion of the DE. Our data provide important insights into the
regulatory mechanisms shaping the DNA methylation landscape
during hepatocyte differentiation.

Results
Evaluation of an in vitro hepatocyte differentiation model. We
induced HLCs from human iPSCs in vitro using the Cellartis
hepatocyte differentiation system (Takara bio), which is com-
posed of three differentiation steps: iPSC to DE-like cell, DE-like
cell to hepatoblast-like cell, and hepatoblast-like cell to HLC,
followed by a maintenance culture (Fig. 1a, b). It has been
reported that although this hepatic differentiation protocol does
not activate several hepatic function-related genes, the efficiency
of the hepatic specification is relatively high19,20. Indeed, over
96% of the cells in days 21 and 28 cultures were HNF4α positive
without pancreatic or cardiac cell marker expressing cells (Fig. 1c, d
and Supplementary Fig. 1a). Tissue-specific gene enrichment ana-
lysis for the upregulated genes between day 0 and day 28 revealed
enrichments of endodermal tissue, such as the liver, supporting the
hepatic differentiation (Supplementary Fig. 1b). To evaluate the
differentiation in detail, we analyzed the mRNA expression of dif-
ferentiation markers. Concurrent with the decrease of the plur-
ipotent markers, DE markers peaked at day 7, indicating the DE-
like cell stage (Supplementary Fig. 1c). On day 14, hepatoblast
markers were upregulated, indicating the hepatoblast-like cell stage
(Supplementary Fig. 1c). Between day 14 and day 21, hepatic
markers were upregulated, and a part of them kept the high
expression between day 21 and day 28, although others were
decreased (Supplementary Fig. 1c). Alpha-fetoprotein (AFP), pro-
duced by fetal livers but not by adult livers, increased to 4.6-fold
greater expression than the published fetal liver CAGE expression
data21 between day 7 and day 21. Then AFP expression decreased
to 49.2% of the fetal liver level from day 21 to day 28 (Supple-
mentary Figs. 1c, 2a). AFP protein was also detected by immuno-
cytochemistry of day 21 cells and Enzyme-linked immunosorbent
assay in the culture medium (Fig. 1e and Supplementary Fig. 2b).
Whereas, although expression of Albumin (ALB), which is expres-
sed in mature hepatocytes, was increased upon differentiation from
day 14, it was much lower than that of the published hepatocyte,
fetal liver, and adult liver (Supplementary Figs. 1c, 2a). Thus, these
results suggest that day 21 and 28 cultures correspond to the fetal or
immature hepatocyte stage, consistent with the earlier report19.
Collectively, although the day 28 cells have the drawback of several
mature hepatic gene expressions, the in vitro hepatocyte differ-
entiation recapitulates the in vivo liver development until the stage
of fetal or immature hepatocytes.

DNA methylation dynamics throughout hepatocyte differ-
entiation. To investigate changes in DNA methylation during
the in vitro hepatocyte differentiation model, we performed a
methylome analysis of the time-course samples. Hierarchical
clustering showed that iPSCs and DE-like cells were segregated
from the differentiated cells that followed in the time-course,
consistent with a commitment to the hepatocyte lineage
(Fig. 1f). Comparing adjacent time points, we identified 3088,
446, 38, and 54 methylated CpGs and 3809, 11652, 7383, and
864 demethylated CpGs in each interval, indicating the bias
toward demethylation (loss of methylation) (Fig. 1g). The
expression of DNA methyltransferases tended to decrease with
differentiation, in line with the decline in the number of
methylated probes (Supplementary Fig. 2c). While the expres-
sion of TET1 decreased with differentiation, that of TET2 spiked
on day 14, when the number of identified demethylated probes
was the highest. Thus, these data suggest that the bias toward
demethylation depends on the balance of methylation and
demethylation enzymatic activities.

We associated biological functions to the differentially
methylated regions using the Genomic Region Enrichment of
Annotations Tool (GREAT)22 and summarized the results based
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on semantic similarity23. This analysis revealed an enrichment in
development and morphogenesis-related Gene Ontologies (GOs),
including “pattern specification process”, “anatomical structure
development”, “radial pattern formation”, “developmental pro-
cess”, and “regulation of developmental process” (Supplementary
Fig. 3). Overall, these results imply that DNA methylation mainly
regulates genes related to the developmental process, consistent
with specifying the cells into the hepatocyte lineage.

Prediction of DNA methylation-regulating transcription fac-
tors throughout hepatocyte differentiation. To identify TFs that
regulate binding site-directed DNA methylation (hereafter
referred to as DNA methylation-regulating TFs), we performed
TFBM over-representation analysis for the differentially methy-
lated CpG regions between two adjacent time points of the dif-
ferentiation time-course. Because some TFs, such as TFs in the
same family, share the same or similar binding motif, the results
of TFBM over-representation analysis often include false posi-
tives. Therefore, to reduce the possibility of false positives, we
further narrowed down the overrepresented TFBMs by con-
sidering TF expression (CAGE tag-per-million (TPM) ≥50) in
either of the two adjacent time points of an interval (Fig. 2a).
Comparing each adjacent time point, we identified in total 16
putative DNA methylation-regulating TFs in the methylated
regions. Of these, 13 TFs, including POU5F1, a pluripotent cell-
specific TF, were identified between Day 0 and Day 7 (Fig. 2b). In
addition, GATA6, GATA3, and GATA4 were identified between
day 7 and day 14 (Fig. 2b). Interestingly, these putative DNA
methylation-regulating TFs for the methylated regions were

prone to being highly expressed in the earlier time point of the
intervals and then declined with the progress of differentiation
(Fig. 2b, c and Supplementary Fig. 4a).

On the other hand, we identified 50 putative DNA
methylation-regulating TFs in demethylated regions. Of these,
HNF4A, an essential TF for liver development, was identified
between day 7 and day 14, and between day 14 and day 21
(Fig. 2d). In addition, the over-representation of TFBMs for
activator protein 1 (AP-1) components, such as JUN and FOS,
which are involved in stress response and regeneration in the
liver24, increased from day 14 to day 21 (Fig. 2d). Importantly,
GATA6, GATA4, and GATA3, which were overrepresented in
the regions methylated between day 14 to day 21, were first
overrepresented in the DE-like cell differentiation stage, and the
over-representation of these binding motifs declined as differ-
entiation proceeded (Fig. 2d). Contrary to the putative DNA
methylation-regulating TFs for the methylated regions, expres-
sion of the putative DNA methylation-regulating TFs for the
demethylated regions tends to be upregulated in later time points
of the intervals (Fig. 2e and Supplementary Fig. 4b). Taken
together, these results suggest that diverse TFs cooperatively
regulate the DNA methylation landscape. In particular, GATA
transcription factors appear to be the major factors for the
regulation of DNA methylation, participating in both methylation
and demethylation changes.

GATA6 regulates binding site-directed DNA demethylation.
Of the GATA proteins, GATA4 and GATA6 are known to be
essential TFs for the DE differentiation2,3. Therefore, we focused
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the following analysis on possible epigenetic functions of GATA4
and GATA6 in DE differentiation. First, we performed qRT-PCR
to confirm the expression changes of GATA4 and GATA6 during
the DE-like cell differentiation. GATA6 and GATA4 expression
increased at 48 and 54 h, respectively, after the induction of dif-
ferentiation and continued to increase with differentiation
(Fig. 3a). Furthermore, GATA6 expression increased drastically,
greater than 1000-fold at 60 h compared with 48 h, whereas
GATA4 expression increased only fourfold at 66 h compared with
48 h, indicating the dominant impact of GATA6 (Fig. 3a). Indeed,
GATA6 is reported to be an upstream factor of GATA425.

Because our recent screening study identified GATA6 as a
candidate for DNA demethylation-regulating TF26, we performed
Cloning-based bisulfite sequencing to validate the screening
result. Cloning-based bisulfite sequencing for ±100 bp regions
from four CpGs which were demethylated by GATA6 over-
expression in the earlier report26 showed that turning the GATA6
overexpression off tended to partially recover the GATA6
overexpression-induced DNA demethylation (Fig. 3b and Sup-
plementary Fig. 5a). A pull-down assay between HaloTag-fused
TET proteins and GATA6 revealed an association between TET
proteins and GATA6, suggesting that GATA6 recruits TET
proteins to their binding sites (Fig. 3c and Supplementary
Fig. 5b). Thus, these results suggest that GATA6 induces DNA
demethylation, recruiting the TET proteins.

DNA demethylation accompanies GATA6 binding during iPS-
DE-like cell differentiation. To investigate the dynamics by
which GATA6 regulates DNA demethylation, we performed finer
time-course transcriptome and methylome analyses during the
time window of GATA6 emergence (after 0, 48, 54, 60, 66, and
72 h of the differentiation process) (Fig. 4a). T, a marker of the
primitive streak, was upregulated at 48 h and downregulated after
54 h (Supplementary Fig. 6a). DE markers were upregulated
during the period of 48 to 72 h (Supplementary Fig. 6a). In
agreement with the qRT-PCR analysis (Fig. 3a), the expression of
GATA6 was slightly upregulated at 48 h and drastically increased
after 48 h (Supplementary Fig. 6a). Hence, our data indicate that
DE commitment occurs during the period of 48 to 72 h.

By comparing adjacent time points, we identified 120 (0 to 48 h),
94 (48 to 54 h), 26 (54 to 60 h), 19 (60 to 66 h), and 50 (66 to 72 h)
methylated CpGs and 220 (0 to 48 h), 226 (48 to 54 h), 33 (54 to
60 h), 27 (60 to 66 h), and 27 (66 to 72 h) demethylated CpGs,
respectively (Fig. 4b). However, we did not find the GATA6
binding motif overrepresented in those demethylated regions
during any interval (Supplementary Fig. 6B). Because the time
intervals between adjacent time points are 6 h except for the initial
period (0 to 48 h), the changes in methylation levels may not be
enough to be detected as demethylation (ΔM> 2). Indeed, the
GATA6 binding motif was overrepresented at the regions
demethylated between 0 and 72 h, and these demethylated regions
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tend to be continuously demethylated from 0 h (Supplementary
Fig. 6c, d). Therefore, to investigate whether the GATA6 binding
motif is overrepresented for the cumulative changes in methyla-
tion, we compared the regions demethylated at each time point
with that at 0 h. We identified 220 (0 to 48 h), 236 (0 to 54 h), 416
(0 to 60 h), 876 (0 to 66 h), and 620 (0 to 72 h) demethylated CpGs
(Fig. 4c). Because these demethylated CpGs include those that were
demethylated in the earlier time point and maintained the hypo-
methylated status, we only selected the demethylated CpGs that
were newly detected as demethylated CpGs at each time point
(referred to as uninherited demethylated CpGs) to clarify the
effects of each additional period. GATA6 motif over-representation
analysis in the vicinity of these uninherited demethylated CpG
(uninherited demethylated regions: UDRs) revealed the GATA6
binding motif was overrepresented at 0 to 60 h and 0 to 66 h
(Fig. 4d). To further substantiate the over-representation of the
GATA6 binding motif at the UDRs, we performed ChIPmentation,
which can provide evidence for actual physical interactions
between genomic regions and GATA627. Consistent with the
expression pattern of GATA6, GATA6 binding was not enriched at
UDRs during the period 0 to 48 h, indicating the irrelevance of
GATA6 during this period (Fig. 4e). In contrast, unlike binding
motif over-representation, ChIPmentation showed interactions
between GATA6 protein and most of the UDRs of all comparisons
apart from the 0 to 48 h, consistent with the expression pattern of
the GATA6 (Fig. 4e and Supplementary Fig. 6a). The GATA6
ChIPmentation peaks at the 72 h significantly overlapped with the
regions demethylated during DE-like cell differentiation (486
regions: P value= 0.001, one-sided permutation test). Furthermore,
of the overlapped regions, 48.8% (237 regions: P value= 0.001, one-
sided permutation test) overlapped with the demethylated region by

GATA6 overexpression26 (Supplementary Fig. 6e and Supplemen-
tary Data 1). Thus, our results indicate a correlation between
GATA6 binding and DNA demethylation during DE-like cell
differentiation.

The interrelation between DNA demethylation and chromatin
status during iPS-DE differentiation. The majority of the
demethylated regions were not promoters but other types of
regulatory regions such as enhancers and non-annotated reg-
ulatory regions (Supplementary Fig. 7a). Therefore, we investi-
gated the chromatin status of the demethylated regions. Active
regulatory regions transcribe several classes of transcripts,
including mRNA, promoter-upstream transcripts (PROMPTs),
and enhancer RNAs (eRNAs), which are typically transcribed
within ± 250 bp from the center of the regulatory region28. Thus,
the transcription level serves as an indicator of chromatin activity.
To investigate the chromatin activity of the demethylated regions,
we measured the average TPM of the UDRs (± 250 bp regions
from the uninherited demethylated CpGs) by CAGE. The average
TPMs of the UDRs were prone to increase as differentiation
proceeds in all comparisons except for the 0 to 48 h, indicating
the activation of gene regulatory regions (Fig. 5a).

To further analyze the interrelation between GATA6-mediated
DNA demethylation and chromatin status, we measured
chromatin accessibility by Omni-ATAC-seq29. Chromatin acces-
sibility at the UDRs increased between 0 and 48 h and was
maintained over the following time points at most of the
demethylated regions (Fig. 5b), in agreement with the transcrip-
tion pattern and GATA6 binding (Fig. 4e and Supplementary
Fig. 6a). These demethylated regions coincident with chromatin
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(*p < 0.05; **p < 0.01, ***p < 0.001; One-sided Fisher’s exact test). c HaloTag pull-down assay in HaloTag-fused TET1 (TET1-HT) and GATA6 co-
overexpressing HEK293T cells, in HaloTag-fused TET2 (TET2-HT) and GATA6 co-overexpressing 293T cells, in HaloTag-fused TET3 (TET3-HT) and
GATA6 co-overexpressing HEK293T cells, and in Control HaloTag (HaloTag) and GATA6 co-overexpressing HEK293T cells followed by immunoblotting
with GATA6 antibody.
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opening during the DE differentiation stage included regulatory
regions of known GATA6 targets, such as SOX17 and GATA6
(autoregulation) (Fig. 5c and Supplementary Fig. 7b)30. Notably,
the demethylated regions noted during DE-like cell differentia-
tion were only marginally accessible in iPS cells (0 h), although

GATA6 is not expressed at that time, suggesting that target
regions of the GATA6-mediated DNA demethylation are pre-
defined by chromatin accessibility (Fig. 5b). We also investigated
the change in chromatin accessibility of ATAC-seq peaks,
which opened in the period 0 to 48 h, dividing the peaks into
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demethylated and hyper-methylation-maintaining regions. Mean
accessibility level was higher in peaks at the demethylated
regions than those at the hyper-methylation-maintaining regions
at all time points even before chromatin opening (iPSCs), and
the deviation of chromatin accessibility tended to be higher in
the hyper-methylation-maintaining regions, suggesting that
hypo-methylation stabilizes the open chromatin status (Supple-
mentary Fig. 7c).

Taking advantage of our time-course multi-omics dataset, we
compared the kinetics of GATA6 expression, GATA6 binding to
the genome (ChIPmentation), methylation change (M-value),
and chromatin status (ATAC-seq and Transcript) (Fig. 6a).
Overall, the kinetics of GATA6 binding, chromatin accessibility,
and transcription observed the same trends, regardless of the
UDRs. While transcription levels and −ΔM value at the UDRs
tended to increase after 48 h in accordance with GATA6
expression, GATA6 binding dramatically increased between 48
to 54 h and plateaued at 54 h, with a transient decrease at 66 h.
Of note, chromatin accessibility increased in the period 0 to 48 h
or 54 h and then decreased after the peaking, although DNA
continued to be demethylated.

Discussion
In the present study, by applying transcriptome and TFBM over-
representation analyses for differentially methylated regions, we
comprehensively identified putative DNA methylation-regulating
TFs during hepatocyte differentiation. Of these TFs, our results
provide multiple strands of evidence that GATA6 is a primary
epigenome regulator for the iPSC to DE-like cell differentiation.

Expressions of several hepatic function-related genes, such as
Albumin, were low or not even on the day 28 HLCs (Supple-
mentary Figs. 1c, 2a). Furthermore, several hepatic markers were
decreased between day 21 and day 28, when the cells were cul-
tured in the maintenance medium. This expression decline is
likely the same phenomenon as the rapid loss of hepatic func-
tionality when primary hepatocytes is cultured ex vivo. These
drawbacks were already pointed out in the previous reports19,20.
Thus, because the liability must be due to the differentiation
protocol, the functionality may be enhanced by recently reported
improved protocol or 3D organoid culture31,32. Nevertheless,
because hepatic differentiation was high efficiency and near-
homogeneous (Fig. 1c, d), the protocol used in this study seems to
recapitulate the key molecular events of hepatic differentiation,
which fulfill the purpose of this study.

We found enrichment of many TFBMs at demethylated
regions during hepatocyte differentiation correlated with the
expression of corresponding TFs (Fig. 2d, e and Supplementary
Fig. 4b). In contrast, some TFBMs, such as POU5F1, GATA4, and
GATA6, were overrepresented mainly in the methylated regions,
and the expression of the corresponding TFs was inversely cor-
related with methylation change (Fig. 2b, c, e and Supplementary
Fig. 4a), suggesting that gain of methylation may result from the
loss of hypo-methylation maintenance by DNA demethylating-
TFs. Interestingly, GATA4 and GATA6 binding motifs are also

overrepresented in the demethylated regions at the DE-like cell
differentiation, showing the dual roles of GATA4 and GATA6. To
summarize, our data suggest that TF-mediated regulation of DNA
methylation acts in both the gain and loss of methylation.

HNF4A is required during liver development for the establish-
ment of 5hmC via interactions with TET333. Although the
methylation array analyses used in the present study do not dis-
tinguish between methylated cytosine and 5hmC, HNF4A binding
motifs were overrepresented in the demethylated regions during
the hepatoblast-like cell differentiation (Fig. 2d). Since 5hmC has a
short half-life34, our results suggest that HNF4A-induced 5hmC is
immediately converted to 5fC, 5caC, or unmodified cytosine. Thus,
these issues are unresolved at present and require further investi-
gations. Concomitantly with the mRNA expression, GATA6 pro-
teins bound to the vast majority of demethylated regions, which
was maintained through differentiation (Fig. 4e and Supplementary
Fig. 6a). Ectopic expression of GATA6 in HEK 293 T cells sup-
ported the GATA6-mediated binding site-directed DNA deme-
thylation (Fig. 3b)26. As GATA6 protein is associated with TET
proteins, recruitment of TET protein to the GATA6 binding sites
may be one of the mechanisms underlying the demethylation of
RUNX118. Thus, these results demonstrate that GATA6 is a crucial
regulator of DNA demethylation for early hepatic development.

GATA6 motif over-representation in the demethylated regions
was not completely consistent with ChIPmentation results. Since
GATA-binding proteins can bind various non-canonical motifs
with comparable affinities to the canonical GATA-binding
motif35, our TFBM over-representation analysis, in which we
used the canonical GATA6 motif, may underestimate the TF
binding. In addition, ChIPmentation may include indirect bind-
ing of GATA6 via their co-factors such as Friend Of GATA
(FOG) proteins36. Nevertheless, TFBM over-representation has a
value in predicting TF binding, because it does not depend on
experimental difficulties such as antibody quality.

GATA6 is reported to be a pioneer factor that directly binds to
non-permissive heterochromatin and primes the opening of
chromatin and histone modifications by interacting with the
chromatin remodeling complex37. DNA demethylation by
GATA6 may be a step toward pioneering. On the other hand,
how the pioneer factors recognize their target regions is not clear
yet38. Our finding that GATA6 binding regions were already
slightly accessible in iPSCs may explain the mechanism (Fig. 5b).

Chromatin accessibilities at the DNA demethylated regions
increased from 0 to 48 h or 54 h and then declined, although
DNA methylation kept decreasing, inconsistent with the notion
that DNA methylation is correlated with closed chromatin. As the
chromatin accessibility assay reflects not only the presence of
open chromatin or nucleosome density but also TF binding, this
data may be due to the TFs binding.

Although the underlying molecular mechanisms have not
been investigated in this study, our analysis proposes a
sequential reaction coordinated with the expression pattern of
TFs. DNA demethylating-TFs first bind to the permissive het-
erochromatin sites where the TFBM are located. They then open

Fig. 4 GATA6-mediated DNA demethylation analysis during DE differentiation. a Schematic illustration of time-course sampling of DE differentiation.
b The number of differentially methylated probes. c UpSet plot showing the demethylated probes at each comparison. The vertical bars indicate the
number of intersecting demethylated probes between comparisons, denoted by the connected black circles below the histogram. The horizontal bars show
the demethylated probe set size. d Distribution of enrichment score for the GATA6 binding motif within ±5000 bp of demethylated CpG probes at each
time point compared with undifferentiated iPS cells (0 h). X- and Y-axes show distance from probe CpG position and enrichment score, respectively.
Horizontal and vertical lines are enrichment score= 0 and demethylated CpG position, respectively. The colors of each plot represent the colors of time
points shown in (a). e Enrichment heatmap showing mean GATA6 ChIPmentation read coverage of 100 bp window at a range of ±5 kbp from
demethylated CpGs. Each time point is horizontally aligned, and each of the UDRs is vertically aligned. Dark blue is low coverage and orange is high
coverage.
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and activate the chromatin at the binding sites, and finally
complete DNA demethylation (Fig. 6b). This sequential reaction
may be merely due to differences in reaction times between
chromatin remodeling and DNA demethylation. While chro-
matin remodeling is an enzymatic reaction, DNA demethylation

is achieved by several mechanisms, including cell division-
dependent passive DNA demethylation that takes more time
than a single enzymatic reaction.

GATA6 plays pivotal roles in endoderm cell development
and pancreas and lung formations39–42. Therefore, GATA6
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haploinsufficiency causes several diseases, such as pancreatic
agenesis43. Because the epigenetic function of GATA6 was also
confirmed in HEK293T cells, which are non-endodermal, by the
artificial ectopic expression system, GATA6-mediated DNA
demethylation may be associated with the other biological system
and pathology of these diseases.

Methods
Cell culture and in vitro differentiation. The 201B7 human iPS cell line44 was
acquired from the RIKEN BioResource Center (BRC) and was cultured in a Cel-
lartis® DEF-CS™ Culture System (Takara Bio Inc., Shiga, Japan). For in vitro
hepatocyte differentiation and DE differentiation, we used the Cellartis® Hepato-
cyte Differentiation Kit (Takara Bio Inc.) and the Cellartis® DE Differentiation Kit
(Takara Bio Inc.), respectively, according to the manufacturers’ instructions. The
culture conditions are shown in Fig. 1a.

Immunocytochemistry. The cells cultured on a cover glass were fixed in 4%
formaldehyde for 15 min, followed by blocking using 5% skim milk. The cells were
then incubated with primary antibodies diluted by the antibody reaction buffer (1%
BSA 0.2 % Triton-X100 containing D-PBS(+/+)) for 12 h at 4 °C. After washing in
D-PBS(+/+) twice, the cells were incubated with secondary antibodies diluted by
the antibody reaction buffer for 1 h at RT. The cells were mounted in slow-fade
(Thermo Fisher Scientific Inc., Waltham, MA, USA) and analyzed by a BZ-X810
fluorescent microscope (Keyence Corporation, Osaka, Japan). Cell number mea-
surements based on the immunocytochemistry images were performed using
ImageJ. The antibodies used for the immunocytochemistry are shown in Supple-
mentary Table 2.

Methylation array analysis. Genomic DNA was isolated using a NucleoSpin®

Tissue Kit (Macherey-Nagel, Düren, Germany). The methylation array used an
Infinium Human methylationEPIC BeadChip (Illumina, San Diego, CA, USA),
according to the manufacturer’s instructions. Data normalization and M-value
computation were performed lumiMethyNorm implemented in the Infi-
niumDiffMetMotR R package. Differentially methylated probes were identified as
those with an M-value difference (ΔM) > 2.

Cap analysis gene expression. Total RNA was extracted using NucleoSpin® RNA
(Macherey-Nagel) and 3 μg of the total RNA were reverse-transcribed using
superscript III (Thermo Fisher Scientific Inc.). Cap structure of the RNA was
biotinylated, followed by treatment of RNase ONE ribonuclease (Promega Cor-
poration, Madison, WI, USA), RNA-cDNA hybrids were captured using
streptavidin-coated magnetic beads (Thermo Fisher Scientific Inc.), and only
single-stranded cDNAs were released from the beads. The released cDNAs were
ligated to linkers and the second strand were synthesized using Deep Vent (exo-)
DNA polymerase (New England BioLabs, Ipswich, MA, USA). The CAGE libraries
were sequenced using single-end reads of 50 bp on the Illumina HiSeq 2500
(Illumina). The extracted CAGE tags were then mapped to the human hg19
genome by STAR. The tags per million (TPM) were calculated for each FANTOM5
TSS peak and regions extended ±250 bp from each differentially methylated CpG.
Gene expression levels of each gene were computed as the sum of multiple TSS
peaks associated with a single gene. The CAGE analysis was performed in three
biological replicates.

Omni-ATAC-seq. Ten southland cells were stored at −80 °C in STEM CELL-
BANKER® (Takara Bio Inc.) until use. The cells were washed with PBS and nuclei
were extracted. The extracted nuclei were resuspended in 50 μl of transposition mix
(100 nM TED1 (Illumina), 0.01% digitonin, and 0.1% Tween-20, in TD buffer

Fig. 5 Chromatin status at demethylated regions. a Change in average TPM of demethylated regions during DE differentiation. X- and Y-axis represents
time point and relative TPM (vs. TPM of 0 h), respectively. The black and gray circles represent average and individual data points, respectively. The light-
green shade is the standard deviation. b Heatmaps showing mean Omni-ATAC-seq read coverage of 100 bp window at a range of ±5 kbp from
demethylated CpGs. Each time point is horizontally aligned, and each of the UDRs is vertically aligned. Red is higher coverage of Omni-ATAC-seq reads.
c A screenshot of the genome browser showing DNA demethylated regions during the DE differentiation stage, Omni-ATAC-read coverage, GATA6
ChIPmentation read coverage, and CAGE read coverage at GATA6 upstream region. The scale of each dataset is coverage of 10 million 100 nt reads. Red
translucent rectangles represent demethylated regions. The enhancer track is based on the GeneHancer database, and enhancers overlapped with the
demethylated region are shown as dark green. The genome version is hg19. M-value profiles of each demethylated probe are shown above (x-axis: time
point (hour), y-axis: M-value).
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(Illumina)) and incubated at 37 °C for 30 min with 1000 RPM mixing. DNA was
extracted from the reaction mixture with DNA Clean and Concentrator (Zymo
Research, Irvine, CA, USA). DNA library was prepared using NEBNext® Ultra™
DNA Library Prep Kit for Illumina® (New England BioLabs) with five cycles of pre-
amplification and three to seven cycles of PCR amplification. The amplified DNA
library was purified with Zymo DNA Clean and Concentrator (Zymo Research),
followed by two size-selection steps with SPRIselect (1:0.6 and 1:0.2 sample vol. to
beads vol.; Beckman Coulter, CA, USA). The Omni-ATAC-seq libraries were
sequenced using 50 bp single-end reads on the HiSeq 2500 (Illumina). The
obtained sequence reads were mapped to the human hg19 genome by bowtie2.
Reads mapped to the mitochondrial genome and duplicated reads were removed
using removeChrom.py (Harvard ATAC-seq module) and samtools, respectively.
Peak calling was performed using macs2 with a 10−5 cutoff P value. The Omni-
ATAC-seq was performed in two biological replicates.

Quantitative reverse transcription PCR (qRT-PCR). Total RNA was reverse-
transcribed using PrimseScript™ RT Master Mix (Takara Bio Inc.), followed by
10-fold dilution with EASY Dilution (Takara Bio Inc.). The real-time PCR
were performed using TB Green® Premix Ex Taq™ II (Takara Bio Inc.) with the
7500 Fast real-time PCR system (Thermo Fisher Scientific Inc.). The thermal
cycle condition was an initial step of 10 s at 95 °C, followed by 40 cycles of 3 s at
95 °C and 20 s at 62.5 °C. Gene expression changes were calculated using the
2−ΔΔCt method. Primers used for the qRT-PCR are shown in Supplementary
Table 1.

Lentivirus preparation and transduction. A GATA6 open reading frame was
subcloned into the pCW57.1 vector using the Gateway LR reaction (Thermo Fisher
Scientific Inc.). Doxycycline (Dox)-inducible GATA6 lentivirus vectors were pro-
duced by using the LV-MAX Lentiviral Production System (Thermo Fisher Sci-
entific Inc.) according to the manufacturer’s instructions.

Cloning-based bisulfite sequencing. The Dox-inducible GATA6 lentivirus vec-
tors were transduced to HEK293T cells (BRC). After selection of the successfully
transduced cells by culturing with 3 μg/ml puromycin, GATA6 were overexpressed
by adding Dox at the final concentration of 500 ng/ml. After the 7 days of over-
expression, the overexpression of GATA6 was shut off by removing the Dox.
Genomic DNA was isolated using a NucleoSpin® Tissue Kit (Macherey-Nagel,
Düren, Germany). Bisulfite C-T conversion were performed using EZ DNA
methylation-Gold Kits (Zymo Research). The target genomic regions were
amplified by 35 cycles of PCR using an EpiTaq™ HS (Takara Bio Inc.) according to
the manufacturer’s instructions. The PCR products were inserted into pTA2
plasmids using a TArget™ Clone Kit (Toyobo Co., Ltd., Osaka, Japan). The Sanger
sequencing was done by Eurofins Genomics (Tokyo, Japan) with the M13-21
primer. The primers used to amplify the target region are shown in Supplementary
Table 1.

HaloTag pull-down assay. HaloTag-fused- TET1 (FHC23878, Promega Cor-
poration), -TET2(FHC22012, Promega Corporation), or -TET3(FHC30888,
Promega Corporation) was co-transfected with pCDNA3.2-GATA6 to
HEK293T cells (BRC) using Fugene HD (Promega Corporation). After 2 days
from the transfection, the cells were collected and subjected to the HaloTag®

Mammalian Pull-Down System (Promega Corporation) according to the man-
ufacturer’s instruction. The obtained sample were subjected to SDS-PAGE using
NuPAGE Bis-Tris Gel (Thermo Fisher Scientific), followed by transfer to a
PVDF membrane. The membrane was blocked by the Bullet Blocking One for
Western Blotting (Nakarai Tesque Inc., Kyoto, Japan), incubated with an anti-
GATA6 antibody in the Can Get Signal Solution 1 (Toyobo Co., Ltd.) for 12 h,
and incubated with a secondary antibody in the Can Get Signal Solution 2
(Toyobo Co., Ltd.) for 1 h. The membrane was developed using ECL™ Prime
(Cytiva, Marlborough, MA, USA), followed by image capturing by Fusin LS
(Vilber Lourmat, Marne-la-Vallée, France). The antibodies used for the pull-
down assay were shown in Supplementary Table 2.

ChIPmentation. ChIPmentation was performed using a ChIPmentation for
Transcription Factor kit (Diagenode) according to the manufacturer’s instructions.
Briefly, the cells were fixed with 1% formaldehyde for 8 min. Chromatin was
sheared by sonication using a Picoruptor® (Diagenode) for ten cycles and subjected
to magnetic immunoprecipitation and tagmentation using an SX-8G IP-STAR®

Compact Automated System (Diagenode). The sequencing libraries were amplified
by nine cycles of PCR and cleaned up using AMPure XP beads (Beckman Coulter).
The ChIPmentation libraries were sequenced using 150 bp paired-end reads on the
HiSeq X (Illumina). The sequence reads were mapped to the human hg19 genome
by bowtie2. Reads mapped to the mitochondrial genome and duplicated reads were
removed using removeChrom.py and samtools, respectively. Peak calling was
performed using macs2 with a 10−10 cutoff P value. The antibody used for the
ChIPmentation were shown in Supplementary Table 2. The ChIPmentation was
performed in two biological replicates.

Enzyme-linked immunosorbent assay (ELISA). Culture medium on the indi-
cated day were collected. The medium was replaced with a fresh medium 3 days
before the collection. According to the manufacturer’s instruction, the medium was
diluted 1000-fold and subjected to ELISA for AFP using the Human alpha Feto-
protein ELISA Kit (Abcam, Cambridge, UK). Four biological replicates with two
technical replicates were used.

Tissue-specific gene enrichment analysis. Upregulated genes between
day 0 and day 28 were identified using the generalized linear model by DBa-
nalysis function of the TCseq R package. For the upregulated genes, tissue-
specific gene enrichment analysis was performed using enrichr with the
ARCHS4 dataset.

Functional analysis of differentially methylated regions. GO analysis of dif-
ferentially methylated regions was performed using GREAT22. Enriched GO lists
were summarized based on Semantic Similarity by the GOsemSim R package.

Screening of DNA methylation-regulating transcription factors. TFBM over-
representation analysis was performed using the MotScr function implemented in
the InfiniumDiffMetMotR R package with the PWM database of Integrated ana-
lysis of Motif Activity and Gene Expression changes of transcription factors
(IMAGE)45. Out of the overrepresented motifs, the corresponding genes whose
CAGE tag-per-million ≥50 at the time points where the TF binding motif was
overrepresented were selected as DNA methylation-regulating transcription
factors.

Correlation matrix. The correlation coefficient of all combinations of two clusters
was computed using the M-values. The correlation coefficients were visualized as
the correlation matrix heatmap. The clusters were ordered based on hierarchical
clustering, which was calculated using the hclust and dist functions of the R stats
package with the default settings.

Functional analysis of differentially methylated regions. Differentially methy-
lated CpGs that were identified as ΔM> 2 and ±100 bp extended regions from the
differentially methylated CpGs were used as differentially methylated regions. The
differentially methylated regions were subjected to GREAT analysis using the
submitGreatJob function implemented in the rGREAT R package with background
data, which is with the regions extended ±100 bp for all methylation array probes.
Log10 FDR and the ratio between the numbers of hit regions and all differentially
methylated regions of the Top10 overrepresented GOs (Biological Process) were
visualized.

Annotation of differentially methylated regions. Gene promoters were defined
as 1 kbp upstream and 200 bp downstream regions of genes in gencode human
release version 19. The enhancers used in this study were FANTOM5 human phase
1 and 2 permissive enhancers. Non-promoter and non-enhancer regions were
defined as unannotated regions. The complete overlap between uninherited
demethylated CpGs and each regulatory region was counted.

Coverage analysis of GATA6 ChIPmentation and Omni-ATAC-seq. Bigwig
Coverage files of CAGE ChIPmentation and Omni-ATAC-seq were computed
using bam2wig.py with 1,000,000,000 wigsum (equals to coverage of 10 million 100
nt reads). The read coverage was visualized in the range between ±5 kbp from the
demethylated CpGs using the EnrichedHeatmap function with the w0 mean model
implemented in the EnrichedHeatmap R package.

Permutation test between GATA6 ChIPmentation peaks and the demethy-
lated regions of DE differentiation stage. Differentially methylated CpGs that
were identified as ΔM> 2 and ±200 bp extended regions from the differentially
methylated CpGs were used as differentially methylated regions. Permutation tests
were performed using the permTest function implemented in the regioneR R
package with permutation 1000 times permutation.

Statistics and reproducibility. The numbers of biological and technical replicates
are indicated for each experiment. The statistical tests used are shown in each
analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed during the current study are available in the NCBI
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession
number GSE163331. Source data underlying the main figures are presented in
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Supplementary Data 1. The M-value data of GATA6-overexpressing HEK293T cells that
support the findings of this study are available in Figshare (https://doi.org/10.6084/m9.
figshare.18376592.v1).

Code availability
Analysis codes and data are available in the Zenodo repository at the https://doi.org/10.
5281/zenodo.6337878.
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